xref: /titanic_41/usr/src/uts/common/os/sig.c (revision 75eba5b6d79ed4d2ce3daf7b2806306b6b69a938)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/bitmap.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/errno.h>
38 #include <sys/proc.h>
39 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
40 #include <sys/signal.h>
41 #include <sys/siginfo.h>
42 #include <sys/fault.h>
43 #include <sys/ucontext.h>
44 #include <sys/procfs.h>
45 #include <sys/wait.h>
46 #include <sys/class.h>
47 #include <sys/mman.h>
48 #include <sys/procset.h>
49 #include <sys/kmem.h>
50 #include <sys/cpuvar.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <vm/as.h>
54 #include <sys/bitmap.h>
55 #include <c2/audit.h>
56 #include <sys/core.h>
57 #include <sys/schedctl.h>
58 #include <sys/contract/process_impl.h>
59 #include <sys/cyclic.h>
60 #include <sys/dtrace.h>
61 #include <sys/sdt.h>
62 
63 const k_sigset_t nullsmask = {0, 0, 0};
64 
65 const k_sigset_t fillset =	/* MUST be contiguous */
66 	{FILLSET0, FILLSET1, FILLSET2};
67 
68 const k_sigset_t cantmask =
69 	{CANTMASK0, CANTMASK1, CANTMASK2};
70 
71 const k_sigset_t cantreset =
72 	{(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0, 0};
73 
74 const k_sigset_t ignoredefault =
75 	{(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
76 	|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
77 	(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
78 	|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
79 	|sigmask(SIGJVM2)), 0};
80 
81 const k_sigset_t stopdefault =
82 	{(sigmask(SIGSTOP)|sigmask(SIGTSTP)|sigmask(SIGTTOU)|sigmask(SIGTTIN)),
83 	0, 0};
84 
85 const k_sigset_t coredefault =
86 	{(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGIOT)
87 	|sigmask(SIGEMT)|sigmask(SIGFPE)|sigmask(SIGBUS)|sigmask(SIGSEGV)
88 	|sigmask(SIGSYS)|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0, 0};
89 
90 const k_sigset_t holdvfork =
91 	{(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)), 0, 0};
92 
93 static	int	isjobstop(int);
94 static	void	post_sigcld(proc_t *, sigqueue_t *);
95 
96 /*
97  * Internal variables for counting number of user thread stop requests posted.
98  * They may not be accurate at some special situation such as that a virtually
99  * stopped thread starts to run.
100  */
101 static int num_utstop;
102 /*
103  * Internal variables for broadcasting an event when all thread stop requests
104  * are processed.
105  */
106 static kcondvar_t utstop_cv;
107 
108 static kmutex_t thread_stop_lock;
109 void del_one_utstop(void);
110 
111 /*
112  * Send the specified signal to the specified process.
113  */
114 void
115 psignal(proc_t *p, int sig)
116 {
117 	mutex_enter(&p->p_lock);
118 	sigtoproc(p, NULL, sig);
119 	mutex_exit(&p->p_lock);
120 }
121 
122 /*
123  * Send the specified signal to the specified thread.
124  */
125 void
126 tsignal(kthread_t *t, int sig)
127 {
128 	proc_t *p = ttoproc(t);
129 
130 	mutex_enter(&p->p_lock);
131 	sigtoproc(p, t, sig);
132 	mutex_exit(&p->p_lock);
133 }
134 
135 int
136 signal_is_blocked(kthread_t *t, int sig)
137 {
138 	return (sigismember(&t->t_hold, sig) ||
139 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
140 }
141 
142 /*
143  * Return true if the signal can safely be discarded on generation.
144  * That is, if there is no need for the signal on the receiving end.
