xref: /titanic_41/usr/src/uts/common/os/streamio.c (revision 00a3eaf3896a33935e11fd5c5fb5c1714225c067)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/stat.h>
36 #include <sys/proc.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/stream.h>
42 #include <sys/strsubr.h>
43 #include <sys/stropts.h>
44 #include <sys/tihdr.h>
45 #include <sys/var.h>
46 #include <sys/poll.h>
47 #include <sys/termio.h>
48 #include <sys/ttold.h>
49 #include <sys/systm.h>
50 #include <sys/uio.h>
51 #include <sys/cmn_err.h>
52 #include <sys/sad.h>
53 #include <sys/netstack.h>
54 #include <sys/priocntl.h>
55 #include <sys/jioctl.h>
56 #include <sys/procset.h>
57 #include <sys/session.h>
58 #include <sys/kmem.h>
59 #include <sys/filio.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
62 #include <sys/strredir.h>
63 #include <sys/fs/fifonode.h>
64 #include <sys/fs/snode.h>
65 #include <sys/strlog.h>
66 #include <sys/strsun.h>
67 #include <sys/project.h>
68 #include <sys/kbio.h>
69 #include <sys/msio.h>
70 #include <sys/tty.h>
71 #include <sys/ptyvar.h>
72 #include <sys/vuid_event.h>
73 #include <sys/modctl.h>
74 #include <sys/sunddi.h>
75 #include <sys/sunldi_impl.h>
76 #include <sys/autoconf.h>
77 #include <sys/policy.h>
78 #include <sys/dld.h>
79 #include <sys/zone.h>
80 
81 /*
82  * This define helps improve the readability of streams code while
83  * still maintaining a very old streams performance enhancement.  The
84  * performance enhancement basically involved having all callers
85  * of straccess() perform the first check that straccess() will do
86  * locally before actually calling straccess().  (There by reducing
87  * the number of unnecessary calls to straccess().)
88  */
89 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
90 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
91 				    straccess((x), (y)))
92 
93 /*
94  * what is mblk_pull_len?
95  *
96  * If a streams message consists of many short messages,
97  * a performance degradation occurs from copyout overhead.
98  * To decrease the per mblk overhead, messages that are
99  * likely to consist of many small mblks are pulled up into
100  * one continuous chunk of memory.
101  *
102  * To avoid the processing overhead of examining every
103  * mblk, a quick heuristic is used. If the first mblk in
104  * the message is shorter than mblk_pull_len, it is likely
105  * that the rest of the mblk will be short.
106  *
107  * This heuristic was decided upon after performance tests
108  * indicated that anything more complex slowed down the main
109  * code path.
110  */
111 #define	MBLK_PULL_LEN 64
112 uint32_t mblk_pull_len = MBLK_PULL_LEN;
113 
114 /*
115  * The sgttyb_handling flag controls the handling of the old BSD
116  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
117  *
118  * 0 - Emit no warnings at all and retain old, broken behavior.
119  * 1 - Emit no warnings and silently handle new semantics.
120  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
121  *     (once per system invocation).  Handle with new semantics.
122  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
123  *     made (so that offenders drop core and are easy to debug).
124  *
125  * The "new semantics" are that TIOCGETP returns B38400 for
126  * sg_[io]speed if the corresponding value is over B38400, and that
127  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
128  * bit rate."
129  */
130 int sgttyb_handling = 1;
131 static boolean_t sgttyb_complaint;
132 
133 /* don't push drcompat module by default on Style-2 streams */
134 static int push_drcompat = 0;
135 
136 /*
137  * id value used to distinguish between different ioctl messages
138  */
139 static uint32_t ioc_id;
140 
141 static void putback(struct stdata *, queue_t *, mblk_t *, int);
142 static void strcleanall(struct vnode *);
143 static int strwsrv(queue_t *);
144 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
145 static void struioainit(queue_t *, sodirect_t *, uio_t *);
146 
147 /*
148  * qinit and module_info structures for stream head read and write queues
149  */
150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
155     FIFOLOWAT };
156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
159 
160 extern kmutex_t	strresources;	/* protects global resources */
161 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
162 
163 static boolean_t msghasdata(mblk_t *bp);
164 #define	msgnodata(bp) (!msghasdata(bp))
165 
166 /*
167  * Stream head locking notes:
168  *	There are four monitors associated with the stream head:
169  *	1. v_stream monitor: in stropen() and strclose() v_lock
170  *		is held while the association of vnode and stream
171  *		head is established or tested for.
172  *	2. open/close/push/pop monitor: sd_lock is held while each
173  *		thread bids for exclusive access to this monitor
174  *		for opening or closing a stream.  In addition, this
175  *		monitor is entered during pushes and pops.  This
176  *		guarantees that during plumbing operations there
177  *		is only one thread trying to change the plumbing.
178  *		Any other threads present in the stream are only
179  *		using the plumbing.
180  *	3. read/write monitor: in the case of read, a thread holds
181  *		sd_lock while trying to get data from the stream
182  *		head queue.  if there is none to fulfill a read
183  *		request, it sets RSLEEP and calls cv_wait_sig() down
184  *		in strwaitq() to await the arrival of new data.
185  *		when new data arrives in strrput(), sd_lock is acquired
186  *		before testing for RSLEEP and calling cv_broadcast().
187  *		the behavior of strwrite(), strwsrv(), and WSLEEP
188  *		mirror this.
189  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
190  *		thread is doing an ioctl at a time.
191  *
192  * Note, for sodirect case 3. is extended to (*sodirect_t.sod_enqueue)()
193  * call-back from below, further the sodirect support is for code paths
194  * called via kstgetmsg(), all other code paths ASSERT() that sodirect
195  * uioa generated mblk_t's (i.e. DBLK_UIOA) aren't processed.
196  */
197 
198 static int
199 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
200     int anchor, cred_t *crp, uint_t anchor_zoneid)
201 {
202 	int error;
203 	fmodsw_impl_t *fp;
204 
205 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
206 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
207 		return (error);
208 	}
209 	if (stp->sd_pushcnt >= nstrpush) {
210 		return (EINVAL);
211 	}
212 
213 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
214 		stp->sd_flag |= STREOPENFAIL;
215 		return (EINVAL);
216 	}
217 
218 	/*
219 	 * push new module and call its open routine via qattach
220 	 */
221 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
222 		return (error);
223 
224 	/*
225 	 * Check to see if caller wants a STREAMS anchor
226 	 * put at this place in the stream, and add if so.
227 	 */
228 	mutex_enter(&stp->sd_lock);
229 	if (anchor == stp->sd_pushcnt) {
230 		stp->sd_anchor = stp->sd_pushcnt;
231 		stp->sd_anchorzone = anchor_zoneid;
232 	}
233 	mutex_exit(&stp->sd_lock);
234 
235 	return (0);
236 }
237 
238 /*
239  * Open a stream device.
240  */
241 int
242 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
243 {
244 	struct stdata *stp;
245 	queue_t *qp;
246 	int s;
247 	dev_t dummydev, savedev;
248 	struct autopush *ap;
249 	struct dlautopush dlap;
250 	int error = 0;
251 	ssize_t	rmin, rmax;
252 	int cloneopen;
253 	queue_t *brq;
254 	major_t major;
255 	str_stack_t *ss;
256 	zoneid_t zoneid;
257 	uint_t anchor;
258 
259 	if (audit_active)
260 		audit_stropen(vp, devp, flag, crp);
261 
262 	/*
263 	 * If the stream already exists, wait for any open in progress
264 	 * to complete, then call the open function of each module and
265 	 * driver in the stream.  Otherwise create the stream.
266 	 */
267 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
268 retry:
269 	mutex_enter(&vp->v_lock);
270 	if ((stp = vp->v_stream) != NULL) {
271 
272 		/*
273 		 * Waiting for stream to be created to device
274 		 * due to another open.
275 		 */
276 		mutex_exit(&vp->v_lock);
277 
278 		if (STRMATED(stp)) {
279 			struct stdata *strmatep = stp->sd_mate;
280 
281 			STRLOCKMATES(stp);
282 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
283 				if (flag & (FNDELAY|FNONBLOCK)) {
284 					error = EAGAIN;
285 					mutex_exit(&strmatep->sd_lock);
286 					goto ckreturn;
287 				}
288 				mutex_exit(&stp->sd_lock);
289 				if (!cv_wait_sig(&strmatep->sd_monitor,
290 				    &strmatep->sd_lock)) {
291 					error = EINTR;
292 					mutex_exit(&strmatep->sd_lock);
293 					mutex_enter(&stp->sd_lock);
294 					goto ckreturn;
295 				}
296 				mutex_exit(&strmatep->sd_lock);
297 				goto retry;
298 			}
299 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
300 				if (flag & (FNDELAY|FNONBLOCK)) {
301 					error = EAGAIN;
302 					mutex_exit(&strmatep->sd_lock);
303 					goto ckreturn;
304 				}
305 				mutex_exit(&strmatep->sd_lock);
306 				if (!cv_wait_sig(&stp->sd_monitor,
307 				    &stp->sd_lock)) {
308 					error = EINTR;
309 					goto ckreturn;
310 				}
311 				mutex_exit(&stp->sd_lock);
312 				goto retry;
313 			}
314 
315 			if (stp->sd_flag & (STRDERR|STWRERR)) {
316 				error = EIO;
317 				mutex_exit(&strmatep->sd_lock);
318 				goto ckreturn;
319 			}
320 
321 			stp->sd_flag |= STWOPEN;
322 			STRUNLOCKMATES(stp);
323 		} else {
324 			mutex_enter(&stp->sd_lock);
325 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
326 				if (flag & (FNDELAY|FNONBLOCK)) {
327 					error = EAGAIN;
328 					goto ckreturn;
329 				}
330 				if (!cv_wait_sig(&stp->sd_monitor,
331 				    &stp->sd_lock)) {
332 					error = EINTR;
333 					goto ckreturn;
334 				}
335 				mutex_exit(&stp->sd_lock);
336 				goto retry;  /* could be clone! */
337 			}
338 
339 			if (stp->sd_flag & (STRDERR|STWRERR)) {
340 				error = EIO;
341 				goto ckreturn;
342 			}
343 
344 			stp->sd_flag |= STWOPEN;
345 			mutex_exit(&stp->sd_lock);
346 		}
347 
348 		/*
349 		 * Open all modules and devices down stream to notify
350 		 * that another user is streaming.  For modules, set the
351 		 * last argument to MODOPEN and do not pass any open flags.
352 		 * Ignore dummydev since this is not the first open.
353 		 */
354 		claimstr(stp->sd_wrq);
355 		qp = stp->sd_wrq;
356 		while (_SAMESTR(qp)) {
357 			qp = qp->q_next;
358 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
359 				break;
360 		}
361 		releasestr(stp->sd_wrq);
362 		mutex_enter(&stp->sd_lock);
363 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
364 		stp->sd_rerror = 0;
365 		stp->sd_werror = 0;
366 ckreturn:
367 		cv_broadcast(&stp->sd_monitor);
368 		mutex_exit(&stp->sd_lock);
369 		return (error);
370 	}
371 
372 	/*
373 	 * This vnode isn't streaming.  SPECFS already
374 	 * checked for multiple vnodes pointing to the
375 	 * same stream, so create a stream to the driver.
376 	 */
377 	qp = allocq();
378 	stp = shalloc(qp);
379 
380 	/*
381 	 * Initialize stream head.  shalloc() has given us
382 	 * exclusive access, and we have the vnode locked;
383 	 * we can do whatever we want with stp.
384 	 */
385 	stp->sd_flag = STWOPEN;
386 	stp->sd_siglist = NULL;
387 	stp->sd_pollist.ph_list = NULL;
388 	stp->sd_sigflags = 0;
389 	stp->sd_mark = NULL;
390 	stp->sd_closetime = STRTIMOUT;
391 	stp->sd_sidp = NULL;
392 	stp->sd_pgidp = NULL;
393 	stp->sd_vnode = vp;
394 	stp->sd_rerror = 0;
395 	stp->sd_werror = 0;
396 	stp->sd_wroff = 0;
397 	stp->sd_tail = 0;
398 	stp->sd_iocblk = NULL;
399 	stp->sd_cmdblk = NULL;
400 	stp->sd_pushcnt = 0;
401 	stp->sd_qn_minpsz = 0;
402 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
403 	stp->sd_maxblk = INFPSZ;
404 	stp->sd_sodirect = NULL;
405 	qp->q_ptr = _WR(qp)->q_ptr = stp;
406 	STREAM(qp) = STREAM(_WR(qp)) = stp;
407 	vp->v_stream = stp;
408 	mutex_exit(&vp->v_lock);
409 	if (vp->v_type == VFIFO) {
410 		stp->sd_flag |= OLDNDELAY;
411 		/*
412 		 * This means, both for pipes and fifos
413 		 * strwrite will send SIGPIPE if the other
414 		 * end is closed. For putmsg it depends
415 		 * on whether it is a XPG4_2 application
416 		 * or not
417 		 */
418 		stp->sd_wput_opt = SW_SIGPIPE;
419 
420 		/* setq might sleep in kmem_alloc - avoid holding locks. */
421 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
422 		    SQ_CI|SQ_CO, B_FALSE);
423 
424 		set_qend(qp);
425 		stp->sd_strtab = fifo_getinfo();
426 		_WR(qp)->q_nfsrv = _WR(qp);
427 		qp->q_nfsrv = qp;
428 		/*
429 		 * Wake up others that are waiting for stream to be created.
430 		 */
431 		mutex_enter(&stp->sd_lock);
432 		/*
433 		 * nothing is be pushed on stream yet, so
434 		 * optimized stream head packetsizes are just that
435 		 * of the read queue
436 		 */
437 		stp->sd_qn_minpsz = qp->q_minpsz;
438 		stp->sd_qn_maxpsz = qp->q_maxpsz;
439 		stp->sd_flag &= ~STWOPEN;
440 		goto fifo_opendone;
441 	}
442 	/* setq might sleep in kmem_alloc - avoid holding locks. */
443 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
444 
445 	set_qend(qp);
446 
447 	/*
448 	 * Open driver and create stream to it (via qattach).
449 	 */
450 	savedev = *devp;
451 	cloneopen = (getmajor(*devp) == clone_major);
452 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
453 		mutex_enter(&vp->v_lock);
454 		vp->v_stream = NULL;
455 		mutex_exit(&vp->v_lock);
456 		mutex_enter(&stp->sd_lock);
457 		cv_broadcast(&stp->sd_monitor);
458 		mutex_exit(&stp->sd_lock);
459 		freeq(_RD(qp));
460 		shfree(stp);
461 		return (error);
462 	}
463 	/*
464 	 * Set sd_strtab after open in order to handle clonable drivers
465 	 */
466 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
467 
468 	/*
469 	 * Historical note: dummydev used to be be prior to the initial
470 	 * open (via qattach above), which made the value seen
471 	 * inconsistent between an I_PUSH and an autopush of a module.
472 	 */
473 	dummydev = *devp;
474 
475 	/*
476 	 * For clone open of old style (Q not associated) network driver,
477 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
478 	 */
479 	brq = _RD(_WR(qp)->q_next);
480 	major = getmajor(*devp);
481 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
482 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
483 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
484 			cmn_err(CE_WARN, "cannot push " DRMODNAME
485 			    " streams module");
486 	}
487 
488 	if (!NETWORK_DRV(major)) {
489 		savedev = *devp;
490 	} else {
491 		/*
492 		 * For network devices, process differently based on the
493 		 * return value from dld_autopush():
494 		 *
495 		 *   0: the passed-in device points to a GLDv3 datalink with
496 		 *   per-link autopush configuration; use that configuration
497 		 *   and ignore any per-driver autopush configuration.
498 		 *
499 		 *   1: the passed-in device points to a physical GLDv3
500 		 *   datalink without per-link autopush configuration.  The
501 		 *   passed in device was changed to refer to the actual
502 		 *   physical device (if it's not already); we use that new
503 		 *   device to look up any per-driver autopush configuration.
504 		 *
505 		 *   -1: neither of the above cases applied; use the initial
506 		 *   device to look up any per-driver autopush configuration.
507 		 */
508 		switch (dld_autopush(&savedev, &dlap)) {
509 		case 0:
510 			zoneid = crgetzoneid(crp);
511 			for (s = 0; s < dlap.dap_npush; s++) {
512 				error = push_mod(qp, &dummydev, stp,
513 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
514 				    zoneid);
515 				if (error != 0)
516 					break;
517 			}
518 			goto opendone;
519 		case 1:
520 			break;
521 		case -1:
522 			savedev = *devp;
523 			break;
524 		}
525 	}
526 	/*
527 	 * Find the autopush configuration based on "savedev". Start with the
528 	 * global zone. If not found check in the local zone.
529 	 */
530 	zoneid = GLOBAL_ZONEID;
531 retryap:
532 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
533 	    netstack_str;
534 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
535 		netstack_rele(ss->ss_netstack);
536 		if (zoneid == GLOBAL_ZONEID) {
537 			/*
538 			 * None found. Also look in the zone's autopush table.
539 			 */
540 			zoneid = crgetzoneid(crp);
541 			if (zoneid != GLOBAL_ZONEID)
542 				goto retryap;
543 		}
544 		goto opendone;
545 	}
546 	anchor = ap->ap_anchor;
547 	zoneid = crgetzoneid(crp);
548 	for (s = 0; s < ap->ap_npush; s++) {
549 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
550 		    anchor, crp, zoneid);
551 		if (error != 0)
552 			break;
553 	}
554 	sad_ap_rele(ap, ss);
555 	netstack_rele(ss->ss_netstack);
556 
557 opendone:
558 
559 	/*
560 	 * let specfs know that open failed part way through
561 	 */
562 	if (error) {
563 		mutex_enter(&stp->sd_lock);
564 		stp->sd_flag |= STREOPENFAIL;
565 		mutex_exit(&stp->sd_lock);
566 	}
567 
568 	/*
569 	 * Wake up others that are waiting for stream to be created.
570 	 */
571 	mutex_enter(&stp->sd_lock);
572 	stp->sd_flag &= ~STWOPEN;
573 
574 	/*
575 	 * As a performance concern we are caching the values of
576 	 * q_minpsz and q_maxpsz of the module below the stream
577 	 * head in the stream head.
578 	 */
579 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
580 	rmin = stp->sd_wrq->q_next->q_minpsz;
581 	rmax = stp->sd_wrq->q_next->q_maxpsz;
582 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
583 
584 	/* do this processing here as a performance concern */
585 	if (strmsgsz != 0) {
586 		if (rmax == INFPSZ)
587 			rmax = strmsgsz;
588 		else
589 			rmax = MIN(strmsgsz, rmax);
590 	}
591 
592 	mutex_enter(QLOCK(stp->sd_wrq));
593 	stp->sd_qn_minpsz = rmin;
594 	stp->sd_qn_maxpsz = rmax;
595 	mutex_exit(QLOCK(stp->sd_wrq));
596 
597 fifo_opendone:
598 	cv_broadcast(&stp->sd_monitor);
599 	mutex_exit(&stp->sd_lock);
600 	return (error);
601 }
602 
603 static int strsink(queue_t *, mblk_t *);
604 static struct qinit deadrend = {
605 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
606 };
607 static struct qinit deadwend = {
608 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
609 };
610 
611 /*
612  * Close a stream.
613  * This is called from closef() on the last close of an open stream.
614  * Strclean() will already have removed the siglist and pollist
615  * information, so all that remains is to remove all multiplexor links
616  * for the stream, pop all the modules (and the driver), and free the
617  * stream structure.
618  */
619 
620 int
621 strclose(struct vnode *vp, int flag, cred_t *crp)
622 {
623 	struct stdata *stp;
624 	queue_t *qp;
625 	int rval;
626 	int freestp = 1;
627 	queue_t *rmq;
628 
629 	if (audit_active)
630 		audit_strclose(vp, flag, crp);
631 
632 	TRACE_1(TR_FAC_STREAMS_FR,
633 	    TR_STRCLOSE, "strclose:%p", vp);
634 	ASSERT(vp->v_stream);
635 
636 	stp = vp->v_stream;
637 	ASSERT(!(stp->sd_flag & STPLEX));
638 	qp = stp->sd_wrq;
639 
640 	/*
641 	 * Needed so that strpoll will return non-zero for this fd.
642 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
643 	 */
644 	mutex_enter(&stp->sd_lock);
645 	stp->sd_flag |= STRHUP;
646 	mutex_exit(&stp->sd_lock);
647 
648 	/*
649 	 * If the registered process or process group did not have an
650 	 * open instance of this stream then strclean would not be
651 	 * called. Thus at the time of closing all remaining siglist entries
652 	 * are removed.
653 	 */
654 	if (stp->sd_siglist != NULL)
655 		strcleanall(vp);
656 
657 	ASSERT(stp->sd_siglist == NULL);
658 	ASSERT(stp->sd_sigflags == 0);
659 
660 	if (STRMATED(stp)) {
661 		struct stdata *strmatep = stp->sd_mate;
662 		int waited = 1;
663 
664 		STRLOCKMATES(stp);
665 		while (waited) {
666 			waited = 0;
667 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
668 				mutex_exit(&strmatep->sd_lock);
669 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
670 				mutex_exit(&stp->sd_lock);
671 				STRLOCKMATES(stp);
672 				waited = 1;
673 			}
674 			while (strmatep->sd_flag &
675 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
676 				mutex_exit(&stp->sd_lock);
677 				cv_wait(&strmatep->sd_monitor,
678 				    &strmatep->sd_lock);
679 				mutex_exit(&strmatep->sd_lock);
680 				STRLOCKMATES(stp);
681 				waited = 1;
682 			}
683 		}
684 		stp->sd_flag |= STRCLOSE;
685 		STRUNLOCKMATES(stp);
686 	} else {
687 		mutex_enter(&stp->sd_lock);
688 		stp->sd_flag |= STRCLOSE;
689 		mutex_exit(&stp->sd_lock);
690 	}
691 
692 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
693 
694 	/* Check if an I_LINK was ever done on this stream */
695 	if (stp->sd_flag & STRHASLINKS) {
696 		netstack_t *ns;
697 		str_stack_t *ss;
698 
699 		ns = netstack_find_by_cred(crp);
700 		ASSERT(ns != NULL);
701 		ss = ns->netstack_str;
702 		ASSERT(ss != NULL);
703 
704 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
705 		netstack_rele(ss->ss_netstack);
706 	}
707 
708 	while (_SAMESTR(qp)) {
709 		/*
710 		 * Holding sd_lock prevents q_next from changing in
711 		 * this stream.
712 		 */
713 		mutex_enter(&stp->sd_lock);
714 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
715 
716 			/*
717 			 * sleep until awakened by strwsrv() or timeout
718 			 */
719 			for (;;) {
720 				mutex_enter(QLOCK(qp->q_next));
721 				if (!(qp->q_next->q_mblkcnt)) {
722 					mutex_exit(QLOCK(qp->q_next));
723 					break;
724 				}
725 				stp->sd_flag |= WSLEEP;
726 
727 				/* ensure strwsrv gets enabled */
728 				qp->q_next->q_flag |= QWANTW;
729 				mutex_exit(QLOCK(qp->q_next));
730 				/* get out if we timed out or recv'd a signal */
731 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
732 				    stp->sd_closetime, 0) <= 0) {
733 					break;
734 				}
735 			}
736 			stp->sd_flag &= ~WSLEEP;
737 		}
738 		mutex_exit(&stp->sd_lock);
739 
740 		rmq = qp->q_next;
741 		if (rmq->q_flag & QISDRV) {
742 			ASSERT(!_SAMESTR(rmq));
743 			wait_sq_svc(_RD(qp)->q_syncq);
744 		}
745 
746 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
747 	}
748 
749 	/*
750 	 * Since we call pollwakeup in close() now, the poll list should
751 	 * be empty in most cases. The only exception is the layered devices
752 	 * (e.g. the console drivers with redirection modules pushed on top
753 	 * of it).  We have to do this after calling qdetach() because
754 	 * the redirection module won't have torn down the console
755 	 * redirection until after qdetach() has been invoked.
756 	 */
757 	if (stp->sd_pollist.ph_list != NULL) {
758 		pollwakeup(&stp->sd_pollist, POLLERR);
759 		pollhead_clean(&stp->sd_pollist);
760 	}
761 	ASSERT(stp->sd_pollist.ph_list == NULL);
762 	ASSERT(stp->sd_sidp == NULL);
763 	ASSERT(stp->sd_pgidp == NULL);
764 
765 	/* Prevent qenable from re-enabling the stream head queue */
766 	disable_svc(_RD(qp));
767 
768 	/*
769 	 * Wait until service procedure of each queue is
770 	 * run, if QINSERVICE is set.
771 	 */
772 	wait_svc(_RD(qp));
773 
774 	/*
775 	 * Now, flush both queues.
776 	 */
777 	flushq(_RD(qp), FLUSHALL);
778 	flushq(qp, FLUSHALL);
779 
780 	/*
781 	 * If the write queue of the stream head is pointing to a
782 	 * read queue, we have a twisted stream.  If the read queue
783 	 * is alive, convert the stream head queues into a dead end.
784 	 * If the read queue is dead, free the dead pair.
785 	 */
786 	if (qp->q_next && !_SAMESTR(qp)) {
787 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
788 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
789 			shfree(qp->q_next->q_stream);
790 			freeq(qp->q_next);
791 			freeq(_RD(qp));
792 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
793 			freeq(_RD(qp));
794 		} else {				/* pipe */
795 			freestp = 0;
796 			/*
797 			 * The q_info pointers are never accessed when
798 			 * SQLOCK is held.
799 			 */
800 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
801 			mutex_enter(SQLOCK(qp->q_syncq));
802 			qp->q_qinfo = &deadwend;
803 			_RD(qp)->q_qinfo = &deadrend;
804 			mutex_exit(SQLOCK(qp->q_syncq));
805 		}
806 	} else {
807 		freeq(_RD(qp)); /* free stream head queue pair */
808 	}
809 
810 	mutex_enter(&vp->v_lock);
811 	if (stp->sd_iocblk) {
812 		if (stp->sd_iocblk != (mblk_t *)-1) {
813 			freemsg(stp->sd_iocblk);
814 		}
815 		stp->sd_iocblk = NULL;
816 	}
817 	stp->sd_vnode = NULL;
818 	vp->v_stream = NULL;
819 	mutex_exit(&vp->v_lock);
820 	mutex_enter(&stp->sd_lock);
821 	freemsg(stp->sd_cmdblk);
822 	stp->sd_cmdblk = NULL;
823 	stp->sd_flag &= ~STRCLOSE;
824 	cv_broadcast(&stp->sd_monitor);
825 	mutex_exit(&stp->sd_lock);
826 
827 	if (freestp)
828 		shfree(stp);
829 	return (0);
830 }
831 
832 static int
833 strsink(queue_t *q, mblk_t *bp)
834 {
835 	struct copyresp *resp;
836 
837 	switch (bp->b_datap->db_type) {
838 	case M_FLUSH:
839 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
840 			*bp->b_rptr &= ~FLUSHR;
841 			bp->b_flag |= MSGNOLOOP;
842 			/*
843 			 * Protect against the driver passing up
844 			 * messages after it has done a qprocsoff.
845 			 */
846 			if (_OTHERQ(q)->q_next == NULL)
847 				freemsg(bp);
848 			else
849 				qreply(q, bp);
850 		} else {
851 			freemsg(bp);
852 		}
853 		break;
854 
855 	case M_COPYIN:
856 	case M_COPYOUT:
857 		if (bp->b_cont) {
858 			freemsg(bp->b_cont);
859 			bp->b_cont = NULL;
860 		}
861 		bp->b_datap->db_type = M_IOCDATA;
862 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
863 		resp = (struct copyresp *)bp->b_rptr;
864 		resp->cp_rval = (caddr_t)1;	/* failure */
865 		/*
866 		 * Protect against the driver passing up
867 		 * messages after it has done a qprocsoff.
868 		 */
869 		if (_OTHERQ(q)->q_next == NULL)
870 			freemsg(bp);
871 		else
872 			qreply(q, bp);
873 		break;
874 
875 	case M_IOCTL:
876 		if (bp->b_cont) {
877 			freemsg(bp->b_cont);
878 			bp->b_cont = NULL;
879 		}
880 		bp->b_datap->db_type = M_IOCNAK;
881 		/*
882 		 * Protect against the driver passing up
883 		 * messages after it has done a qprocsoff.
884 		 */
885 		if (_OTHERQ(q)->q_next == NULL)
886 			freemsg(bp);
887 		else
888 			qreply(q, bp);
889 		break;
890 
891 	default:
892 		freemsg(bp);
893 		break;
894 	}
895 
896 	return (0);
897 }
898 
899 /*
900  * Clean up after a process when it closes a stream.  This is called
901  * from closef for all closes, whereas strclose is called only for the
902  * last close on a stream.  The siglist is scanned for entries for the
903  * current process, and these are removed.
904  */
905 void
906 strclean(struct vnode *vp)
907 {
908 	strsig_t *ssp, *pssp, *tssp;
909 	stdata_t *stp;
910 	int update = 0;
911 
912 	TRACE_1(TR_FAC_STREAMS_FR,
913 	    TR_STRCLEAN, "strclean:%p", vp);
914 	stp = vp->v_stream;
915 	pssp = NULL;
916 	mutex_enter(&stp->sd_lock);
917 	ssp = stp->sd_siglist;
918 	while (ssp) {
919 		if (ssp->ss_pidp == curproc->p_pidp) {
920 			tssp = ssp->ss_next;
921 			if (pssp)
922 				pssp->ss_next = tssp;
923 			else
924 				stp->sd_siglist = tssp;
925 			mutex_enter(&pidlock);
926 			PID_RELE(ssp->ss_pidp);
927 			mutex_exit(&pidlock);
928 			kmem_free(ssp, sizeof (strsig_t));
929 			update = 1;
930 			ssp = tssp;
931 		} else {
932 			pssp = ssp;
933 			ssp = ssp->ss_next;
934 		}
935 	}
936 	if (update) {
937 		stp->sd_sigflags = 0;
938 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
939 			stp->sd_sigflags |= ssp->ss_events;
940 	}
941 	mutex_exit(&stp->sd_lock);
942 }
943 
944 /*
945  * Used on the last close to remove any remaining items on the siglist.
946  * These could be present on the siglist due to I_ESETSIG calls that
947  * use process groups or processed that do not have an open file descriptor
948  * for this stream (Such entries would not be removed by strclean).
949  */
950 static void
951 strcleanall(struct vnode *vp)
952 {
953 	strsig_t *ssp, *nssp;
954 	stdata_t *stp;
955 
956 	stp = vp->v_stream;
957 	mutex_enter(&stp->sd_lock);
958 	ssp = stp->sd_siglist;
959 	stp->sd_siglist = NULL;
960 	while (ssp) {
961 		nssp = ssp->ss_next;
962 		mutex_enter(&pidlock);
963 		PID_RELE(ssp->ss_pidp);
964 		mutex_exit(&pidlock);
965 		kmem_free(ssp, sizeof (strsig_t));
966 		ssp = nssp;
967 	}
968 	stp->sd_sigflags = 0;
969 	mutex_exit(&stp->sd_lock);
970 }
971 
972 /*
973  * Retrieve the next message from the logical stream head read queue
974  * using either rwnext (if sync stream) or getq_noenab.
975  * It is the callers responsibility to call qbackenable after
976  * it is finished with the message. The caller should not call
977  * qbackenable until after any putback calls to avoid spurious backenabling.
978  *
979  * Also, handle uioa initialization and process any DBLK_UIOA flaged messages.
980  */
981 mblk_t *
982 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
983     int *errorp)
984 {
985 	sodirect_t *sodp = stp->sd_sodirect;
986 	mblk_t *bp;
987 	int error;
988 	ssize_t rbytes = 0;
989 
990 	/* Holding sd_lock prevents the read queue from changing  */
991 	ASSERT(MUTEX_HELD(&stp->sd_lock));
992 
993 	if (uiop != NULL && stp->sd_struiordq != NULL &&
994 	    q->q_first == NULL &&
995 	    (!first || (stp->sd_wakeq & RSLEEP))) {
996 		/*
997 		 * Stream supports rwnext() for the read side.
998 		 * If this is the first time we're called by e.g. strread
999 		 * only do the downcall if there is a deferred wakeup
1000 		 * (registered in sd_wakeq).
1001 		 */
1002 		struiod_t uiod;
1003 
1004 		if (first)
1005 			stp->sd_wakeq &= ~RSLEEP;
1006 
1007 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
1008 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
1009 		uiod.d_mp = 0;
1010 		/*
1011 		 * Mark that a thread is in rwnext on the read side
1012 		 * to prevent strrput from nacking ioctls immediately.
1013 		 * When the last concurrent rwnext returns
1014 		 * the ioctls are nack'ed.
1015 		 */
1016 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1017 		stp->sd_struiodnak++;
1018 		/*
1019 		 * Note: rwnext will drop sd_lock.
1020 		 */
1021 		error = rwnext(q, &uiod);
1022 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1023 		mutex_enter(&stp->sd_lock);
1024 		stp->sd_struiodnak--;
1025 		while (stp->sd_struiodnak == 0 &&
1026 		    ((bp = stp->sd_struionak) != NULL)) {
1027 			stp->sd_struionak = bp->b_next;
1028 			bp->b_next = NULL;
1029 			bp->b_datap->db_type = M_IOCNAK;
1030 			/*
1031 			 * Protect against the driver passing up
1032 			 * messages after it has done a qprocsoff.
1033 			 */
1034 			if (_OTHERQ(q)->q_next == NULL)
1035 				freemsg(bp);
1036 			else {
1037 				mutex_exit(&stp->sd_lock);
1038 				qreply(q, bp);
1039 				mutex_enter(&stp->sd_lock);
1040 			}
1041 		}
1042 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1043 		if (error == 0 || error == EWOULDBLOCK) {
1044 			if ((bp = uiod.d_mp) != NULL) {
1045 				*errorp = 0;
1046 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1047 				return (bp);
1048 			}
1049 			error = 0;
1050 		} else if (error == EINVAL) {
1051 			/*
1052 			 * The stream plumbing must have
1053 			 * changed while we were away, so
1054 			 * just turn off rwnext()s.
1055 			 */
1056 			error = 0;
1057 		} else if (error == EBUSY) {
1058 			/*
1059 			 * The module might have data in transit using putnext
1060 			 * Fall back on waiting + getq.
1061 			 */
1062 			error = 0;
1063 		} else {
1064 			*errorp = error;
1065 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1066 			return (NULL);
1067 		}
1068 		/*
1069 		 * Try a getq in case a rwnext() generated mblk
1070 		 * has bubbled up via strrput().
1071 		 */
1072 	}
1073 	*errorp = 0;
1074 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1075 
1076 	if (sodp != NULL && sodp->sod_state & SOD_ENABLED) {
1077 		if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
1078 			/*
1079 			 * First kstrgetmsg() call for an uioa_t so if any
1080 			 * queued mblk_t's need to consume them before uioa
1081 			 * from below can occur.
1082 			 */
1083 			sodp->sod_uioa.uioa_state &= UIOA_CLR;
1084 			sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
1085 			if (q->q_first != NULL) {
1086 				struioainit(q, sodp, uiop);
1087 			}
1088 		} else if (sodp->sod_uioa.uioa_state &
1089 		    (UIOA_ENABLED|UIOA_FINI)) {
1090 			ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
1091 			rbytes = 0;
1092 		} else {
1093 			rbytes = uiop->uio_resid;
1094 		}
1095 	} else {
1096 		/*
1097 		 * If we have a valid uio, try and use this as a guide for how
1098 		 * many bytes to retrieve from the queue via getq_noenab().
1099 		 * Doing this can avoid unneccesary counting of overlong
1100 		 * messages in putback(). We currently only do this for sockets
1101 		 * and only if there is no sd_rputdatafunc hook.
1102 		 *
1103 		 * The sd_rputdatafunc hook transforms the entire message
1104 		 * before any bytes in it can be given to a client. So, rbytes
1105 		 * must be 0 if there is a hook.
1106 		 */
1107 		if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1108 		    (stp->sd_rputdatafunc == NULL))
1109 			rbytes = uiop->uio_resid;
1110 	}
1111 
1112 	bp = getq_noenab(q, rbytes);
1113 	if (bp != NULL && (bp->b_datap->db_flags & DBLK_UIOA)) {
1114 		/*
1115 		 * A uioa flaged mblk_t chain, already uio processed,
1116 		 * add it to the sodirect uioa pending free list.
1117 		 *
1118 		 * Note, a b_cont chain headed by a DBLK_UIOA enable
1119 		 * mblk_t must have all mblk_t(s) DBLK_UIOA enabled.
1120 		 */
1121 		mblk_t	*bpt = sodp->sod_uioaft;
1122 
1123 		ASSERT(sodp != NULL);
1124 		ASSERT(msgdsize(bp) == sodp->sod_uioa.uioa_mbytes);
1125 
1126 		/*
1127 		 * Add first mblk_t of "bp" chain to current sodirect uioa
1128 		 * free list tail mblk_t, if any, else empty list so new head.
1129 		 */
1130 		if (bpt == NULL)
1131 			sodp->sod_uioafh = bp;
1132 		else
1133 			bpt->b_cont = bp;
1134 
1135 		/*
1136 		 * Walk mblk_t "bp" chain to find tail and adjust rptr of
1137 		 * each to reflect that uioamove() has consumed all data.
1138 		 */
1139 		bpt = bp;
1140 		for (;;) {
1141 			bpt->b_rptr = bpt->b_wptr;
1142 			if (bpt->b_cont == NULL)
1143 				break;
1144 			bpt = bpt->b_cont;
1145 
1146 			ASSERT(bpt->b_datap->db_flags & DBLK_UIOA);
1147 		}
1148 		/* New sodirect uioa free list tail */
1149 		sodp->sod_uioaft = bpt;
1150 
1151 		/* Only 1 strget() with data returned per uioa_t */
1152 		if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
1153 			sodp->sod_uioa.uioa_state &= UIOA_CLR;
1154 			sodp->sod_uioa.uioa_state |= UIOA_FINI;
1155 		}
1156 	}
1157 
1158 	return (bp);
1159 }
1160 
1161 /*
1162  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1163  * If the message does not fit in the uio the remainder of it is returned;
1164  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1165  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1166  * the error code, the message is consumed, and NULL is returned.
1167  */
1168 static mblk_t *
1169 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1170 {
1171 	int error;
1172 	ptrdiff_t n;
1173 	mblk_t *nbp;
1174 
1175 	ASSERT(bp->b_wptr >= bp->b_rptr);
1176 
1177 	do {
1178 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1179 
1180 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1181 			ASSERT(n > 0);
1182 
1183 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1184 			if (error != 0) {
1185 				freemsg(bp);
1186 				*errorp = error;
1187 				return (NULL);
1188 			}
1189 		}
1190 
1191 		bp->b_rptr += n;
1192 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1193 			nbp = bp;
1194 			bp = bp->b_cont;
1195 			freeb(nbp);
1196 		}
1197 	} while (bp != NULL && uiop->uio_resid > 0);
1198 
1199 	*errorp = 0;
1200 	return (bp);
1201 }
1202 
1203 /*
1204  * Read a stream according to the mode flags in sd_flag:
1205  *
1206  * (default mode)		- Byte stream, msg boundaries are ignored
1207  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1208  *				any data remaining in msg
1209  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1210  *				any remaining data on head of read queue
1211  *
1212  * Consume readable messages on the front of the queue until
1213  * ttolwp(curthread)->lwp_count
1214  * is satisfied, the readable messages are exhausted, or a message
1215  * boundary is reached in a message mode.  If no data was read and
1216  * the stream was not opened with the NDELAY flag, block until data arrives.
1217  * Otherwise return the data read and update the count.
1218  *
1219  * In default mode a 0 length message signifies end-of-file and terminates
1220  * a read in progress.  The 0 length message is removed from the queue
1221  * only if it is the only message read (no data is read).
1222  *
1223  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1224  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1225  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1226  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1227  * are unlinked from and M_DATA blocks in the message, the protos are
1228  * thrown away, and the data is read.
1229  */
1230 /* ARGSUSED */
1231 int
1232 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1233 {
1234 	struct stdata *stp;
1235 	mblk_t *bp, *nbp;
1236 	queue_t *q;
1237 	int error = 0;
1238 	uint_t old_sd_flag;
1239 	int first;
1240 	char rflg;
1241 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1242 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1243 	short delim;
1244 	unsigned char pri = 0;
1245 	char waitflag;
1246 	unsigned char type;
1247 
1248 	TRACE_1(TR_FAC_STREAMS_FR,
1249 	    TR_STRREAD_ENTER, "strread:%p", vp);
1250 	ASSERT(vp->v_stream);
1251 	stp = vp->v_stream;
1252 
1253 	mutex_enter(&stp->sd_lock);
1254 
1255 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1256 		mutex_exit(&stp->sd_lock);
1257 		return (error);
1258 	}
1259 
1260 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1261 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1262 		if (error != 0) {
1263 			mutex_exit(&stp->sd_lock);
1264 			return (error);
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Loop terminates when uiop->uio_resid == 0.
1270 	 */
1271 	rflg = 0;
1272 	waitflag = READWAIT;
1273 	q = _RD(stp->sd_wrq);
1274 	for (;;) {
1275 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1276 		old_sd_flag = stp->sd_flag;
1277 		mark = 0;
1278 		delim = 0;
1279 		first = 1;
1280 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1281 			int done = 0;
1282 
1283 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1284 
1285 			if (error != 0)
1286 				goto oops;
1287 
1288 			if (stp->sd_flag & (STRHUP|STREOF)) {
1289 				goto oops;
1290 			}
1291 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1292 				goto oops;
1293 			}
1294 			/*
1295 			 * If a read(fd,buf,0) has been done, there is no
1296 			 * need to sleep. We always have zero bytes to
1297 			 * return.
1298 			 */
1299 			if (uiop->uio_resid == 0) {
1300 				goto oops;
1301 			}
1302 
1303 			qbackenable(q, 0);
1304 
1305 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1306 			    "strread calls strwaitq:%p, %p, %p",
1307 			    vp, uiop, crp);
1308 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1309 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1310 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1311 				    "strread error or done:%p, %p, %p",
1312 				    vp, uiop, crp);
1313 				if ((uiop->uio_fmode & FNDELAY) &&
1314 				    (stp->sd_flag & OLDNDELAY) &&
1315 				    (error == EAGAIN))
1316 					error = 0;
1317 				goto oops;
1318 			}
1319 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1320 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1321 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1322 				goto oops;
1323 			}
1324 			first = 0;
1325 		}
1326 
1327 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1328 		ASSERT(bp);
1329 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1330 		pri = bp->b_band;
1331 		/*
1332 		 * Extract any mark information. If the message is not
1333 		 * completely consumed this information will be put in the mblk
1334 		 * that is putback.
1335 		 * If MSGMARKNEXT is set and the message is completely consumed
1336 		 * the STRATMARK flag will be set below. Likewise, if
1337 		 * MSGNOTMARKNEXT is set and the message is
1338 		 * completely consumed STRNOTATMARK will be set.
1339 		 *
1340 		 * For some unknown reason strread only breaks the read at the
1341 		 * last mark.
1342 		 */
1343 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1344 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1345 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1346 		if (mark != 0 && bp == stp->sd_mark) {
1347 			if (rflg) {
1348 				putback(stp, q, bp, pri);
1349 				goto oops;
1350 			}
1351 			mark |= _LASTMARK;
1352 			stp->sd_mark = NULL;
1353 		}
1354 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1355 			delim = 1;
1356 		mutex_exit(&stp->sd_lock);
1357 
1358 		if (STREAM_NEEDSERVICE(stp))
1359 			stream_runservice(stp);
1360 
1361 		type = bp->b_datap->db_type;
1362 
1363 		switch (type) {
1364 
1365 		case M_DATA:
1366 ismdata:
1367 			if (msgnodata(bp)) {
1368 				if (mark || delim) {
1369 					freemsg(bp);
1370 				} else if (rflg) {
1371 
1372 					/*
1373 					 * If already read data put zero
1374 					 * length message back on queue else
1375 					 * free msg and return 0.
1376 					 */
1377 					bp->b_band = pri;
1378 					mutex_enter(&stp->sd_lock);
1379 					putback(stp, q, bp, pri);
1380 					mutex_exit(&stp->sd_lock);
1381 				} else {
1382 					freemsg(bp);
1383 				}
1384 				error =  0;
1385 				goto oops1;
1386 			}
1387 
1388 			rflg = 1;
1389 			waitflag |= NOINTR;
1390 			bp = struiocopyout(bp, uiop, &error);
1391 			if (error != 0)
1392 				goto oops1;
1393 
1394 			mutex_enter(&stp->sd_lock);
1395 			if (bp) {
1396 				/*
1397 				 * Have remaining data in message.
1398 				 * Free msg if in discard mode.
1399 				 */
1400 				if (stp->sd_read_opt & RD_MSGDIS) {
1401 					freemsg(bp);
1402 				} else {
1403 					bp->b_band = pri;
1404 					if ((mark & _LASTMARK) &&
1405 					    (stp->sd_mark == NULL))
1406 						stp->sd_mark = bp;
1407 					bp->b_flag |= mark & ~_LASTMARK;
1408 					if (delim)
1409 						bp->b_flag |= MSGDELIM;
1410 					if (msgnodata(bp))
1411 						freemsg(bp);
1412 					else
1413 						putback(stp, q, bp, pri);
1414 				}
1415 			} else {
1416 				/*
1417 				 * Consumed the complete message.
1418 				 * Move the MSG*MARKNEXT information
1419 				 * to the stream head just in case
1420 				 * the read queue becomes empty.
1421 				 *
1422 				 * If the stream head was at the mark
1423 				 * (STRATMARK) before we dropped sd_lock above
1424 				 * and some data was consumed then we have
1425 				 * moved past the mark thus STRATMARK is
1426 				 * cleared. However, if a message arrived in
1427 				 * strrput during the copyout above causing
1428 				 * STRATMARK to be set we can not clear that
1429 				 * flag.
1430 				 */
1431 				if (mark &
1432 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1433 					if (mark & MSGMARKNEXT) {
1434 						stp->sd_flag &= ~STRNOTATMARK;
1435 						stp->sd_flag |= STRATMARK;
1436 					} else if (mark & MSGNOTMARKNEXT) {
1437 						stp->sd_flag &= ~STRATMARK;
1438 						stp->sd_flag |= STRNOTATMARK;
1439 					} else {
1440 						stp->sd_flag &=
1441 						    ~(STRATMARK|STRNOTATMARK);
1442 					}
1443 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1444 					stp->sd_flag &= ~STRATMARK;
1445 				}
1446 			}
1447 
1448 			/*
1449 			 * Check for signal messages at the front of the read
1450 			 * queue and generate the signal(s) if appropriate.
1451 			 * The only signal that can be on queue is M_SIG at
1452 			 * this point.
1453 			 */
1454 			while ((((bp = q->q_first)) != NULL) &&
1455 			    (bp->b_datap->db_type == M_SIG)) {
1456 				bp = getq_noenab(q, 0);
1457 				/*
1458 				 * sd_lock is held so the content of the
1459 				 * read queue can not change.
1460 				 */
1461 				ASSERT(bp != NULL &&
1462 				    bp->b_datap->db_type == M_SIG);
1463 				strsignal_nolock(stp, *bp->b_rptr,
1464 				    (int32_t)bp->b_band);
1465 				mutex_exit(&stp->sd_lock);
1466 				freemsg(bp);
1467 				if (STREAM_NEEDSERVICE(stp))
1468 					stream_runservice(stp);
1469 				mutex_enter(&stp->sd_lock);
1470 			}
1471 
1472 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1473 			    delim ||
1474 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1475 				goto oops;
1476 			}
1477 			continue;
1478 
1479 		case M_SIG:
1480 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1481 			freemsg(bp);
1482 			mutex_enter(&stp->sd_lock);
1483 			continue;
1484 
1485 		case M_PROTO:
1486 		case M_PCPROTO:
1487 			/*
1488 			 * Only data messages are readable.
1489 			 * Any others generate an error, unless
1490 			 * RD_PROTDIS or RD_PROTDAT is set.
1491 			 */
1492 			if (stp->sd_read_opt & RD_PROTDAT) {
1493 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1494 					if ((nbp->b_datap->db_type ==
1495 					    M_PROTO) ||
1496 					    (nbp->b_datap->db_type ==
1497 					    M_PCPROTO)) {
1498 						nbp->b_datap->db_type = M_DATA;
1499 					} else {
1500 						break;
1501 					}
1502 				}
1503 				/*
1504 				 * clear stream head hi pri flag based on
1505 				 * first message
1506 				 */
1507 				if (type == M_PCPROTO) {
1508 					mutex_enter(&stp->sd_lock);
1509 					stp->sd_flag &= ~STRPRI;
1510 					mutex_exit(&stp->sd_lock);
1511 				}
1512 				goto ismdata;
1513 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1514 				/*
1515 				 * discard non-data messages
1516 				 */
1517 				while (bp &&
1518 				    ((bp->b_datap->db_type == M_PROTO) ||
1519 				    (bp->b_datap->db_type == M_PCPROTO))) {
1520 					nbp = unlinkb(bp);
1521 					freeb(bp);
1522 					bp = nbp;
1523 				}
1524 				/*
1525 				 * clear stream head hi pri flag based on
1526 				 * first message
1527 				 */
1528 				if (type == M_PCPROTO) {
1529 					mutex_enter(&stp->sd_lock);
1530 					stp->sd_flag &= ~STRPRI;
1531 					mutex_exit(&stp->sd_lock);
1532 				}
1533 				if (bp) {
1534 					bp->b_band = pri;
1535 					goto ismdata;
1536 				} else {
1537 					break;
1538 				}
1539 			}
1540 			/* FALLTHRU */
1541 		case M_PASSFP:
1542 			if ((bp->b_datap->db_type == M_PASSFP) &&
1543 			    (stp->sd_read_opt & RD_PROTDIS)) {
1544 				freemsg(bp);
1545 				break;
1546 			}
1547 			mutex_enter(&stp->sd_lock);
1548 			putback(stp, q, bp, pri);
1549 			mutex_exit(&stp->sd_lock);
1550 			if (rflg == 0)
1551 				error = EBADMSG;
1552 			goto oops1;
1553 
1554 		default:
1555 			/*
1556 			 * Garbage on stream head read queue.
1557 			 */
1558 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1559 			    bp->b_datap->db_type);
1560 			freemsg(bp);
1561 			goto oops1;
1562 		}
1563 		mutex_enter(&stp->sd_lock);
1564 	}
1565 oops:
1566 	mutex_exit(&stp->sd_lock);
1567 oops1:
1568 	qbackenable(q, pri);
1569 	return (error);
1570 #undef	_LASTMARK
1571 }
1572 
1573 /*
1574  * Default processing of M_PROTO/M_PCPROTO messages.
1575  * Determine which wakeups and signals are needed.
1576  * This can be replaced by a user-specified procedure for kernel users
1577  * of STREAMS.
1578  */
1579 /* ARGSUSED */
1580 mblk_t *
1581 strrput_proto(vnode_t *vp, mblk_t *mp,
1582     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1583     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1584 {
1585 	*wakeups = RSLEEP;
1586 	*allmsgsigs = 0;
1587 
1588 	switch (mp->b_datap->db_type) {
1589 	case M_PROTO:
1590 		if (mp->b_band == 0) {
1591 			*firstmsgsigs = S_INPUT | S_RDNORM;
1592 			*pollwakeups = POLLIN | POLLRDNORM;
1593 		} else {
1594 			*firstmsgsigs = S_INPUT | S_RDBAND;
1595 			*pollwakeups = POLLIN | POLLRDBAND;
1596 		}
1597 		break;
1598 	case M_PCPROTO:
1599 		*firstmsgsigs = S_HIPRI;
1600 		*pollwakeups = POLLPRI;
1601 		break;
1602 	}
1603 	return (mp);
1604 }
1605 
1606 /*
1607  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1608  * M_PASSFP messages.
1609  * Determine which wakeups and signals are needed.
1610  * This can be replaced by a user-specified procedure for kernel users
1611  * of STREAMS.
1612  */
1613 /* ARGSUSED */
1614 mblk_t *
1615 strrput_misc(vnode_t *vp, mblk_t *mp,
1616     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1617     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1618 {
1619 	*wakeups = 0;
1620 	*firstmsgsigs = 0;
1621 	*allmsgsigs = 0;
1622 	*pollwakeups = 0;
1623 	return (mp);
1624 }
1625 
1626 /*
1627  * Stream read put procedure.  Called from downstream driver/module
1628  * with messages for the stream head.  Data, protocol, and in-stream
1629  * signal messages are placed on the queue, others are handled directly.
1630  */
1631 int
1632 strrput(queue_t *q, mblk_t *bp)
1633 {
1634 	struct stdata	*stp;
1635 	ulong_t		rput_opt;
1636 	strwakeup_t	wakeups;
1637 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1638 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1639 	strsigset_t	signals;	/* Signals events to generate */
1640 	strpollset_t	pollwakeups;
1641 	mblk_t		*nextbp;
1642 	uchar_t		band = 0;
1643 	int		hipri_sig;
1644 
1645 	stp = (struct stdata *)q->q_ptr;
1646 	/*
1647 	 * Use rput_opt for optimized access to the SR_ flags except
1648 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1649 	 * is modified by strpoll().
1650 	 */
1651 	rput_opt = stp->sd_rput_opt;
1652 
1653 	ASSERT(qclaimed(q));
1654 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1655 	    "strrput called with message type:q %p bp %p", q, bp);
1656 
1657 	/*
1658 	 * Perform initial processing and pass to the parameterized functions.
1659 	 */
1660 	ASSERT(bp->b_next == NULL);
1661 
1662 	switch (bp->b_datap->db_type) {
1663 	case M_DATA:
1664 		/*
1665 		 * sockfs is the only consumer of STREOF and when it is set,
1666 		 * it implies that the receiver is not interested in receiving
1667 		 * any more data, hence the mblk is freed to prevent unnecessary
1668 		 * message queueing at the stream head.
1669 		 */
1670 		if (stp->sd_flag == STREOF) {
1671 			freemsg(bp);
1672 			return (0);
1673 		}
1674 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1675 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1676 			/*
1677 			 * Ignore zero-length M_DATA messages. These might be
1678 			 * generated by some transports.
1679 			 * The zero-length M_DATA messages, even if they
1680 			 * are ignored, should effect the atmark tracking and
1681 			 * should wake up a thread sleeping in strwaitmark.
1682 			 */
1683 			mutex_enter(&stp->sd_lock);
1684 			if (bp->b_flag & MSGMARKNEXT) {
1685 				/*
1686 				 * Record the position of the mark either
1687 				 * in q_last or in STRATMARK.
1688 				 */
1689 				if (q->q_last != NULL) {
1690 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1691 					q->q_last->b_flag |= MSGMARKNEXT;
1692 				} else {
1693 					stp->sd_flag &= ~STRNOTATMARK;
1694 					stp->sd_flag |= STRATMARK;
1695 				}
1696 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1697 				/*
1698 				 * Record that this is not the position of
1699 				 * the mark either in q_last or in
1700 				 * STRNOTATMARK.
1701 				 */
1702 				if (q->q_last != NULL) {
1703 					q->q_last->b_flag &= ~MSGMARKNEXT;
1704 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1705 				} else {
1706 					stp->sd_flag &= ~STRATMARK;
1707 					stp->sd_flag |= STRNOTATMARK;
1708 				}
1709 			}
1710 			if (stp->sd_flag & RSLEEP) {
1711 				stp->sd_flag &= ~RSLEEP;
1712 				cv_broadcast(&q->q_wait);
1713 			}
1714 			mutex_exit(&stp->sd_lock);
1715 			freemsg(bp);
1716 			return (0);
1717 		}
1718 		wakeups = RSLEEP;
1719 		if (bp->b_band == 0) {
1720 			firstmsgsigs = S_INPUT | S_RDNORM;
1721 			pollwakeups = POLLIN | POLLRDNORM;
1722 		} else {
1723 			firstmsgsigs = S_INPUT | S_RDBAND;
1724 			pollwakeups = POLLIN | POLLRDBAND;
1725 		}
1726 		if (rput_opt & SR_SIGALLDATA)
1727 			allmsgsigs = firstmsgsigs;
1728 		else
1729 			allmsgsigs = 0;
1730 
1731 		mutex_enter(&stp->sd_lock);
1732 		if ((rput_opt & SR_CONSOL_DATA) &&
1733 		    (q->q_last != NULL) &&
1734 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1735 			/*
1736 			 * Consolidate an M_DATA message onto an M_DATA,
1737 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1738 			 * The consolidation does not take place if
1739 			 * the old message is marked with either of the
1740 			 * marks or the delim flag or if the new
1741 			 * message is marked with MSGMARK. The MSGMARK
1742 			 * check is needed to handle the odd semantics of
1743 			 * MSGMARK where essentially the whole message
1744 			 * is to be treated as marked.
1745 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1746 			 * new message to the front of the b_cont chain.
1747 			 */
1748 			mblk_t *lbp = q->q_last;
1749 			unsigned char db_type = lbp->b_datap->db_type;
1750 
1751 			if ((db_type == M_DATA || db_type == M_PROTO ||
1752 			    db_type == M_PCPROTO) &&
1753 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1754 				rmvq_noenab(q, lbp);
1755 				/*
1756 				 * The first message in the b_cont list
1757 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1758 				 * We need to handle the case where we
1759 				 * are appending:
1760 				 *
1761 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1762 				 * 2) a MSGMARKNEXT to a plain message.
1763 				 * 3) a MSGNOTMARKNEXT to a plain message
1764 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1765 				 *    message.
1766 				 *
1767 				 * Thus we never append a MSGMARKNEXT or
1768 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1769 				 */
1770 				if (bp->b_flag & MSGMARKNEXT) {
1771 					lbp->b_flag |= MSGMARKNEXT;
1772 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1773 					bp->b_flag &= ~MSGMARKNEXT;
1774 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1775 					lbp->b_flag |= MSGNOTMARKNEXT;
1776 					bp->b_flag &= ~MSGNOTMARKNEXT;
1777 				}
1778 
1779 				linkb(lbp, bp);
1780 				bp = lbp;
1781 				/*
1782 				 * The new message logically isn't the first
1783 				 * even though the q_first check below thinks
1784 				 * it is. Clear the firstmsgsigs to make it
1785 				 * not appear to be first.
1786 				 */
1787 				firstmsgsigs = 0;
1788 			}
1789 		}
1790 		break;
1791 
1792 	case M_PASSFP:
1793 		wakeups = RSLEEP;
1794 		allmsgsigs = 0;
1795 		if (bp->b_band == 0) {
1796 			firstmsgsigs = S_INPUT | S_RDNORM;
1797 			pollwakeups = POLLIN | POLLRDNORM;
1798 		} else {
1799 			firstmsgsigs = S_INPUT | S_RDBAND;
1800 			pollwakeups = POLLIN | POLLRDBAND;
1801 		}
1802 		mutex_enter(&stp->sd_lock);
1803 		break;
1804 
1805 	case M_PROTO:
1806 	case M_PCPROTO:
1807 		ASSERT(stp->sd_rprotofunc != NULL);
1808 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1809 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1810 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1811 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1812 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1813 		POLLWRBAND)
1814 
1815 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1816 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1817 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1818 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1819 
1820 		mutex_enter(&stp->sd_lock);
1821 		break;
1822 
1823 	default:
1824 		ASSERT(stp->sd_rmiscfunc != NULL);
1825 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1826 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1827 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1828 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1829 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1830 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1831 #undef	ALLSIG
1832 #undef	ALLPOLL
1833 		mutex_enter(&stp->sd_lock);
1834 		break;
1835 	}
1836 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1837 
1838 	/* By default generate superset of signals */
1839 	signals = (firstmsgsigs | allmsgsigs);
1840 
1841 	/*
1842 	 * The  proto and misc functions can return multiple messages
1843 	 * as a b_next chain. Such messages are processed separately.
1844 	 */
1845 one_more:
1846 	hipri_sig = 0;
1847 	if (bp == NULL) {
1848 		nextbp = NULL;
1849 	} else {
1850 		nextbp = bp->b_next;
1851 		bp->b_next = NULL;
1852 
1853 		switch (bp->b_datap->db_type) {
1854 		case M_PCPROTO:
1855 			/*
1856 			 * Only one priority protocol message is allowed at the
1857 			 * stream head at a time.
1858 			 */
1859 			if (stp->sd_flag & STRPRI) {
1860 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1861 				    "M_PCPROTO already at head");
1862 				freemsg(bp);
1863 				mutex_exit(&stp->sd_lock);
1864 				goto done;
1865 			}
1866 			stp->sd_flag |= STRPRI;
1867 			hipri_sig = 1;
1868 			/* FALLTHRU */
1869 		case M_DATA:
1870 		case M_PROTO:
1871 		case M_PASSFP:
1872 			band = bp->b_band;
1873 			/*
1874 			 * Marking doesn't work well when messages
1875 			 * are marked in more than one band.  We only
1876 			 * remember the last message received, even if
1877 			 * it is placed on the queue ahead of other
1878 			 * marked messages.
1879 			 */
1880 			if (bp->b_flag & MSGMARK)
1881 				stp->sd_mark = bp;
1882 			(void) putq(q, bp);
1883 
1884 			/*
1885 			 * If message is a PCPROTO message, always use
1886 			 * firstmsgsigs to determine if a signal should be
1887 			 * sent as strrput is the only place to send
1888 			 * signals for PCPROTO. Other messages are based on
1889 			 * the STRGETINPROG flag. The flag determines if
1890 			 * strrput or (k)strgetmsg will be responsible for
1891 			 * sending the signals, in the firstmsgsigs case.
1892 			 */
1893 			if ((hipri_sig == 1) ||
1894 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1895 			    (q->q_first == bp)))
1896 				signals = (firstmsgsigs | allmsgsigs);
1897 			else
1898 				signals = allmsgsigs;
1899 			break;
1900 
1901 		default:
1902 			mutex_exit(&stp->sd_lock);
1903 			(void) strrput_nondata(q, bp);
1904 			mutex_enter(&stp->sd_lock);
1905 			break;
1906 		}
1907 	}
1908 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1909 	/*
1910 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1911 	 */
1912 	if (wakeups & RSLEEP)
1913 		stp->sd_wakeq &= ~RSLEEP;
1914 
1915 	wakeups &= stp->sd_flag;
1916 	if (wakeups & RSLEEP) {
1917 		stp->sd_flag &= ~RSLEEP;
1918 		cv_broadcast(&q->q_wait);
1919 	}
1920 	if (wakeups & WSLEEP) {
1921 		stp->sd_flag &= ~WSLEEP;
1922 		cv_broadcast(&_WR(q)->q_wait);
1923 	}
1924 
1925 	if (pollwakeups != 0) {
1926 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1927 			/*
1928 			 * Can't use rput_opt since it was not
1929 			 * read when sd_lock was held and SR_POLLIN is changed
1930 			 * by strpoll() under sd_lock.
1931 			 */
1932 			if (!(stp->sd_rput_opt & SR_POLLIN))
1933 				goto no_pollwake;
1934 			stp->sd_rput_opt &= ~SR_POLLIN;
1935 		}
1936 		mutex_exit(&stp->sd_lock);
1937 		pollwakeup(&stp->sd_pollist, pollwakeups);
1938 		mutex_enter(&stp->sd_lock);
1939 	}
1940 no_pollwake:
1941 
1942 	/*
1943 	 * strsendsig can handle multiple signals with a
1944 	 * single call.
1945 	 */
1946 	if (stp->sd_sigflags & signals)
1947 		strsendsig(stp->sd_siglist, signals, band, 0);
1948 	mutex_exit(&stp->sd_lock);
1949 
1950 
1951 done:
1952 	if (nextbp == NULL)
1953 		return (0);
1954 
1955 	/*
1956 	 * Any signals were handled the first time.
1957 	 * Wakeups and pollwakeups are redone to avoid any race
1958 	 * conditions - all the messages are not queued until the
1959 	 * last message has been processed by strrput.
1960 	 */
1961 	bp = nextbp;
1962 	signals = firstmsgsigs = allmsgsigs = 0;
1963 	mutex_enter(&stp->sd_lock);
1964 	goto one_more;
1965 }
1966 
1967 static void
1968 log_dupioc(queue_t *rq, mblk_t *bp)
1969 {
1970 	queue_t *wq, *qp;
1971 	char *modnames, *mnp, *dname;
1972 	size_t maxmodstr;
1973 	boolean_t islast;
1974 
1975 	/*
1976 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1977 	 * and one driver, with spaces between and NUL terminator.  If we can't
1978 	 * get memory, then we'll just log the driver name.
1979 	 */
1980 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1981 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1982 
1983 	/* march down write side to print log message down to the driver */
1984 	wq = WR(rq);
1985 
1986 	/* make sure q_next doesn't shift around while we're grabbing data */
1987 	claimstr(wq);
1988 	qp = wq->q_next;
1989 	do {
1990 		if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL)
1991 			dname = "?";
1992 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1993 		if (modnames == NULL) {
1994 			/*
1995 			 * If we don't have memory, then get the driver name in
1996 			 * the log where we can see it.  Note that memory
1997 			 * pressure is a possible cause of these sorts of bugs.
1998 			 */
1999 			if (islast) {
2000 				modnames = dname;
2001 				maxmodstr = 0;
2002 			}
2003 		} else {
2004 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
2005 			if (!islast)
2006 				*mnp++ = ' ';
2007 		}
2008 		qp = qp->q_next;
2009 	} while (!islast);
2010 	releasestr(wq);
2011 	/* Cannot happen unless stream head is corrupt. */
2012 	ASSERT(modnames != NULL);
2013 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
2014 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
2015 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
2016 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
2017 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
2018 	if (maxmodstr != 0)
2019 		kmem_free(modnames, maxmodstr);
2020 }
2021 
2022 int
2023 strrput_nondata(queue_t *q, mblk_t *bp)
2024 {
2025 	struct stdata *stp;
2026 	struct iocblk *iocbp;
2027 	struct stroptions *sop;
2028 	struct copyreq *reqp;
2029 	struct copyresp *resp;
2030 	unsigned char bpri;
2031 	unsigned char  flushed_already = 0;
2032 
2033 	stp = (struct stdata *)q->q_ptr;
2034 
2035 	ASSERT(!(stp->sd_flag & STPLEX));
2036 	ASSERT(qclaimed(q));
2037 
2038 	switch (bp->b_datap->db_type) {
2039 	case M_ERROR:
2040 		/*
2041 		 * An error has occurred downstream, the errno is in the first
2042 		 * bytes of the message.
2043 		 */
2044 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
2045 			unsigned char rw = 0;
2046 
2047 			mutex_enter(&stp->sd_lock);
2048 			if (*bp->b_rptr != NOERROR) {	/* read error */
2049 				if (*bp->b_rptr != 0) {
2050 					if (stp->sd_flag & STRDERR)
2051 						flushed_already |= FLUSHR;
2052 					stp->sd_flag |= STRDERR;
2053 					rw |= FLUSHR;
2054 				} else {
2055 					stp->sd_flag &= ~STRDERR;
2056 				}
2057 				stp->sd_rerror = *bp->b_rptr;
2058 			}
2059 			bp->b_rptr++;
2060 			if (*bp->b_rptr != NOERROR) {	/* write error */
2061 				if (*bp->b_rptr != 0) {
2062 					if (stp->sd_flag & STWRERR)
2063 						flushed_already |= FLUSHW;
2064 					stp->sd_flag |= STWRERR;
2065 					rw |= FLUSHW;
2066 				} else {
2067 					stp->sd_flag &= ~STWRERR;
2068 				}
2069 				stp->sd_werror = *bp->b_rptr;
2070 			}
2071 			if (rw) {
2072 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
2073 				    "strrput cv_broadcast:q %p, bp %p",
2074 				    q, bp);
2075 				cv_broadcast(&q->q_wait); /* readers */
2076 				cv_broadcast(&_WR(q)->q_wait); /* writers */
2077 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2078 
2079 				mutex_exit(&stp->sd_lock);
2080 				pollwakeup(&stp->sd_pollist, POLLERR);
2081 				mutex_enter(&stp->sd_lock);
2082 
2083 				if (stp->sd_sigflags & S_ERROR)
2084 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2085 					    ((rw & FLUSHR) ? stp->sd_rerror :
2086 					    stp->sd_werror));
2087 				mutex_exit(&stp->sd_lock);
2088 				/*
2089 				 * Send the M_FLUSH only
2090 				 * for the first M_ERROR
2091 				 * message on the stream
2092 				 */
2093 				if (flushed_already == rw) {
2094 					freemsg(bp);
2095 					return (0);
2096 				}
2097 
2098 				bp->b_datap->db_type = M_FLUSH;
2099 				*bp->b_rptr = rw;
2100 				bp->b_wptr = bp->b_rptr + 1;
2101 				/*
2102 				 * Protect against the driver
2103 				 * passing up messages after
2104 				 * it has done a qprocsoff
2105 				 */
2106 				if (_OTHERQ(q)->q_next == NULL)
2107 					freemsg(bp);
2108 				else
2109 					qreply(q, bp);
2110 				return (0);
2111 			} else
2112 				mutex_exit(&stp->sd_lock);
2113 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2114 				if (stp->sd_flag & (STRDERR|STWRERR))
2115 					flushed_already = FLUSHRW;
2116 				mutex_enter(&stp->sd_lock);
2117 				stp->sd_flag |= (STRDERR|STWRERR);
2118 				stp->sd_rerror = *bp->b_rptr;
2119 				stp->sd_werror = *bp->b_rptr;
2120 				TRACE_2(TR_FAC_STREAMS_FR,
2121 				    TR_STRRPUT_WAKE2,
2122 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2123 				cv_broadcast(&q->q_wait); /* the readers */
2124 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2125 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2126 
2127 				mutex_exit(&stp->sd_lock);
2128 				pollwakeup(&stp->sd_pollist, POLLERR);
2129 				mutex_enter(&stp->sd_lock);
2130 
2131 				if (stp->sd_sigflags & S_ERROR)
2132 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2133 					    (stp->sd_werror ? stp->sd_werror :
2134 					    stp->sd_rerror));
2135 				mutex_exit(&stp->sd_lock);
2136 
2137 				/*
2138 				 * Send the M_FLUSH only
2139 				 * for the first M_ERROR
2140 				 * message on the stream
2141 				 */
2142 				if (flushed_already != FLUSHRW) {
2143 					bp->b_datap->db_type = M_FLUSH;
2144 					*bp->b_rptr = FLUSHRW;
2145 					/*
2146 					 * Protect against the driver passing up
2147 					 * messages after it has done a
2148 					 * qprocsoff.
2149 					 */
2150 				if (_OTHERQ(q)->q_next == NULL)
2151 					freemsg(bp);
2152 				else
2153 					qreply(q, bp);
2154 				return (0);
2155 				}
2156 		}
2157 		freemsg(bp);
2158 		return (0);
2159 
2160 	case M_HANGUP:
2161 
2162 		freemsg(bp);
2163 		mutex_enter(&stp->sd_lock);
2164 		stp->sd_werror = ENXIO;
2165 		stp->sd_flag |= STRHUP;
2166 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2167 
2168 		/*
2169 		 * send signal if controlling tty
2170 		 */
2171 
2172 		if (stp->sd_sidp) {
2173 			prsignal(stp->sd_sidp, SIGHUP);
2174 			if (stp->sd_sidp != stp->sd_pgidp)
2175 				pgsignal(stp->sd_pgidp, SIGTSTP);
2176 		}
2177 
2178 		/*
2179 		 * wake up read, write, and exception pollers and
2180 		 * reset wakeup mechanism.
2181 		 */
2182 		cv_broadcast(&q->q_wait);	/* the readers */
2183 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2184 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2185 		strhup(stp);
2186 		mutex_exit(&stp->sd_lock);
2187 		return (0);
2188 
2189 	case M_UNHANGUP:
2190 		freemsg(bp);
2191 		mutex_enter(&stp->sd_lock);
2192 		stp->sd_werror = 0;
2193 		stp->sd_flag &= ~STRHUP;
2194 		mutex_exit(&stp->sd_lock);
2195 		return (0);
2196 
2197 	case M_SIG:
2198 		/*
2199 		 * Someone downstream wants to post a signal.  The
2200 		 * signal to post is contained in the first byte of the
2201 		 * message.  If the message would go on the front of
2202 		 * the queue, send a signal to the process group
2203 		 * (if not SIGPOLL) or to the siglist processes
2204 		 * (SIGPOLL).  If something is already on the queue,
2205 		 * OR if we are delivering a delayed suspend (*sigh*
2206 		 * another "tty" hack) and there's no one sleeping already,
2207 		 * just enqueue the message.
2208 		 */
2209 		mutex_enter(&stp->sd_lock);
2210 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2211 		    !(stp->sd_flag & RSLEEP))) {
2212 			(void) putq(q, bp);
2213 			mutex_exit(&stp->sd_lock);
2214 			return (0);
2215 		}
2216 		mutex_exit(&stp->sd_lock);
2217 		/* FALLTHRU */
2218 
2219 	case M_PCSIG:
2220 		/*
2221 		 * Don't enqueue, just post the signal.
2222 		 */
2223 		strsignal(stp, *bp->b_rptr, 0L);
2224 		freemsg(bp);
2225 		return (0);
2226 
2227 	case M_CMD:
2228 		if (MBLKL(bp) != sizeof (cmdblk_t)) {
2229 			freemsg(bp);
2230 			return (0);
2231 		}
2232 
2233 		mutex_enter(&stp->sd_lock);
2234 		if (stp->sd_flag & STRCMDWAIT) {
2235 			ASSERT(stp->sd_cmdblk == NULL);
2236 			stp->sd_cmdblk = bp;
2237 			cv_broadcast(&stp->sd_monitor);
2238 			mutex_exit(&stp->sd_lock);
2239 		} else {
2240 			mutex_exit(&stp->sd_lock);
2241 			freemsg(bp);
2242 		}
2243 		return (0);
2244 
2245 	case M_FLUSH:
2246 		/*
2247 		 * Flush queues.  The indication of which queues to flush
2248 		 * is in the first byte of the message.  If the read queue
2249 		 * is specified, then flush it.  If FLUSHBAND is set, just
2250 		 * flush the band specified by the second byte of the message.