145  * The answer is true if the process is a zombie or
146  * if all of these conditions are true:
147  *	the signal is being ignored
148  *	the process is single-threaded
149  *	the signal is not being traced by /proc
150  * 	the signal is not blocked by the process
151  *	the signal is not being accepted via sigwait()
152  */
153 static int
154 sig_discardable(proc_t *p, int sig)
155 {
156 	kthread_t *t = p->p_tlist;
157 
158 	return (t == NULL ||		/* if zombie or ... */
159 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
160 	    t->t_forw == t &&			/* and single-threaded */
161 	    !tracing(p, sig) &&			/* and no /proc tracing */
162 	    !signal_is_blocked(t, sig) &&	/* and signal not blocked */
163 	    !sigismember(&t->t_sigwait, sig)));	/* and not being accepted */
164 }
165 
166 /*
167  * Return true if this thread is going to eat this signal soon.
168  * Note that, if the signal is SIGKILL, we force stopped threads to be
169  * set running (to make SIGKILL be a sure kill), but only if the process
170  * is not currently locked by /proc (the P_PR_LOCK flag).  Code in /proc
171  * relies on the fact that a process will not change shape while P_PR_LOCK
172  * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
173  * We wish that we could simply call prbarrier() below, in sigtoproc(), to
174  * ensure that the process is not locked by /proc, but prbarrier() drops
175  * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
176  */
177 int
178 eat_signal(kthread_t *t, int sig)
179 {
180 	int rval = 0;
181 	ASSERT(THREAD_LOCK_HELD(t));
182 
183 	/*
184 	 * Do not do anything if the target thread has the signal blocked.
185 	 */
186 	if (!signal_is_blocked(t, sig)) {
187 		t->t_sig_check = 1;	/* have thread do an issig */
188 		if (ISWAKEABLE(t) || ISWAITING(t)) {
189 			setrun_locked(t);
190 			rval = 1;
191 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
192 		    !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
193 			ttoproc(t)->p_stopsig = 0;
194 			t->t_dtrace_stop = 0;
195 			t->t_schedflag |= TS_XSTART | TS_PSTART;
196 			setrun_locked(t);
197 		} else if (t != curthread && t->t_state == TS_ONPROC) {
198 			aston(t);	/* make it do issig promptly */
199 			if (t->t_cpu != CPU)
200 				poke_cpu(t->t_cpu->cpu_id);
201 			rval = 1;
202 		} else if (t->t_state == TS_RUN) {
203 			rval = 1;
204 		}
205 	}
206 
207 	return (rval);
208 }
209 
210 /*
211  * Post a signal.
212  * If a non-null thread pointer is passed, then post the signal
213  * to the thread/lwp, otherwise post the signal to the process.
214  */
215 void
216 sigtoproc(proc_t *p, kthread_t *t, int sig)
217 {
218 	kthread_t *tt;
219 	int ext = !(curproc->p_flag & SSYS) &&
220 	    (curproc->p_ct_process != p->p_ct_process);
221 
222 	ASSERT(MUTEX_HELD(&p->p_lock));
223 
224 	/* System processes don't get signals */
225 	if (sig <= 0 || sig >= NSIG || (p->p_flag & SSYS))
226 		return;
227 
228 	/*
229 	 * Regardless of origin or directedness,
230 	 * SIGKILL kills all lwps in the process immediately
231 	 * and jobcontrol signals affect all lwps in the process.
232 	 */
233 	if (sig == SIGKILL) {
234 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
235 		t = NULL;
236 	} else if (sig == SIGCONT) {
237 		/*
238 		 * The SSCONT flag will remain set until a stopping
239 		 * signal comes in (below).  This is harmless.