2251 		 *
2252 		 * If a module has issued a M_SETOPT to not flush hi
2253 		 * priority messages off of the stream head, then pass this
2254 		 * flag into the flushq code to preserve such messages.
2255 		 */
2256 
2257 		if (*bp->b_rptr & FLUSHR) {
2258 			mutex_enter(&stp->sd_lock);
2259 			if (*bp->b_rptr & FLUSHBAND) {
2260 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2261 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2262 			} else
2263 				flushq_common(q, FLUSHALL,
2264 				    stp->sd_read_opt & RFLUSHPCPROT);
2265 			if ((q->q_first == NULL) ||
2266 			    (q->q_first->b_datap->db_type < QPCTL))
2267 				stp->sd_flag &= ~STRPRI;
2268 			else {
2269 				ASSERT(stp->sd_flag & STRPRI);
2270 			}
2271 			mutex_exit(&stp->sd_lock);
2272 		}
2273 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2274 			*bp->b_rptr &= ~FLUSHR;
2275 			bp->b_flag |= MSGNOLOOP;
2276 			/*
2277 			 * Protect against the driver passing up
2278 			 * messages after it has done a qprocsoff.
2279 			 */
2280 			if (_OTHERQ(q)->q_next == NULL)
2281 				freemsg(bp);
2282 			else
2283 				qreply(q, bp);
2284 			return (0);
2285 		}
2286 		freemsg(bp);
2287 		return (0);
2288 
2289 	case M_IOCACK:
2290 	case M_IOCNAK:
2291 		iocbp = (struct iocblk *)bp->b_rptr;
2292 		/*
2293 		 * If not waiting for ACK or NAK then just free msg.
2294 		 * If incorrect id sequence number then just free msg.
2295 		 * If already have ACK or NAK for user then this is a
2296 		 *    duplicate, display a warning and free the msg.
2297 		 */
2298 		mutex_enter(&stp->sd_lock);
2299 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2300 		    (stp->sd_iocid != iocbp->ioc_id)) {
2301 			/*
2302 			 * If the ACK/NAK is a dup, display a message
2303 			 * Dup is when sd_iocid == ioc_id, and
2304 			 * sd_iocblk == <valid ptr> or -1 (the former
2305 			 * is when an ioctl has been put on the stream
2306 			 * head, but has not yet been consumed, the
2307 			 * later is when it has been consumed).
2308 			 */
2309 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2310 			    (stp->sd_iocblk != NULL)) {
2311 				log_dupioc(q, bp);
2312 			}
2313 			freemsg(bp);
2314 			mutex_exit(&stp->sd_lock);
2315 			return (0);
2316 		}
2317 
2318 		/*
2319 		 * Assign ACK or NAK to user and wake up.
2320 		 */
2321 		stp->sd_iocblk = bp;
2322 		cv_broadcast(&stp->sd_monitor);
2323 		mutex_exit(&stp->sd_lock);
2324 		return (0);
2325 
2326 	case M_COPYIN:
2327 	case M_COPYOUT:
2328 		reqp = (struct copyreq *)bp->b_rptr;
2329 
2330 		/*
2331 		 * If not waiting for ACK or NAK then just fail request.
2332 		 * If already have ACK, NAK, or copy request, then just
2333 		 * fail request.
2334 		 * If incorrect id sequence number then just fail request.
2335 		 */
2336 		mutex_enter(&stp->sd_lock);
2337 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2338 		    (stp->sd_iocid != reqp->cq_id)) {
2339 			if (bp->b_cont) {
2340 				freemsg(bp->b_cont);
2341 				bp->b_cont = NULL;
2342 			}
2343 			bp->b_datap->db_type = M_IOCDATA;
2344 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2345 			resp = (struct copyresp *)bp->b_rptr;
2346 			resp->cp_rval = (caddr_t)1;	/* failure */
2347 			mutex_exit(&stp->sd_lock);
2348 			putnext(stp->sd_wrq, bp);
2349 			return (0);
2350 		}
2351 
2352 		/*
2353 		 * Assign copy request to user and wake up.
2354 		 */
2355 		stp->sd_iocblk = bp;
2356 		cv_broadcast(&stp->sd_monitor);
2357 		mutex_exit(&stp->sd_lock);
2358 		return (0);
2359 
2360 	case M_SETOPTS:
2361 		/*
2362 		 * Set stream head options (read option, write offset,
2363 		 * min/max packet size, and/or high/low water marks for
2364 		 * the read side only).
2365 		 */
2366 
2367 		bpri = 0;
2368 		sop = (struct stroptions *)bp->b_rptr;
2369 		mutex_enter(&stp->sd_lock);
2370 		if (sop->so_flags & SO_READOPT) {
2371 			switch (sop->so_readopt & RMODEMASK) {
2372 			case RNORM:
2373 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2374 				break;
2375 
2376 			case RMSGD:
2377 				stp->sd_read_opt =
2378 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2379 				    RD_MSGDIS);
2380 				break;
2381 
2382 			case RMSGN:
2383 				stp->sd_read_opt =
2384 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2385 				    RD_MSGNODIS);
2386 				break;
2387 			}
2388 			switch (sop->so_readopt & RPROTMASK) {
2389 			case RPROTNORM:
2390 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2391 				break;
2392 
2393 			case RPROTDAT:
2394 				stp->sd_read_opt =
2395 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2396 				    RD_PROTDAT);
2397 				break;
2398 
2399 			case RPROTDIS:
2400 				stp->sd_read_opt =
2401 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2402 				    RD_PROTDIS);
2403 				break;
2404 			}
2405 			switch (sop->so_readopt & RFLUSHMASK) {
2406 			case RFLUSHPCPROT:
2407 				/*
2408 				 * This sets the stream head to NOT flush
2409 				 * M_PCPROTO messages.
2410 				 */
2411 				stp->sd_read_opt |= RFLUSHPCPROT;
2412 				break;
2413 			}
2414 		}
2415 		if (sop->so_flags & SO_ERROPT) {
2416 			switch (sop->so_erropt & RERRMASK) {
2417 			case RERRNORM:
2418 				stp->sd_flag &= ~STRDERRNONPERSIST;
2419 				break;
2420 			case RERRNONPERSIST:
2421 				stp->sd_flag |= STRDERRNONPERSIST;
2422 				break;
2423 			}
2424 			switch (sop->so_erropt & WERRMASK) {
2425 			case WERRNORM:
2426 				stp->sd_flag &= ~STWRERRNONPERSIST;
2427 				break;
2428 			case WERRNONPERSIST:
2429 				stp->sd_flag |= STWRERRNONPERSIST;
2430 				break;
2431 			}
2432 		}
2433 		if (sop->so_flags & SO_COPYOPT) {
2434 			if (sop->so_copyopt & ZCVMSAFE) {
2435 				stp->sd_copyflag |= STZCVMSAFE;
2436 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2437 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2438 				stp->sd_copyflag |= STZCVMUNSAFE;
2439 				stp->sd_copyflag &= ~STZCVMSAFE;
2440 			}
2441 
2442 			if (sop->so_copyopt & COPYCACHED) {
2443 				stp->sd_copyflag |= STRCOPYCACHED;
2444 			}
2445 		}
2446 		if (sop->so_flags & SO_WROFF)
2447 			stp->sd_wroff = sop->so_wroff;
2448 		if (sop->so_flags & SO_TAIL)
2449 			stp->sd_tail = sop->so_tail;
2450 		if (sop->so_flags & SO_MINPSZ)
2451 			q->q_minpsz = sop->so_minpsz;
2452 		if (sop->so_flags & SO_MAXPSZ)
2453 			q->q_maxpsz = sop->so_maxpsz;
2454 		if (sop->so_flags & SO_MAXBLK)
2455 			stp->sd_maxblk = sop->so_maxblk;
2456 		if (sop->so_flags & SO_HIWAT) {
2457 			if (sop->so_flags & SO_BAND) {
2458 				if (strqset(q, QHIWAT,
2459 				    sop->so_band, sop->so_hiwat)) {
2460 					cmn_err(CE_WARN, "strrput: could not "
2461 					    "allocate qband\n");
2462 				} else {
2463 					bpri = sop->so_band;
2464 				}
2465 			} else {
2466 				q->q_hiwat = sop->so_hiwat;
2467 			}
2468 		}
2469 		if (sop->so_flags & SO_LOWAT) {
2470 			if (sop->so_flags & SO_BAND) {
2471 				if (strqset(q, QLOWAT,
2472 				    sop->so_band, sop->so_lowat)) {
2473 					cmn_err(CE_WARN, "strrput: could not "
2474 					    "allocate qband\n");
2475 				} else {
2476 					bpri = sop->so_band;
2477 				}
2478 			} else {
2479 				q->q_lowat = sop->so_lowat;
2480 			}
2481 		}
2482 		if (sop->so_flags & SO_MREADON)
2483 			stp->sd_flag |= SNDMREAD;
2484 		if (sop->so_flags & SO_MREADOFF)
2485 			stp->sd_flag &= ~SNDMREAD;
2486 		if (sop->so_flags & SO_NDELON)
2487 			stp->sd_flag |= OLDNDELAY;
2488 		if (sop->so_flags & SO_NDELOFF)
2489 			stp->sd_flag &= ~OLDNDELAY;
2490 		if (sop->so_flags & SO_ISTTY)
2491 			stp->sd_flag |= STRISTTY;
2492 		if (sop->so_flags & SO_ISNTTY)
2493 			stp->sd_flag &= ~STRISTTY;
2494 		if (sop->so_flags & SO_TOSTOP)
2495 			stp->sd_flag |= STRTOSTOP;
2496 		if (sop->so_flags & SO_TONSTOP)
2497 			stp->sd_flag &= ~STRTOSTOP;
2498 		if (sop->so_flags & SO_DELIM)
2499 			stp->sd_flag |= STRDELIM;
2500 		if (sop->so_flags & SO_NODELIM)
2501 			stp->sd_flag &= ~STRDELIM;
2502 
2503 		mutex_exit(&stp->sd_lock);
2504 		freemsg(bp);
2505 
2506 		/* Check backenable in case the water marks changed */
2507 		qbackenable(q, bpri);
2508 		return (0);
2509 
2510 	/*
2511 	 * The following set of cases deal with situations where two stream
2512 	 * heads are connected to each other (twisted streams).  These messages
2513 	 * have no meaning at the stream head.
2514 	 */
2515 	case M_BREAK:
2516 	case M_CTL:
2517 	case M_DELAY:
2518 	case M_START:
2519 	case M_STOP:
2520 	case M_IOCDATA:
2521 	case M_STARTI:
2522 	case M_STOPI:
2523 		freemsg(bp);
2524 		return (0);
2525 
2526 	case M_IOCTL:
2527 		/*
2528 		 * Always NAK this condition
2529 		 * (makes no sense)
2530 		 * If there is one or more threads in the read side
2531 		 * rwnext we have to defer the nacking until that thread
2532 		 * returns (in strget).
2533 		 */
2534 		mutex_enter(&stp->sd_lock);
2535 		if (stp->sd_struiodnak != 0) {
2536 			/*
2537 			 * Defer NAK to the streamhead. Queue at the end
2538 			 * the list.
2539 			 */
2540 			mblk_t *mp = stp->sd_struionak;
2541 
2542 			while (mp && mp->b_next)
2543 				mp = mp->b_next;
2544 			if (mp)
2545 				mp->b_next = bp;
2546 			else
2547 				stp->sd_struionak = bp;
2548 			bp->b_next = NULL;
2549 			mutex_exit(&stp->sd_lock);
2550 			return (0);
2551 		}
2552 		mutex_exit(&stp->sd_lock);
2553 
2554 		bp->b_datap->db_type = M_IOCNAK;
2555 		/*
2556 		 * Protect against the driver passing up
2557 		 * messages after it has done a qprocsoff.
2558 		 */
2559 		if (_OTHERQ(q)->q_next == NULL)
2560 			freemsg(bp);
2561 		else
2562 			qreply(q, bp);
2563 		return (0);
2564 
2565 	default:
2566 #ifdef DEBUG
2567 		cmn_err(CE_WARN,
2568 		    "bad message type %x received at stream head\n",
2569 		    bp->b_datap->db_type);
2570 #endif
2571 		freemsg(bp);
2572 		return (0);
2573 	}
2574 
2575 	/* NOTREACHED */
2576 }
2577 
2578 /*
2579  * Check if the stream pointed to by `stp' can be written to, and return an
2580  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2581  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2582  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2583  */
2584 static int
2585 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2586 {
2587 	int error;
2588 
2589 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2590 
2591 	/*
2592 	 * For modem support, POSIX states that on writes, EIO should
2593 	 * be returned if the stream has been hung up.
2594 	 */
2595 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2596 		error = EIO;
2597 	else
2598 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2599 
2600 	if (error != 0) {
2601 		if (!(stp->sd_flag & STPLEX) &&
2602 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2603 			tsignal(curthread, SIGPIPE);
2604 			error = EPIPE;
2605 		}
2606 	}
2607 
2608 	return (error);
2609 }
2610 
2611 /*
2612  * Copyin and send data down a stream.
2613  * The caller will allocate and copyin any control part that precedes the
2614  * message and pass than in as mctl.
2615  *
2616  * Caller should *not* hold sd_lock.
2617  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2618  * under sd_lock in order to avoid missing a backenabling wakeup.
2619  *
2620  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2621  *
2622  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2623  * For sync streams we can only ignore flow control by reverting to using
2624  * putnext.
2625  *
2626  * If sd_maxblk is less than *iosize this routine might return without
2627  * transferring all of *iosize. In all cases, on return *iosize will contain
2628  * the amount of data that was transferred.
2629  */
2630 static int
2631 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2632     int b_flag, int pri, int flags)
2633 {
2634 	struiod_t uiod;
2635 	mblk_t *mp;
2636 	queue_t *wqp = stp->sd_wrq;
2637 	int error = 0;
2638 	ssize_t count = *iosize;
2639 	cred_t *cr;
2640 
2641 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2642 
2643 	if (uiop != NULL && count >= 0)
2644 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2645 
2646 	if (!(flags & STRUIO_POSTPONE)) {
2647 		/*
2648 		 * Use regular canputnext, strmakedata, putnext sequence.
2649 		 */
2650 		if (pri == 0) {
2651 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2652 				freemsg(mctl);
2653 				return (EWOULDBLOCK);
2654 			}
2655 		} else {
2656 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2657 				freemsg(mctl);
2658 				return (EWOULDBLOCK);
2659 			}
2660 		}
2661 
2662 		if ((error = strmakedata(iosize, uiop, stp, flags,
2663 		    &mp)) != 0) {
2664 			freemsg(mctl);
2665 			/*
2666 			 * need to change return code to ENOMEM
2667 			 * so that this is not confused with
2668 			 * flow control, EAGAIN.
2669 			 */
2670 
2671 			if (error == EAGAIN)
2672 				return (ENOMEM);
2673 			else
2674 				return (error);
2675 		}
2676 		if (mctl != NULL) {
2677 			if (mctl->b_cont == NULL)
2678 				mctl->b_cont = mp;
2679 			else if (mp != NULL)
2680 				linkb(mctl, mp);
2681 			mp = mctl;
2682 			/*
2683 			 * Note that for interrupt thread, the CRED() is
2684 			 * NULL. Don't bother with the pid either.
2685 			 */
2686 			if ((cr = CRED()) != NULL) {
2687 				mblk_setcred(mp, cr);
2688 				DB_CPID(mp) = curproc->p_pid;
2689 			}
2690 		} else if (mp == NULL)
2691 			return (0);
2692 
2693 		mp->b_flag |= b_flag;
2694 		mp->b_band = (uchar_t)pri;
2695 
2696 		if (flags & MSG_IGNFLOW) {
2697 			/*
2698 			 * XXX Hack: Don't get stuck running service
2699 			 * procedures. This is needed for sockfs when
2700 			 * sending the unbind message out of the rput
2701 			 * procedure - we don't want a put procedure
2702 			 * to run service procedures.
2703 			 */
2704 			putnext(wqp, mp);
2705 		} else {
2706 			stream_willservice(stp);
2707 			putnext(wqp, mp);
2708 			stream_runservice(stp);
2709 		}
2710 		return (0);
2711 	}
2712 	/*
2713 	 * Stream supports rwnext() for the write side.
2714 	 */
2715 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2716 		freemsg(mctl);
2717 		/*
2718 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2719 		 */
2720 		return (error == EAGAIN ? ENOMEM : error);
2721 	}
2722 	if (mctl != NULL) {
2723 		if (mctl->b_cont == NULL)
2724 			mctl->b_cont = mp;
2725 		else if (mp != NULL)
2726 			linkb(mctl, mp);
2727 		mp = mctl;
2728 		/*
2729 		 * Note that for interrupt thread, the CRED() is
2730 		 * NULL.  Don't bother with the pid either.
2731 		 */
2732 		if ((cr = CRED()) != NULL) {
2733 			mblk_setcred(mp, cr);
2734 			DB_CPID(mp) = curproc->p_pid;
2735 		}
2736 	} else if (mp == NULL) {
2737 		return (0);
2738 	}
2739 
2740 	mp->b_flag |= b_flag;
2741 	mp->b_band = (uchar_t)pri;
2742 
2743 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2744 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2745 	uiod.d_uio.uio_offset = 0;
2746 	uiod.d_mp = mp;
2747 	error = rwnext(wqp, &uiod);
2748 	if (! uiod.d_mp) {
2749 		uioskip(uiop, *iosize);
2750 		return (error);
2751 	}
2752 	ASSERT(mp == uiod.d_mp);
2753 	if (error == EINVAL) {
2754 		/*
2755 		 * The stream plumbing must have changed while
2756 		 * we were away, so just turn off rwnext()s.
2757 		 */
2758 		error = 0;
2759 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2760 		/*
2761 		 * Couldn't enter a perimeter or took a page fault,
2762 		 * so fall-back to putnext().
2763 		 */
2764 		error = 0;
2765 	} else {
2766 		freemsg(mp);
2767 		return (error);
2768 	}
2769 	/* Have to check canput before consuming data from the uio */
2770 	if (pri == 0) {
2771 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2772 			freemsg(mp);
2773 			return (EWOULDBLOCK);
2774 		}
2775 	} else {
2776 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2777 			freemsg(mp);
2778 			return (EWOULDBLOCK);
2779 		}
2780 	}
2781 	ASSERT(mp == uiod.d_mp);
2782 	/* Copyin data from the uio */
2783 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2784 		freemsg(mp);
2785 		return (error);
2786 	}
2787 	uioskip(uiop, *iosize);
2788 	if (flags & MSG_IGNFLOW) {
2789 		/*
2790 		 * XXX Hack: Don't get stuck running service procedures.
2791 		 * This is needed for sockfs when sending the unbind message
2792 		 * out of the rput procedure - we don't want a put procedure
2793 		 * to run service procedures.
2794 		 */
2795 		putnext(wqp, mp);
2796 	} else {
2797 		stream_willservice(stp);
2798 		putnext(wqp, mp);
2799 		stream_runservice(stp);
2800 	}
2801 	return (0);
2802 }
2803 
2804 /*
2805  * Write attempts to break the write request into messages conforming
2806  * with the minimum and maximum packet sizes set downstream.
2807  *
2808  * Write will not block if downstream queue is full and
2809  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2810  *
2811  * A write of zero bytes gets packaged into a zero length message and sent
2812  * downstream like any other message.
2813  *
2814  * If buffers of the requested sizes are not available, the write will
2815  * sleep until the buffers become available.
2816  *
2817  * Write (if specified) will supply a write offset in a message if it
2818  * makes sense. This can be specified by downstream modules as part of
2819  * a M_SETOPTS message.  Write will not supply the write offset if it
2820  * cannot supply any data in a buffer.  In other words, write will never
2821  * send down an empty packet due to a write offset.
2822  */
2823 /* ARGSUSED2 */
2824 int
2825 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2826 {
2827 	return (strwrite_common(vp, uiop, crp, 0));
2828 }
2829 
2830 /* ARGSUSED2 */
2831 int
2832 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2833 {
2834 	struct stdata *stp;
2835 	struct queue *wqp;
2836 	ssize_t rmin, rmax;
2837 	ssize_t iosize;
2838 	int waitflag;
2839 	int tempmode;
2840 	int error = 0;
2841 	int b_flag;
2842 
2843 	ASSERT(vp->v_stream);
2844 	stp = vp->v_stream;
2845 
2846 	mutex_enter(&stp->sd_lock);
2847 
2848 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2849 		mutex_exit(&stp->sd_lock);
2850 		return (error);
2851 	}
2852 
2853 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2854 		error = strwriteable(stp, B_TRUE, B_TRUE);
2855 		if (error != 0) {
2856 			mutex_exit(&stp->sd_lock);
2857 			return (error);
2858 		}
2859 	}
2860 
2861 	mutex_exit(&stp->sd_lock);
2862 
2863 	wqp = stp->sd_wrq;
2864 
2865 	/* get these values from them cached in the stream head */
2866 	rmin = stp->sd_qn_minpsz;
2867 	rmax = stp->sd_qn_maxpsz;
2868 
2869 	/*
2870 	 * Check the min/max packet size constraints.  If min packet size
2871 	 * is non-zero, the write cannot be split into multiple messages
2872 	 * and still guarantee the size constraints.
2873 	 */
2874 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2875 
2876 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2877 	if (rmax == 0) {
2878 		return (0);
2879 	}
2880 	if (rmin > 0) {
2881 		if (uiop->uio_resid < rmin) {
2882 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2883 			    "strwrite out:q %p out %d error %d",
2884 			    wqp, 0, ERANGE);
2885 			return (ERANGE);
2886 		}
2887 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2888 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2889 			    "strwrite out:q %p out %d error %d",
2890 			    wqp, 1, ERANGE);
2891 			return (ERANGE);
2892 		}
2893 	}
2894 
2895 	/*
2896 	 * Do until count satisfied or error.
2897 	 */
2898 	waitflag = WRITEWAIT | wflag;
2899 	if (stp->sd_flag & OLDNDELAY)
2900 		tempmode = uiop->uio_fmode & ~FNDELAY;
2901 	else
2902 		tempmode = uiop->uio_fmode;
2903 
2904 	if (rmax == INFPSZ)
2905 		rmax = uiop->uio_resid;
2906 
2907 	/*
2908 	 * Note that tempmode does not get used in strput/strmakedata
2909 	 * but only in strwaitq. The other routines use uio_fmode
2910 	 * unmodified.
2911 	 */
2912 
2913 	/* LINTED: constant in conditional context */
2914 	while (1) {	/* breaks when uio_resid reaches zero */
2915 		/*
2916 		 * Determine the size of the next message to be
2917 		 * packaged.  May have to break write into several
2918 		 * messages based on max packet size.
2919 		 */
2920 		iosize = MIN(uiop->uio_resid, rmax);
2921 
2922 		/*
2923 		 * Put block downstream when flow control allows it.
2924 		 */
2925 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2926 			b_flag = MSGDELIM;
2927 		else
2928 			b_flag = 0;
2929 
2930 		for (;;) {
2931 			int done = 0;
2932 
2933 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2934 			if (error == 0)
2935 				break;
2936 			if (error != EWOULDBLOCK)
2937 				goto out;
2938 
2939 			mutex_enter(&stp->sd_lock);
2940 			/*
2941 			 * Check for a missed wakeup.
2942 			 * Needed since strput did not hold sd_lock across
2943 			 * the canputnext.
2944 			 */
2945 			if (canputnext(wqp)) {
2946 				/* Try again */
2947 				mutex_exit(&stp->sd_lock);
2948 				continue;
2949 			}
2950 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2951 			    "strwrite wait:q %p wait", wqp);
2952 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2953 			    tempmode, -1, &done)) != 0 || done) {
2954 				mutex_exit(&stp->sd_lock);
2955 				if ((vp->v_type == VFIFO) &&
2956 				    (uiop->uio_fmode & FNDELAY) &&
2957 				    (error == EAGAIN))
2958 					error = 0;
2959 				goto out;
2960 			}
2961 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2962 			    "strwrite wake:q %p awakes", wqp);
2963 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2964 				mutex_exit(&stp->sd_lock);
2965 				goto out;
2966 			}
2967 			mutex_exit(&stp->sd_lock);
2968 		}
2969 		waitflag |= NOINTR;
2970 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2971 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2972 		if (uiop->uio_resid) {
2973 			/* Recheck for errors - needed for sockets */
2974 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2975 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2976 				mutex_enter(&stp->sd_lock);
2977 				error = strwriteable(stp, B_FALSE, B_TRUE);
2978 				mutex_exit(&stp->sd_lock);
2979 				if (error != 0)
2980 					return (error);
2981 			}
2982 			continue;
2983 		}
2984 		break;
2985 	}
2986 out:
2987 	/*
2988 	 * For historical reasons, applications expect EAGAIN when a data
2989 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2990 	 */
2991 	if (error == ENOMEM)
2992 		error = EAGAIN;
2993 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2994 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2995 	return (error);
2996 }
2997 
2998 /*
2999  * Stream head write service routine.
3000  * Its job is to wake up any sleeping writers when a queue
3001  * downstream needs data (part of the flow control in putq and getq).
3002  * It also must wake anyone sleeping on a poll().
3003  * For stream head right below mux module, it must also invoke put procedure
3004  * of next downstream module.
3005  */
3006 int
3007 strwsrv(queue_t *q)
3008 {
3009 	struct stdata *stp;
3010 	queue_t *tq;
3011 	qband_t *qbp;
3012 	int i;
3013 	qband_t *myqbp;
3014 	int isevent;
3015 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
3016 
3017 	TRACE_1(TR_FAC_STREAMS_FR,
3018 	    TR_STRWSRV, "strwsrv:q %p", q);
3019 	stp = (struct stdata *)q->q_ptr;
3020 	ASSERT(qclaimed(q));
3021 	mutex_enter(&stp->sd_lock);
3022 	ASSERT(!(stp->sd_flag & STPLEX));
3023 
3024 	if (stp->sd_flag & WSLEEP) {
3025 		stp->sd_flag &= ~WSLEEP;
3026 		cv_broadcast(&q->q_wait);
3027 	}
3028 	mutex_exit(&stp->sd_lock);
3029 
3030 	/* The other end of a stream pipe went away. */
3031 	if ((tq = q->q_next) == NULL) {
3032 		return (0);
3033 	}
3034 
3035 	/* Find the next module forward that has a service procedure */
3036 	claimstr(q);
3037 	tq = q->q_nfsrv;
3038 	ASSERT(tq != NULL);
3039 
3040 	if ((q->q_flag & QBACK)) {
3041 		if ((tq->q_flag & QFULL)) {
3042 			mutex_enter(QLOCK(tq));
3043 			if (!(tq->q_flag & QFULL)) {
3044 				mutex_exit(QLOCK(tq));
3045 				goto wakeup;
3046 			}
3047 			/*
3048 			 * The queue must have become full again. Set QWANTW
3049 			 * again so strwsrv will be back enabled when
3050 			 * the queue becomes non-full next time.
3051 			 */
3052 			tq->q_flag |= QWANTW;
3053 			mutex_exit(QLOCK(tq));
3054 		} else {
3055 		wakeup:
3056 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
3057 			mutex_enter(&stp->sd_lock);
3058 			if (stp->sd_sigflags & S_WRNORM)
3059 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
3060 			mutex_exit(&stp->sd_lock);
3061 		}
3062 	}
3063 
3064 	isevent = 0;
3065 	i = 1;
3066 	bzero((caddr_t)qbf, NBAND);
3067 	mutex_enter(QLOCK(tq));
3068 	if ((myqbp = q->q_bandp) != NULL)
3069 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
3070 			ASSERT(myqbp);
3071 			if ((myqbp->qb_flag & QB_BACK)) {
3072 				if (qbp->qb_flag & QB_FULL) {
3073 					/*
3074 					 * The band must have become full again.
3075 					 * Set QB_WANTW again so strwsrv will
3076 					 * be back enabled when the band becomes
3077 					 * non-full next time.
3078 					 */
3079 					qbp->qb_flag |= QB_WANTW;
3080 				} else {
3081 					isevent = 1;
3082 					qbf[i] = 1;
3083 				}
3084 			}
3085 			myqbp = myqbp->qb_next;
3086 			i++;
3087 		}
3088 	mutex_exit(QLOCK(tq));
3089 
3090 	if (isevent) {
3091 		for (i = tq->q_nband; i; i--) {
3092 			if (qbf[i]) {
3093 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
3094 				mutex_enter(&stp->sd_lock);
3095 				if (stp->sd_sigflags & S_WRBAND)
3096 					strsendsig(stp->sd_siglist, S_WRBAND,
3097 					    (uchar_t)i, 0);
3098 				mutex_exit(&stp->sd_lock);
3099 			}
3100 		}
3101 	}
3102 
3103 	releasestr(q);
3104 	return (0);
3105 }
3106 
3107 /*
3108  * Special case of strcopyin/strcopyout for copying
3109  * struct strioctl that can deal with both data
3110  * models.
3111  */
3112 
3113 #ifdef	_LP64
3114 
3115 static int
3116 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3117 {
3118 	struct	strioctl32 strioc32;
3119 	struct	strioctl *striocp;
3120 
3121 	if (copyflag & U_TO_K) {
3122 		ASSERT((copyflag & K_TO_K) == 0);
3123 
3124 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3125 			if (copyin(from, &strioc32, sizeof (strioc32)))
3126 				return (EFAULT);
3127 
3128 			striocp = (struct strioctl *)to;
3129 			striocp->ic_cmd	= strioc32.ic_cmd;
3130 			striocp->ic_timout = strioc32.ic_timout;
3131 			striocp->ic_len	= strioc32.ic_len;
3132 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3133 
3134 		} else { /* NATIVE data model */
3135 			if (copyin(from, to, sizeof (struct strioctl))) {
3136 				return (EFAULT);
3137 			} else {
3138 				return (0);
3139 			}
3140 		}
3141 	} else {
3142 		ASSERT(copyflag & K_TO_K);
3143 		bcopy(from, to, sizeof (struct strioctl));
3144 	}
3145 	return (0);
3146 }
3147 
3148 static int
3149 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3150 {
3151 	struct	strioctl32 strioc32;
3152 	struct	strioctl *striocp;
3153 
3154 	if (copyflag & U_TO_K) {
3155 		ASSERT((copyflag & K_TO_K) == 0);
3156 
3157 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3158 			striocp = (struct strioctl *)from;
3159 			strioc32.ic_cmd	= striocp->ic_cmd;
3160 			strioc32.ic_timout = striocp->ic_timout;
3161 			strioc32.ic_len	= striocp->ic_len;
3162 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3163 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3164 			    striocp->ic_dp);
3165 
3166 			if (copyout(&strioc32, to, sizeof (strioc32)))
3167 				return (EFAULT);
3168 
3169 		} else { /* NATIVE data model */
3170 			if (copyout(from, to, sizeof (struct strioctl))) {
3171 				return (EFAULT);
3172 			} else {
3173 				return (0);
3174 			}
3175 		}
3176 	} else {
3177 		ASSERT(copyflag & K_TO_K);
3178 		bcopy(from, to, sizeof (struct strioctl));
3179 	}
3180 	return (0);
3181 }
3182 
3183 #else	/* ! _LP64 */
3184 
3185 /* ARGSUSED2 */
3186 static int
3187 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3188 {
3189 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3190 }
3191 
3192 /* ARGSUSED2 */
3193 static int
3194 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3195 {
3196 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3197 }
3198 
3199 #endif	/* _LP64 */
3200 
3201 /*
3202  * Determine type of job control semantics expected by user.  The
3203  * possibilities are:
3204  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3205  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3206  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3207  *	JCGETP	- Gets a value in the stream; no signals.
3208  * See straccess in strsubr.c for usage of these values.
3209  *
3210  * This routine also returns -1 for I_STR as a special case; the
3211  * caller must call again with the real ioctl number for
3212  * classification.
3213  */
3214 static int
3215 job_control_type(int cmd)
3216 {
3217 	switch (cmd) {
3218 	case I_STR:
3219 		return (-1);
3220 
3221 	case I_RECVFD:
3222 	case I_E_RECVFD:
3223 		return (JCREAD);
3224 
3225 	case I_FDINSERT:
3226 	case I_SENDFD:
3227 		return (JCWRITE);
3228 
3229 	case TCSETA:
3230 	case TCSETAW:
3231 	case TCSETAF:
3232 	case TCSBRK:
3233 	case TCXONC:
3234 	case TCFLSH:
3235 	case TCDSET:	/* Obsolete */
3236 	case TIOCSWINSZ:
3237 	case TCSETS:
3238 	case TCSETSW:
3239 	case TCSETSF:
3240 	case TIOCSETD:
3241 	case TIOCHPCL:
3242 	case TIOCSETP:
3243 	case TIOCSETN:
3244 	case TIOCEXCL:
3245 	case TIOCNXCL:
3246 	case TIOCFLUSH:
3247 	case TIOCSETC:
3248 	case TIOCLBIS:
3249 	case TIOCLBIC:
3250 	case TIOCLSET:
3251 	case TIOCSBRK:
3252 	case TIOCCBRK:
3253 	case TIOCSDTR:
3254 	case TIOCCDTR:
3255 	case TIOCSLTC:
3256 	case TIOCSTOP:
3257 	case TIOCSTART:
3258 	case TIOCSTI:
3259 	case TIOCSPGRP:
3260 	case TIOCMSET:
3261 	case TIOCMBIS:
3262 	case TIOCMBIC:
3263 	case TIOCREMOTE:
3264 	case TIOCSIGNAL:
3265 	case LDSETT:
3266 	case LDSMAP:	/* Obsolete */
3267 	case DIOCSETP:
3268 	case I_FLUSH:
3269 	case I_SRDOPT:
3270 	case I_SETSIG:
3271 	case I_SWROPT:
3272 	case I_FLUSHBAND:
3273 	case I_SETCLTIME:
3274 	case I_SERROPT:
3275 	case I_ESETSIG:
3276 	case FIONBIO:
3277 	case FIOASYNC:
3278 	case FIOSETOWN:
3279 	case JBOOT:	/* Obsolete */
3280 	case JTERM:	/* Obsolete */
3281 	case JTIMOM:	/* Obsolete */
3282 	case JZOMBOOT:	/* Obsolete */
3283 	case JAGENT:	/* Obsolete */
3284 	case JTRUN:	/* Obsolete */
3285 	case JXTPROTO:	/* Obsolete */
3286 	case TIOCSETLD:
3287 		return (JCSETP);
3288 	}
3289 
3290 	return (JCGETP);
3291 }
3292 
3293 /*
3294  * ioctl for streams
3295  */
3296 int
3297 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3298     cred_t *crp, int *rvalp)
3299 {
3300 	struct stdata *stp;
3301 	struct strcmd *scp;
3302 	struct strioctl strioc;
3303 	struct uio uio;
3304 	struct iovec iov;
3305 	int access;
3306 	mblk_t *mp;
3307 	int error = 0;
3308 	int done = 0;
3309 	ssize_t	rmin, rmax;
3310 	queue_t *wrq;
3311 	queue_t *rdq;
3312 	boolean_t kioctl = B_FALSE;
3313 
3314 	if (flag & FKIOCTL) {
3315 		copyflag = K_TO_K;
3316 		kioctl = B_TRUE;
3317 	}
3318 	ASSERT(vp->v_stream);
3319 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3320 	stp = vp->v_stream;
3321 
3322 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3323 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3324 
3325 	if (audit_active)
3326 		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3327 
3328 	/*
3329 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3330 	 * flag is set.  After this it would be a serious error to have
3331 	 * no model flag.
3332 	 */
3333 	if (copyflag == K_TO_K)
3334 		flag = (flag & ~FMODELS) | FNATIVE;
3335 
3336 	ASSERT((flag & FMODELS) != 0);
3337 
3338 	wrq = stp->sd_wrq;
3339 	rdq = _RD(wrq);
3340 
3341 	access = job_control_type(cmd);
3342 
3343 	/* We should never see these here, should be handled by iwscn */
3344 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3345 		return (EINVAL);
3346 
3347 	mutex_enter(&stp->sd_lock);
3348 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3349 		mutex_exit(&stp->sd_lock);
3350 		return (error);
3351 	}
3352 	mutex_exit(&stp->sd_lock);
3353 
3354 	/*
3355 	 * Check for sgttyb-related ioctls first, and complain as
3356 	 * necessary.
3357 	 */
3358 	switch (cmd) {
3359 	case TIOCGETP:
3360 	case TIOCSETP:
3361 	case TIOCSETN:
3362 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3363 			sgttyb_complaint = B_TRUE;
3364 			cmn_err(CE_NOTE,
3365 			    "application used obsolete TIOC[GS]ET");
3366 		}
3367 		if (sgttyb_handling >= 3) {
3368 			tsignal(curthread, SIGSYS);
3369 			return (EIO);
3370 		}
3371 		break;
3372 	}
3373 
3374 	mutex_enter(&stp->sd_lock);
3375 
3376 	switch (cmd) {
3377 	case I_RECVFD:
3378 	case I_E_RECVFD:
3379 	case I_PEEK:
3380 	case I_NREAD:
3381 	case FIONREAD:
3382 	case FIORDCHK:
3383 	case I_ATMARK:
3384 	case FIONBIO:
3385 	case FIOASYNC:
3386 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3387 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3388 			if (error != 0) {
3389 				mutex_exit(&stp->sd_lock);
3390 				return (error);
3391 			}
3392 		}
3393 		break;
3394 
3395 	default:
3396 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3397 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3398 			if (error != 0) {
3399 				mutex_exit(&stp->sd_lock);
3400 				return (error);
3401 			}
3402 		}
3403 	}
3404 
3405 	mutex_exit(&stp->sd_lock);
3406 
3407 	switch (cmd) {
3408 	default:
3409 		/*
3410 		 * The stream head has hardcoded knowledge of a
3411 		 * miscellaneous collection of terminal-, keyboard- and
3412 		 * mouse-related ioctls, enumerated below.  This hardcoded
3413 		 * knowledge allows the stream head to automatically
3414 		 * convert transparent ioctl requests made by userland
3415 		 * programs into I_STR ioctls which many old STREAMS
3416 		 * modules and drivers require.
3417 		 *
3418 		 * No new ioctls should ever be added to this list.
3419 		 * Instead, the STREAMS module or driver should be written
3420 		 * to either handle transparent ioctls or require any
3421 		 * userland programs to use I_STR ioctls (by returning
3422 		 * EINVAL to any transparent ioctl requests).
3423 		 *
3424 		 * More importantly, removing ioctls from this list should
3425 		 * be done with the utmost care, since our STREAMS modules
3426 		 * and drivers *count* on the stream head performing this
3427 		 * conversion, and thus may panic while processing
3428 		 * transparent ioctl request for one of these ioctls (keep
3429 		 * in mind that third party modules and drivers may have
3430 		 * similar problems).
3431 		 */
3432 		if (((cmd & IOCTYPE) == LDIOC) ||
3433 		    ((cmd & IOCTYPE) == tIOC) ||
3434 		    ((cmd & IOCTYPE) == TIOC) ||
3435 		    ((cmd & IOCTYPE) == KIOC) ||
3436 		    ((cmd & IOCTYPE) == MSIOC) ||
3437 		    ((cmd & IOCTYPE) == VUIOC)) {
3438 			/*
3439 			 * The ioctl is a tty ioctl - set up strioc buffer
3440 			 * and call strdoioctl() to do the work.
3441 			 */
3442 			if (stp->sd_flag & STRHUP)
3443 				return (ENXIO);
3444 			strioc.ic_cmd = cmd;
3445 			strioc.ic_timout = INFTIM;
3446 
3447 			switch (cmd) {
3448 
3449 			case TCXONC:
3450 			case TCSBRK:
3451 			case TCFLSH:
3452 			case TCDSET:
3453 				{
3454 				int native_arg = (int)arg;
3455 				strioc.ic_len = sizeof (int);
3456 				strioc.ic_dp = (char *)&native_arg;
3457 				return (strdoioctl(stp, &strioc, flag,
3458 				    K_TO_K, crp, rvalp));
3459 				}
3460 
3461 			case TCSETA:
3462 			case TCSETAW:
3463 			case TCSETAF:
3464 				strioc.ic_len = sizeof (struct termio);
3465 				strioc.ic_dp = (char *)arg;
3466 				return (strdoioctl(stp, &strioc, flag,
3467 				    copyflag, crp, rvalp));
3468 
3469 			case TCSETS:
3470 			case TCSETSW:
3471 			case TCSETSF:
3472 				strioc.ic_len = sizeof (struct termios);
3473 				strioc.ic_dp = (char *)arg;
3474 				return (strdoioctl(stp, &strioc, flag,
3475 				    copyflag, crp, rvalp));
3476 
3477 			case LDSETT:
3478 				strioc.ic_len = sizeof (struct termcb);
3479 				strioc.ic_dp = (char *)arg;
3480 				return (strdoioctl(stp, &strioc, flag,
3481 				    copyflag, crp, rvalp));
3482 
3483 			case TIOCSETP:
3484 				strioc.ic_len = sizeof (struct sgttyb);
3485 				strioc.ic_dp = (char *)arg;
3486 				return (strdoioctl(stp, &strioc, flag,
3487 				    copyflag, crp, rvalp));
3488 
3489 			case TIOCSTI:
3490 				if ((flag & FREAD) == 0 &&
3491 				    secpolicy_sti(crp) != 0) {
3492 					return (EPERM);
3493 				}
3494 				mutex_enter(&stp->sd_lock);
3495 				mutex_enter(&curproc->p_splock);
3496 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3497 				    secpolicy_sti(crp) != 0) {
3498 					mutex_exit(&curproc->p_splock);
3499 					mutex_exit(&stp->sd_lock);
3500 					return (EACCES);
3501 				}
3502 				mutex_exit(&curproc->p_splock);
3503 				mutex_exit(&stp->sd_lock);
3504 
3505 				strioc.ic_len = sizeof (char);
3506 				strioc.ic_dp = (char *)arg;
3507 				return (strdoioctl(stp, &strioc, flag,
3508 				    copyflag, crp, rvalp));
3509 
3510 			case TIOCSWINSZ:
3511 				strioc.ic_len = sizeof (struct winsize);
3512 				strioc.ic_dp = (char *)arg;
3513 				return (strdoioctl(stp, &strioc, flag,
3514 				    copyflag, crp, rvalp));
3515 
3516 			case TIOCSSIZE:
3517 				strioc.ic_len = sizeof (struct ttysize);
3518 				strioc.ic_dp = (char *)arg;
3519 				return (strdoioctl(stp, &strioc, flag,
3520 				    copyflag, crp, rvalp));
3521 
3522 			case TIOCSSOFTCAR:
3523 			case KIOCTRANS:
3524 			case KIOCTRANSABLE:
3525 			case KIOCCMD:
3526 			case KIOCSDIRECT:
3527 			case KIOCSCOMPAT:
3528 			case KIOCSKABORTEN:
3529 			case KIOCSRPTDELAY:
3530 			case KIOCSRPTRATE:
3531 			case VUIDSFORMAT:
3532 			case TIOCSPPS:
3533 				strioc.ic_len = sizeof (int);
3534 				strioc.ic_dp = (char *)arg;
3535 				return (strdoioctl(stp, &strioc, flag,
3536 				    copyflag, crp, rvalp));
3537 
3538 			case KIOCSETKEY:
3539 			case KIOCGETKEY:
3540 				strioc.ic_len = sizeof (struct kiockey);
3541 				strioc.ic_dp = (char *)arg;
3542 				return (strdoioctl(stp, &strioc, flag,
3543 				    copyflag, crp, rvalp));
3544 
3545 			case KIOCSKEY:
3546 			case KIOCGKEY:
3547 				strioc.ic_len = sizeof (struct kiockeymap);
3548 				strioc.ic_dp = (char *)arg;
3549 				return (strdoioctl(stp, &strioc, flag,
3550 				    copyflag, crp, rvalp));
3551 
3552 			case KIOCSLED:
3553 				/* arg is a pointer to char */
3554 				strioc.ic_len = sizeof (char);
3555 				strioc.ic_dp = (char *)arg;
3556 				return (strdoioctl(stp, &strioc, flag,
3557 				    copyflag, crp, rvalp));
3558 
3559 			case MSIOSETPARMS:
3560 				strioc.ic_len = sizeof (Ms_parms);
3561 				strioc.ic_dp = (char *)arg;
3562 				return (strdoioctl(stp, &strioc, flag,
3563 				    copyflag, crp, rvalp));
3564 
3565 			case VUIDSADDR:
3566 			case VUIDGADDR:
3567 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3568 				strioc.ic_dp = (char *)arg;
3569 				return (strdoioctl(stp, &strioc, flag,
3570 				    copyflag, crp, rvalp));
3571 
3572 			/*
3573 			 * These M_IOCTL's don't require any data to be sent
3574 			 * downstream, and the driver will allocate and link
3575 			 * on its own mblk_t upon M_IOCACK -- thus we set
3576 			 * ic_len to zero and set ic_dp to arg so we know
3577 			 * where to copyout to later.
3578 			 */
3579 			case TIOCGSOFTCAR:
3580 			case TIOCGWINSZ:
3581 			case TIOCGSIZE:
3582 			case KIOCGTRANS:
3583 			case KIOCGTRANSABLE:
3584 			case KIOCTYPE:
3585 			case KIOCGDIRECT:
3586 			case KIOCGCOMPAT:
3587 			case KIOCLAYOUT:
3588 			case KIOCGLED:
3589 			case MSIOGETPARMS:
3590 			case MSIOBUTTONS:
3591 			case VUIDGFORMAT:
3592 			case TIOCGPPS:
3593 			case TIOCGPPSEV:
3594 			case TCGETA:
3595 			case TCGETS:
3596 			case LDGETT:
3597 			case TIOCGETP:
3598 			case KIOCGRPTDELAY:
3599 			case KIOCGRPTRATE:
3600 				strioc.ic_len = 0;
3601 				strioc.ic_dp = (char *)arg;
3602 				return (strdoioctl(stp, &strioc, flag,
3603 				    copyflag, crp, rvalp));
3604 			}
3605 		}
3606 
3607 		/*
3608 		 * Unknown cmd - send it down as a transparent ioctl.
3609 		 */
3610 		strioc.ic_cmd = cmd;
3611 		strioc.ic_timout = INFTIM;
3612 		strioc.ic_len = TRANSPARENT;
3613 		strioc.ic_dp = (char *)&arg;
3614 
3615 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3616 
3617 	case I_STR:
3618 		/*
3619 		 * Stream ioctl.  Read in an strioctl buffer from the user
3620 		 * along with any data specified and send it downstream.
3621 		 * Strdoioctl will wait allow only one ioctl message at
3622 		 * a time, and waits for the acknowledgement.
3623 		 */
3624 
3625 		if (stp->sd_flag & STRHUP)
3626 			return (ENXIO);
3627 
3628 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3629 		    copyflag);
3630 		if (error != 0)
3631 			return (error);
3632 
3633 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3634 			return (EINVAL);
3635 
3636 		access = job_control_type(strioc.ic_cmd);
3637 		mutex_enter(&stp->sd_lock);
3638 		if ((access != -1) &&
3639 		    ((error = i_straccess(stp, access)) != 0)) {
3640 			mutex_exit(&stp->sd_lock);
3641 			return (error);
3642 		}
3643 		mutex_exit(&stp->sd_lock);
3644 
3645 		/*
3646 		 * The I_STR facility provides a trap door for malicious
3647 		 * code to send down bogus streamio(7I) ioctl commands to
3648 		 * unsuspecting STREAMS modules and drivers which expect to
3649 		 * only get these messages from the stream head.
3650 		 * Explicitly prohibit any streamio ioctls which can be
3651 		 * passed downstream by the stream head.  Note that we do
3652 		 * not block all streamio ioctls because the ioctl
3653 		 * numberspace is not well managed and thus it's possible
3654 		 * that a module or driver's ioctl numbers may accidentally
3655 		 * collide with them.
3656 		 */
3657 		switch (strioc.ic_cmd) {
3658 		case I_LINK:
3659 		case I_PLINK:
3660 		case I_UNLINK:
3661 		case I_PUNLINK:
3662 		case _I_GETPEERCRED:
3663 		case _I_PLINK_LH:
3664 			return (EINVAL);
3665 		}
3666 
3667 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3668 		if (error == 0) {
3669 			error = strcopyout_strioctl(&strioc, (void *)arg,
3670 			    flag, copyflag);
3671 		}
3672 		return (error);
3673 
3674 	case _I_CMD:
3675 		/*
3676 		 * Like I_STR, but without using M_IOC* messages and without
3677 		 * copyins/copyouts beyond the passed-in argument.
3678 		 */
3679 		if (stp->sd_flag & STRHUP)
3680 			return (ENXIO);
3681 
3682 		if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3683 			return (ENOMEM);
3684 
3685 		if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3686 			kmem_free(scp, sizeof (strcmd_t));
3687 			return (EFAULT);
3688 		}
3689 
3690 		access = job_control_type(scp->sc_cmd);
3691 		mutex_enter(&stp->sd_lock);
3692 		if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3693 			mutex_exit(&stp->sd_lock);
3694 			kmem_free(scp, sizeof (strcmd_t));
3695 			return (error);
3696 		}
3697 		mutex_exit(&stp->sd_lock);
3698 
3699 		*rvalp = 0;
3700 		if ((error = strdocmd(stp, scp, crp)) == 0) {
3701 			if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3702 				error = EFAULT;
3703 		}
3704 		kmem_free(scp, sizeof (strcmd_t));
3705 		return (error);
3706 
3707 	case I_NREAD:
3708 		/*
3709 		 * Return number of bytes of data in first message
3710 		 * in queue in "arg" and return the number of messages
3711 		 * in queue in return value.
3712 		 */
3713 	{
3714 		size_t	size;
3715 		int	retval;
3716 		int	count = 0;
3717 
3718 		mutex_enter(QLOCK(rdq));
3719 
3720 		size = msgdsize(rdq->q_first);
3721 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3722 			count++;
3723 
3724 		mutex_exit(QLOCK(rdq));
3725 		if (stp->sd_struiordq) {
3726 			infod_t infod;
3727 
3728 			infod.d_cmd = INFOD_COUNT;
3729 			infod.d_count = 0;
3730 			if (count == 0) {
3731 				infod.d_cmd |= INFOD_FIRSTBYTES;
3732 				infod.d_bytes = 0;
3733 			}
3734 			infod.d_res = 0;
3735 			(void) infonext(rdq, &infod);
3736 			count += infod.d_count;
3737 			if (infod.d_res & INFOD_FIRSTBYTES)
3738 				size = infod.d_bytes;
3739 		}
3740 
3741 		/*
3742 		 * Drop down from size_t to the "int" required by the
3743 		 * interface.  Cap at INT_MAX.
3744 		 */
3745 		retval = MIN(size, INT_MAX);
3746 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3747 		    copyflag);
3748 		if (!error)
3749 			*rvalp = count;
3750 		return (error);
3751 	}
3752 
3753 	case FIONREAD:
3754 		/*
3755 		 * Return number of bytes of data in all data messages
3756 		 * in queue in "arg".
3757 		 */
3758 	{
3759 		size_t	size = 0;
3760 		int	retval;
3761 
3762 		mutex_enter(QLOCK(rdq));
3763 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3764 			size += msgdsize(mp);
3765 		mutex_exit(QLOCK(rdq));
3766 
3767 		if (stp->sd_struiordq) {
3768 			infod_t infod;
3769 
3770 			infod.d_cmd = INFOD_BYTES;
3771 			infod.d_res = 0;
3772 			infod.d_bytes = 0;
3773 			(void) infonext(rdq, &infod);
3774 			size += infod.d_bytes;
3775 		}
3776 
3777 		/*
3778 		 * Drop down from size_t to the "int" required by the
3779 		 * interface.  Cap at INT_MAX.
3780 		 */
3781 		retval = MIN(size, INT_MAX);
3782 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3783 		    copyflag);
3784 
3785 		*rvalp = 0;
3786 		return (error);
3787 	}
3788 	case FIORDCHK:
3789 		/*
3790 		 * FIORDCHK does not use arg value (like FIONREAD),
3791 		 * instead a count is returned. I_NREAD value may
3792 		 * not be accurate but safe. The real thing to do is
3793 		 * to add the msgdsizes of all data  messages until
3794 		 * a non-data message.
3795 		 */
3796 	{
3797 		size_t size = 0;
3798 
3799 		mutex_enter(QLOCK(rdq));
3800 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3801 			size += msgdsize(mp);
3802 		mutex_exit(QLOCK(rdq));
3803 
3804 		if (stp->sd_struiordq) {
3805 			infod_t infod;
3806 
3807 			infod.d_cmd = INFOD_BYTES;
3808 			infod.d_res = 0;
3809 			infod.d_bytes = 0;
3810 			(void) infonext(rdq, &infod);
3811 			size += infod.d_bytes;
3812 		}
3813 
3814 		/*
3815 		 * Since ioctl returns an int, and memory sizes under
3816 		 * LP64 may not fit, we return INT_MAX if the count was
3817 		 * actually greater.
3818 		 */
3819 		*rvalp = MIN(size, INT_MAX);
3820 		return (0);
3821 	}
3822 
3823 	case I_FIND:
3824 		/*
3825 		 * Get module name.
3826 		 */
3827 	{
3828 		char mname[FMNAMESZ + 1];
3829 		queue_t *q;
3830 
3831 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3832 		    mname, FMNAMESZ + 1, NULL);
3833 		if (error)
3834 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3835 
3836 		/*
3837 		 * Return EINVAL if we're handed a bogus module name.
3838 		 */
3839 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3840 			TRACE_0(TR_FAC_STREAMS_FR,
3841 			    TR_I_CANT_FIND, "couldn't I_FIND");
3842 			return (EINVAL);
3843 		}
3844 
3845 		*rvalp = 0;
3846 
3847 		/* Look downstream to see if module is there. */
3848 		claimstr(stp->sd_wrq);
3849 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3850 			if (q->q_flag&QREADR) {
3851 				q = NULL;
3852 				break;
3853 			}
3854 			if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0)
3855 				break;
3856 		}
3857 		releasestr(stp->sd_wrq);
3858 
3859 		*rvalp = (q ? 1 : 0);
3860 		return (error);
3861 	}
3862 
3863 	case I_PUSH:
3864 	case __I_PUSH_NOCTTY:
3865 		/*
3866 		 * Push a module.
3867 		 * For the case __I_PUSH_NOCTTY push a module but
3868 		 * do not allocate controlling tty. See bugid 4025044
3869 		 */
3870 
3871 	{
3872 		char mname[FMNAMESZ + 1];
3873 		fmodsw_impl_t *fp;
3874 		dev_t dummydev;
3875 
3876 		if (stp->sd_flag & STRHUP)
3877 			return (ENXIO);
3878 
3879 		/*
3880 		 * Get module name and look up in fmodsw.
3881 		 */
3882 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3883 		    mname, FMNAMESZ + 1, NULL);
3884 		if (error)
3885 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3886 
3887 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3888 		    NULL)
3889 			return (EINVAL);
3890 
3891 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3892 		    "I_PUSH:fp %p stp %p", fp, stp);
3893 
3894 		if (error = strstartplumb(stp, flag, cmd)) {
3895 			fmodsw_rele(fp);
3896 			return (error);
3897 		}
3898 
3899 		/*
3900 		 * See if any more modules can be pushed on this stream.
3901 		 * Note that this check must be done after strstartplumb()
3902 		 * since otherwise multiple threads issuing I_PUSHes on
3903 		 * the same stream will be able to exceed nstrpush.
3904 		 */
3905 		mutex_enter(&stp->sd_lock);
3906 		if (stp->sd_pushcnt >= nstrpush) {
3907 			fmodsw_rele(fp);
3908 			strendplumb(stp);
3909 			mutex_exit(&stp->sd_lock);
3910 			return (EINVAL);
3911 		}
3912 		mutex_exit(&stp->sd_lock);
3913 
3914 		/*
3915 		 * Push new module and call its open routine
3916 		 * via qattach().  Modules don't change device
3917 		 * numbers, so just ignore dummydev here.
3918 		 */
3919 		dummydev = vp->v_rdev;
3920 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3921 		    B_FALSE)) == 0) {
3922 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3923 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3924 				/*
3925 				 * try to allocate it as a controlling terminal
3926 				 */
3927 				(void) strctty(stp);
3928 			}
3929 		}
3930 
3931 		mutex_enter(&stp->sd_lock);
3932 
3933 		/*
3934 		 * As a performance concern we are caching the values of
3935 		 * q_minpsz and q_maxpsz of the module below the stream
3936 		 * head in the stream head.
3937 		 */
3938 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3939 		rmin = stp->sd_wrq->q_next->q_minpsz;
3940 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3941 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3942 
3943 		/* Do this processing here as a performance concern */
3944 		if (strmsgsz != 0) {
3945 			if (rmax == INFPSZ)
3946 				rmax = strmsgsz;
3947 			else  {
3948 				if (vp->v_type == VFIFO)
3949 					rmax = MIN(PIPE_BUF, rmax);
3950 				else	rmax = MIN(strmsgsz, rmax);
3951 			}
3952 		}
3953 
3954 		mutex_enter(QLOCK(wrq));
3955 		stp->sd_qn_minpsz = rmin;
3956 		stp->sd_qn_maxpsz = rmax;
3957 		mutex_exit(QLOCK(wrq));
3958 
3959 		strendplumb(stp);
3960 		mutex_exit(&stp->sd_lock);
3961 		return (error);
3962 	}
3963 
3964 	case I_POP:
3965 	{
3966 		queue_t	*q;
3967 
3968 		if (stp->sd_flag & STRHUP)
3969 			return (ENXIO);
3970 		if (!wrq->q_next)	/* for broken pipes */
3971 			return (EINVAL);
3972 
3973 		if (error = strstartplumb(stp, flag, cmd))
3974 			return (error);
3975 
3976 		/*
3977 		 * If there is an anchor on this stream and popping
3978 		 * the current module would attempt to pop through the
3979 		 * anchor, then disallow the pop unless we have sufficient
3980 		 * privileges; take the cheapest (non-locking) check
3981 		 * first.
3982 		 */
3983 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3984 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3985 			mutex_enter(&stp->sd_lock);
3986 			/*
3987 			 * Anchors only apply if there's at least one
3988 			 * module on the stream (sd_pushcnt > 0).
3989 			 */
3990 			if (stp->sd_pushcnt > 0 &&
3991 			    stp->sd_pushcnt == stp->sd_anchor &&
3992 			    stp->sd_vnode->v_type != VFIFO) {
3993 				strendplumb(stp);
3994 				mutex_exit(&stp->sd_lock);
3995 				if (stp->sd_anchorzone != crgetzoneid(crp))
3996 					return (EINVAL);
3997 				/* Audit and report error */
3998 				return (secpolicy_ip_config(crp, B_FALSE));
3999 			}
4000 			mutex_exit(&stp->sd_lock);
4001 		}
4002 
4003 		q = wrq->q_next;
4004 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
4005 		    "I_POP:%p from %p", q, stp);
4006 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
4007 			error = EINVAL;
4008 		} else {
4009 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
4010 			error = 0;
4011 		}
4012 		mutex_enter(&stp->sd_lock);
4013 
4014 		/*
4015 		 * As a performance concern we are caching the values of
4016 		 * q_minpsz and q_maxpsz of the module below the stream
4017 		 * head in the stream head.
4018 		 */
4019 		mutex_enter(QLOCK(wrq->q_next));
4020 		rmin = wrq->q_next->q_minpsz;
4021 		rmax = wrq->q_next->q_maxpsz;
4022 		mutex_exit(QLOCK(wrq->q_next));
4023 
4024 		/* Do this processing here as a performance concern */
4025 		if (strmsgsz != 0) {
4026 			if (rmax == INFPSZ)
4027 				rmax = strmsgsz;
4028 			else  {
4029 				if (vp->v_type == VFIFO)
4030 					rmax = MIN(PIPE_BUF, rmax);
4031 				else	rmax = MIN(strmsgsz, rmax);
4032 			}
4033 		}
4034 
4035 		mutex_enter(QLOCK(wrq));
4036 		stp->sd_qn_minpsz = rmin;
4037 		stp->sd_qn_maxpsz = rmax;
4038 		mutex_exit(QLOCK(wrq));
4039 
4040 		/* If we popped through the anchor, then reset the anchor. */
4041 		if (stp->sd_pushcnt < stp->sd_anchor) {
4042 			stp->sd_anchor = 0;
4043 			stp->sd_anchorzone = 0;
4044 		}
4045 		strendplumb(stp);
4046 		mutex_exit(&stp->sd_lock);
4047 		return (error);
4048 	}
4049 
4050 	case _I_MUXID2FD:
4051 	{
4052 		/*
4053 		 * Create a fd for a I_PLINK'ed lower stream with a given
4054 		 * muxid.  With the fd, application can send down ioctls,
4055 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
4056 		 * that after getting the fd, the application has to do an
4057 		 * I_PUNLINK on the muxid before it can do any operation
4058 		 * on the lower stream.  This is required by spec1170.
4059 		 *
4060 		 * The fd used to do this ioctl should point to the same
4061 		 * controlling device used to do the I_PLINK.  If it uses
4062 		 * a different stream or an invalid muxid, I_MUXID2FD will
4063 		 * fail.  The error code is set to EINVAL.
4064 		 *
4065 		 * The intended use of this interface is the following.
4066 		 * An application I_PLINK'ed a stream and exits.  The fd
4067 		 * to the lower stream is gone.  Another application
4068 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
4069 		 */
4070 		int muxid = (int)arg;
4071 		int fd;
4072 		linkinfo_t *linkp;
4073 		struct file *fp;
4074 		netstack_t *ns;
4075 		str_stack_t *ss;
4076 
4077 		/*
4078 		 * Do not allow the wildcard muxid.  This ioctl is not
4079 		 * intended to find arbitrary link.
4080 		 */
4081 		if (muxid == 0) {
4082 			return (EINVAL);
4083 		}
4084 
4085 		ns = netstack_find_by_cred(crp);
4086 		ASSERT(ns != NULL);
4087 		ss = ns->netstack_str;
4088 		ASSERT(ss != NULL);
4089 
4090 		mutex_enter(&muxifier);
4091 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
4092 		if (linkp == NULL) {
4093 			mutex_exit(&muxifier);
4094 			netstack_rele(ss->ss_netstack);
4095 			return (EINVAL);
4096 		}
4097 
4098 		if ((fd = ufalloc(0)) == -1) {
4099 			mutex_exit(&muxifier);
4100 			netstack_rele(ss->ss_netstack);
4101 			return (EMFILE);
4102 		}
4103 		fp = linkp->li_fpdown;
4104 		mutex_enter(&fp->f_tlock);
4105 		fp->f_count++;
4106 		mutex_exit(&fp->f_tlock);
4107 		mutex_exit(&muxifier);
4108 		setf(fd, fp);
4109 		*rvalp = fd;
4110 		netstack_rele(ss->ss_netstack);
4111 		return (0);
4112 	}
4113 
4114 	case _I_INSERT:
4115 	{
4116 		/*
4117 		 * To insert a module to a given position in a stream.
4118 		 * In the first release, only allow privileged user
4119 		 * to use this ioctl. Furthermore, the insert is only allowed
4120 		 * below an anchor if the zoneid is the same as the zoneid
4121 		 * which created the anchor.
4122 		 *
4123 		 * Note that we do not plan to support this ioctl
4124 		 * on pipes in the first release.  We want to learn more
4125 		 * about the implications of these ioctls before extending
4126 		 * their support.  And we do not think these features are
4127 		 * valuable for pipes.
4128 		 *
4129 		 * Neither do we support O/C hot stream.  Note that only
4130 		 * the upper streams of TCP/IP stack are O/C hot streams.
4131 		 * The lower IP stream is not.
4132 		 * When there is a O/C cold barrier, we only allow inserts
4133 		 * above the barrier.
4134 		 */
4135 		STRUCT_DECL(strmodconf, strmodinsert);
4136 		char mod_name[FMNAMESZ + 1];
4137 		fmodsw_impl_t *fp;
4138 		dev_t dummydev;
4139 		queue_t *tmp_wrq;
4140 		int pos;
4141 		boolean_t is_insert;
4142 
4143 		STRUCT_INIT(strmodinsert, flag);
4144 		if (stp->sd_flag & STRHUP)
4145 			return (ENXIO);
4146 		if (STRMATED(stp))
4147 			return (EINVAL);
4148 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4149 			return (error);
4150 		if (stp->sd_anchor != 0 &&
4151 		    stp->sd_anchorzone != crgetzoneid(crp))
4152 			return (EINVAL);
4153 
4154 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4155 		    STRUCT_SIZE(strmodinsert), copyflag);
4156 		if (error)
4157 			return (error);
4158 
4159 		/*
4160 		 * Get module name and look up in fmodsw.
4161 		 */
4162 		error = (copyflag & U_TO_K ? copyinstr :
4163 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4164 		    mod_name, FMNAMESZ + 1, NULL);
4165 		if (error)
4166 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4167 
4168 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4169 		    NULL)
4170 			return (EINVAL);
4171 
4172 		if (error = strstartplumb(stp, flag, cmd)) {
4173 			fmodsw_rele(fp);
4174 			return (error);
4175 		}
4176 
4177 		/*
4178 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4179 		 * this because we do some optimizations if this is a
4180 		 * module being pushed.
4181 		 */
4182 		pos = STRUCT_FGET(strmodinsert, pos);
4183 		is_insert = (pos != 0);
4184 
4185 		/*
4186 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4187 		 * we impose the same limit on the number of modules in a
4188 		 * stream.
4189 		 */
4190 		mutex_enter(&stp->sd_lock);
4191 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4192 		    pos > stp->sd_pushcnt) {
4193 			fmodsw_rele(fp);
4194 			strendplumb(stp);
4195 			mutex_exit(&stp->sd_lock);
4196 			return (EINVAL);
4197 		}
4198 		if (stp->sd_anchor != 0) {
4199 			/*
4200 			 * Is this insert below the anchor?
4201 			 * Pushcnt hasn't been increased yet hence
4202 			 * we test for greater than here, and greater or
4203 			 * equal after qattach.
4204 			 */
4205 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4206 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4207 				fmodsw_rele(fp);
4208 				strendplumb(stp);
4209 				mutex_exit(&stp->sd_lock);
4210 				return (EPERM);
4211 			}
4212 		}
4213 
4214 		mutex_exit(&stp->sd_lock);
4215 
4216 		/*
4217 		 * First find the correct position this module to
4218 		 * be inserted.  We don't need to call claimstr()
4219 		 * as the stream should not be changing at this point.
4220 		 *
4221 		 * Insert new module and call its open routine
4222 		 * via qattach().  Modules don't change device
4223 		 * numbers, so just ignore dummydev here.
4224 		 */
4225 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4226 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4227 			ASSERT(SAMESTR(tmp_wrq));
4228 		}
4229 		dummydev = vp->v_rdev;
4230 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4231 		    fp, is_insert)) != 0) {
4232 			mutex_enter(&stp->sd_lock);
4233 			strendplumb(stp);
4234 			mutex_exit(&stp->sd_lock);
4235 			return (error);
4236 		}
4237 
4238 		mutex_enter(&stp->sd_lock);
4239 
4240 		/*
4241 		 * As a performance concern we are caching the values of
4242 		 * q_minpsz and q_maxpsz of the module below the stream
4243 		 * head in the stream head.
4244 		 */
4245 		if (!is_insert) {
4246 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4247 			rmin = stp->sd_wrq->q_next->q_minpsz;
4248 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4249 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4250 
4251 			/* Do this processing here as a performance concern */
4252 			if (strmsgsz != 0) {
4253 				if (rmax == INFPSZ) {
4254 					rmax = strmsgsz;
4255 				} else  {
4256 					rmax = MIN(strmsgsz, rmax);
4257 				}
4258 			}
4259 
4260 			mutex_enter(QLOCK(wrq));
4261 			stp->sd_qn_minpsz = rmin;
4262 			stp->sd_qn_maxpsz = rmax;
4263 			mutex_exit(QLOCK(wrq));
4264 		}
4265 
4266 		/*
4267 		 * Need to update the anchor value if this module is
4268 		 * inserted below the anchor point.
4269 		 */
4270 		if (stp->sd_anchor != 0) {
4271 			pos = STRUCT_FGET(strmodinsert, pos);
4272 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4273 				stp->sd_anchor++;
4274 		}
4275 
4276 		strendplumb(stp);
4277 		mutex_exit(&stp->sd_lock);
4278 		return (0);
4279 	}
4280 
4281 	case _I_REMOVE:
4282 	{
4283 		/*
4284 		 * To remove a module with a given name in a stream.  The
4285 		 * caller of this ioctl needs to provide both the name and
4286 		 * the position of the module to be removed.  This eliminates
4287 		 * the ambiguity of removal if a module is inserted/pushed
4288 		 * multiple times in a stream.  In the first release, only
4289 		 * allow privileged user to use this ioctl.
4290 		 * Furthermore, the remove is only allowed
4291 		 * below an anchor if the zoneid is the same as the zoneid
4292 		 * which created the anchor.
4293 		 *
4294 		 * Note that we do not plan to support this ioctl
4295 		 * on pipes in the first release.  We want to learn more
4296 		 * about the implications of these ioctls before extending
4297 		 * their support.  And we do not think these features are
4298 		 * valuable for pipes.
4299 		 *
4300 		 * Neither do we support O/C hot stream.  Note that only
4301 		 * the upper streams of TCP/IP stack are O/C hot streams.
4302 		 * The lower IP stream is not.
4303 		 * When there is a O/C cold barrier we do not allow removal
4304 		 * below the barrier.
4305 		 *
4306 		 * Also note that _I_REMOVE cannot be used to remove a
4307 		 * driver or the stream head.
4308 		 */
4309 		STRUCT_DECL(strmodconf, strmodremove);
4310 		queue_t	*q;
4311 		int pos;
4312 		char mod_name[FMNAMESZ + 1];
4313 		boolean_t is_remove;
4314 
4315 		STRUCT_INIT(strmodremove, flag);
4316 		if (stp->sd_flag & STRHUP)
4317 			return (ENXIO);
4318 		if (STRMATED(stp))
4319 			return (EINVAL);
4320 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4321 			return (error);
4322 		if (stp->sd_anchor != 0 &&
4323 		    stp->sd_anchorzone != crgetzoneid(crp))
4324 			return (EINVAL);
4325 
4326 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4327 		    STRUCT_SIZE(strmodremove), copyflag);
4328 		if (error)
4329 			return (error);
4330 
4331 		error = (copyflag & U_TO_K ? copyinstr :
4332 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4333 		    mod_name, FMNAMESZ + 1, NULL);
4334 		if (error)
4335 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4336 
4337 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4338 			return (error);
4339 
4340 		/*
4341 		 * Match the name of given module to the name of module at
4342 		 * the given position.
4343 		 */
4344 		pos = STRUCT_FGET(strmodremove, pos);
4345 
4346 		is_remove = (pos != 0);
4347 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4348 		    q = q->q_next, pos--)
4349 			;
4350 		if (pos > 0 || ! SAMESTR(q) ||
4351 		    strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name,
4352 		    strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) {
4353 			mutex_enter(&stp->sd_lock);
4354 			strendplumb(stp);
4355 			mutex_exit(&stp->sd_lock);
4356 			return (EINVAL);
4357 		}
4358 
4359 		/*
4360 		 * If the position is at or below an anchor, then the zoneid
4361 		 * must match the zoneid that created the anchor.
4362 		 */
4363 		if (stp->sd_anchor != 0) {
4364 			pos = STRUCT_FGET(strmodremove, pos);
4365 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4366 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4367 				mutex_enter(&stp->sd_lock);
4368 				strendplumb(stp);
4369 				mutex_exit(&stp->sd_lock);
4370 				return (EPERM);
4371 			}
4372 		}
4373 
4374 
4375 		ASSERT(!(q->q_flag & QREADR));
4376 		qdetach(_RD(q), 1, flag, crp, is_remove);
4377 
4378 		mutex_enter(&stp->sd_lock);
4379 
4380 		/*
4381 		 * As a performance concern we are caching the values of
4382 		 * q_minpsz and q_maxpsz of the module below the stream
4383 		 * head in the stream head.
4384 		 */
4385 		if (!is_remove) {
4386 			mutex_enter(QLOCK(wrq->q_next));
4387 			rmin = wrq->q_next->q_minpsz;
4388 			rmax = wrq->q_next->q_maxpsz;
4389 			mutex_exit(QLOCK(wrq->q_next));
4390 
4391 			/* Do this processing here as a performance concern */
4392 			if (strmsgsz != 0) {
4393 				if (rmax == INFPSZ)
4394 					rmax = strmsgsz;
4395 				else  {
4396 					if (vp->v_type == VFIFO)
4397 						rmax = MIN(PIPE_BUF, rmax);
4398 					else	rmax = MIN(strmsgsz, rmax);
4399 				}
4400 			}
4401 
4402 			mutex_enter(QLOCK(wrq));
4403 			stp->sd_qn_minpsz = rmin;
4404 			stp->sd_qn_maxpsz = rmax;
4405 			mutex_exit(QLOCK(wrq));
4406 		}
4407 
4408 		/*
4409 		 * Need to update the anchor value if this module is removed
4410 		 * at or below the anchor point.  If the removed module is at
4411 		 * the anchor point, remove the anchor for this stream if
4412 		 * there is no module above the anchor point.  Otherwise, if
4413 		 * the removed module is below the anchor point, decrement the
4414 		 * anchor point by 1.