240 		 */
241 		p->p_flag |= SSCONT;
242 		sigdelq(p, NULL, SIGSTOP);
243 		sigdelq(p, NULL, SIGTSTP);
244 		sigdelq(p, NULL, SIGTTOU);
245 		sigdelq(p, NULL, SIGTTIN);
246 		sigdiffset(&p->p_sig, &stopdefault);
247 		sigdiffset(&p->p_extsig, &stopdefault);
248 		p->p_stopsig = 0;
249 		if ((tt = p->p_tlist) != NULL) {
250 			do {
251 				sigdelq(p, tt, SIGSTOP);
252 				sigdelq(p, tt, SIGTSTP);
253 				sigdelq(p, tt, SIGTTOU);
254 				sigdelq(p, tt, SIGTTIN);
255 				sigdiffset(&tt->t_sig, &stopdefault);
256 				sigdiffset(&tt->t_extsig, &stopdefault);
257 			} while ((tt = tt->t_forw) != p->p_tlist);
258 		}
259 		if ((tt = p->p_tlist) != NULL) {
260 			do {
261 				thread_lock(tt);
262 				if (tt->t_state == TS_STOPPED &&
263 				    tt->t_whystop == PR_JOBCONTROL) {
264 					tt->t_schedflag |= TS_XSTART;
265 					setrun_locked(tt);
266 				}
267 				thread_unlock(tt);
268 			} while ((tt = tt->t_forw) != p->p_tlist);
269 		}
270 	} else if (sigismember(&stopdefault, sig)) {
271 		/*
272 		 * This test has a race condition which we can't fix:
273 		 * By the time the stopping signal is received by
274 		 * the target process/thread, the signal handler
275 		 * and/or the detached state might have changed.
276 		 */
277 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
278 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
279 			p->p_flag &= ~SSCONT;
280 		sigdelq(p, NULL, SIGCONT);
281 		sigdelset(&p->p_sig, SIGCONT);
282 		sigdelset(&p->p_extsig, SIGCONT);
283 		if ((tt = p->p_tlist) != NULL) {
284 			do {
285 				sigdelq(p, tt, SIGCONT);
286 				sigdelset(&tt->t_sig, SIGCONT);
287 				sigdelset(&tt->t_extsig, SIGCONT);
288 			} while ((tt = tt->t_forw) != p->p_tlist);
289 		}
290 	}
291 
292 	if (sig_discardable(p, sig)) {
293 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
294 		    proc_t *, p, int, sig);
295 		return;
296 	}
297 
298 	if (t != NULL) {
299 		/*
300 		 * This is a directed signal, wake up the lwp.
301 		 */
302 		sigaddset(&t->t_sig, sig);
303 		if (ext)
304 			sigaddset(&t->t_extsig, sig);
305 		thread_lock(t);
306 		(void) eat_signal(t, sig);
307 		thread_unlock(t);
308 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
309 	} else if ((tt = p->p_tlist) != NULL) {
310 		/*
311 		 * Make sure that some lwp that already exists
312 		 * in the process fields the signal soon.
313 		 * Wake up an interruptibly sleeping lwp if necessary.
314 		 * For SIGKILL make all of the lwps see the signal;
315 		 * This is needed to guarantee a sure kill for processes
316 		 * with a mix of realtime and non-realtime threads.
317 		 */
318 		int su = 0;
319 
320 		sigaddset(&p->p_sig, sig);
321 		if (ext)
322 			sigaddset(&p->p_extsig, sig);
323 		do {
324 			thread_lock(tt);
325 			if (eat_signal(tt, sig) && sig != SIGKILL) {
326 				thread_unlock(tt);
327 				break;
328 			}
329 			if (SUSPENDED(tt))
330 				su++;
331 			thread_unlock(tt);
332 		} while ((tt = tt->t_forw) != p->p_tlist);
333 		/*
334 		 * If the process is deadlocked, make somebody run and die.
335 		 */
336 		if (sig == SIGKILL && p->p_stat != SIDL &&
337 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
338 		    !(p->p_proc_flag & P_PR_LOCK)) {
339 			thread_lock(tt);
340 			p->p_lwprcnt++;
341 			tt->t_schedflag |= TS_CSTART;
342 			setrun_locked(tt);
343 			thread_unlock(tt);
344 		}
345 
346 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
347 	}
348 }
349 
350 static int
351 isjobstop(int sig)
352 {
353 	proc_t *p = ttoproc(curthread);
354 
355 	ASSERT(MUTEX_HELD(&p->p_lock));
356 
357 	if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL &&
358 	    sigismember(&stopdefault, sig)) {
359 		/*
360 		 * If SIGCONT has been posted since we promoted this signal
361 		 * from pending to current, then don't do a jobcontrol stop.