4415 		 */
4416 		if (stp->sd_anchor != 0) {
4417 			pos = STRUCT_FGET(strmodremove, pos);
4418 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4419 				stp->sd_anchor = 0;
4420 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4421 				stp->sd_anchor--;
4422 		}
4423 
4424 		strendplumb(stp);
4425 		mutex_exit(&stp->sd_lock);
4426 		return (0);
4427 	}
4428 
4429 	case I_ANCHOR:
4430 		/*
4431 		 * Set the anchor position on the stream to reside at
4432 		 * the top module (in other words, the top module
4433 		 * cannot be popped).  Anchors with a FIFO make no
4434 		 * obvious sense, so they're not allowed.
4435 		 */
4436 		mutex_enter(&stp->sd_lock);
4437 
4438 		if (stp->sd_vnode->v_type == VFIFO) {
4439 			mutex_exit(&stp->sd_lock);
4440 			return (EINVAL);
4441 		}
4442 		/* Only allow the same zoneid to update the anchor */
4443 		if (stp->sd_anchor != 0 &&
4444 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4445 			mutex_exit(&stp->sd_lock);
4446 			return (EINVAL);
4447 		}
4448 		stp->sd_anchor = stp->sd_pushcnt;
4449 		stp->sd_anchorzone = crgetzoneid(crp);
4450 		mutex_exit(&stp->sd_lock);
4451 		return (0);
4452 
4453 	case I_LOOK:
4454 		/*
4455 		 * Get name of first module downstream.
4456 		 * If no module, return an error.
4457 		 */
4458 	{
4459 		claimstr(wrq);
4460 		if (_SAMESTR(wrq) && wrq->q_next->q_next) {
4461 			char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname;
4462 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4463 			    copyflag);
4464 			releasestr(wrq);
4465 			return (error);
4466 		}
4467 		releasestr(wrq);
4468 		return (EINVAL);
4469 	}
4470 
4471 	case I_LINK:
4472 	case I_PLINK:
4473 		/*
4474 		 * Link a multiplexor.
4475 		 */
4476 		error = mlink(vp, cmd, (int)arg, crp, rvalp, 0);
4477 		return (error);
4478 
4479 	case _I_PLINK_LH:
4480 		/*
4481 		 * Link a multiplexor: Call must originate from kernel.
4482 		 */
4483 		if (kioctl)
4484 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4485 
4486 		return (EINVAL);
4487 	case I_UNLINK:
4488 	case I_PUNLINK:
4489 		/*
4490 		 * Unlink a multiplexor.
4491 		 * If arg is -1, unlink all links for which this is the
4492 		 * controlling stream.  Otherwise, arg is an index number
4493 		 * for a link to be removed.
4494 		 */
4495 	{
4496 		struct linkinfo *linkp;
4497 		int native_arg = (int)arg;
4498 		int type;
4499 		netstack_t *ns;
4500 		str_stack_t *ss;
4501 
4502 		TRACE_1(TR_FAC_STREAMS_FR,
4503 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4504 		if (vp->v_type == VFIFO) {
4505 			return (EINVAL);
4506 		}
4507 		if (cmd == I_UNLINK)
4508 			type = LINKNORMAL;
4509 		else	/* I_PUNLINK */
4510 			type = LINKPERSIST;
4511 		if (native_arg == 0) {
4512 			return (EINVAL);
4513 		}
4514 		ns = netstack_find_by_cred(crp);
4515 		ASSERT(ns != NULL);
4516 		ss = ns->netstack_str;
4517 		ASSERT(ss != NULL);
4518 
4519 		if (native_arg == MUXID_ALL)
4520 			error = munlinkall(stp, type, crp, rvalp, ss);
4521 		else {
4522 			mutex_enter(&muxifier);
4523 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4524 				/* invalid user supplied index number */
4525 				mutex_exit(&muxifier);
4526 				netstack_rele(ss->ss_netstack);
4527 				return (EINVAL);
4528 			}
4529 			/* munlink drops the muxifier lock */
4530 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4531 		}
4532 		netstack_rele(ss->ss_netstack);
4533 		return (error);
4534 	}
4535 
4536 	case I_FLUSH:
4537 		/*
4538 		 * send a flush message downstream
4539 		 * flush message can indicate
4540 		 * FLUSHR - flush read queue
4541 		 * FLUSHW - flush write queue
4542 		 * FLUSHRW - flush read/write queue
4543 		 */
4544 		if (stp->sd_flag & STRHUP)
4545 			return (ENXIO);
4546 		if (arg & ~FLUSHRW)
4547 			return (EINVAL);
4548 
4549 		for (;;) {
4550 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4551 				break;
4552 			}
4553 			if (error = strwaitbuf(1, BPRI_HI)) {
4554 				return (error);
4555 			}
4556 		}
4557 
4558 		/*
4559 		 * Send down an unsupported ioctl and wait for the nack
4560 		 * in order to allow the M_FLUSH to propagate back
4561 		 * up to the stream head.
4562 		 * Replaces if (qready()) runqueues();
4563 		 */
4564 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4565 		strioc.ic_timout = 0;
4566 		strioc.ic_len = 0;
4567 		strioc.ic_dp = NULL;
4568 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4569 		*rvalp = 0;
4570 		return (0);
4571 
4572 	case I_FLUSHBAND:
4573 	{
4574 		struct bandinfo binfo;
4575 
4576 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4577 		    copyflag);
4578 		if (error)
4579 			return (error);
4580 		if (stp->sd_flag & STRHUP)
4581 			return (ENXIO);
4582 		if (binfo.bi_flag & ~FLUSHRW)
4583 			return (EINVAL);
4584 		while (!(mp = allocb(2, BPRI_HI))) {
4585 			if (error = strwaitbuf(2, BPRI_HI))
4586 				return (error);
4587 		}
4588 		mp->b_datap->db_type = M_FLUSH;
4589 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4590 		*mp->b_wptr++ = binfo.bi_pri;
4591 		putnext(stp->sd_wrq, mp);
4592 		/*
4593 		 * Send down an unsupported ioctl and wait for the nack
4594 		 * in order to allow the M_FLUSH to propagate back
4595 		 * up to the stream head.
4596 		 * Replaces if (qready()) runqueues();
4597 		 */
4598 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4599 		strioc.ic_timout = 0;
4600 		strioc.ic_len = 0;
4601 		strioc.ic_dp = NULL;
4602 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4603 		*rvalp = 0;
4604 		return (0);
4605 	}
4606 
4607 	case I_SRDOPT:
4608 		/*
4609 		 * Set read options
4610 		 *
4611 		 * RNORM - default stream mode
4612 		 * RMSGN - message no discard
4613 		 * RMSGD - message discard
4614 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4615 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4616 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4617 		 */
4618 		if (arg & ~(RMODEMASK | RPROTMASK))
4619 			return (EINVAL);
4620 
4621 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4622 			return (EINVAL);
4623 
4624 		mutex_enter(&stp->sd_lock);
4625 		switch (arg & RMODEMASK) {
4626 		case RNORM:
4627 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4628 			break;
4629 		case RMSGD:
4630 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4631 			    RD_MSGDIS;
4632 			break;
4633 		case RMSGN:
4634 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4635 			    RD_MSGNODIS;
4636 			break;
4637 		}
4638 
4639 		switch (arg & RPROTMASK) {
4640 		case RPROTNORM:
4641 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4642 			break;
4643 
4644 		case RPROTDAT:
4645 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4646 			    RD_PROTDAT);
4647 			break;
4648 
4649 		case RPROTDIS:
4650 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4651 			    RD_PROTDIS);
4652 			break;
4653 		}
4654 		mutex_exit(&stp->sd_lock);
4655 		return (0);
4656 
4657 	case I_GRDOPT:
4658 		/*
4659 		 * Get read option and return the value
4660 		 * to spot pointed to by arg
4661 		 */
4662 	{
4663 		int rdopt;
4664 
4665 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4666 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4667 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4668 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4669 
4670 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4671 		    copyflag));
4672 	}
4673 
4674 	case I_SERROPT:
4675 		/*
4676 		 * Set error options
4677 		 *
4678 		 * RERRNORM - persistent read errors
4679 		 * RERRNONPERSIST - non-persistent read errors
4680 		 * WERRNORM - persistent write errors
4681 		 * WERRNONPERSIST - non-persistent write errors
4682 		 */
4683 		if (arg & ~(RERRMASK | WERRMASK))
4684 			return (EINVAL);
4685 
4686 		mutex_enter(&stp->sd_lock);
4687 		switch (arg & RERRMASK) {
4688 		case RERRNORM:
4689 			stp->sd_flag &= ~STRDERRNONPERSIST;
4690 			break;
4691 		case RERRNONPERSIST:
4692 			stp->sd_flag |= STRDERRNONPERSIST;
4693 			break;
4694 		}
4695 		switch (arg & WERRMASK) {
4696 		case WERRNORM:
4697 			stp->sd_flag &= ~STWRERRNONPERSIST;
4698 			break;
4699 		case WERRNONPERSIST:
4700 			stp->sd_flag |= STWRERRNONPERSIST;
4701 			break;
4702 		}
4703 		mutex_exit(&stp->sd_lock);
4704 		return (0);
4705 
4706 	case I_GERROPT:
4707 		/*
4708 		 * Get error option and return the value
4709 		 * to spot pointed to by arg
4710 		 */
4711 	{
4712 		int erropt = 0;
4713 
4714 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4715 		    RERRNORM;
4716 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4717 		    WERRNORM;
4718 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4719 		    copyflag));
4720 	}
4721 
4722 	case I_SETSIG:
4723 		/*
4724 		 * Register the calling proc to receive the SIGPOLL
4725 		 * signal based on the events given in arg.  If
4726 		 * arg is zero, remove the proc from register list.
4727 		 */
4728 	{
4729 		strsig_t *ssp, *pssp;
4730 		struct pid *pidp;
4731 
4732 		pssp = NULL;
4733 		pidp = curproc->p_pidp;
4734 		/*
4735 		 * Hold sd_lock to prevent traversal of sd_siglist while
4736 		 * it is modified.
4737 		 */
4738 		mutex_enter(&stp->sd_lock);
4739 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4740 		    pssp = ssp, ssp = ssp->ss_next)
4741 			;
4742 
4743 		if (arg) {
4744 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4745 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4746 				mutex_exit(&stp->sd_lock);
4747 				return (EINVAL);
4748 			}
4749 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4750 				mutex_exit(&stp->sd_lock);
4751 				return (EINVAL);
4752 			}
4753 
4754 			/*
4755 			 * If proc not already registered, add it
4756 			 * to list.
4757 			 */
4758 			if (!ssp) {
4759 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4760 				ssp->ss_pidp = pidp;
4761 				ssp->ss_pid = pidp->pid_id;
4762 				ssp->ss_next = NULL;
4763 				if (pssp)
4764 					pssp->ss_next = ssp;
4765 				else
4766 					stp->sd_siglist = ssp;
4767 				mutex_enter(&pidlock);
4768 				PID_HOLD(pidp);
4769 				mutex_exit(&pidlock);
4770 			}
4771 
4772 			/*
4773 			 * Set events.
4774 			 */
4775 			ssp->ss_events = (int)arg;
4776 		} else {
4777 			/*
4778 			 * Remove proc from register list.
4779 			 */
4780 			if (ssp) {
4781 				mutex_enter(&pidlock);
4782 				PID_RELE(pidp);
4783 				mutex_exit(&pidlock);
4784 				if (pssp)
4785 					pssp->ss_next = ssp->ss_next;
4786 				else
4787 					stp->sd_siglist = ssp->ss_next;
4788 				kmem_free(ssp, sizeof (strsig_t));
4789 			} else {
4790 				mutex_exit(&stp->sd_lock);
4791 				return (EINVAL);
4792 			}
4793 		}
4794 
4795 		/*
4796 		 * Recalculate OR of sig events.
4797 		 */
4798 		stp->sd_sigflags = 0;
4799 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4800 			stp->sd_sigflags |= ssp->ss_events;
4801 		mutex_exit(&stp->sd_lock);
4802 		return (0);
4803 	}
4804 
4805 	case I_GETSIG:
4806 		/*
4807 		 * Return (in arg) the current registration of events
4808 		 * for which the calling proc is to be signaled.
4809 		 */
4810 	{
4811 		struct strsig *ssp;
4812 		struct pid  *pidp;
4813 
4814 		pidp = curproc->p_pidp;
4815 		mutex_enter(&stp->sd_lock);
4816 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4817 			if (ssp->ss_pidp == pidp) {
4818 				error = strcopyout(&ssp->ss_events, (void *)arg,
4819 				    sizeof (int), copyflag);
4820 				mutex_exit(&stp->sd_lock);
4821 				return (error);
4822 			}
4823 		mutex_exit(&stp->sd_lock);
4824 		return (EINVAL);
4825 	}
4826 
4827 	case I_ESETSIG:
4828 		/*
4829 		 * Register the ss_pid to receive the SIGPOLL
4830 		 * signal based on the events is ss_events arg.  If
4831 		 * ss_events is zero, remove the proc from register list.
4832 		 */
4833 	{
4834 		struct strsig *ssp, *pssp;
4835 		struct proc *proc;
4836 		struct pid  *pidp;
4837 		pid_t pid;
4838 		struct strsigset ss;
4839 
4840 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4841 		if (error)
4842 			return (error);
4843 
4844 		pid = ss.ss_pid;
4845 
4846 		if (ss.ss_events != 0) {
4847 			/*
4848 			 * Permissions check by sending signal 0.
4849 			 * Note that when kill fails it does a set_errno
4850 			 * causing the system call to fail.
4851 			 */
4852 			error = kill(pid, 0);
4853 			if (error) {
4854 				return (error);
4855 			}
4856 		}
4857 		mutex_enter(&pidlock);
4858 		if (pid == 0)
4859 			proc = curproc;
4860 		else if (pid < 0)
4861 			proc = pgfind(-pid);
4862 		else
4863 			proc = prfind(pid);
4864 		if (proc == NULL) {
4865 			mutex_exit(&pidlock);
4866 			return (ESRCH);
4867 		}
4868 		if (pid < 0)
4869 			pidp = proc->p_pgidp;
4870 		else
4871 			pidp = proc->p_pidp;
4872 		ASSERT(pidp);
4873 		/*
4874 		 * Get a hold on the pid structure while referencing it.
4875 		 * There is a separate PID_HOLD should it be inserted
4876 		 * in the list below.
4877 		 */
4878 		PID_HOLD(pidp);
4879 		mutex_exit(&pidlock);
4880 
4881 		pssp = NULL;
4882 		/*
4883 		 * Hold sd_lock to prevent traversal of sd_siglist while
4884 		 * it is modified.
4885 		 */
4886 		mutex_enter(&stp->sd_lock);
4887 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4888 		    pssp = ssp, ssp = ssp->ss_next)
4889 			;
4890 
4891 		if (ss.ss_events) {
4892 			if (ss.ss_events &
4893 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4894 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4895 				mutex_exit(&stp->sd_lock);
4896 				mutex_enter(&pidlock);
4897 				PID_RELE(pidp);
4898 				mutex_exit(&pidlock);
4899 				return (EINVAL);
4900 			}
4901 			if ((ss.ss_events & S_BANDURG) &&
4902 			    !(ss.ss_events & S_RDBAND)) {
4903 				mutex_exit(&stp->sd_lock);
4904 				mutex_enter(&pidlock);
4905 				PID_RELE(pidp);
4906 				mutex_exit(&pidlock);
4907 				return (EINVAL);
4908 			}
4909 
4910 			/*
4911 			 * If proc not already registered, add it
4912 			 * to list.
4913 			 */
4914 			if (!ssp) {
4915 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4916 				ssp->ss_pidp = pidp;
4917 				ssp->ss_pid = pid;
4918 				ssp->ss_next = NULL;
4919 				if (pssp)
4920 					pssp->ss_next = ssp;
4921 				else
4922 					stp->sd_siglist = ssp;
4923 				mutex_enter(&pidlock);
4924 				PID_HOLD(pidp);
4925 				mutex_exit(&pidlock);
4926 			}
4927 
4928 			/*
4929 			 * Set events.
4930 			 */
4931 			ssp->ss_events = ss.ss_events;
4932 		} else {
4933 			/*
4934 			 * Remove proc from register list.
4935 			 */
4936 			if (ssp) {
4937 				mutex_enter(&pidlock);
4938 				PID_RELE(pidp);
4939 				mutex_exit(&pidlock);
4940 				if (pssp)
4941 					pssp->ss_next = ssp->ss_next;
4942 				else
4943 					stp->sd_siglist = ssp->ss_next;
4944 				kmem_free(ssp, sizeof (strsig_t));
4945 			} else {
4946 				mutex_exit(&stp->sd_lock);
4947 				mutex_enter(&pidlock);
4948 				PID_RELE(pidp);
4949 				mutex_exit(&pidlock);
4950 				return (EINVAL);
4951 			}
4952 		}
4953 
4954 		/*
4955 		 * Recalculate OR of sig events.
4956 		 */
4957 		stp->sd_sigflags = 0;
4958 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4959 			stp->sd_sigflags |= ssp->ss_events;
4960 		mutex_exit(&stp->sd_lock);
4961 		mutex_enter(&pidlock);
4962 		PID_RELE(pidp);
4963 		mutex_exit(&pidlock);
4964 		return (0);
4965 	}
4966 
4967 	case I_EGETSIG:
4968 		/*
4969 		 * Return (in arg) the current registration of events
4970 		 * for which the calling proc is to be signaled.
4971 		 */
4972 	{
4973 		struct strsig *ssp;
4974 		struct proc *proc;
4975 		pid_t pid;
4976 		struct pid  *pidp;
4977 		struct strsigset ss;
4978 
4979 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4980 		if (error)
4981 			return (error);
4982 
4983 		pid = ss.ss_pid;
4984 		mutex_enter(&pidlock);
4985 		if (pid == 0)
4986 			proc = curproc;
4987 		else if (pid < 0)
4988 			proc = pgfind(-pid);
4989 		else
4990 			proc = prfind(pid);
4991 		if (proc == NULL) {
4992 			mutex_exit(&pidlock);
4993 			return (ESRCH);
4994 		}
4995 		if (pid < 0)
4996 			pidp = proc->p_pgidp;
4997 		else
4998 			pidp = proc->p_pidp;
4999 
5000 		/* Prevent the pidp from being reassigned */
5001 		PID_HOLD(pidp);
5002 		mutex_exit(&pidlock);
5003 
5004 		mutex_enter(&stp->sd_lock);
5005 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
5006 			if (ssp->ss_pid == pid) {
5007 				ss.ss_pid = ssp->ss_pid;
5008 				ss.ss_events = ssp->ss_events;
5009 				error = strcopyout(&ss, (void *)arg,
5010 				    sizeof (struct strsigset), copyflag);
5011 				mutex_exit(&stp->sd_lock);
5012 				mutex_enter(&pidlock);
5013 				PID_RELE(pidp);
5014 				mutex_exit(&pidlock);
5015 				return (error);
5016 			}
5017 		mutex_exit(&stp->sd_lock);
5018 		mutex_enter(&pidlock);
5019 		PID_RELE(pidp);
5020 		mutex_exit(&pidlock);
5021 		return (EINVAL);
5022 	}
5023 
5024 	case I_PEEK:
5025 	{
5026 		STRUCT_DECL(strpeek, strpeek);
5027 		size_t n;
5028 		mblk_t *fmp, *tmp_mp = NULL;
5029 
5030 		STRUCT_INIT(strpeek, flag);
5031 
5032 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
5033 		    STRUCT_SIZE(strpeek), copyflag);
5034 		if (error)
5035 			return (error);
5036 
5037 		mutex_enter(QLOCK(rdq));
5038 		/*
5039 		 * Skip the invalid messages
5040 		 */
5041 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
5042 			if (mp->b_datap->db_type != M_SIG)
5043 				break;
5044 
5045 		/*
5046 		 * If user has requested to peek at a high priority message
5047 		 * and first message is not, return 0
5048 		 */
5049 		if (mp != NULL) {
5050 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
5051 			    queclass(mp) == QNORM) {
5052 				*rvalp = 0;
5053 				mutex_exit(QLOCK(rdq));
5054 				return (0);
5055 			}
5056 		} else if (stp->sd_struiordq == NULL ||
5057 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
5058 			/*
5059 			 * No mblks to look at at the streamhead and
5060 			 * 1). This isn't a synch stream or
5061 			 * 2). This is a synch stream but caller wants high
5062 			 *	priority messages which is not supported by
5063 			 *	the synch stream. (it only supports QNORM)
5064 			 */
5065 			*rvalp = 0;
5066 			mutex_exit(QLOCK(rdq));
5067 			return (0);
5068 		}
5069 
5070 		fmp = mp;
5071 
5072 		if (mp && mp->b_datap->db_type == M_PASSFP) {
5073 			mutex_exit(QLOCK(rdq));
5074 			return (EBADMSG);
5075 		}
5076 
5077 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
5078 		    mp->b_datap->db_type == M_PROTO ||
5079 		    mp->b_datap->db_type == M_DATA);
5080 
5081 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
5082 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
5083 		} else {
5084 			STRUCT_FSET(strpeek, flags, 0);
5085 		}
5086 
5087 
5088 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
5089 			mutex_exit(QLOCK(rdq));
5090 			return (ENOSR);
5091 		}
5092 		mutex_exit(QLOCK(rdq));
5093 
5094 		/*
5095 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
5096 		 * tmp_mp is used to free the dup'd message.
5097 		 */
5098 		mp = tmp_mp;
5099 
5100 		uio.uio_fmode = 0;
5101 		uio.uio_extflg = UIO_COPY_CACHED;
5102 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5103 		    UIO_SYSSPACE;
5104 		uio.uio_limit = 0;
5105 		/*
5106 		 * First process PROTO blocks, if any.
5107 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
5108 		 * then set len to -1/0 and skip control blocks part.
5109 		 */
5110 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
5111 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
5112 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5113 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
5114 		else {
5115 			int	ctl_part = 0;
5116 
5117 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5118 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5119 			uio.uio_iov = &iov;
5120 			uio.uio_resid = iov.iov_len;
5121 			uio.uio_loffset = 0;
5122 			uio.uio_iovcnt = 1;
5123 			while (mp && mp->b_datap->db_type != M_DATA &&
5124 			    uio.uio_resid >= 0) {
5125 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5126 				    mp->b_datap->db_type == M_PROTO :
5127 				    mp->b_datap->db_type == M_PCPROTO);
5128 
5129 				if ((n = MIN(uio.uio_resid,
5130 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5131 				    (error = uiomove((char *)mp->b_rptr, n,
5132 				    UIO_READ, &uio)) != 0) {
5133 					freemsg(tmp_mp);
5134 					return (error);
5135 				}
5136 				ctl_part = 1;
5137 				mp = mp->b_cont;
5138 			}
5139 			/* No ctl message */
5140 			if (ctl_part == 0)
5141 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5142 			else
5143 				STRUCT_FSET(strpeek, ctlbuf.len,
5144 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5145 				    uio.uio_resid);
5146 		}
5147 
5148 		/*
5149 		 * Now process DATA blocks, if any.
5150 		 * If user doesn't want to get data info by setting maxlen <= 0,
5151 		 * then set len to -1/0 and skip data blocks part.
5152 		 */
5153 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5154 			STRUCT_FSET(strpeek, databuf.len, -1);
5155 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5156 			STRUCT_FSET(strpeek, databuf.len, 0);
5157 		else {
5158 			int	data_part = 0;
5159 
5160 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5161 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5162 			uio.uio_iov = &iov;
5163 			uio.uio_resid = iov.iov_len;
5164 			uio.uio_loffset = 0;
5165 			uio.uio_iovcnt = 1;
5166 			while (mp && uio.uio_resid) {
5167 				if (mp->b_datap->db_type == M_DATA) {
5168 					if ((n = MIN(uio.uio_resid,
5169 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5170 					    (error = uiomove((char *)mp->b_rptr,
5171 					    n, UIO_READ, &uio)) != 0) {
5172 						freemsg(tmp_mp);
5173 						return (error);
5174 					}
5175 					data_part = 1;
5176 				}
5177 				ASSERT(data_part == 0 ||
5178 				    mp->b_datap->db_type == M_DATA);
5179 				mp = mp->b_cont;
5180 			}
5181 			/* No data message */
5182 			if (data_part == 0)
5183 				STRUCT_FSET(strpeek, databuf.len, -1);
5184 			else
5185 				STRUCT_FSET(strpeek, databuf.len,
5186 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5187 				    uio.uio_resid);
5188 		}
5189 		freemsg(tmp_mp);
5190 
5191 		/*
5192 		 * It is a synch stream and user wants to get
5193 		 * data (maxlen > 0).
5194 		 * uio setup is done by the codes that process DATA
5195 		 * blocks above.
5196 		 */
5197 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5198 			infod_t infod;
5199 
5200 			infod.d_cmd = INFOD_COPYOUT;
5201 			infod.d_res = 0;
5202 			infod.d_uiop = &uio;
5203 			error = infonext(rdq, &infod);
5204 			if (error == EINVAL || error == EBUSY)
5205 				error = 0;
5206 			if (error)
5207 				return (error);
5208 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5209 			    databuf.maxlen) - uio.uio_resid);
5210 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5211 				/*
5212 				 * No data found by the infonext().
5213 				 */
5214 				STRUCT_FSET(strpeek, databuf.len, -1);
5215 			}
5216 		}
5217 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5218 		    STRUCT_SIZE(strpeek), copyflag);
5219 		if (error) {
5220 			return (error);
5221 		}
5222 		/*
5223 		 * If there is no message retrieved, set return code to 0
5224 		 * otherwise, set it to 1.
5225 		 */
5226 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5227 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5228 			*rvalp = 0;
5229 		else
5230 			*rvalp = 1;
5231 		return (0);
5232 	}
5233 
5234 	case I_FDINSERT:
5235 	{
5236 		STRUCT_DECL(strfdinsert, strfdinsert);
5237 		struct file *resftp;
5238 		struct stdata *resstp;
5239 		t_uscalar_t	ival;
5240 		ssize_t msgsize;
5241 		struct strbuf mctl;
5242 
5243 		STRUCT_INIT(strfdinsert, flag);
5244 		if (stp->sd_flag & STRHUP)
5245 			return (ENXIO);
5246 		/*
5247 		 * STRDERR, STWRERR and STPLEX tested above.
5248 		 */
5249 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5250 		    STRUCT_SIZE(strfdinsert), copyflag);
5251 		if (error)
5252 			return (error);
5253 
5254 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5255 		    (STRUCT_FGET(strfdinsert, offset) %
5256 		    sizeof (t_uscalar_t)) != 0)
5257 			return (EINVAL);
5258 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5259 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5260 				releasef(STRUCT_FGET(strfdinsert, fildes));
5261 				return (EINVAL);
5262 			}
5263 		} else
5264 			return (EINVAL);
5265 
5266 		mutex_enter(&resstp->sd_lock);
5267 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5268 			error = strgeterr(resstp,
5269 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5270 			if (error != 0) {
5271 				mutex_exit(&resstp->sd_lock);
5272 				releasef(STRUCT_FGET(strfdinsert, fildes));
5273 				return (error);
5274 			}
5275 		}
5276 		mutex_exit(&resstp->sd_lock);
5277 
5278 #ifdef	_ILP32
5279 		{
5280 			queue_t	*q;
5281 			queue_t	*mate = NULL;
5282 
5283 			/* get read queue of stream terminus */
5284 			claimstr(resstp->sd_wrq);
5285 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5286 			    q = q->q_next)
5287 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5288 				    mate == NULL) {
5289 					ASSERT(q->q_qinfo->qi_srvp);
5290 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5291 					claimstr(q);
5292 					mate = q;
5293 				}
5294 			q = _RD(q);
5295 			if (mate)
5296 				releasestr(mate);
5297 			releasestr(resstp->sd_wrq);
5298 			ival = (t_uscalar_t)q;
5299 		}
5300 #else
5301 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5302 #endif	/* _ILP32 */
5303 
5304 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5305 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5306 			releasef(STRUCT_FGET(strfdinsert, fildes));
5307 			return (EINVAL);
5308 		}
5309 
5310 		/*
5311 		 * Check for legal flag value.
5312 		 */
5313 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5314 			releasef(STRUCT_FGET(strfdinsert, fildes));
5315 			return (EINVAL);
5316 		}
5317 
5318 		/* get these values from those cached in the stream head */
5319 		mutex_enter(QLOCK(stp->sd_wrq));
5320 		rmin = stp->sd_qn_minpsz;
5321 		rmax = stp->sd_qn_maxpsz;
5322 		mutex_exit(QLOCK(stp->sd_wrq));
5323 
5324 		/*
5325 		 * Make sure ctl and data sizes together fall within
5326 		 * the limits of the max and min receive packet sizes
5327 		 * and do not exceed system limit.  A negative data
5328 		 * length means that no data part is to be sent.
5329 		 */
5330 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5331 		if (rmax == 0) {
5332 			releasef(STRUCT_FGET(strfdinsert, fildes));
5333 			return (ERANGE);
5334 		}
5335 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5336 			msgsize = 0;
5337 		if ((msgsize < rmin) ||
5338 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5339 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5340 			releasef(STRUCT_FGET(strfdinsert, fildes));
5341 			return (ERANGE);
5342 		}
5343 
5344 		mutex_enter(&stp->sd_lock);
5345 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5346 		    !canputnext(stp->sd_wrq)) {
5347 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5348 			    flag, -1, &done)) != 0 || done) {
5349 				mutex_exit(&stp->sd_lock);
5350 				releasef(STRUCT_FGET(strfdinsert, fildes));
5351 				return (error);
5352 			}
5353 			if ((error = i_straccess(stp, access)) != 0) {
5354 				mutex_exit(&stp->sd_lock);
5355 				releasef(
5356 				    STRUCT_FGET(strfdinsert, fildes));
5357 				return (error);
5358 			}
5359 		}
5360 		mutex_exit(&stp->sd_lock);
5361 
5362 		/*
5363 		 * Copy strfdinsert.ctlbuf into native form of
5364 		 * ctlbuf to pass down into strmakemsg().
5365 		 */
5366 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5367 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5368 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5369 
5370 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5371 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5372 		uio.uio_iov = &iov;
5373 		uio.uio_iovcnt = 1;
5374 		uio.uio_loffset = 0;
5375 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5376 		    UIO_SYSSPACE;
5377 		uio.uio_fmode = 0;
5378 		uio.uio_extflg = UIO_COPY_CACHED;
5379 		uio.uio_resid = iov.iov_len;
5380 		if ((error = strmakemsg(&mctl,
5381 		    &msgsize, &uio, stp,
5382 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5383 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5384 			releasef(STRUCT_FGET(strfdinsert, fildes));
5385 			return (error);
5386 		}
5387 
5388 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5389 
5390 		/*
5391 		 * Place the possibly reencoded queue pointer 'offset' bytes
5392 		 * from the start of the control portion of the message.
5393 		 */
5394 		*((t_uscalar_t *)(mp->b_rptr +
5395 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5396 
5397 		/*
5398 		 * Put message downstream.
5399 		 */
5400 		stream_willservice(stp);
5401 		putnext(stp->sd_wrq, mp);
5402 		stream_runservice(stp);
5403 		releasef(STRUCT_FGET(strfdinsert, fildes));
5404 		return (error);
5405 	}
5406 
5407 	case I_SENDFD:
5408 	{
5409 		struct file *fp;
5410 
5411 		if ((fp = getf((int)arg)) == NULL)
5412 			return (EBADF);
5413 		error = do_sendfp(stp, fp, crp);
5414 		if (audit_active) {
5415 			audit_fdsend((int)arg, fp, error);
5416 		}
5417 		releasef((int)arg);
5418 		return (error);
5419 	}
5420 
5421 	case I_RECVFD:
5422 	case I_E_RECVFD:
5423 	{
5424 		struct k_strrecvfd *srf;
5425 		int i, fd;
5426 
5427 		mutex_enter(&stp->sd_lock);
5428 		while (!(mp = getq(rdq))) {
5429 			if (stp->sd_flag & (STRHUP|STREOF)) {
5430 				mutex_exit(&stp->sd_lock);
5431 				return (ENXIO);
5432 			}
5433 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5434 			    flag, -1, &done)) != 0 || done) {
5435 				mutex_exit(&stp->sd_lock);
5436 				return (error);
5437 			}
5438 			if ((error = i_straccess(stp, access)) != 0) {
5439 				mutex_exit(&stp->sd_lock);
5440 				return (error);
5441 			}
5442 		}
5443 		if (mp->b_datap->db_type != M_PASSFP) {
5444 			putback(stp, rdq, mp, mp->b_band);
5445 			mutex_exit(&stp->sd_lock);
5446 			return (EBADMSG);
5447 		}
5448 		mutex_exit(&stp->sd_lock);
5449 
5450 		srf = (struct k_strrecvfd *)mp->b_rptr;
5451 		if ((fd = ufalloc(0)) == -1) {
5452 			mutex_enter(&stp->sd_lock);
5453 			putback(stp, rdq, mp, mp->b_band);
5454 			mutex_exit(&stp->sd_lock);
5455 			return (EMFILE);
5456 		}
5457 		if (cmd == I_RECVFD) {
5458 			struct o_strrecvfd	ostrfd;
5459 
5460 			/* check to see if uid/gid values are too large. */
5461 
5462 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5463 			    srf->gid > (o_gid_t)USHRT_MAX) {
5464 				mutex_enter(&stp->sd_lock);
5465 				putback(stp, rdq, mp, mp->b_band);
5466 				mutex_exit(&stp->sd_lock);
5467 				setf(fd, NULL);	/* release fd entry */
5468 				return (EOVERFLOW);
5469 			}
5470 
5471 			ostrfd.fd = fd;
5472 			ostrfd.uid = (o_uid_t)srf->uid;
5473 			ostrfd.gid = (o_gid_t)srf->gid;
5474 
5475 			/* Null the filler bits */
5476 			for (i = 0; i < 8; i++)
5477 				ostrfd.fill[i] = 0;
5478 
5479 			error = strcopyout(&ostrfd, (void *)arg,
5480 			    sizeof (struct o_strrecvfd), copyflag);
5481 		} else {		/* I_E_RECVFD */
5482 			struct strrecvfd	strfd;
5483 
5484 			strfd.fd = fd;
5485 			strfd.uid = srf->uid;
5486 			strfd.gid = srf->gid;
5487 
5488 			/* null the filler bits */
5489 			for (i = 0; i < 8; i++)
5490 				strfd.fill[i] = 0;
5491 
5492 			error = strcopyout(&strfd, (void *)arg,
5493 			    sizeof (struct strrecvfd), copyflag);
5494 		}
5495 
5496 		if (error) {
5497 			setf(fd, NULL);	/* release fd entry */
5498 			mutex_enter(&stp->sd_lock);
5499 			putback(stp, rdq, mp, mp->b_band);
5500 			mutex_exit(&stp->sd_lock);
5501 			return (error);
5502 		}
5503 		if (audit_active) {
5504 			audit_fdrecv(fd, srf->fp);
5505 		}
5506 
5507 		/*
5508 		 * Always increment f_count since the freemsg() below will
5509 		 * always call free_passfp() which performs a closef().
5510 		 */
5511 		mutex_enter(&srf->fp->f_tlock);
5512 		srf->fp->f_count++;
5513 		mutex_exit(&srf->fp->f_tlock);
5514 		setf(fd, srf->fp);
5515 		freemsg(mp);
5516 		return (0);
5517 	}
5518 
5519 	case I_SWROPT:
5520 		/*
5521 		 * Set/clear the write options. arg is a bit
5522 		 * mask with any of the following bits set...
5523 		 * 	SNDZERO - send zero length message
5524 		 *	SNDPIPE - send sigpipe to process if
5525 		 *		sd_werror is set and process is
5526 		 *		doing a write or putmsg.
5527 		 * The new stream head write options should reflect
5528 		 * what is in arg.
5529 		 */
5530 		if (arg & ~(SNDZERO|SNDPIPE))
5531 			return (EINVAL);
5532 
5533 		mutex_enter(&stp->sd_lock);
5534 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5535 		if (arg & SNDZERO)
5536 			stp->sd_wput_opt |= SW_SNDZERO;
5537 		if (arg & SNDPIPE)
5538 			stp->sd_wput_opt |= SW_SIGPIPE;
5539 		mutex_exit(&stp->sd_lock);
5540 		return (0);
5541 
5542 	case I_GWROPT:
5543 	{
5544 		int wropt = 0;
5545 
5546 		if (stp->sd_wput_opt & SW_SNDZERO)
5547 			wropt |= SNDZERO;
5548 		if (stp->sd_wput_opt & SW_SIGPIPE)
5549 			wropt |= SNDPIPE;
5550 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5551 		    copyflag));
5552 	}
5553 
5554 	case I_LIST:
5555 		/*
5556 		 * Returns all the modules found on this stream,
5557 		 * upto the driver. If argument is NULL, return the
5558 		 * number of modules (including driver). If argument
5559 		 * is not NULL, copy the names into the structure
5560 		 * provided.