362 		 */
363 		if (!(p->p_flag & SSCONT) &&
364 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
365 		    curthread != p->p_agenttp) {
366 			sigqueue_t *sqp;
367 
368 			stop(PR_JOBCONTROL, sig);
369 			mutex_exit(&p->p_lock);
370 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
371 			mutex_enter(&pidlock);
372 			/*
373 			 * Only the first lwp to continue notifies the parent.
374 			 */
375 			if (p->p_pidflag & CLDCONT)
376 				siginfofree(sqp);
377 			else {
378 				p->p_pidflag |= CLDCONT;
379 				p->p_wcode = CLD_CONTINUED;
380 				p->p_wdata = SIGCONT;
381 				sigcld(p, sqp);
382 			}
383 			mutex_exit(&pidlock);
384 			mutex_enter(&p->p_lock);
385 		}
386 		return (1);
387 	}
388 	return (0);
389 }
390 
391 /*
392  * Returns true if the current process has a signal to process, and
393  * the signal is not held.  The signal to process is put in p_cursig.
394  * This is asked at least once each time a process enters the system
395  * (though this can usually be done without actually calling issig by
396  * checking the pending signal masks).  A signal does not do anything
397  * directly to a process; it sets a flag that asks the process to do
398  * something to itself.
399  *
400  * The "why" argument indicates the allowable side-effects of the call:
401  *
402  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
403  * stop the process if a stop has been requested or if a traced signal
404  * is pending.
405  *
406  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
407  * a signal might be pending (FORREAL is needed to tell for sure).
408  *
409  * XXX: Changes to the logic in these routines should be propagated
410  * to lm_sigispending().  See bug 1201594.
411  */
412 
413 static int issig_forreal(void);
414 static int issig_justlooking(void);
415 
416 int
417 issig(int why)
418 {
419 	ASSERT(why == FORREAL || why == JUSTLOOKING);
420 
421 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
422 }
423 
424 
425 static int
426 issig_justlooking(void)
427 {
428 	kthread_t *t = curthread;
429 	klwp_t *lwp = ttolwp(t);
430 	proc_t *p = ttoproc(t);
431 	k_sigset_t set;
432 
433 	/*
434 	 * This function answers the question:
435 	 * "Is there any reason to call issig_forreal()?"
436 	 *
437 	 * We have to answer the question w/o grabbing any locks
438 	 * because we are (most likely) being called after we
439 	 * put ourselves on the sleep queue.
440 	 */
441 
442 	if (t->t_dtrace_stop | t->t_dtrace_sig)
443 		return (1);
444 
445 	/*
446 	 * Another piece of complexity in this process.  When single-stepping a
447 	 * process, we don't want an intervening signal or TP_PAUSE request to
448 	 * suspend the current thread.  Otherwise, the controlling process will
449 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
450 	 * We will trigger any remaining signals when we re-enter the kernel on
451 	 * the single step trap.
452 	 */
453 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
454 		return (0);
455 
456 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
457 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
458 	    (lwp->lwp_nostop == 0 &&
459 	    (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
460 	    (t->t_proc_flag &
461 	    (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
462 	    lwp->lwp_cursig)
463 		return (1);
464 
465 	if (p->p_flag & SVFWAIT)
466 		return (0);
467 	set = p->p_sig;
468 	sigorset(&set, &t->t_sig);
469 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
470 		sigandset(&set, &cantmask);
471 	else
472 		sigdiffset(&set, &t->t_hold);
473 	if (p->p_flag & SVFORK)
474 		sigdiffset(&set, &holdvfork);
475 
476 	if (!sigisempty(&set)) {
477 		int sig;
478 
479 		for (sig = 1; sig < NSIG; sig++) {
480 			if (sigismember(&set, sig) &&
481 			    (tracing(p, sig) ||
482 			    sigismember(&t->t_sigwait, sig) ||
483 			    !sigismember(&p->p_ignore, sig))) {
484 				/*
485 				 * Don't promote a signal that will stop
486 				 * the process when lwp_nostop is set.
487 				 */
488 				if (!lwp->lwp_nostop ||
489 				    PTOU(p)->u_signal[sig-1] != SIG_DFL ||
490 				    !sigismember(&stopdefault, sig))
491 					return (1);
492 			}
493 		}
494 	}
495 
496 	return (0);
497 }
498 
499 static int
500 issig_forreal(void)
501 {
502 	int sig = 0, ext = 0;
503 	kthread_t *t = curthread;
504 	klwp_t *lwp = ttolwp(t);
505 	proc_t *p = ttoproc(t);
506 	int toproc = 0;
507 	int sigcld_found = 0;
508 	int nostop_break = 0;
509 
510 	ASSERT(t->t_state == TS_ONPROC);
511 
512 	mutex_enter(&p->p_lock);
513 	schedctl_finish_sigblock(t);
514 
515 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
516 		if (t->t_dtrace_stop) {
517 			/*
518 			 * If DTrace's "stop" action has been invoked on us,
519 			 * set TP_PRSTOP.
520 			 */
521 			t->t_proc_flag |= TP_PRSTOP;
522 		}
523 
524 		if (t->t_dtrace_sig != 0) {
525 			k_siginfo_t info;
526 
527 			/*
528 			 * Post the signal generated as the result of
529 			 * DTrace's "raise" action as a normal signal before
530 			 * the full-fledged signal checking begins.
531 			 */
532 			bzero(&info, sizeof (info));
533 			info.si_signo = t->t_dtrace_sig;
534 			info.si_code = SI_DTRACE;
535 
536 			sigaddq(p, NULL, &info, KM_NOSLEEP);
537 
538 			t->t_dtrace_sig = 0;
539 		}
540 	}
541 
542 	for (;;) {
543 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
544 			lwp->lwp_cursig = sig = SIGKILL;
545 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
546 			t->t_sig_check = 1;
547 			break;
548 		}
549 
550 		/*
551 		 * Another piece of complexity in this process.  When
552 		 * single-stepping a process, we don't want an intervening
553 		 * signal or TP_PAUSE request to suspend the current thread.
554 		 * Otherwise, the controlling process will hang beacuse we will
555 		 * be stopped with TS_PSTART set in t_schedflag.  We will
556 		 * trigger any remaining signals when we re-enter the kernel on
557 		 * the single step trap.
558 		 */
559 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
560 			sig = 0;
561 			break;
562 		}
563 
564 		/*
565 		 * Hold the lwp here for watchpoint manipulation.
566 		 */
567 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
568 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
569 			continue;
570 		}
571 
572 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
573 			if ((sig = lwp->lwp_cursig) != 0) {
574 				/*
575 				 * Make sure we call ISSIG() in post_syscall()
576 				 * to re-validate this current signal.
577 				 */
578 				t->t_sig_check = 1;
579 			}
580 			break;
581 		}
582 
583 		/*
584 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
585 		 * or requests.  Honor other stop requests or signals later.
586 		 * Go back to top of loop here to check if an exit or hold
587 		 * event has occurred while stopped.
588 		 */
589 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
590 			stop(PR_CHECKPOINT, 0);
591 			continue;
592 		}
593 
594 		/*
595 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
596 		 * with signals or /proc.  Another lwp is executing fork1(),
597 		 * or is undergoing watchpoint activity (remapping a page),
598 		 * or is executing lwp_suspend() on this lwp.
599 		 * Again, go back to top of loop to check if an exit
600 		 * or hold event has occurred while stopped.
601 		 */
602 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
603 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
604 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
605 			continue;
606 		}
607 
608 		/*
609 		 * Honor requested stop before dealing with the
610 		 * current signal; a debugger may change it.