5561 		 */
5562 
5563 	{
5564 		queue_t *q;
5565 		int num_modules, space_allocated;
5566 		STRUCT_DECL(str_list, strlist);
5567 		struct str_mlist *mlist_ptr;
5568 
5569 		if (arg == NULL) { /* Return number of modules plus driver */
5570 			q = stp->sd_wrq;
5571 			if (stp->sd_vnode->v_type == VFIFO) {
5572 				*rvalp = stp->sd_pushcnt;
5573 			} else {
5574 				*rvalp = stp->sd_pushcnt + 1;
5575 			}
5576 		} else {
5577 			STRUCT_INIT(strlist, flag);
5578 
5579 			error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5580 			    STRUCT_SIZE(strlist), copyflag);
5581 			if (error)
5582 				return (error);
5583 
5584 			space_allocated = STRUCT_FGET(strlist, sl_nmods);
5585 			if ((space_allocated) <= 0)
5586 				return (EINVAL);
5587 			claimstr(stp->sd_wrq);
5588 			q = stp->sd_wrq;
5589 			num_modules = 0;
5590 			while (_SAMESTR(q) && (space_allocated != 0)) {
5591 				char *name =
5592 				    q->q_next->q_qinfo->qi_minfo->mi_idname;
5593 
5594 				mlist_ptr = STRUCT_FGETP(strlist, sl_modlist);
5595 
5596 				error = strcopyout(name, mlist_ptr,
5597 				    strlen(name) + 1, copyflag);
5598 
5599 				if (error) {
5600 					releasestr(stp->sd_wrq);
5601 					return (error);
5602 				}
5603 				q = q->q_next;
5604 				space_allocated--;
5605 				num_modules++;
5606 				mlist_ptr =
5607 				    (struct str_mlist *)((uintptr_t)mlist_ptr +
5608 				    sizeof (struct str_mlist));
5609 				STRUCT_FSETP(strlist, sl_modlist, mlist_ptr);
5610 			}
5611 			releasestr(stp->sd_wrq);
5612 			error = strcopyout(&num_modules, (void *)arg,
5613 			    sizeof (int), copyflag);
5614 		}
5615 		return (error);
5616 	}
5617 
5618 	case I_CKBAND:
5619 	{
5620 		queue_t *q;
5621 		qband_t *qbp;
5622 
5623 		if ((arg < 0) || (arg >= NBAND))
5624 			return (EINVAL);
5625 		q = _RD(stp->sd_wrq);
5626 		mutex_enter(QLOCK(q));
5627 		if (arg > (int)q->q_nband) {
5628 			*rvalp = 0;
5629 		} else {
5630 			if (arg == 0) {
5631 				if (q->q_first)
5632 					*rvalp = 1;
5633 				else
5634 					*rvalp = 0;
5635 			} else {
5636 				qbp = q->q_bandp;
5637 				while (--arg > 0)
5638 					qbp = qbp->qb_next;
5639 				if (qbp->qb_first)
5640 					*rvalp = 1;
5641 				else
5642 					*rvalp = 0;
5643 			}
5644 		}
5645 		mutex_exit(QLOCK(q));
5646 		return (0);
5647 	}
5648 
5649 	case I_GETBAND:
5650 	{
5651 		int intpri;
5652 		queue_t *q;
5653 
5654 		q = _RD(stp->sd_wrq);
5655 		mutex_enter(QLOCK(q));
5656 		mp = q->q_first;
5657 		if (!mp) {
5658 			mutex_exit(QLOCK(q));
5659 			return (ENODATA);
5660 		}
5661 		intpri = (int)mp->b_band;
5662 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5663 		    copyflag);
5664 		mutex_exit(QLOCK(q));
5665 		return (error);
5666 	}
5667 
5668 	case I_ATMARK:
5669 	{
5670 		queue_t *q;
5671 
5672 		if (arg & ~(ANYMARK|LASTMARK))
5673 			return (EINVAL);
5674 		q = _RD(stp->sd_wrq);
5675 		mutex_enter(&stp->sd_lock);
5676 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5677 			*rvalp = 1;
5678 		} else {
5679 			mutex_enter(QLOCK(q));
5680 			mp = q->q_first;
5681 
5682 			if (mp == NULL)
5683 				*rvalp = 0;
5684 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5685 				*rvalp = 1;
5686 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5687 				*rvalp = 1;
5688 			else
5689 				*rvalp = 0;
5690 			mutex_exit(QLOCK(q));
5691 		}
5692 		mutex_exit(&stp->sd_lock);
5693 		return (0);
5694 	}
5695 
5696 	case I_CANPUT:
5697 	{
5698 		char band;
5699 
5700 		if ((arg < 0) || (arg >= NBAND))
5701 			return (EINVAL);
5702 		band = (char)arg;
5703 		*rvalp = bcanputnext(stp->sd_wrq, band);
5704 		return (0);
5705 	}
5706 
5707 	case I_SETCLTIME:
5708 	{
5709 		int closetime;
5710 
5711 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5712 		    copyflag);
5713 		if (error)
5714 			return (error);
5715 		if (closetime < 0)
5716 			return (EINVAL);
5717 
5718 		stp->sd_closetime = closetime;
5719 		return (0);
5720 	}
5721 
5722 	case I_GETCLTIME:
5723 	{
5724 		int closetime;
5725 
5726 		closetime = stp->sd_closetime;
5727 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5728 		    copyflag));
5729 	}
5730 
5731 	case TIOCGSID:
5732 	{
5733 		pid_t sid;
5734 
5735 		mutex_enter(&stp->sd_lock);
5736 		if (stp->sd_sidp == NULL) {
5737 			mutex_exit(&stp->sd_lock);
5738 			return (ENOTTY);
5739 		}
5740 		sid = stp->sd_sidp->pid_id;
5741 		mutex_exit(&stp->sd_lock);
5742 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5743 		    copyflag));
5744 	}
5745 
5746 	case TIOCSPGRP:
5747 	{
5748 		pid_t pgrp;
5749 		proc_t *q;
5750 		pid_t	sid, fg_pgid, bg_pgid;
5751 
5752 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5753 		    copyflag))
5754 			return (error);
5755 		mutex_enter(&stp->sd_lock);
5756 		mutex_enter(&pidlock);
5757 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5758 			mutex_exit(&pidlock);
5759 			mutex_exit(&stp->sd_lock);
5760 			return (ENOTTY);
5761 		}
5762 		if (pgrp == stp->sd_pgidp->pid_id) {
5763 			mutex_exit(&pidlock);
5764 			mutex_exit(&stp->sd_lock);
5765 			return (0);
5766 		}
5767 		if (pgrp <= 0 || pgrp >= maxpid) {
5768 			mutex_exit(&pidlock);
5769 			mutex_exit(&stp->sd_lock);
5770 			return (EINVAL);
5771 		}
5772 		if ((q = pgfind(pgrp)) == NULL ||
5773 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5774 			mutex_exit(&pidlock);
5775 			mutex_exit(&stp->sd_lock);
5776 			return (EPERM);
5777 		}
5778 		sid = stp->sd_sidp->pid_id;
5779 		fg_pgid = q->p_pgrp;
5780 		bg_pgid = stp->sd_pgidp->pid_id;
5781 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5782 		PID_RELE(stp->sd_pgidp);
5783 		ctty_clear_sighuped();
5784 		stp->sd_pgidp = q->p_pgidp;
5785 		PID_HOLD(stp->sd_pgidp);
5786 		mutex_exit(&pidlock);
5787 		mutex_exit(&stp->sd_lock);
5788 		return (0);
5789 	}
5790 
5791 	case TIOCGPGRP:
5792 	{
5793 		pid_t pgrp;
5794 
5795 		mutex_enter(&stp->sd_lock);
5796 		if (stp->sd_sidp == NULL) {
5797 			mutex_exit(&stp->sd_lock);
5798 			return (ENOTTY);
5799 		}
5800 		pgrp = stp->sd_pgidp->pid_id;
5801 		mutex_exit(&stp->sd_lock);
5802 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5803 		    copyflag));
5804 	}
5805 
5806 	case TIOCSCTTY:
5807 	{
5808 		return (strctty(stp));
5809 	}
5810 
5811 	case TIOCNOTTY:
5812 	{
5813 		/* freectty() always assumes curproc. */
5814 		if (freectty(B_FALSE) != 0)
5815 			return (0);
5816 		return (ENOTTY);
5817 	}
5818 
5819 	case FIONBIO:
5820 	case FIOASYNC:
5821 		return (0);	/* handled by the upper layer */
5822 	}
5823 }
5824 
5825 /*
5826  * Custom free routine used for M_PASSFP messages.
5827  */
5828 static void
5829 free_passfp(struct k_strrecvfd *srf)
5830 {
5831 	(void) closef(srf->fp);
5832 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5833 }
5834 
5835 /* ARGSUSED */
5836 int
5837 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5838 {
5839 	queue_t *qp, *nextqp;
5840 	struct k_strrecvfd *srf;
5841 	mblk_t *mp;
5842 	frtn_t *frtnp;
5843 	size_t bufsize;
5844 	queue_t	*mate = NULL;
5845 	syncq_t	*sq = NULL;
5846 	int retval = 0;
5847 
5848 	if (stp->sd_flag & STRHUP)
5849 		return (ENXIO);
5850 
5851 	claimstr(stp->sd_wrq);
5852 
5853 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5854 	if (STRMATED(stp)) {
5855 		qp = _RD(stp->sd_mate->sd_wrq);
5856 		claimstr(qp);
5857 		mate = qp;
5858 	} else { /* Not already mated. */
5859 
5860 		/*
5861 		 * Walk the stream to the end of this one.
5862 		 * assumes that the claimstr() will prevent
5863 		 * plumbing between the stream head and the
5864 		 * driver from changing
5865 		 */
5866 		qp = stp->sd_wrq;
5867 
5868 		/*
5869 		 * Loop until we reach the end of this stream.
5870 		 * On completion, qp points to the write queue
5871 		 * at the end of the stream, or the read queue
5872 		 * at the stream head if this is a fifo.
5873 		 */
5874 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5875 			;
5876 
5877 		/*
5878 		 * Just in case we get a q_next which is NULL, but
5879 		 * not at the end of the stream.  This is actually
5880 		 * broken, so we set an assert to catch it in
5881 		 * debug, and set an error and return if not debug.
5882 		 */
5883 		ASSERT(qp);
5884 		if (qp == NULL) {
5885 			releasestr(stp->sd_wrq);
5886 			return (EINVAL);
5887 		}
5888 
5889 		/*
5890 		 * Enter the syncq for the driver, so (hopefully)
5891 		 * the queue values will not change on us.
5892 		 * XXXX - This will only prevent the race IFF only
5893 		 *   the write side modifies the q_next member, and
5894 		 *   the put procedure is protected by at least
5895 		 *   MT_PERQ.
5896 		 */
5897 		if ((sq = qp->q_syncq) != NULL)
5898 			entersq(sq, SQ_PUT);
5899 
5900 		/* Now get the q_next value from this qp. */
5901 		nextqp = qp->q_next;
5902 
5903 		/*
5904 		 * If nextqp exists and the other stream is different
5905 		 * from this one claim the stream, set the mate, and
5906 		 * get the read queue at the stream head of the other
5907 		 * stream.  Assumes that nextqp was at least valid when
5908 		 * we got it.  Hopefully the entersq of the driver
5909 		 * will prevent it from changing on us.
5910 		 */
5911 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5912 			ASSERT(qp->q_qinfo->qi_srvp);
5913 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5914 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5915 			claimstr(nextqp);
5916 
5917 			/* Make sure we still have a q_next */
5918 			if (nextqp != qp->q_next) {
5919 				releasestr(stp->sd_wrq);
5920 				releasestr(nextqp);
5921 				return (EINVAL);
5922 			}
5923 
5924 			qp = _RD(STREAM(nextqp)->sd_wrq);
5925 			mate = qp;
5926 		}
5927 		/* If we entered the synq above, leave it. */
5928 		if (sq != NULL)
5929 			leavesq(sq, SQ_PUT);
5930 	} /*  STRMATED(STP)  */
5931 
5932 	/* XXX prevents substitution of the ops vector */
5933 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5934 		retval = EINVAL;
5935 		goto out;
5936 	}
5937 
5938 	if (qp->q_flag & QFULL) {
5939 		retval = EAGAIN;
5940 		goto out;
5941 	}
5942 
5943 	/*
5944 	 * Since M_PASSFP messages include a file descriptor, we use
5945 	 * esballoc() and specify a custom free routine (free_passfp()) that
5946 	 * will close the descriptor as part of freeing the message.  For
5947 	 * convenience, we stash the frtn_t right after the data block.
5948 	 */
5949 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5950 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5951 	if (srf == NULL) {
5952 		retval = EAGAIN;
5953 		goto out;
5954 	}
5955 
5956 	frtnp = (frtn_t *)(srf + 1);
5957 	frtnp->free_arg = (caddr_t)srf;
5958 	frtnp->free_func = free_passfp;
5959 
5960 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5961 	if (mp == NULL) {
5962 		kmem_free(srf, bufsize);
5963 		retval = EAGAIN;
5964 		goto out;
5965 	}
5966 	mp->b_wptr += sizeof (struct k_strrecvfd);
5967 	mp->b_datap->db_type = M_PASSFP;
5968 
5969 	srf->fp = fp;
5970 	srf->uid = crgetuid(curthread->t_cred);
5971 	srf->gid = crgetgid(curthread->t_cred);
5972 	mutex_enter(&fp->f_tlock);
5973 	fp->f_count++;
5974 	mutex_exit(&fp->f_tlock);
5975 
5976 	put(qp, mp);
5977 out:
5978 	releasestr(stp->sd_wrq);
5979 	if (mate)
5980 		releasestr(mate);
5981 	return (retval);
5982 }
5983 
5984 /*
5985  * Send an ioctl message downstream and wait for acknowledgement.
5986  * flags may be set to either U_TO_K or K_TO_K and a combination
5987  * of STR_NOERROR or STR_NOSIG
5988  * STR_NOSIG: Signals are essentially ignored or held and have
5989  *	no effect for the duration of the call.
5990  * STR_NOERROR: Ignores stream head read, write and hup errors.
5991  *	Additionally, if an existing ioctl times out, it is assumed
5992  *	lost and and this ioctl will continue as if the previous ioctl had
5993  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5994  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5995  *	the ioc_error indicates that the driver/module had problems,
5996  *	an EFAULT was found when accessing user data, a lack of
5997  * 	resources, etc.
5998  */
5999 int
6000 strdoioctl(
6001 	struct stdata *stp,
6002 	struct strioctl *strioc,
6003 	int fflags,		/* file flags with model info */
6004 	int flag,
6005 	cred_t *crp,
6006 	int *rvalp)
6007 {
6008 	mblk_t *bp;
6009 	struct iocblk *iocbp;
6010 	struct copyreq *reqp;
6011 	struct copyresp *resp;
6012 	int id;
6013 	int transparent = 0;
6014 	int error = 0;
6015 	int len = 0;
6016 	caddr_t taddr;
6017 	int copyflag = (flag & (U_TO_K | K_TO_K));
6018 	int sigflag = (flag & STR_NOSIG);
6019 	int errs;
6020 	uint_t waitflags;
6021 
6022 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
6023 	ASSERT((fflags & FMODELS) != 0);
6024 
6025 	TRACE_2(TR_FAC_STREAMS_FR,
6026 	    TR_STRDOIOCTL,
6027 	    "strdoioctl:stp %p strioc %p", stp, strioc);
6028 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
6029 		transparent = 1;
6030 		strioc->ic_len = sizeof (intptr_t);
6031 	}
6032 
6033 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
6034 		return (EINVAL);
6035 
6036 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
6037 	    crp)) == NULL)
6038 			return (error);
6039 
6040 	bzero(bp->b_wptr, sizeof (union ioctypes));
6041 
6042 	iocbp = (struct iocblk *)bp->b_wptr;
6043 	iocbp->ioc_count = strioc->ic_len;
6044 	iocbp->ioc_cmd = strioc->ic_cmd;
6045 	iocbp->ioc_flag = (fflags & FMODELS);
6046 
6047 	crhold(crp);
6048 	iocbp->ioc_cr = crp;
6049 	DB_TYPE(bp) = M_IOCTL;
6050 	DB_CPID(bp) = curproc->p_pid;
6051 	bp->b_wptr += sizeof (struct iocblk);
6052 
6053 	if (flag & STR_NOERROR)
6054 		errs = STPLEX;
6055 	else
6056 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
6057 
6058 	/*
6059 	 * If there is data to copy into ioctl block, do so.
6060 	 */
6061 	if (iocbp->ioc_count > 0) {
6062 		if (transparent)
6063 			/*
6064 			 * Note: STR_NOERROR does not have an effect
6065 			 * in putiocd()
6066 			 */
6067 			id = K_TO_K | sigflag;
6068 		else
6069 			id = flag;
6070 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
6071 			freemsg(bp);
6072 			crfree(crp);
6073 			return (error);
6074 		}
6075 
6076 		/*
6077 		 * We could have slept copying in user pages.
6078 		 * Recheck the stream head state (the other end
6079 		 * of a pipe could have gone away).
6080 		 */
6081 		if (stp->sd_flag & errs) {
6082 			mutex_enter(&stp->sd_lock);
6083 			error = strgeterr(stp, errs, 0);
6084 			mutex_exit(&stp->sd_lock);
6085 			if (error != 0) {
6086 				freemsg(bp);
6087 				crfree(crp);
6088 				return (error);
6089 			}
6090 		}
6091 	}
6092 	if (transparent)
6093 		iocbp->ioc_count = TRANSPARENT;
6094 
6095 	/*
6096 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
6097 	 * ioctl for this stream already running.  All processes
6098 	 * sleeping here will be awakened as a result of an ACK
6099 	 * or NAK being received for the outstanding ioctl, or
6100 	 * as a result of the timer expiring on the outstanding
6101 	 * ioctl (a failure), or as a result of any waiting
6102 	 * process's timer expiring (also a failure).
6103 	 */
6104 
6105 	error = 0;
6106 	mutex_enter(&stp->sd_lock);
6107 	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
6108 		clock_t cv_rval;
6109 
6110 		TRACE_0(TR_FAC_STREAMS_FR,
6111 		    TR_STRDOIOCTL_WAIT,
6112 		    "strdoioctl sleeps - IOCWAIT");
6113 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
6114 		    STRTIMOUT, sigflag);
6115 		if (cv_rval <= 0) {
6116 			if (cv_rval == 0) {
6117 				error = EINTR;
6118 			} else {
6119 				if (flag & STR_NOERROR) {
6120 					/*
6121 					 * Terminating current ioctl in
6122 					 * progress -- assume it got lost and
6123 					 * wake up the other thread so that the
6124 					 * operation completes.
6125 					 */
6126 					if (!(stp->sd_flag & IOCWAITNE)) {
6127 						stp->sd_flag |= IOCWAITNE;
6128 						cv_broadcast(&stp->sd_monitor);
6129 					}
6130 					/*
6131 					 * Otherwise, there's a running
6132 					 * STR_NOERROR -- we have no choice
6133 					 * here but to wait forever (or until
6134 					 * interrupted).
6135 					 */
6136 				} else {
6137 					/*
6138 					 * pending ioctl has caused
6139 					 * us to time out
6140 					 */
6141 					error = ETIME;
6142 				}
6143 			}
6144 		} else if ((stp->sd_flag & errs)) {
6145 			error = strgeterr(stp, errs, 0);
6146 		}
6147 		if (error) {
6148 			mutex_exit(&stp->sd_lock);
6149 			freemsg(bp);
6150 			crfree(crp);
6151 			return (error);
6152 		}
6153 	}
6154 
6155 	/*
6156 	 * Have control of ioctl mechanism.
6157 	 * Send down ioctl packet and wait for response.
6158 	 */
6159 	if (stp->sd_iocblk != (mblk_t *)-1) {
6160 		freemsg(stp->sd_iocblk);
6161 	}
6162 	stp->sd_iocblk = NULL;
6163 
6164 	/*
6165 	 * If this is marked with 'noerror' (internal; mostly
6166 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6167 	 * in here by setting IOCWAITNE.
6168 	 */
6169 	waitflags = IOCWAIT;
6170 	if (flag & STR_NOERROR)
6171 		waitflags |= IOCWAITNE;
6172 
6173 	stp->sd_flag |= waitflags;
6174 
6175 	/*
6176 	 * Assign sequence number.
6177 	 */
6178 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6179 
6180 	mutex_exit(&stp->sd_lock);
6181 
6182 	TRACE_1(TR_FAC_STREAMS_FR,
6183 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6184 	stream_willservice(stp);
6185 	putnext(stp->sd_wrq, bp);
6186 	stream_runservice(stp);
6187 
6188 	/*
6189 	 * Timed wait for acknowledgment.  The wait time is limited by the
6190 	 * timeout value, which must be a positive integer (number of
6191 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6192 	 * milliseconds), or -1 (wait forever).  This will be awakened
6193 	 * either by an ACK/NAK message arriving, the timer expiring, or
6194 	 * the timer expiring on another ioctl waiting for control of the
6195 	 * mechanism.
6196 	 */
6197 waitioc:
6198 	mutex_enter(&stp->sd_lock);
6199 
6200 
6201 	/*
6202 	 * If the reply has already arrived, don't sleep.  If awakened from
6203 	 * the sleep, fail only if the reply has not arrived by then.
6204 	 * Otherwise, process the reply.
6205 	 */
6206 	while (!stp->sd_iocblk) {
6207 		clock_t cv_rval;
6208 
6209 		if (stp->sd_flag & errs) {
6210 			error = strgeterr(stp, errs, 0);
6211 			if (error != 0) {
6212 				stp->sd_flag &= ~waitflags;
6213 				cv_broadcast(&stp->sd_iocmonitor);
6214 				mutex_exit(&stp->sd_lock);
6215 				crfree(crp);
6216 				return (error);
6217 			}
6218 		}
6219 
6220 		TRACE_0(TR_FAC_STREAMS_FR,
6221 		    TR_STRDOIOCTL_WAIT2,
6222 		    "strdoioctl sleeps awaiting reply");
6223 		ASSERT(error == 0);
6224 
6225 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6226 		    (strioc->ic_timout ?
6227 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6228 
6229 		/*
6230 		 * There are four possible cases here: interrupt, timeout,
6231 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6232 		 * valid M_IOCTL reply).
6233 		 *
6234 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6235 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6236 		 * will be set.  Pretend as if we just timed out.  Note that
6237 		 * this other thread waited at least STRTIMOUT before trying to
6238 		 * awaken our thread, so this is indistinguishable (even for
6239 		 * INFTIM) from the case where we failed with ETIME waiting on
6240 		 * IOCWAIT in the prior loop.
6241 		 */
6242 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6243 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6244 			cv_rval = -1;
6245 		}
6246 
6247 		/*
6248 		 * note: STR_NOERROR does not protect
6249 		 * us here.. use ic_timout < 0
6250 		 */
6251 		if (cv_rval <= 0) {
6252 			if (cv_rval == 0) {
6253 				error = EINTR;
6254 			} else {
6255 				error =  ETIME;
6256 			}
6257 			/*
6258 			 * A message could have come in after we were scheduled
6259 			 * but before we were actually run.
6260 			 */
6261 			bp = stp->sd_iocblk;
6262 			stp->sd_iocblk = NULL;
6263 			if (bp != NULL) {
6264 				if ((bp->b_datap->db_type == M_COPYIN) ||
6265 				    (bp->b_datap->db_type == M_COPYOUT)) {
6266 					mutex_exit(&stp->sd_lock);
6267 					if (bp->b_cont) {
6268 						freemsg(bp->b_cont);
6269 						bp->b_cont = NULL;
6270 					}
6271 					bp->b_datap->db_type = M_IOCDATA;
6272 					bp->b_wptr = bp->b_rptr +
6273 					    sizeof (struct copyresp);
6274 					resp = (struct copyresp *)bp->b_rptr;
6275 					resp->cp_rval =
6276 					    (caddr_t)1; /* failure */
6277 					stream_willservice(stp);
6278 					putnext(stp->sd_wrq, bp);
6279 					stream_runservice(stp);
6280 					mutex_enter(&stp->sd_lock);
6281 				} else {
6282 					freemsg(bp);
6283 				}
6284 			}
6285 			stp->sd_flag &= ~waitflags;
6286 			cv_broadcast(&stp->sd_iocmonitor);
6287 			mutex_exit(&stp->sd_lock);
6288 			crfree(crp);
6289 			return (error);
6290 		}
6291 	}
6292 	bp = stp->sd_iocblk;
6293 	/*
6294 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6295 	 * -1.  This is because the initial loop above doesn't allow any new
6296 	 * ioctls into the fray until all others have passed this point.
6297 	 */
6298 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6299 	TRACE_1(TR_FAC_STREAMS_FR,
6300 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6301 	if ((bp->b_datap->db_type == M_IOCACK) ||
6302 	    (bp->b_datap->db_type == M_IOCNAK)) {
6303 		/* for detection of duplicate ioctl replies */
6304 		stp->sd_iocblk = (mblk_t *)-1;
6305 		stp->sd_flag &= ~waitflags;
6306 		cv_broadcast(&stp->sd_iocmonitor);
6307 		mutex_exit(&stp->sd_lock);
6308 	} else {
6309 		/*
6310 		 * flags not cleared here because we're still doing
6311 		 * copy in/out for ioctl.
6312 		 */
6313 		stp->sd_iocblk = NULL;
6314 		mutex_exit(&stp->sd_lock);
6315 	}
6316 
6317 
6318 	/*
6319 	 * Have received acknowledgment.
6320 	 */
6321 
6322 	switch (bp->b_datap->db_type) {
6323 	case M_IOCACK:
6324 		/*
6325 		 * Positive ack.
6326 		 */
6327 		iocbp = (struct iocblk *)bp->b_rptr;
6328 
6329 		/*
6330 		 * Set error if indicated.
6331 		 */
6332 		if (iocbp->ioc_error) {
6333 			error = iocbp->ioc_error;
6334 			break;
6335 		}
6336 
6337 		/*
6338 		 * Set return value.
6339 		 */
6340 		*rvalp = iocbp->ioc_rval;
6341 
6342 		/*
6343 		 * Data may have been returned in ACK message (ioc_count > 0).
6344 		 * If so, copy it out to the user's buffer.
6345 		 */
6346 		if (iocbp->ioc_count && !transparent) {
6347 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6348 				break;
6349 		}
6350 		if (!transparent) {
6351 			if (len)	/* an M_COPYOUT was used with I_STR */
6352 				strioc->ic_len = len;
6353 			else
6354 				strioc->ic_len = (int)iocbp->ioc_count;
6355 		}
6356 		break;
6357 
6358 	case M_IOCNAK:
6359 		/*
6360 		 * Negative ack.
6361 		 *
6362 		 * The only thing to do is set error as specified
6363 		 * in neg ack packet.
6364 		 */
6365 		iocbp = (struct iocblk *)bp->b_rptr;
6366 
6367 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6368 		break;
6369 
6370 	case M_COPYIN:
6371 		/*
6372 		 * Driver or module has requested user ioctl data.
6373 		 */
6374 		reqp = (struct copyreq *)bp->b_rptr;
6375 
6376 		/*
6377 		 * M_COPYIN should *never* have a message attached, though
6378 		 * it's harmless if it does -- thus, panic on a DEBUG
6379 		 * kernel and just free it on a non-DEBUG build.
6380 		 */
6381 		ASSERT(bp->b_cont == NULL);
6382 		if (bp->b_cont != NULL) {
6383 			freemsg(bp->b_cont);
6384 			bp->b_cont = NULL;
6385 		}
6386 
6387 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6388 		if (error && bp->b_cont) {
6389 			freemsg(bp->b_cont);
6390 			bp->b_cont = NULL;
6391 		}
6392 
6393 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6394 		bp->b_datap->db_type = M_IOCDATA;
6395 
6396 		mblk_setcred(bp, crp);
6397 		DB_CPID(bp) = curproc->p_pid;
6398 		resp = (struct copyresp *)bp->b_rptr;
6399 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6400 		resp->cp_flag = (fflags & FMODELS);
6401 
6402 		stream_willservice(stp);
6403 		putnext(stp->sd_wrq, bp);
6404 		stream_runservice(stp);
6405 
6406 		if (error) {
6407 			mutex_enter(&stp->sd_lock);
6408 			stp->sd_flag &= ~waitflags;
6409 			cv_broadcast(&stp->sd_iocmonitor);
6410 			mutex_exit(&stp->sd_lock);
6411 			crfree(crp);
6412 			return (error);
6413 		}
6414 
6415 		goto waitioc;
6416 
6417 	case M_COPYOUT:
6418 		/*
6419 		 * Driver or module has ioctl data for a user.
6420 		 */
6421 		reqp = (struct copyreq *)bp->b_rptr;
6422 		ASSERT(bp->b_cont != NULL);
6423 
6424 		/*
6425 		 * Always (transparent or non-transparent )
6426 		 * use the address specified in the request
6427 		 */
6428 		taddr = reqp->cq_addr;
6429 		if (!transparent)
6430 			len = (int)reqp->cq_size;
6431 
6432 		/* copyout data to the provided address */
6433 		error = getiocd(bp, taddr, copyflag);
6434 
6435 		freemsg(bp->b_cont);
6436 		bp->b_cont = NULL;
6437 
6438 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6439 		bp->b_datap->db_type = M_IOCDATA;
6440 
6441 		mblk_setcred(bp, crp);
6442 		DB_CPID(bp) = curproc->p_pid;
6443 		resp = (struct copyresp *)bp->b_rptr;
6444 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6445 		resp->cp_flag = (fflags & FMODELS);
6446 
6447 		stream_willservice(stp);
6448 		putnext(stp->sd_wrq, bp);
6449 		stream_runservice(stp);
6450 
6451 		if (error) {
6452 			mutex_enter(&stp->sd_lock);
6453 			stp->sd_flag &= ~waitflags;
6454 			cv_broadcast(&stp->sd_iocmonitor);
6455 			mutex_exit(&stp->sd_lock);
6456 			crfree(crp);
6457 			return (error);
6458 		}
6459 		goto waitioc;
6460 
6461 	default:
6462 		ASSERT(0);
6463 		mutex_enter(&stp->sd_lock);
6464 		stp->sd_flag &= ~waitflags;
6465 		cv_broadcast(&stp->sd_iocmonitor);
6466 		mutex_exit(&stp->sd_lock);
6467 		break;
6468 	}
6469 
6470 	freemsg(bp);
6471 	crfree(crp);
6472 	return (error);
6473 }
6474 
6475 /*
6476  * Send an M_CMD message downstream and wait for a reply.  This is a ptools
6477  * special used to retrieve information from modules/drivers a stream without
6478  * being subjected to flow control or interfering with pending messages on the
6479  * stream (e.g. an ioctl in flight).
6480  */
6481 int
6482 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6483 {
6484 	mblk_t *mp;
6485 	struct cmdblk *cmdp;
6486 	int error = 0;
6487 	int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6488 	clock_t rval, timeout = STRTIMOUT;
6489 
6490 	if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6491 	    scp->sc_timeout < -1)
6492 		return (EINVAL);
6493 
6494 	if (scp->sc_timeout > 0)
6495 		timeout = scp->sc_timeout * MILLISEC;
6496 
6497 	if ((mp = allocb_cred(sizeof (struct cmdblk), crp)) == NULL)
6498 		return (ENOMEM);
6499 
6500 	crhold(crp);
6501 
6502 	cmdp = (struct cmdblk *)mp->b_wptr;
6503 	cmdp->cb_cr = crp;
6504 	cmdp->cb_cmd = scp->sc_cmd;
6505 	cmdp->cb_len = scp->sc_len;
6506 	cmdp->cb_error = 0;
6507 	mp->b_wptr += sizeof (struct cmdblk);
6508 
6509 	DB_TYPE(mp) = M_CMD;
6510 	DB_CPID(mp) = curproc->p_pid;
6511 
6512 	/*
6513 	 * Copy in the payload.
6514 	 */
6515 	if (cmdp->cb_len > 0) {
6516 		mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp);
6517 		if (mp->b_cont == NULL) {
6518 			error = ENOMEM;
6519 			goto out;
6520 		}
6521 
6522 		/* cb_len comes from sc_len, which has already been checked */
6523 		ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6524 		(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6525 		mp->b_cont->b_wptr += cmdp->cb_len;
6526 		DB_CPID(mp->b_cont) = curproc->p_pid;
6527 	}
6528 
6529 	/*
6530 	 * Since this mechanism is strictly for ptools, and since only one
6531 	 * process can be grabbed at a time, we simply fail if there's
6532 	 * currently an operation pending.
6533 	 */
6534 	mutex_enter(&stp->sd_lock);
6535 	if (stp->sd_flag & STRCMDWAIT) {
6536 		mutex_exit(&stp->sd_lock);
6537 		error = EBUSY;
6538 		goto out;
6539 	}
6540 	stp->sd_flag |= STRCMDWAIT;
6541 	ASSERT(stp->sd_cmdblk == NULL);
6542 	mutex_exit(&stp->sd_lock);
6543 
6544 	putnext(stp->sd_wrq, mp);
6545 	mp = NULL;
6546 
6547 	/*
6548 	 * Timed wait for acknowledgment.  If the reply has already arrived,
6549 	 * don't sleep.  If awakened from the sleep, fail only if the reply
6550 	 * has not arrived by then.  Otherwise, process the reply.
6551 	 */
6552 	mutex_enter(&stp->sd_lock);
6553 	while (stp->sd_cmdblk == NULL) {
6554 		if (stp->sd_flag & errs) {
6555 			if ((error = strgeterr(stp, errs, 0)) != 0)
6556 				goto waitout;
6557 		}
6558 
6559 		rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6560 		if (stp->sd_cmdblk != NULL)
6561 			break;
6562 
6563 		if (rval <= 0) {
6564 			error = (rval == 0) ? EINTR : ETIME;
6565 			goto waitout;
6566 		}
6567 	}
6568 
6569 	/*
6570 	 * We received a reply.
6571 	 */
6572 	mp = stp->sd_cmdblk;
6573 	stp->sd_cmdblk = NULL;
6574 	ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6575 	ASSERT(stp->sd_flag & STRCMDWAIT);
6576 	stp->sd_flag &= ~STRCMDWAIT;
6577 	mutex_exit(&stp->sd_lock);
6578 
6579 	cmdp = (struct cmdblk *)mp->b_rptr;
6580 	if ((error = cmdp->cb_error) != 0)
6581 		goto out;
6582 
6583 	/*
6584 	 * Data may have been returned in the reply (cb_len > 0).
6585 	 * If so, copy it out to the user's buffer.
6586 	 */
6587 	if (cmdp->cb_len > 0) {
6588 		if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6589 			error = EPROTO;
6590 			goto out;
6591 		}
6592 
6593 		cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6594 		(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6595 	}
6596 	scp->sc_len = cmdp->cb_len;
6597 out:
6598 	freemsg(mp);
6599 	crfree(crp);
6600 	return (error);
6601 waitout:
6602 	ASSERT(stp->sd_cmdblk == NULL);
6603 	stp->sd_flag &= ~STRCMDWAIT;
6604 	mutex_exit(&stp->sd_lock);
6605 	crfree(crp);
6606 	return (error);
6607 }
6608 
6609 /*
6610  * For the SunOS keyboard driver.
6611  * Return the next available "ioctl" sequence number.
6612  * Exported, so that streams modules can send "ioctl" messages
6613  * downstream from their open routine.
6614  */
6615 int
6616 getiocseqno(void)
6617 {
6618 	int	i;
6619 
6620 	mutex_enter(&strresources);
6621 	i = ++ioc_id;
6622 	mutex_exit(&strresources);
6623 	return (i);
6624 }
6625 
6626 /*
6627  * Get the next message from the read queue.  If the message is
6628  * priority, STRPRI will have been set by strrput().  This flag
6629  * should be reset only when the entire message at the front of the
6630  * queue as been consumed.
6631  *
6632  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6633  */
6634 int
6635 strgetmsg(
6636 	struct vnode *vp,
6637 	struct strbuf *mctl,
6638 	struct strbuf *mdata,
6639 	unsigned char *prip,
6640 	int *flagsp,
6641 	int fmode,
6642 	rval_t *rvp)
6643 {
6644 	struct stdata *stp;
6645 	mblk_t *bp, *nbp;
6646 	mblk_t *savemp = NULL;
6647 	mblk_t *savemptail = NULL;
6648 	uint_t old_sd_flag;
6649 	int flg;
6650 	int more = 0;
6651 	int error = 0;
6652 	char first = 1;
6653 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6654 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6655 	unsigned char pri = 0;
6656 	queue_t *q;
6657 	int	pr = 0;			/* Partial read successful */
6658 	struct uio uios;
6659 	struct uio *uiop = &uios;
6660 	struct iovec iovs;
6661 	unsigned char type;
6662 
6663 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6664 	    "strgetmsg:%p", vp);
6665 
6666 	ASSERT(vp->v_stream);
6667 	stp = vp->v_stream;
6668 	rvp->r_val1 = 0;
6669 
6670 	mutex_enter(&stp->sd_lock);
6671 
6672 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6673 		mutex_exit(&stp->sd_lock);
6674 		return (error);
6675 	}
6676 
6677 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6678 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6679 		if (error != 0) {
6680 			mutex_exit(&stp->sd_lock);
6681 			return (error);
6682 		}
6683 	}
6684 	mutex_exit(&stp->sd_lock);
6685 
6686 	switch (*flagsp) {
6687 	case MSG_HIPRI:
6688 		if (*prip != 0)
6689 			return (EINVAL);
6690 		break;
6691 
6692 	case MSG_ANY:
6693 	case MSG_BAND:
6694 		break;
6695 
6696 	default:
6697 		return (EINVAL);
6698 	}
6699 	/*
6700 	 * Setup uio and iov for data part
6701 	 */
6702 	iovs.iov_base = mdata->buf;
6703 	iovs.iov_len = mdata->maxlen;
6704 	uios.uio_iov = &iovs;
6705 	uios.uio_iovcnt = 1;
6706 	uios.uio_loffset = 0;
6707 	uios.uio_segflg = UIO_USERSPACE;
6708 	uios.uio_fmode = 0;
6709 	uios.uio_extflg = UIO_COPY_CACHED;
6710 	uios.uio_resid = mdata->maxlen;
6711 	uios.uio_offset = 0;
6712 
6713 	q = _RD(stp->sd_wrq);
6714 	mutex_enter(&stp->sd_lock);
6715 	old_sd_flag = stp->sd_flag;
6716 	mark = 0;
6717 	for (;;) {
6718 		int done = 0;
6719 		mblk_t *q_first = q->q_first;
6720 
6721 		/*
6722 		 * Get the next message of appropriate priority
6723 		 * from the stream head.  If the caller is interested
6724 		 * in band or hipri messages, then they should already
6725 		 * be enqueued at the stream head.  On the other hand
6726 		 * if the caller wants normal (band 0) messages, they
6727 		 * might be deferred in a synchronous stream and they
6728 		 * will need to be pulled up.
6729 		 *
6730 		 * After we have dequeued a message, we might find that
6731 		 * it was a deferred M_SIG that was enqueued at the
6732 		 * stream head.  It must now be posted as part of the
6733 		 * read by calling strsignal_nolock().
6734 		 *
6735 		 * Also note that strrput does not enqueue an M_PCSIG,
6736 		 * and there cannot be more than one hipri message,
6737 		 * so there was no need to have the M_PCSIG case.
6738 		 *
6739 		 * At some time it might be nice to try and wrap the
6740 		 * functionality of kstrgetmsg() and strgetmsg() into
6741 		 * a common routine so to reduce the amount of replicated
6742 		 * code (since they are extremely similar).
6743 		 */
6744 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6745 			/* Asking for normal, band0 data */
6746 			bp = strget(stp, q, uiop, first, &error);
6747 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6748 			if (bp != NULL) {
6749 				ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
6750 				if (bp->b_datap->db_type == M_SIG) {
6751 					strsignal_nolock(stp, *bp->b_rptr,
6752 					    (int32_t)bp->b_band);
6753 					continue;
6754 				} else {
6755 					break;
6756 				}
6757 			}
6758 			if (error != 0) {
6759 				goto getmout;
6760 			}
6761 
6762 		/*
6763 		 * We can't depend on the value of STRPRI here because
6764 		 * the stream head may be in transit. Therefore, we
6765 		 * must look at the type of the first message to
6766 		 * determine if a high priority messages is waiting
6767 		 */
6768 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6769 		    q_first->b_datap->db_type >= QPCTL &&
6770 		    (bp = getq_noenab(q, 0)) != NULL) {
6771 			/* Asked for HIPRI and got one */
6772 			ASSERT(bp->b_datap->db_type >= QPCTL);
6773 			break;
6774 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6775 		    ((q_first->b_band >= *prip) ||
6776 		    q_first->b_datap->db_type >= QPCTL) &&
6777 		    (bp = getq_noenab(q, 0)) != NULL) {
6778 			/*
6779 			 * Asked for at least band "prip" and got either at
6780 			 * least that band or a hipri message.
6781 			 */
6782 			ASSERT(bp->b_band >= *prip ||
6783 			    bp->b_datap->db_type >= QPCTL);
6784 			if (bp->b_datap->db_type == M_SIG) {
6785 				strsignal_nolock(stp, *bp->b_rptr,
6786 				    (int32_t)bp->b_band);
6787 				continue;
6788 			} else {
6789 				break;
6790 			}
6791 		}
6792 
6793 		/* No data. Time to sleep? */
6794 		qbackenable(q, 0);
6795 
6796 		/*
6797 		 * If STRHUP or STREOF, return 0 length control and data.
6798 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6799 		 * sleep to satisfy this request because by default we have
6800 		 * zero bytes to return.
6801 		 */
6802 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6803 		    mdata->maxlen == 0)) {
6804 			mctl->len = mdata->len = 0;
6805 			*flagsp = 0;
6806 			mutex_exit(&stp->sd_lock);
6807 			return (0);
6808 		}
6809 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6810 		    "strgetmsg calls strwaitq:%p, %p",
6811 		    vp, uiop);
6812 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6813 		    &done)) != 0) || done) {
6814 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6815 			    "strgetmsg error or done:%p, %p",
6816 			    vp, uiop);
6817 			mutex_exit(&stp->sd_lock);
6818 			return (error);
6819 		}
6820 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6821 		    "strgetmsg awakes:%p, %p", vp, uiop);
6822 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6823 			mutex_exit(&stp->sd_lock);
6824 			return (error);
6825 		}
6826 		first = 0;
6827 	}
6828 	ASSERT(bp != NULL);
6829 	/*
6830 	 * Extract any mark information. If the message is not completely
6831 	 * consumed this information will be put in the mblk
6832 	 * that is putback.
6833 	 * If MSGMARKNEXT is set and the message is completely consumed
6834 	 * the STRATMARK flag will be set below. Likewise, if
6835 	 * MSGNOTMARKNEXT is set and the message is
6836 	 * completely consumed STRNOTATMARK will be set.
6837 	 */
6838 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6839 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6840 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6841 	if (mark != 0 && bp == stp->sd_mark) {
6842 		mark |= _LASTMARK;
6843 		stp->sd_mark = NULL;
6844 	}
6845 	/*
6846 	 * keep track of the original message type and priority
6847 	 */
6848 	pri = bp->b_band;
6849 	type = bp->b_datap->db_type;
6850 	if (type == M_PASSFP) {
6851 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6852 			stp->sd_mark = bp;
6853 		bp->b_flag |= mark & ~_LASTMARK;
6854 		putback(stp, q, bp, pri);
6855 		qbackenable(q, pri);
6856 		mutex_exit(&stp->sd_lock);
6857 		return (EBADMSG);
6858 	}
6859 	ASSERT(type != M_SIG);
6860 
6861 	/*
6862 	 * Set this flag so strrput will not generate signals. Need to
6863 	 * make sure this flag is cleared before leaving this routine
6864 	 * else signals will stop being sent.
6865 	 */
6866 	stp->sd_flag |= STRGETINPROG;
6867 	mutex_exit(&stp->sd_lock);
6868 
6869 	if (STREAM_NEEDSERVICE(stp))
6870 		stream_runservice(stp);
6871 
6872 	/*
6873 	 * Set HIPRI flag if message is priority.
6874 	 */
6875 	if (type >= QPCTL)
6876 		flg = MSG_HIPRI;
6877 	else
6878 		flg = MSG_BAND;
6879 
6880 	/*
6881 	 * First process PROTO or PCPROTO blocks, if any.
6882 	 */
6883 	if (mctl->maxlen >= 0 && type != M_DATA) {
6884 		size_t	n, bcnt;
6885 		char	*ubuf;
6886 
6887 		bcnt = mctl->maxlen;
6888 		ubuf = mctl->buf;
6889 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6890 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6891 			    copyout(bp->b_rptr, ubuf, n)) {
6892 				error = EFAULT;
6893 				mutex_enter(&stp->sd_lock);
6894 				/*
6895 				 * clear stream head pri flag based on
6896 				 * first message type
6897 				 */
6898 				if (type >= QPCTL) {
6899 					ASSERT(type == M_PCPROTO);
6900 					stp->sd_flag &= ~STRPRI;
6901 				}
6902 				more = 0;
6903 				freemsg(bp);
6904 				goto getmout;
6905 			}
6906 			ubuf += n;
6907 			bp->b_rptr += n;
6908 			if (bp->b_rptr >= bp->b_wptr) {
6909 				nbp = bp;
6910 				bp = bp->b_cont;
6911 				freeb(nbp);
6912 			}
6913 			ASSERT(n <= bcnt);
6914 			bcnt -= n;
6915 			if (bcnt == 0)
6916 				break;
6917 		}
6918 		mctl->len = mctl->maxlen - bcnt;
6919 	} else
6920 		mctl->len = -1;
6921 
6922 	if (bp && bp->b_datap->db_type != M_DATA) {
6923 		/*
6924 		 * More PROTO blocks in msg.
6925 		 */
6926 		more |= MORECTL;
6927 		savemp = bp;
6928 		while (bp && bp->b_datap->db_type != M_DATA) {
6929 			savemptail = bp;
6930 			bp = bp->b_cont;
6931 		}
6932 		savemptail->b_cont = NULL;
6933 	}
6934 
6935 	/*
6936 	 * Now process DATA blocks, if any.
6937 	 */
6938 	if (mdata->maxlen >= 0 && bp) {
6939 		/*
6940 		 * struiocopyout will consume a potential zero-length
6941 		 * M_DATA even if uio_resid is zero.
6942 		 */
6943 		size_t oldresid = uiop->uio_resid;
6944 
6945 		bp = struiocopyout(bp, uiop, &error);
6946 		if (error != 0) {
6947 			mutex_enter(&stp->sd_lock);
6948 			/*
6949 			 * clear stream head hi pri flag based on
6950 			 * first message
6951 			 */
6952 			if (type >= QPCTL) {
6953 				ASSERT(type == M_PCPROTO);
6954 				stp->sd_flag &= ~STRPRI;
6955 			}
6956 			more = 0;
6957 			freemsg(savemp);
6958 			goto getmout;
6959 		}
6960 		/*
6961 		 * (pr == 1) indicates a partial read.
6962 		 */
6963 		if (oldresid > uiop->uio_resid)
6964 			pr = 1;
6965 		mdata->len = mdata->maxlen - uiop->uio_resid;
6966 	} else
6967 		mdata->len = -1;
6968 
6969 	if (bp) {			/* more data blocks in msg */
6970 		more |= MOREDATA;
6971 		if (savemp)
6972 			savemptail->b_cont = bp;
6973 		else
6974 			savemp = bp;
6975 	}
6976 
6977 	mutex_enter(&stp->sd_lock);
6978 	if (savemp) {
6979 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6980 		    msgnodata(savemp)) {
6981 			/*
6982 			 * Avoid queuing a zero-length tail part of
6983 			 * a message. pr=1 indicates that we read some of
6984 			 * the message.
6985 			 */
6986 			freemsg(savemp);
6987 			more &= ~MOREDATA;
6988 			/*
6989 			 * clear stream head hi pri flag based on
6990 			 * first message
6991 			 */
6992 			if (type >= QPCTL) {
6993 				ASSERT(type == M_PCPROTO);
6994 				stp->sd_flag &= ~STRPRI;
6995 			}
6996 		} else {
6997 			savemp->b_band = pri;
6998 			/*
6999 			 * If the first message was HIPRI and the one we're
7000 			 * putting back isn't, then clear STRPRI, otherwise
7001 			 * set STRPRI again.  Note that we must set STRPRI
7002 			 * again since the flush logic in strrput_nondata()
7003 			 * may have cleared it while we had sd_lock dropped.
7004 			 */
7005 			if (type >= QPCTL) {
7006 				ASSERT(type == M_PCPROTO);
7007 				if (queclass(savemp) < QPCTL)
7008 					stp->sd_flag &= ~STRPRI;
7009 				else
7010 					stp->sd_flag |= STRPRI;
7011 			} else if (queclass(savemp) >= QPCTL) {
7012 				/*
7013 				 * The first message was not a HIPRI message,
7014 				 * but the one we are about to putback is.
7015 				 * For simplicitly, we do not allow for HIPRI
7016 				 * messages to be embedded in the message
7017 				 * body, so just force it to same type as
7018 				 * first message.
7019 				 */
7020 				ASSERT(type == M_DATA || type == M_PROTO);
7021 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7022 				savemp->b_datap->db_type = type;
7023 			}
7024 			if (mark != 0) {
7025 				savemp->b_flag |= mark & ~_LASTMARK;
7026 				if ((mark & _LASTMARK) &&
7027 				    (stp->sd_mark == NULL)) {
7028 					/*
7029 					 * If another marked message arrived
7030 					 * while sd_lock was not held sd_mark
7031 					 * would be non-NULL.
7032 					 */
7033 					stp->sd_mark = savemp;
7034 				}
7035 			}
7036 			putback(stp, q, savemp, pri);
7037 		}
7038 	} else {
7039 		/*
7040 		 * The complete message was consumed.
7041 		 *
7042 		 * If another M_PCPROTO arrived while sd_lock was not held
7043 		 * it would have been discarded since STRPRI was still set.
7044 		 *
7045 		 * Move the MSG*MARKNEXT information
7046 		 * to the stream head just in case
7047 		 * the read queue becomes empty.
7048 		 * clear stream head hi pri flag based on
7049 		 * first message
7050 		 *
7051 		 * If the stream head was at the mark
7052 		 * (STRATMARK) before we dropped sd_lock above
7053 		 * and some data was consumed then we have
7054 		 * moved past the mark thus STRATMARK is
7055 		 * cleared. However, if a message arrived in
7056 		 * strrput during the copyout above causing
7057 		 * STRATMARK to be set we can not clear that
7058 		 * flag.
7059 		 */
7060 		if (type >= QPCTL) {
7061 			ASSERT(type == M_PCPROTO);
7062 			stp->sd_flag &= ~STRPRI;
7063 		}
7064 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7065 			if (mark & MSGMARKNEXT) {
7066 				stp->sd_flag &= ~STRNOTATMARK;
7067 				stp->sd_flag |= STRATMARK;
7068 			} else if (mark & MSGNOTMARKNEXT) {
7069 				stp->sd_flag &= ~STRATMARK;
7070 				stp->sd_flag |= STRNOTATMARK;
7071 			} else {
7072 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7073 			}
7074 		} else if (pr && (old_sd_flag & STRATMARK)) {
7075 			stp->sd_flag &= ~STRATMARK;
7076 		}
7077 	}
7078 
7079 	*flagsp = flg;
7080 	*prip = pri;
7081 
7082 	/*
7083 	 * Getmsg cleanup processing - if the state of the queue has changed
7084 	 * some signals may need to be sent and/or poll awakened.
7085 	 */
7086 getmout:
7087 	qbackenable(q, pri);
7088 
7089 	/*
7090 	 * We dropped the stream head lock above. Send all M_SIG messages
7091 	 * before processing stream head for SIGPOLL messages.
7092 	 */
7093 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7094 	while ((bp = q->q_first) != NULL &&
7095 	    (bp->b_datap->db_type == M_SIG)) {
7096 		/*
7097 		 * sd_lock is held so the content of the read queue can not
7098 		 * change.
7099 		 */
7100 		bp = getq(q);
7101 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7102 
7103 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7104 		mutex_exit(&stp->sd_lock);
7105 		freemsg(bp);
7106 		if (STREAM_NEEDSERVICE(stp))
7107 			stream_runservice(stp);
7108 		mutex_enter(&stp->sd_lock);
7109 	}
7110 
7111 	/*
7112 	 * stream head cannot change while we make the determination
7113 	 * whether or not to send a signal. Drop the flag to allow strrput
7114 	 * to send firstmsgsigs again.
7115 	 */
7116 	stp->sd_flag &= ~STRGETINPROG;
7117 
7118 	/*
7119 	 * If the type of message at the front of the queue changed
7120 	 * due to the receive the appropriate signals and pollwakeup events
7121 	 * are generated. The type of changes are:
7122 	 *	Processed a hipri message, q_first is not hipri.
7123 	 *	Processed a band X message, and q_first is band Y.
7124 	 * The generated signals and pollwakeups are identical to what
7125 	 * strrput() generates should the message that is now on q_first
7126 	 * arrive to an empty read queue.
7127 	 *
7128 	 * Note: only strrput will send a signal for a hipri message.
7129 	 */
7130 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7131 		strsigset_t signals = 0;
7132 		strpollset_t pollwakeups = 0;
7133 
7134 		if (flg & MSG_HIPRI) {
7135 			/*
7136 			 * Removed a hipri message. Regular data at
7137 			 * the front of  the queue.
7138 			 */
7139 			if (bp->b_band == 0) {
7140 				signals = S_INPUT | S_RDNORM;
7141 				pollwakeups = POLLIN | POLLRDNORM;
7142 			} else {
7143 				signals = S_INPUT | S_RDBAND;
7144 				pollwakeups = POLLIN | POLLRDBAND;
7145 			}
7146 		} else if (pri != bp->b_band) {
7147 			/*
7148 			 * The band is different for the new q_first.
7149 			 */
7150 			if (bp->b_band == 0) {
7151 				signals = S_RDNORM;
7152 				pollwakeups = POLLIN | POLLRDNORM;
7153 			} else {
7154 				signals = S_RDBAND;
7155 				pollwakeups = POLLIN | POLLRDBAND;
7156 			}
7157 		}
7158 
7159 		if (pollwakeups != 0) {
7160 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7161 				if (!(stp->sd_rput_opt & SR_POLLIN))
7162 					goto no_pollwake;
7163 				stp->sd_rput_opt &= ~SR_POLLIN;
7164 			}
7165 			mutex_exit(&stp->sd_lock);
7166 			pollwakeup(&stp->sd_pollist, pollwakeups);
7167 			mutex_enter(&stp->sd_lock);
7168 		}
7169 no_pollwake:
7170 
7171 		if (stp->sd_sigflags & signals)
7172 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7173 	}
7174 	mutex_exit(&stp->sd_lock);
7175 
7176 	rvp->r_val1 = more;
7177 	return (error);
7178 #undef	_LASTMARK
7179 }
7180 
7181 /*
7182  * Get the next message from the read queue.  If the message is
7183  * priority, STRPRI will have been set by strrput().  This flag
7184  * should be reset only when the entire message at the front of the
7185  * queue as been consumed.
7186  *
7187  * If uiop is NULL all data is returned in mctlp.
7188  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7189  * not enabled.
7190  * The timeout parameter is in milliseconds; -1 for infinity.
7191  * This routine handles the consolidation private flags:
7192  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7193  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
7194  *	MSG_HOLDSIG	Hold signals while waiting for data.
7195  *	MSG_IPEEK	Only peek at messages.
7196  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
7197  *			that doesn't fit.
7198  *	MSG_NOMARK	If the message is marked leave it on the queue.
7199  *
7200  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7201  */
7202 int
7203 kstrgetmsg(
7204 	struct vnode *vp,
7205 	mblk_t **mctlp,
7206 	struct uio *uiop,
7207 	unsigned char *prip,
7208 	int *flagsp,
7209 	clock_t timout,
7210 	rval_t *rvp)
7211 {
7212 	struct stdata *stp;
7213 	mblk_t *bp, *nbp;
7214 	mblk_t *savemp = NULL;
7215 	mblk_t *savemptail = NULL;
7216 	int flags;
7217 	uint_t old_sd_flag;
7218 	int flg;
7219 	int more = 0;
7220 	int error = 0;
7221 	char first = 1;
7222 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7223 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7224 	unsigned char pri = 0;
7225 	queue_t *q;
7226 	int	pr = 0;			/* Partial read successful */
7227 	unsigned char type;
7228 
7229 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7230 	    "kstrgetmsg:%p", vp);
7231 
7232 	ASSERT(vp->v_stream);
7233 	stp = vp->v_stream;
7234 	rvp->r_val1 = 0;
7235 
7236 	mutex_enter(&stp->sd_lock);
7237 
7238 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7239 		mutex_exit(&stp->sd_lock);
7240 		return (error);
7241 	}
7242 
7243 	flags = *flagsp;
7244 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7245 		if ((stp->sd_flag & STPLEX) ||
7246 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7247 			error = strgeterr(stp, STRDERR|STPLEX,
7248 			    (flags & MSG_IPEEK));
7249 			if (error != 0) {
7250 				mutex_exit(&stp->sd_lock);
7251 				return (error);
7252 			}
7253 		}
7254 	}
7255 	mutex_exit(&stp->sd_lock);
7256 
7257 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7258 	case MSG_HIPRI:
7259 		if (*prip != 0)
7260 			return (EINVAL);
7261 		break;
7262 
7263 	case MSG_ANY:
7264 	case MSG_BAND:
7265 		break;
7266 
7267 	default:
7268 		return (EINVAL);
7269 	}
7270 
7271 retry:
7272 	q = _RD(stp->sd_wrq);
7273 	mutex_enter(&stp->sd_lock);
7274 	old_sd_flag = stp->sd_flag;
7275 	mark = 0;
7276 	for (;;) {
7277 		int done = 0;
7278 		int waitflag;
7279 		int fmode;
7280 		mblk_t *q_first = q->q_first;
7281 
7282 		/*
7283 		 * This section of the code operates just like the code
7284 		 * in strgetmsg().  There is a comment there about what
7285 		 * is going on here.
7286 		 */
7287 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7288 			/* Asking for normal, band0 data */
7289 			bp = strget(stp, q, uiop, first, &error);
7290 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7291 			if (bp != NULL) {
7292 				if (bp->b_datap->db_type == M_SIG) {
7293 					strsignal_nolock(stp, *bp->b_rptr,
7294 					    (int32_t)bp->b_band);
7295 					continue;
7296 				} else {
7297 					break;
7298 				}
7299 			}
7300 			if (error != 0) {
7301 				goto getmout;
7302 			}
7303 		/*
7304 		 * We can't depend on the value of STRPRI here because
7305 		 * the stream head may be in transit. Therefore, we
7306 		 * must look at the type of the first message to
7307 		 * determine if a high priority messages is waiting
7308 		 */
7309 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7310 		    q_first->b_datap->db_type >= QPCTL &&
7311 		    (bp = getq_noenab(q, 0)) != NULL) {
7312 			ASSERT(bp->b_datap->db_type >= QPCTL);
7313 			break;
7314 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7315 		    ((q_first->b_band >= *prip) ||
7316 		    q_first->b_datap->db_type >= QPCTL) &&
7317 		    (bp = getq_noenab(q, 0)) != NULL) {
7318 			/*
7319 			 * Asked for at least band "prip" and got either at
7320 			 * least that band or a hipri message.
7321 			 */
7322 			ASSERT(bp->b_band >= *prip ||
7323 			    bp->b_datap->db_type >= QPCTL);
7324 			if (bp->b_datap->db_type == M_SIG) {
7325 				strsignal_nolock(stp, *bp->b_rptr,
7326 				    (int32_t)bp->b_band);
7327 				continue;
7328 			} else {
7329 				break;
7330 			}
7331 		}
7332 
7333 		/* No data. Time to sleep? */
7334 		qbackenable(q, 0);
7335 
7336 		/*
7337 		 * Delayed error notification?
7338 		 */
7339 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7340 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7341 			error = strgeterr(stp, STRDERR|STPLEX,
7342 			    (flags & MSG_IPEEK));
7343 			if (error != 0) {
7344 				mutex_exit(&stp->sd_lock);
7345 				return (error);
7346 			}
7347 		}
7348 
7349 		/*
7350 		 * If STRHUP or STREOF, return 0 length control and data.
7351 		 * If a read(fd,buf,0) has been done, do not sleep, just
7352 		 * return.
7353 		 *
7354 		 * If mctlp == NULL and uiop == NULL, then the code will
7355 		 * do the strwaitq. This is an understood way of saying
7356 		 * sleep "polling" until a message is received.
7357 		 */
7358 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7359 		    (uiop != NULL && uiop->uio_resid == 0)) {
7360 			if (mctlp != NULL)
7361 				*mctlp = NULL;
7362 			*flagsp = 0;
7363 			mutex_exit(&stp->sd_lock);
7364 			return (0);
7365 		}
7366 
7367 		waitflag = GETWAIT;
7368 		if (flags &
7369 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7370 			if (flags & MSG_HOLDSIG)
7371 				waitflag |= STR_NOSIG;
7372 			if (flags & MSG_IGNERROR)
7373 				waitflag |= STR_NOERROR;
7374 			if (flags & MSG_IPEEK)
7375 				waitflag |= STR_PEEK;
7376 			if (flags & MSG_DELAYERROR)
7377 				waitflag |= STR_DELAYERR;
7378 		}
7379 		if (uiop != NULL)
7380 			fmode = uiop->uio_fmode;
7381 		else
7382 			fmode = 0;
7383 
7384 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7385 		    "kstrgetmsg calls strwaitq:%p, %p",
7386 		    vp, uiop);
7387 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7388 		    fmode, timout, &done))) != 0 || done) {
7389 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7390 			    "kstrgetmsg error or done:%p, %p",
7391 			    vp, uiop);
7392 			mutex_exit(&stp->sd_lock);
7393 			return (error);
7394 		}
7395 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7396 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7397 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7398 			mutex_exit(&stp->sd_lock);
7399 			return (error);
7400 		}
7401 		first = 0;
7402 	}
7403 	ASSERT(bp != NULL);
7404 	/*
7405 	 * Extract any mark information. If the message is not completely
7406 	 * consumed this information will be put in the mblk
7407 	 * that is putback.
7408 	 * If MSGMARKNEXT is set and the message is completely consumed
7409 	 * the STRATMARK flag will be set below. Likewise, if
7410 	 * MSGNOTMARKNEXT is set and the message is
7411 	 * completely consumed STRNOTATMARK will be set.
7412 	 */
7413 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7414 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7415 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7416 	pri = bp->b_band;
7417 	if (mark != 0) {
7418 		/*
7419 		 * If the caller doesn't want the mark return.
7420 		 * Used to implement MSG_WAITALL in sockets.
7421 		 */
7422 		if (flags & MSG_NOMARK) {
7423 			putback(stp, q, bp, pri);
7424 			qbackenable(q, pri);
7425 			mutex_exit(&stp->sd_lock);
7426 			return (EWOULDBLOCK);
7427 		}
7428 		if (bp == stp->sd_mark) {
7429 			mark |= _LASTMARK;
7430 			stp->sd_mark = NULL;
7431 		}
7432 	}
7433 
7434 	/*
7435 	 * keep track of the first message type
7436 	 */
7437 	type = bp->b_datap->db_type;
7438 
7439 	if (bp->b_datap->db_type == M_PASSFP) {
7440 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7441 			stp->sd_mark = bp;
7442 		bp->b_flag |= mark & ~_LASTMARK;
7443 		putback(stp, q, bp, pri);
7444 		qbackenable(q, pri);
7445 		mutex_exit(&stp->sd_lock);
7446 		return (EBADMSG);
7447 	}
7448 	ASSERT(type != M_SIG);
7449 
7450 	if (flags & MSG_IPEEK) {
7451 		/*
7452 		 * Clear any struioflag - we do the uiomove over again
7453 		 * when peeking since it simplifies the code.
7454 		 *
7455 		 * Dup the message and put the original back on the queue.
7456 		 * If dupmsg() fails, try again with copymsg() to see if
7457 		 * there is indeed a shortage of memory.  dupmsg() may fail
7458 		 * if db_ref in any of the messages reaches its limit.
7459 		 */
7460 
7461 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7462 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7463 			/*
7464 			 * Restore the state of the stream head since we
7465 			 * need to drop sd_lock (strwaitbuf is sleeping).
7466 			 */
7467 			size_t size = msgdsize(bp);
7468 
7469 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7470 				stp->sd_mark = bp;
7471 			bp->b_flag |= mark & ~_LASTMARK;
7472 			putback(stp, q, bp, pri);
7473 			mutex_exit(&stp->sd_lock);
7474 			error = strwaitbuf(size, BPRI_HI);
7475 			if (error) {
7476 				/*
7477 				 * There is no net change to the queue thus
7478 				 * no need to qbackenable.
7479 				 */
7480 				return (error);
7481 			}
7482 			goto retry;
7483 		}
7484 
7485 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7486 			stp->sd_mark = bp;
7487 		bp->b_flag |= mark & ~_LASTMARK;
7488 		putback(stp, q, bp, pri);
7489 		bp = nbp;
7490 	}
7491 
7492 	/*
7493 	 * Set this flag so strrput will not generate signals. Need to
7494 	 * make sure this flag is cleared before leaving this routine
7495 	 * else signals will stop being sent.
7496 	 */
7497 	stp->sd_flag |= STRGETINPROG;
7498 	mutex_exit(&stp->sd_lock);
7499 
7500 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7501 		mblk_t *tmp, *prevmp;
7502 
7503 		/*
7504 		 * Put first non-data mblk back to stream head and
7505 		 * cut the mblk chain so sd_rputdatafunc only sees
7506 		 * M_DATA mblks. We can skip the first mblk since it
7507 		 * is M_DATA according to the condition above.
7508 		 */
7509 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7510 		    prevmp = tmp, tmp = tmp->b_cont) {
7511 			if (DB_TYPE(tmp) != M_DATA) {
7512 				prevmp->b_cont = NULL;
7513 				mutex_enter(&stp->sd_lock);
7514 				putback(stp, q, tmp, tmp->b_band);
7515 				mutex_exit(&stp->sd_lock);
7516 				break;
7517 			}
7518 		}
7519 
7520 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7521 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7522 		    NULL, NULL, NULL, NULL);
7523 
7524 		if (bp == NULL)
7525 			goto retry;
7526 	}
7527 
7528 	if (STREAM_NEEDSERVICE(stp))
7529 		stream_runservice(stp);
7530 
7531 	/*
7532 	 * Set HIPRI flag if message is priority.
7533 	 */
7534 	if (type >= QPCTL)
7535 		flg = MSG_HIPRI;
7536 	else
7537 		flg = MSG_BAND;
7538 
7539 	/*
7540 	 * First process PROTO or PCPROTO blocks, if any.
7541 	 */
7542 	if (mctlp != NULL && type != M_DATA) {
7543 		mblk_t *nbp;
7544 
7545 		*mctlp = bp;
7546 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7547 			bp = bp->b_cont;
7548 		nbp = bp->b_cont;
7549 		bp->b_cont = NULL;
7550 		bp = nbp;
7551 	}
7552 
7553 	if (bp && bp->b_datap->db_type != M_DATA) {
7554 		/*
7555 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7556 		 */
7557 		more |= MORECTL;
7558 		savemp = bp;
7559 		while (bp && bp->b_datap->db_type != M_DATA) {
7560 			savemptail = bp;
7561 			bp = bp->b_cont;
7562 		}
7563 		savemptail->b_cont = NULL;
7564 	}
7565 
7566 	/*
7567 	 * Now process DATA blocks, if any.
7568 	 */
7569 	if (uiop == NULL) {
7570 		/* Append data to tail of mctlp */
7571 
7572 		ASSERT(bp == NULL || !(bp->b_datap->db_flags & DBLK_UIOA));
7573 		if (mctlp != NULL) {
7574 			mblk_t **mpp = mctlp;
7575 
7576 			while (*mpp != NULL)
7577 				mpp = &((*mpp)->b_cont);
7578 			*mpp = bp;
7579 			bp = NULL;
7580 		}
7581 	} else if (bp && (bp->b_datap->db_flags & DBLK_UIOA)) {
7582 		/*
7583 		 * A uioa mblk_t chain, as uio processing has already
7584 		 * been done we simple skip over processing.
7585 		 */
7586 		bp = NULL;
7587 		pr = 0;
7588 
7589 	} else if (uiop->uio_resid >= 0 && bp) {
7590 		size_t oldresid = uiop->uio_resid;
7591 
7592 		/*
7593 		 * If a streams message is likely to consist
7594 		 * of many small mblks, it is pulled up into
7595 		 * one continuous chunk of memory.
7596 		 * see longer comment at top of page
7597 		 * by mblk_pull_len declaration.
7598 		 */
7599 
7600 		if (MBLKL(bp) < mblk_pull_len) {
7601 			(void) pullupmsg(bp, -1);
7602 		}
7603 
7604 		bp = struiocopyout(bp, uiop, &error);
7605 		if (error != 0) {
7606 			if (mctlp != NULL) {
7607 				freemsg(*mctlp);
7608 				*mctlp = NULL;
7609 			} else
7610 				freemsg(savemp);
7611 			mutex_enter(&stp->sd_lock);
7612 			/*
7613 			 * clear stream head hi pri flag based on
7614 			 * first message
7615 			 */
7616 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7617 				ASSERT(type == M_PCPROTO);
7618 				stp->sd_flag &= ~STRPRI;
7619 			}
7620 			more = 0;
7621 			goto getmout;
7622 		}
7623 		/*
7624 		 * (pr == 1) indicates a partial read.
7625 		 */
7626 		if (oldresid > uiop->uio_resid)
7627 			pr = 1;
7628 	}
7629 
7630 	if (bp) {			/* more data blocks in msg */
7631 		more |= MOREDATA;
7632 		if (savemp)
7633 			savemptail->b_cont = bp;
7634 		else
7635 			savemp = bp;
7636 	}
7637 
7638 	mutex_enter(&stp->sd_lock);
7639 	if (savemp) {
7640 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7641 			/*
7642 			 * When MSG_DISCARDTAIL is set or
7643 			 * when peeking discard any tail. When peeking this
7644 			 * is the tail of the dup that was copied out - the
7645 			 * message has already been putback on the queue.
7646 			 * Return MOREDATA to the caller even though the data
7647 			 * is discarded. This is used by sockets (to
7648 			 * set MSG_TRUNC).
7649 			 */
7650 			freemsg(savemp);
7651 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7652 				ASSERT(type == M_PCPROTO);
7653 				stp->sd_flag &= ~STRPRI;
7654 			}
7655 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7656 		    msgnodata(savemp)) {
7657 			/*
7658 			 * Avoid queuing a zero-length tail part of
7659 			 * a message. pr=1 indicates that we read some of
7660 			 * the message.
7661 			 */
7662 			freemsg(savemp);
7663 			more &= ~MOREDATA;
7664 			if (type >= QPCTL) {
7665 				ASSERT(type == M_PCPROTO);
7666 				stp->sd_flag &= ~STRPRI;
7667 			}
7668 		} else {
7669 			savemp->b_band = pri;
7670 			/*
7671 			 * If the first message was HIPRI and the one we're
7672 			 * putting back isn't, then clear STRPRI, otherwise
7673 			 * set STRPRI again.  Note that we must set STRPRI
7674 			 * again since the flush logic in strrput_nondata()
7675 			 * may have cleared it while we had sd_lock dropped.
7676 			 */
7677 
7678 			ASSERT(!(savemp->b_datap->db_flags & DBLK_UIOA));
7679 			if (type >= QPCTL) {
7680 				ASSERT(type == M_PCPROTO);
7681 				if (queclass(savemp) < QPCTL)
7682 					stp->sd_flag &= ~STRPRI;
7683 				else
7684 					stp->sd_flag |= STRPRI;
7685 			} else if (queclass(savemp) >= QPCTL) {
7686 				/*
7687 				 * The first message was not a HIPRI message,
7688 				 * but the one we are about to putback is.
7689 				 * For simplicitly, we do not allow for HIPRI
7690 				 * messages to be embedded in the message
7691 				 * body, so just force it to same type as
7692 				 * first message.
7693 				 */
7694 				ASSERT(type == M_DATA || type == M_PROTO);
7695 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7696 				savemp->b_datap->db_type = type;
7697 			}
7698 			if (mark != 0) {
7699 				if ((mark & _LASTMARK) &&
7700 				    (stp->sd_mark == NULL)) {
7701 					/*
7702 					 * If another marked message arrived
7703 					 * while sd_lock was not held sd_mark
7704 					 * would be non-NULL.
7705 					 */
7706 					stp->sd_mark = savemp;
7707 				}
7708 				savemp->b_flag |= mark & ~_LASTMARK;
7709 			}
7710 			putback(stp, q, savemp, pri);
7711 		}
7712 	} else if (!(flags & MSG_IPEEK)) {
7713 		/*
7714 		 * The complete message was consumed.
7715 		 *
7716 		 * If another M_PCPROTO arrived while sd_lock was not held
7717 		 * it would have been discarded since STRPRI was still set.
7718 		 *
7719 		 * Move the MSG*MARKNEXT information
7720 		 * to the stream head just in case
7721 		 * the read queue becomes empty.
7722 		 * clear stream head hi pri flag based on
7723 		 * first message
7724 		 *
7725 		 * If the stream head was at the mark
7726 		 * (STRATMARK) before we dropped sd_lock above
7727 		 * and some data was consumed then we have
7728 		 * moved past the mark thus STRATMARK is
7729 		 * cleared. However, if a message arrived in
7730 		 * strrput during the copyout above causing
7731 		 * STRATMARK to be set we can not clear that
7732 		 * flag.
7733 		 * XXX A "perimeter" would help by single-threading strrput,
7734 		 * strread, strgetmsg and kstrgetmsg.