611 		 * Do not want to go back to loop here since this is a special
612 		 * stop that means: make incremental progress before the next
613 		 * stop. The danger is that returning to top of loop would most
614 		 * likely drop the thread right back here to stop soon after it
615 		 * was continued, violating the incremental progress request.
616 		 */
617 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
618 			stop(PR_REQUESTED, 0);
619 
620 		/*
621 		 * If a debugger wants us to take a signal it will have
622 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
623 		 * or if it's being ignored, we continue on looking for another
624 		 * signal.  Otherwise we return the specified signal, provided
625 		 * it's not a signal that causes a job control stop.
626 		 *
627 		 * When stopped on PR_JOBCONTROL, there is no current
628 		 * signal; we cancel lwp->lwp_cursig temporarily before
629 		 * calling isjobstop().  The current signal may be reset
630 		 * by a debugger while we are stopped in isjobstop().
631 		 *
632 		 * If the current thread is accepting the signal
633 		 * (via sigwait(), sigwaitinfo(), or sigtimedwait()),
634 		 * we allow the signal to be accepted, even if it is
635 		 * being ignored, and without causing a job control stop.
636 		 */
637 		if ((sig = lwp->lwp_cursig) != 0) {
638 			ext = lwp->lwp_extsig;
639 			lwp->lwp_cursig = 0;
640 			lwp->lwp_extsig = 0;
641 			if (sigismember(&t->t_sigwait, sig) ||
642 			    (!sigismember(&p->p_ignore, sig) &&
643 			    !isjobstop(sig))) {
644 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
645 					sig = SIGKILL;
646 					ext = (p->p_flag & SEXTKILLED) != 0;
647 				}
648 				lwp->lwp_cursig = (uchar_t)sig;
649 				lwp->lwp_extsig = (uchar_t)ext;
650 				break;
651 			}
652 			/*
653 			 * The signal is being ignored or it caused a
654 			 * job-control stop.  If another current signal
655 			 * has not been established, return the current
656 			 * siginfo, if any, to the memory manager.
657 			 */
658 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
659 				siginfofree(lwp->lwp_curinfo);
660 				lwp->lwp_curinfo = NULL;
661 			}
662 			/*
663 			 * Loop around again in case we were stopped
664 			 * on a job control signal and a /proc stop
665 			 * request was posted or another current signal
666 			 * was established while we were stopped.
667 			 */
668 			continue;
669 		}
670 
671 		if (p->p_stopsig && !lwp->lwp_nostop &&
672 		    curthread != p->p_agenttp) {
673 			/*
674 			 * Some lwp in the process has already stopped
675 			 * showing PR_JOBCONTROL.  This is a stop in
676 			 * sympathy with the other lwp, even if this
677 			 * lwp is blocking the stopping signal.
678 			 */
679 			stop(PR_JOBCONTROL, p->p_stopsig);
680 			continue;
681 		}
682 
683 		/*
684 		 * Loop on the pending signals until we find a
685 		 * non-held signal that is traced or not ignored.
686 		 * First check the signals pending for the lwp,
687 		 * then the signals pending for the process as a whole.