7735 		 */
7736 		if (type >= QPCTL) {
7737 			ASSERT(type == M_PCPROTO);
7738 			stp->sd_flag &= ~STRPRI;
7739 		}
7740 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7741 			if (mark & MSGMARKNEXT) {
7742 				stp->sd_flag &= ~STRNOTATMARK;
7743 				stp->sd_flag |= STRATMARK;
7744 			} else if (mark & MSGNOTMARKNEXT) {
7745 				stp->sd_flag &= ~STRATMARK;
7746 				stp->sd_flag |= STRNOTATMARK;
7747 			} else {
7748 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7749 			}
7750 		} else if (pr && (old_sd_flag & STRATMARK)) {
7751 			stp->sd_flag &= ~STRATMARK;
7752 		}
7753 	}
7754 
7755 	*flagsp = flg;
7756 	*prip = pri;
7757 
7758 	/*
7759 	 * Getmsg cleanup processing - if the state of the queue has changed
7760 	 * some signals may need to be sent and/or poll awakened.
7761 	 */
7762 getmout:
7763 	qbackenable(q, pri);
7764 
7765 	/*
7766 	 * We dropped the stream head lock above. Send all M_SIG messages
7767 	 * before processing stream head for SIGPOLL messages.
7768 	 */
7769 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7770 	while ((bp = q->q_first) != NULL &&
7771 	    (bp->b_datap->db_type == M_SIG)) {
7772 		/*
7773 		 * sd_lock is held so the content of the read queue can not
7774 		 * change.
7775 		 */
7776 		bp = getq(q);
7777 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7778 
7779 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7780 		mutex_exit(&stp->sd_lock);
7781 		freemsg(bp);
7782 		if (STREAM_NEEDSERVICE(stp))
7783 			stream_runservice(stp);
7784 		mutex_enter(&stp->sd_lock);
7785 	}
7786 
7787 	/*
7788 	 * stream head cannot change while we make the determination
7789 	 * whether or not to send a signal. Drop the flag to allow strrput
7790 	 * to send firstmsgsigs again.
7791 	 */
7792 	stp->sd_flag &= ~STRGETINPROG;
7793 
7794 	/*
7795 	 * If the type of message at the front of the queue changed
7796 	 * due to the receive the appropriate signals and pollwakeup events
7797 	 * are generated. The type of changes are:
7798 	 *	Processed a hipri message, q_first is not hipri.
7799 	 *	Processed a band X message, and q_first is band Y.
7800 	 * The generated signals and pollwakeups are identical to what
7801 	 * strrput() generates should the message that is now on q_first
7802 	 * arrive to an empty read queue.
7803 	 *
7804 	 * Note: only strrput will send a signal for a hipri message.
7805 	 */
7806 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7807 		strsigset_t signals = 0;
7808 		strpollset_t pollwakeups = 0;
7809 
7810 		if (flg & MSG_HIPRI) {
7811 			/*
7812 			 * Removed a hipri message. Regular data at
7813 			 * the front of  the queue.
7814 			 */
7815 			if (bp->b_band == 0) {
7816 				signals = S_INPUT | S_RDNORM;
7817 				pollwakeups = POLLIN | POLLRDNORM;
7818 			} else {
7819 				signals = S_INPUT | S_RDBAND;
7820 				pollwakeups = POLLIN | POLLRDBAND;
7821 			}
7822 		} else if (pri != bp->b_band) {
7823 			/*
7824 			 * The band is different for the new q_first.
7825 			 */
7826 			if (bp->b_band == 0) {
7827 				signals = S_RDNORM;
7828 				pollwakeups = POLLIN | POLLRDNORM;
7829 			} else {
7830 				signals = S_RDBAND;
7831 				pollwakeups = POLLIN | POLLRDBAND;
7832 			}
7833 		}
7834 
7835 		if (pollwakeups != 0) {
7836 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7837 				if (!(stp->sd_rput_opt & SR_POLLIN))
7838 					goto no_pollwake;
7839 				stp->sd_rput_opt &= ~SR_POLLIN;
7840 			}
7841 			mutex_exit(&stp->sd_lock);
7842 			pollwakeup(&stp->sd_pollist, pollwakeups);
7843 			mutex_enter(&stp->sd_lock);
7844 		}
7845 no_pollwake:
7846 
7847 		if (stp->sd_sigflags & signals)
7848 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7849 	}
7850 	mutex_exit(&stp->sd_lock);
7851 
7852 	rvp->r_val1 = more;
7853 	return (error);
7854 #undef	_LASTMARK
7855 }
7856 
7857 /*
7858  * Put a message downstream.
7859  *
7860  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7861  */
7862 int
7863 strputmsg(
7864 	struct vnode *vp,
7865 	struct strbuf *mctl,
7866 	struct strbuf *mdata,
7867 	unsigned char pri,
7868 	int flag,
7869 	int fmode)
7870 {
7871 	struct stdata *stp;
7872 	queue_t *wqp;
7873 	mblk_t *mp;
7874 	ssize_t msgsize;
7875 	ssize_t rmin, rmax;
7876 	int error;
7877 	struct uio uios;
7878 	struct uio *uiop = &uios;
7879 	struct iovec iovs;
7880 	int xpg4 = 0;
7881 
7882 	ASSERT(vp->v_stream);
7883 	stp = vp->v_stream;
7884 	wqp = stp->sd_wrq;
7885 
7886 	/*
7887 	 * If it is an XPG4 application, we need to send
7888 	 * SIGPIPE below
7889 	 */
7890 
7891 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7892 	flag &= ~MSG_XPG4;
7893 
7894 	if (audit_active)
7895 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7896 
7897 	mutex_enter(&stp->sd_lock);
7898 
7899 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7900 		mutex_exit(&stp->sd_lock);
7901 		return (error);
7902 	}
7903 
7904 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7905 		error = strwriteable(stp, B_FALSE, xpg4);
7906 		if (error != 0) {
7907 			mutex_exit(&stp->sd_lock);
7908 			return (error);
7909 		}
7910 	}
7911 
7912 	mutex_exit(&stp->sd_lock);
7913 
7914 	/*
7915 	 * Check for legal flag value.
7916 	 */
7917 	switch (flag) {
7918 	case MSG_HIPRI:
7919 		if ((mctl->len < 0) || (pri != 0))
7920 			return (EINVAL);
7921 		break;
7922 	case MSG_BAND:
7923 		break;
7924 
7925 	default:
7926 		return (EINVAL);
7927 	}
7928 
7929 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7930 	    "strputmsg in:stp %p", stp);
7931 
7932 	/* get these values from those cached in the stream head */
7933 	rmin = stp->sd_qn_minpsz;
7934 	rmax = stp->sd_qn_maxpsz;
7935 
7936 	/*
7937 	 * Make sure ctl and data sizes together fall within the
7938 	 * limits of the max and min receive packet sizes and do
7939 	 * not exceed system limit.
7940 	 */
7941 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7942 	if (rmax == 0) {
7943 		return (ERANGE);
7944 	}
7945 	/*
7946 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7947 	 * Needed to prevent partial failures in the strmakedata loop.
7948 	 */
7949 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7950 		rmax = stp->sd_maxblk;
7951 
7952 	if ((msgsize = mdata->len) < 0) {
7953 		msgsize = 0;
7954 		rmin = 0;	/* no range check for NULL data part */
7955 	}
7956 	if ((msgsize < rmin) ||
7957 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7958 	    (mctl->len > strctlsz)) {
7959 		return (ERANGE);
7960 	}
7961 
7962 	/*
7963 	 * Setup uio and iov for data part
7964 	 */
7965 	iovs.iov_base = mdata->buf;
7966 	iovs.iov_len = msgsize;
7967 	uios.uio_iov = &iovs;
7968 	uios.uio_iovcnt = 1;
7969 	uios.uio_loffset = 0;
7970 	uios.uio_segflg = UIO_USERSPACE;
7971 	uios.uio_fmode = fmode;
7972 	uios.uio_extflg = UIO_COPY_DEFAULT;
7973 	uios.uio_resid = msgsize;
7974 	uios.uio_offset = 0;
7975 
7976 	/* Ignore flow control in strput for HIPRI */
7977 	if (flag & MSG_HIPRI)
7978 		flag |= MSG_IGNFLOW;
7979 
7980 	for (;;) {
7981 		int done = 0;
7982 
7983 		/*
7984 		 * strput will always free the ctl mblk - even when strput
7985 		 * fails.
7986 		 */
7987 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7988 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7989 			    "strputmsg out:stp %p out %d error %d",
7990 			    stp, 1, error);
7991 			return (error);
7992 		}
7993 		/*
7994 		 * Verify that the whole message can be transferred by
7995 		 * strput.
7996 		 */
7997 		ASSERT(stp->sd_maxblk == INFPSZ ||
7998 		    stp->sd_maxblk >= mdata->len);
7999 
8000 		msgsize = mdata->len;
8001 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8002 		mdata->len = msgsize;
8003 
8004 		if (error == 0)
8005 			break;
8006 
8007 		if (error != EWOULDBLOCK)
8008 			goto out;
8009 
8010 		mutex_enter(&stp->sd_lock);
8011 		/*
8012 		 * Check for a missed wakeup.
8013 		 * Needed since strput did not hold sd_lock across
8014 		 * the canputnext.
8015 		 */
8016 		if (bcanputnext(wqp, pri)) {
8017 			/* Try again */
8018 			mutex_exit(&stp->sd_lock);
8019 			continue;
8020 		}
8021 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
8022 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
8023 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
8024 		    &done)) != 0) || done) {
8025 			mutex_exit(&stp->sd_lock);
8026 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8027 			    "strputmsg out:q %p out %d error %d",
8028 			    stp, 0, error);
8029 			return (error);
8030 		}
8031 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
8032 		    "strputmsg wake:stp %p wakes", stp);
8033 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8034 			mutex_exit(&stp->sd_lock);
8035 			return (error);
8036 		}
8037 		mutex_exit(&stp->sd_lock);
8038 	}
8039 out:
8040 	/*
8041 	 * For historic reasons, applications expect EAGAIN
8042 	 * when data mblk could not be allocated. so change
8043 	 * ENOMEM back to EAGAIN
8044 	 */
8045 	if (error == ENOMEM)
8046 		error = EAGAIN;
8047 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8048 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
8049 	return (error);
8050 }
8051 
8052 /*
8053  * Put a message downstream.
8054  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
8055  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
8056  * and the fmode parameter.
8057  *
8058  * This routine handles the consolidation private flags:
8059  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
8060  *	MSG_HOLDSIG	Hold signals while waiting for data.
8061  *	MSG_IGNFLOW	Don't check streams flow control.
8062  *
8063  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
8064  */
8065 int
8066 kstrputmsg(
8067 	struct vnode *vp,
8068 	mblk_t *mctl,
8069 	struct uio *uiop,
8070 	ssize_t msgsize,
8071 	unsigned char pri,
8072 	int flag,
8073 	int fmode)
8074 {
8075 	struct stdata *stp;
8076 	queue_t *wqp;
8077 	ssize_t rmin, rmax;
8078 	int error;
8079 
8080 	ASSERT(vp->v_stream);
8081 	stp = vp->v_stream;
8082 	wqp = stp->sd_wrq;
8083 	if (audit_active)
8084 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
8085 	if (mctl == NULL)
8086 		return (EINVAL);
8087 
8088 	mutex_enter(&stp->sd_lock);
8089 
8090 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
8091 		mutex_exit(&stp->sd_lock);
8092 		freemsg(mctl);
8093 		return (error);
8094 	}
8095 
8096 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
8097 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
8098 			error = strwriteable(stp, B_FALSE, B_TRUE);
8099 			if (error != 0) {
8100 				mutex_exit(&stp->sd_lock);
8101 				freemsg(mctl);
8102 				return (error);
8103 			}
8104 		}
8105 	}
8106 
8107 	mutex_exit(&stp->sd_lock);
8108 
8109 	/*
8110 	 * Check for legal flag value.
8111 	 */
8112 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
8113 	case MSG_HIPRI:
8114 		if (pri != 0) {
8115 			freemsg(mctl);
8116 			return (EINVAL);
8117 		}
8118 		break;
8119 	case MSG_BAND:
8120 		break;
8121 	default:
8122 		freemsg(mctl);
8123 		return (EINVAL);
8124 	}
8125 
8126 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
8127 	    "kstrputmsg in:stp %p", stp);
8128 
8129 	/* get these values from those cached in the stream head */
8130 	rmin = stp->sd_qn_minpsz;
8131 	rmax = stp->sd_qn_maxpsz;
8132 
8133 	/*
8134 	 * Make sure ctl and data sizes together fall within the
8135 	 * limits of the max and min receive packet sizes and do
8136 	 * not exceed system limit.
8137 	 */
8138 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
8139 	if (rmax == 0) {
8140 		freemsg(mctl);
8141 		return (ERANGE);
8142 	}
8143 	/*
8144 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8145 	 * Needed to prevent partial failures in the strmakedata loop.
8146 	 */
8147 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8148 		rmax = stp->sd_maxblk;
8149 
8150 	if (uiop == NULL) {
8151 		msgsize = -1;
8152 		rmin = -1;	/* no range check for NULL data part */
8153 	} else {
8154 		/* Use uio flags as well as the fmode parameter flags */
8155 		fmode |= uiop->uio_fmode;
8156 
8157 		if ((msgsize < rmin) ||
8158 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
8159 			freemsg(mctl);
8160 			return (ERANGE);
8161 		}
8162 	}
8163 
8164 	/* Ignore flow control in strput for HIPRI */
8165 	if (flag & MSG_HIPRI)
8166 		flag |= MSG_IGNFLOW;
8167 
8168 	for (;;) {
8169 		int done = 0;
8170 		int waitflag;
8171 		mblk_t *mp;
8172 
8173 		/*
8174 		 * strput will always free the ctl mblk - even when strput
8175 		 * fails. If MSG_IGNFLOW is set then any error returned
8176 		 * will cause us to break the loop, so we don't need a copy
8177 		 * of the message. If MSG_IGNFLOW is not set, then we can
8178 		 * get hit by flow control and be forced to try again. In
8179 		 * this case we need to have a copy of the message. We
8180 		 * do this using copymsg since the message may get modified
8181 		 * by something below us.
8182 		 *
8183 		 * We've observed that many TPI providers do not check db_ref
8184 		 * on the control messages but blindly reuse them for the
8185 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8186 		 * friendly to such providers than using dupmsg. Also, note
8187 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8188 		 * Only data messages are subject to flow control, hence
8189 		 * subject to this copymsg.
8190 		 */
8191 		if (flag & MSG_IGNFLOW) {
8192 			mp = mctl;
8193 			mctl = NULL;
8194 		} else {
8195 			do {
8196 				/*
8197 				 * If a message has a free pointer, the message
8198 				 * must be dupmsg to maintain this pointer.
8199 				 * Code using this facility must be sure
8200 				 * that modules below will not change the
8201 				 * contents of the dblk without checking db_ref
8202 				 * first. If db_ref is > 1, then the module
8203 				 * needs to do a copymsg first. Otherwise,
8204 				 * the contents of the dblk may become
8205 				 * inconsistent because the freesmg/freeb below
8206 				 * may end up calling atomic_add_32_nv.
8207 				 * The atomic_add_32_nv in freeb (accessing
8208 				 * all of db_ref, db_type, db_flags, and
8209 				 * db_struioflag) does not prevent other threads
8210 				 * from concurrently trying to modify e.g.
8211 				 * db_type.
8212 				 */
8213 				if (mctl->b_datap->db_frtnp != NULL)
8214 					mp = dupmsg(mctl);
8215 				else
8216 					mp = copymsg(mctl);
8217 
8218 				if (mp != NULL)
8219 					break;
8220 
8221 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8222 				if (error) {
8223 					freemsg(mctl);
8224 					return (error);
8225 				}
8226 			} while (mp == NULL);
8227 		}
8228 		/*
8229 		 * Verify that all of msgsize can be transferred by
8230 		 * strput.
8231 		 */
8232 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8233 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8234 		if (error == 0)
8235 			break;
8236 
8237 		if (error != EWOULDBLOCK)
8238 			goto out;
8239 
8240 		/*
8241 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8242 		 * above.
8243 		 */
8244 		ASSERT(!(flag & MSG_IGNFLOW));
8245 		mutex_enter(&stp->sd_lock);
8246 		/*
8247 		 * Check for a missed wakeup.
8248 		 * Needed since strput did not hold sd_lock across
8249 		 * the canputnext.
8250 		 */
8251 		if (bcanputnext(wqp, pri)) {
8252 			/* Try again */
8253 			mutex_exit(&stp->sd_lock);
8254 			continue;
8255 		}
8256 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8257 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8258 
8259 		waitflag = WRITEWAIT;
8260 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8261 			if (flag & MSG_HOLDSIG)
8262 				waitflag |= STR_NOSIG;
8263 			if (flag & MSG_IGNERROR)
8264 				waitflag |= STR_NOERROR;
8265 		}
8266 		if (((error = strwaitq(stp, waitflag,
8267 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8268 			mutex_exit(&stp->sd_lock);
8269 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8270 			    "kstrputmsg out:stp %p out %d error %d",
8271 			    stp, 0, error);
8272 			freemsg(mctl);
8273 			return (error);
8274 		}
8275 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8276 		    "kstrputmsg wake:stp %p wakes", stp);
8277 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8278 			mutex_exit(&stp->sd_lock);
8279 			freemsg(mctl);
8280 			return (error);
8281 		}
8282 		mutex_exit(&stp->sd_lock);
8283 	}
8284 out:
8285 	freemsg(mctl);
8286 	/*
8287 	 * For historic reasons, applications expect EAGAIN
8288 	 * when data mblk could not be allocated. so change
8289 	 * ENOMEM back to EAGAIN
8290 	 */
8291 	if (error == ENOMEM)
8292 		error = EAGAIN;
8293 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8294 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8295 	return (error);
8296 }
8297 
8298 /*
8299  * Determines whether the necessary conditions are set on a stream
8300  * for it to be readable, writeable, or have exceptions.
8301  *
8302  * strpoll handles the consolidation private events:
8303  *	POLLNOERR	Do not return POLLERR even if there are stream
8304  *			head errors.
8305  *			Used by sockfs.
8306  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8307  *			the queue contains one or more M_DATA mblks. Thus
8308  *			when this flag is set a queue with only
8309  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8310  *			Used by sockfs to ignore T_EXDATA_IND messages.
8311  *
8312  * Note: POLLRDDATA assumes that synch streams only return messages with
8313  * an M_DATA attached (i.e. not messages consisting of only
8314  * an M_PROTO/M_PCPROTO part).
8315  */
8316 int
8317 strpoll(
8318 	struct stdata *stp,
8319 	short events_arg,
8320 	int anyyet,
8321 	short *reventsp,
8322 	struct pollhead **phpp)
8323 {
8324 	int events = (ushort_t)events_arg;
8325 	int retevents = 0;
8326 	mblk_t *mp;
8327 	qband_t *qbp;
8328 	long sd_flags = stp->sd_flag;
8329 	int headlocked = 0;
8330 
8331 	/*
8332 	 * For performance, a single 'if' tests for most possible edge
8333 	 * conditions in one shot
8334 	 */
8335 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8336 		if (sd_flags & STPLEX) {
8337 			*reventsp = POLLNVAL;
8338 			return (EINVAL);
8339 		}
8340 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8341 		    (sd_flags & STRDERR)) ||
8342 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8343 		    (sd_flags & STWRERR))) {
8344 			if (!(events & POLLNOERR)) {
8345 				*reventsp = POLLERR;
8346 				return (0);
8347 			}
8348 		}
8349 	}
8350 	if (sd_flags & STRHUP) {
8351 		retevents |= POLLHUP;
8352 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8353 		queue_t *tq;
8354 		queue_t	*qp = stp->sd_wrq;
8355 
8356 		claimstr(qp);
8357 		/* Find next module forward that has a service procedure */
8358 		tq = qp->q_next->q_nfsrv;
8359 		ASSERT(tq != NULL);
8360 
8361 		polllock(&stp->sd_pollist, QLOCK(tq));
8362 		if (events & POLLWRNORM) {
8363 			queue_t *sqp;
8364 
8365 			if (tq->q_flag & QFULL)
8366 				/* ensure backq svc procedure runs */
8367 				tq->q_flag |= QWANTW;
8368 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8369 				/* Check sync stream barrier write q */
8370 				mutex_exit(QLOCK(tq));
8371 				polllock(&stp->sd_pollist, QLOCK(sqp));
8372 				if (sqp->q_flag & QFULL)
8373 					/* ensure pollwakeup() is done */
8374 					sqp->q_flag |= QWANTWSYNC;
8375 				else
8376 					retevents |= POLLOUT;
8377 				/* More write events to process ??? */
8378 				if (! (events & POLLWRBAND)) {
8379 					mutex_exit(QLOCK(sqp));
8380 					releasestr(qp);
8381 					goto chkrd;
8382 				}
8383 				mutex_exit(QLOCK(sqp));
8384 				polllock(&stp->sd_pollist, QLOCK(tq));
8385 			} else
8386 				retevents |= POLLOUT;
8387 		}
8388 		if (events & POLLWRBAND) {
8389 			qbp = tq->q_bandp;
8390 			if (qbp) {
8391 				while (qbp) {
8392 					if (qbp->qb_flag & QB_FULL)
8393 						qbp->qb_flag |= QB_WANTW;
8394 					else
8395 						retevents |= POLLWRBAND;
8396 					qbp = qbp->qb_next;
8397 				}
8398 			} else {
8399 				retevents |= POLLWRBAND;
8400 			}
8401 		}
8402 		mutex_exit(QLOCK(tq));
8403 		releasestr(qp);
8404 	}
8405 chkrd:
8406 	if (sd_flags & STRPRI) {
8407 		retevents |= (events & POLLPRI);
8408 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8409 		queue_t	*qp = _RD(stp->sd_wrq);
8410 		int normevents = (events & (POLLIN | POLLRDNORM));
8411 
8412 		/*
8413 		 * Note: Need to do polllock() here since ps_lock may be
8414 		 * held. See bug 4191544.
8415 		 */
8416 		polllock(&stp->sd_pollist, &stp->sd_lock);
8417 		headlocked = 1;
8418 		mp = qp->q_first;
8419 		while (mp) {
8420 			/*
8421 			 * For POLLRDDATA we scan b_cont and b_next until we
8422 			 * find an M_DATA.
8423 			 */
8424 			if ((events & POLLRDDATA) &&
8425 			    mp->b_datap->db_type != M_DATA) {
8426 				mblk_t *nmp = mp->b_cont;
8427 
8428 				while (nmp != NULL &&
8429 				    nmp->b_datap->db_type != M_DATA)
8430 					nmp = nmp->b_cont;
8431 				if (nmp == NULL) {
8432 					mp = mp->b_next;
8433 					continue;
8434 				}
8435 			}
8436 			if (mp->b_band == 0)
8437 				retevents |= normevents;
8438 			else
8439 				retevents |= (events & (POLLIN | POLLRDBAND));
8440 			break;
8441 		}
8442 		if (! (retevents & normevents) &&
8443 		    (stp->sd_wakeq & RSLEEP)) {
8444 			/*
8445 			 * Sync stream barrier read queue has data.
8446 			 */
8447 			retevents |= normevents;
8448 		}
8449 		/* Treat eof as normal data */
8450 		if (sd_flags & STREOF)
8451 			retevents |= normevents;
8452 	}
8453 
8454 	*reventsp = (short)retevents;
8455 	if (retevents) {
8456 		if (headlocked)
8457 			mutex_exit(&stp->sd_lock);
8458 		return (0);
8459 	}
8460 
8461 	/*
8462 	 * If poll() has not found any events yet, set up event cell
8463 	 * to wake up the poll if a requested event occurs on this
8464 	 * stream.  Check for collisions with outstanding poll requests.
8465 	 */
8466 	if (!anyyet) {
8467 		*phpp = &stp->sd_pollist;
8468 		if (headlocked == 0) {
8469 			polllock(&stp->sd_pollist, &stp->sd_lock);
8470 			headlocked = 1;
8471 		}
8472 		stp->sd_rput_opt |= SR_POLLIN;
8473 	}
8474 	if (headlocked)
8475 		mutex_exit(&stp->sd_lock);
8476 	return (0);
8477 }
8478 
8479 /*
8480  * The purpose of putback() is to assure sleeping polls/reads
8481  * are awakened when there are no new messages arriving at the,
8482  * stream head, and a message is placed back on the read queue.
8483  *
8484  * sd_lock must be held when messages are placed back on stream
8485  * head.  (getq() holds sd_lock when it removes messages from
8486  * the queue)
8487  */
8488 
8489 static void
8490 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8491 {
8492 	mblk_t	*qfirst;
8493 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8494 
8495 	/*
8496 	 * As a result of lock-step ordering around q_lock and sd_lock,
8497 	 * it's possible for function calls like putnext() and
8498 	 * canputnext() to get an inaccurate picture of how much
8499 	 * data is really being processed at the stream head.
8500 	 * We only consolidate with existing messages on the queue
8501 	 * if the length of the message we want to put back is smaller
8502 	 * than the queue hiwater mark.
8503 	 */
8504 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8505 	    (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8506 	    (DB_TYPE(qfirst) == M_DATA) &&
8507 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8508 	    ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8509 	    (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8510 		/*
8511 		 * We use the same logic as defined in strrput()
8512 		 * but in reverse as we are putting back onto the
8513 		 * queue and want to retain byte ordering.
8514 		 * Consolidate M_DATA messages with M_DATA ONLY.
8515 		 * strrput() allows the consolidation of M_DATA onto
8516 		 * M_PROTO | M_PCPROTO but not the other way round.
8517 		 *
8518 		 * The consolidation does not take place if the message
8519 		 * we are returning to the queue is marked with either
8520 		 * of the marks or the delim flag or if q_first
8521 		 * is marked with MSGMARK. The MSGMARK check is needed to
8522 		 * handle the odd semantics of MSGMARK where essentially
8523 		 * the whole message is to be treated as marked.
8524 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8525 		 * to the front of the b_cont chain.
8526 		 */
8527 		rmvq_noenab(q, qfirst);
8528 
8529 		/*
8530 		 * The first message in the b_cont list
8531 		 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8532 		 * We need to handle the case where we
8533 		 * are appending:
8534 		 *
8535 		 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8536 		 * 2) a MSGMARKNEXT to a plain message.
8537 		 * 3) a MSGNOTMARKNEXT to a plain message
8538 		 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8539 		 *    message.
8540 		 *
8541 		 * Thus we never append a MSGMARKNEXT or
8542 		 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8543 		 */
8544 		if (qfirst->b_flag & MSGMARKNEXT) {
8545 			bp->b_flag |= MSGMARKNEXT;
8546 			bp->b_flag &= ~MSGNOTMARKNEXT;
8547 			qfirst->b_flag &= ~MSGMARKNEXT;
8548 		} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8549 			bp->b_flag |= MSGNOTMARKNEXT;
8550 			qfirst->b_flag &= ~MSGNOTMARKNEXT;
8551 		}
8552 
8553 		linkb(bp, qfirst);
8554 	}
8555 	(void) putbq(q, bp);
8556 
8557 	/*
8558 	 * A message may have come in when the sd_lock was dropped in the
8559 	 * calling routine. If this is the case and STR*ATMARK info was
8560 	 * received, need to move that from the stream head to the q_last
8561 	 * so that SIOCATMARK can return the proper value.
8562 	 */
8563 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8564 		unsigned short *flagp = &q->q_last->b_flag;
8565 		uint_t b_flag = (uint_t)*flagp;
8566 
8567 		if (stp->sd_flag & STRATMARK) {
8568 			b_flag &= ~MSGNOTMARKNEXT;
8569 			b_flag |= MSGMARKNEXT;
8570 			stp->sd_flag &= ~STRATMARK;
8571 		} else {
8572 			b_flag &= ~MSGMARKNEXT;
8573 			b_flag |= MSGNOTMARKNEXT;
8574 			stp->sd_flag &= ~STRNOTATMARK;
8575 		}
8576 		*flagp = (unsigned short) b_flag;
8577 	}
8578 
8579 #ifdef	DEBUG
8580 	/*
8581 	 * Make sure that the flags are not messed up.
8582 	 */
8583 	{
8584 		mblk_t *mp;
8585 		mp = q->q_last;
8586 		while (mp != NULL) {
8587 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8588 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8589 			mp = mp->b_cont;
8590 		}
8591 	}
8592 #endif
8593 	if (q->q_first == bp) {
8594 		short pollevents;
8595 
8596 		if (stp->sd_flag & RSLEEP) {
8597 			stp->sd_flag &= ~RSLEEP;
8598 			cv_broadcast(&q->q_wait);
8599 		}
8600 		if (stp->sd_flag & STRPRI) {
8601 			pollevents = POLLPRI;
8602 		} else {
8603 			if (band == 0) {
8604 				if (!(stp->sd_rput_opt & SR_POLLIN))
8605 					return;
8606 				stp->sd_rput_opt &= ~SR_POLLIN;
8607 				pollevents = POLLIN | POLLRDNORM;
8608 			} else {
8609 				pollevents = POLLIN | POLLRDBAND;
8610 			}
8611 		}
8612 		mutex_exit(&stp->sd_lock);
8613 		pollwakeup(&stp->sd_pollist, pollevents);
8614 		mutex_enter(&stp->sd_lock);
8615 	}
8616 }
8617 
8618 /*
8619  * Return the held vnode attached to the stream head of a
8620  * given queue
8621  * It is the responsibility of the calling routine to ensure
8622  * that the queue does not go away (e.g. pop).
8623  */
8624 vnode_t *
8625 strq2vp(queue_t *qp)
8626 {
8627 	vnode_t *vp;
8628 	vp = STREAM(qp)->sd_vnode;
8629 	ASSERT(vp != NULL);
8630 	VN_HOLD(vp);
8631 	return (vp);
8632 }
8633 
8634 /*
8635  * return the stream head write queue for the given vp
8636  * It is the responsibility of the calling routine to ensure
8637  * that the stream or vnode do not close.
8638  */
8639 queue_t *
8640 strvp2wq(vnode_t *vp)
8641 {
8642 	ASSERT(vp->v_stream != NULL);
8643 	return (vp->v_stream->sd_wrq);
8644 }
8645 
8646 /*
8647  * pollwakeup stream head
8648  * It is the responsibility of the calling routine to ensure
8649  * that the stream or vnode do not close.
8650  */
8651 void
8652 strpollwakeup(vnode_t *vp, short event)
8653 {
8654 	ASSERT(vp->v_stream);
8655 	pollwakeup(&vp->v_stream->sd_pollist, event);
8656 }
8657 
8658 /*
8659  * Mate the stream heads of two vnodes together. If the two vnodes are the
8660  * same, we just make the write-side point at the read-side -- otherwise,
8661  * we do a full mate.  Only works on vnodes associated with streams that are
8662  * still being built and thus have only a stream head.
8663  */
8664 void
8665 strmate(vnode_t *vp1, vnode_t *vp2)
8666 {
8667 	queue_t *wrq1 = strvp2wq(vp1);
8668 	queue_t *wrq2 = strvp2wq(vp2);
8669 
8670 	/*
8671 	 * Verify that there are no modules on the stream yet.  We also
8672 	 * rely on the stream head always having a service procedure to
8673 	 * avoid tweaking q_nfsrv.
8674 	 */
8675 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8676 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8677 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8678 
8679 	/*
8680 	 * If the queues are the same, just twist; otherwise do a full mate.
8681 	 */
8682 	if (wrq1 == wrq2) {
8683 		wrq1->q_next = _RD(wrq1);
8684 	} else {
8685 		wrq1->q_next = _RD(wrq2);
8686 		wrq2->q_next = _RD(wrq1);
8687 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8688 		STREAM(wrq1)->sd_flag |= STRMATE;
8689 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8690 		STREAM(wrq2)->sd_flag |= STRMATE;
8691 	}
8692 }
8693 
8694 /*
8695  * XXX will go away when console is correctly fixed.
8696  * Clean up the console PIDS, from previous I_SETSIG,
8697  * called only for cnopen which never calls strclean().
8698  */
8699 void
8700 str_cn_clean(struct vnode *vp)
8701 {
8702 	strsig_t *ssp, *pssp, *tssp;
8703 	struct stdata *stp;
8704 	struct pid  *pidp;
8705 	int update = 0;
8706 
8707 	ASSERT(vp->v_stream);
8708 	stp = vp->v_stream;
8709 	pssp = NULL;
8710 	mutex_enter(&stp->sd_lock);
8711 	ssp = stp->sd_siglist;
8712 	while (ssp) {
8713 		mutex_enter(&pidlock);
8714 		pidp = ssp->ss_pidp;
8715 		/*
8716 		 * Get rid of PID if the proc is gone.
8717 		 */
8718 		if (pidp->pid_prinactive) {
8719 			tssp = ssp->ss_next;
8720 			if (pssp)
8721 				pssp->ss_next = tssp;
8722 			else
8723 				stp->sd_siglist = tssp;
8724 			ASSERT(pidp->pid_ref <= 1);
8725 			PID_RELE(ssp->ss_pidp);
8726 			mutex_exit(&pidlock);
8727 			kmem_free(ssp, sizeof (strsig_t));
8728 			update = 1;
8729 			ssp = tssp;
8730 			continue;
8731 		} else
8732 			mutex_exit(&pidlock);
8733 		pssp = ssp;
8734 		ssp = ssp->ss_next;
8735 	}
8736 	if (update) {
8737 		stp->sd_sigflags = 0;
8738 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8739 			stp->sd_sigflags |= ssp->ss_events;
8740 	}
8741 	mutex_exit(&stp->sd_lock);
8742 }
8743 
8744 /*
8745  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8746  */
8747 static boolean_t
8748 msghasdata(mblk_t *bp)
8749 {
8750 	for (; bp; bp = bp->b_cont)
8751 		if (bp->b_datap->db_type == M_DATA) {
8752 			ASSERT(bp->b_wptr >= bp->b_rptr);
8753 			if (bp->b_wptr > bp->b_rptr)
8754 				return (B_TRUE);
8755 		}
8756 	return (B_FALSE);
8757 }
8758 
8759 /*
8760  * Called on the first strget() of a sodirect/uioa enabled streamhead,
8761  * if any mblk_t(s) enqueued they must first be uioamove()d before uioa
8762  * can be enabled for the underlying transport's use.
8763  */
8764 void
8765 struioainit(queue_t *q, sodirect_t *sodp, uio_t *uiop)
8766 {
8767 	uioa_t	*uioap = (uioa_t *)uiop;
8768 	mblk_t	*bp;
8769 	mblk_t	*lbp = NULL;
8770 	mblk_t	*wbp;
8771 	int	len;
8772 	int	error;
8773 
8774 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
8775 	ASSERT(&sodp->sod_uioa == uioap);
8776 
8777 	/*
8778 	 * Walk first b_cont chain in sod_q
8779 	 * and schedule any M_DATA mblk_t's for uio asynchronous move.
8780 	 */
8781 	mutex_enter(QLOCK(q));
8782 	if ((bp = q->q_first) == NULL) {
8783 		mutex_exit(QLOCK(q));
8784 		return;
8785 	}
8786 	/* Walk the chain */
8787 	wbp = bp;
8788 	do {
8789 		if (wbp->b_datap->db_type != M_DATA) {
8790 			/* Not M_DATA, no more uioa */
8791 			goto nouioa;
8792 		}
8793 		if ((len = wbp->b_wptr - wbp->b_rptr) > 0) {
8794 			/* Have a M_DATA mblk_t with data */
8795 			if (len > uioap->uio_resid) {
8796 				/* Not enough uio sapce */
8797 				goto nouioa;
8798 			}
8799 			ASSERT(!(wbp->b_datap->db_flags & DBLK_UIOA));
8800 			error = uioamove(wbp->b_rptr, len,
8801 			    UIO_READ, uioap);
8802 			if (!error) {
8803 				/* Scheduled, mark dblk_t as such */
8804 				wbp->b_datap->db_flags |= DBLK_UIOA;
8805 			} else {
8806 				/* Break the mblk chain */
8807 				goto nouioa;
8808 			}
8809 		}
8810 		/* Save last wbp processed */
8811 		lbp = wbp;
8812 	} while ((wbp = wbp->b_cont) != NULL);
8813 
8814 	mutex_exit(QLOCK(q));
8815 	return;
8816 
8817 nouioa:
8818 	/* No more uioa */
8819 	uioap->uioa_state &= UIOA_CLR;
8820 	uioap->uioa_state |= UIOA_FINI;
8821 
8822 	/*
8823 	 * If we processed 1 or more mblk_t(s) then we need to split the
8824 	 * current mblk_t chain in 2 so that all the uioamove()ed mblk_t(s)
8825 	 * are in the current chain and the rest are in the following new
8826 	 * chain.
8827 	 */
8828 	if (lbp != NULL) {
8829 		/* New end of current chain */
8830 		lbp->b_cont = NULL;
8831 
8832 		/* Insert new chain wbp after bp */
8833 		if ((wbp->b_next = bp->b_next) != NULL)
8834 			bp->b_next->b_prev = wbp;
8835 		else
8836 			q->q_last = wbp;
8837 		wbp->b_prev = bp;
8838 		bp->b_next = wbp;
8839 	}
8840 	mutex_exit(QLOCK(q));
8841 }
8842