688 		 */
689 		for (;;) {
690 			if ((sig = fsig(&t->t_sig, t)) != 0) {
691 				toproc = 0;
692 				if (tracing(p, sig) ||
693 				    sigismember(&t->t_sigwait, sig) ||
694 				    !sigismember(&p->p_ignore, sig)) {
695 					if (sigismember(&t->t_extsig, sig))
696 						ext = 1;
697 					break;
698 				}
699 				sigdelset(&t->t_sig, sig);
700 				sigdelset(&t->t_extsig, sig);
701 				sigdelq(p, t, sig);
702 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
703 				if (sig == SIGCLD)
704 					sigcld_found = 1;
705 				toproc = 1;
706 				if (tracing(p, sig) ||
707 				    sigismember(&t->t_sigwait, sig) ||
708 				    !sigismember(&p->p_ignore, sig)) {
709 					if (sigismember(&p->p_extsig, sig))
710 						ext = 1;
711 					break;
712 				}
713 				sigdelset(&p->p_sig, sig);
714 				sigdelset(&p->p_extsig, sig);
715 				sigdelq(p, NULL, sig);
716 			} else {
717 				/* no signal was found */
718 				break;
719 			}
720 		}
721 
722 		if (sig == 0) {	/* no signal was found */
723 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
724 				lwp->lwp_cursig = SIGKILL;
725 				sig = SIGKILL;
726 				ext = (p->p_flag & SEXTKILLED) != 0;
727 			}
728 			break;
729 		}
730 
731 		/*
732 		 * If we have been informed not to stop (i.e., we are being
733 		 * called from within a network operation), then don't promote
734 		 * the signal at this time, just return the signal number.
735 		 * We will call issig() again later when it is safe.
736 		 *
737 		 * fsig() does not return a jobcontrol stopping signal
738 		 * with a default action of stopping the process if
739 		 * lwp_nostop is set, so we won't be causing a bogus
740 		 * EINTR by this action.  (Such a signal is eaten by
741 		 * isjobstop() when we loop around to do final checks.)
742 		 */
743 		if (lwp->lwp_nostop) {
744 			nostop_break = 1;
745 			break;
746 		}
747 
748 		/*
749 		 * Promote the signal from pending to current.
750 		 *
751 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
752 		 * if no siginfo_t exists for this signal.
753 		 */
754 		lwp->lwp_cursig = (uchar_t)sig;
755 		lwp->lwp_extsig = (uchar_t)ext;
756 		t->t_sig_check = 1;	/* so post_syscall will see signal */
757 		ASSERT(lwp->lwp_curinfo == NULL);
758 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
759 
760 		if (tracing(p, sig))
761 			stop(PR_SIGNALLED, sig);
762 
763 		/*
764 		 * Loop around to check for requested stop before
765 		 * performing the usual current-signal actions.
766 		 */
767 	}
768 
769 	mutex_exit(&p->p_lock);
770 
771 	/*
772 	 * If SIGCLD was dequeued from the process's signal queue,
773 	 * search for other pending SIGCLD's from the list of children.
774 	 */
775 	if (sigcld_found)
776 		sigcld_repost();
777 
778 	if (sig != 0)
779 		(void) undo_watch_step(NULL);
780 
781 	/*
782 	 * If we have been blocked since the p_lock was dropped off
783 	 * above, then this promoted signal might have been handled
784 	 * already when we were on the way back from sleep queue, so
785 	 * just ignore it.
786 	 * If we have been informed not to stop, just return the signal
787 	 * number. Also see comments above.
788 	 */
789 	if (!nostop_break) {
790 		sig = lwp->lwp_cursig;
791 	}
792 
793 	return (sig != 0);
794 }
795 
796 /*
797  * Return true if the process is currently stopped showing PR_JOBCONTROL.
798  * This is true only if all of the process's lwp's are so stopped.
799  * If this is asked by one of the lwps in the process, exclude that lwp.
800  */
801 int
802 jobstopped(proc_t *p)
803 {
804 	kthread_t *t;
805 
806 	ASSERT(MUTEX_HELD(&p->p_lock));
807 
808 	if ((t = p->p_tlist) == NULL)
809 		return (0);
810 
811 	do {
812 		thread_lock(t);
813 		/* ignore current, zombie and suspended lwps in the test */
814 		if (!(t == curthread || t->t_state == TS_ZOMB ||
815 		    SUSPENDED(t)) &&
816 		    (t->t_state != TS_STOPPED ||
817 		    t->t_whystop != PR_JOBCONTROL)) {
818 			thread_unlock(t);
819 			return (0);
820 		}
821 		thread_unlock(t);
822 	} while ((t = t->t_forw) != p->p_tlist);
823 
824 	return (1);
825 }
826 
827 /*
828  * Put ourself (curthread) into the stopped state and notify tracers.
829  */
830 void
831 stop(int why, int what)
832 {
833 	kthread_t	*t = curthread;
834 	proc_t		*p = ttoproc(t);
835 	klwp_t		*lwp = ttolwp(t);
836 	kthread_t	*tx;
837 	lwpent_t	*lep;
838 	int		procstop;
839 	int		flags = TS_ALLSTART;
840 	hrtime_t	stoptime;
841 
842 	/*
843 	 * Can't stop a system process.
844 	 */
845 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
846 		return;
847 
848 	ASSERT(MUTEX_HELD(&p->p_lock));
849 
850 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
851 		/*
852 		 * Don't stop an lwp with SIGKILL pending.
853 		 * Don't stop if the process or lwp is exiting.
854 		 */
855 		if (lwp->lwp_cursig == SIGKILL ||
856 		    sigismember(&t->t_sig, SIGKILL) ||
857 		    sigismember(&p->p_sig, SIGKILL) ||
858 		    (t->t_proc_flag & TP_LWPEXIT) ||
859 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
860 			p->p_stopsig = 0;
861 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
862 			return;
863 		}
864 	}
865 
866 	/*
867 	 * Make sure we don't deadlock on a recursive call to prstop().
868 	 * prstop() sets the lwp_nostop flag.
869 	 */
870 	if (lwp->lwp_nostop)
871 		return;
872 
873 	/*
874 	 * Make sure the lwp is in an orderly state for inspection
875 	 * by a debugger through /proc or for dumping via core().
876 	 */
877 	schedctl_finish_sigblock(t);
878 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
879 	mutex_exit(&p->p_lock);
880 	stoptime = gethrtime();
881 	prstop(why, what);
882 	(void) undo_watch_step(NULL);
883 	mutex_enter(&p->p_lock);
884 	ASSERT(t->t_state == TS_ONPROC);
885 
886 	switch (why) {
887 	case PR_CHECKPOINT:
888 		/*
889 		 * The situation may have changed since we dropped
890 		 * and reacquired p->p_lock. Double-check now
891 		 * whether we should stop or not.
892 		 */
893 		if (!(t->t_proc_flag & TP_CHKPT)) {
894 			t->t_proc_flag &= ~TP_STOPPING;
895 			return;
896 		}
897 		t->t_proc_flag &= ~TP_CHKPT;
898 		flags &= ~TS_RESUME;
899 		break;
900 
901 	case PR_JOBCONTROL:
902 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
903 		    what == SIGTTIN || what == SIGTTOU);
904 		flags &= ~TS_XSTART;
905 		break;
906 
907 	case PR_SUSPENDED:
908 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
909 		/*
910 		 * The situation may have changed since we dropped
911 		 * and reacquired p->p_lock.  Double-check now
912 		 * whether we should stop or not.
913 		 */
914 		if (what == SUSPEND_PAUSE) {
915 			if (!(t->t_proc_flag & TP_PAUSE)) {
916 				t->t_proc_flag &= ~TP_STOPPING;
917 				return;
918 			}
919 			flags &= ~TS_UNPAUSE;
920 		} else {
921 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
922 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
923 				t->t_proc_flag &= ~TP_STOPPING;
924 				return;
925 			}
926 			/*
927 			 * If SHOLDFORK is in effect and we are stopping
928 			 * while asleep (not at the top of the stack),
929 			 * we return now to allow the hold to take effect
930 			 * when we reach the top of the kernel stack.
931 			 */
932 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
933 				t->t_proc_flag &= ~TP_STOPPING;
934 				return;
935 			}
936 			flags &= ~TS_CSTART;
937 		}
938 		break;
939 
940 	default:	/* /proc stop */
941 		flags &= ~TS_PSTART;
942 		/*
943 		 * Do synchronous stop unless the async-stop flag is set.
944 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
945 		 * then no debugger is present and we also do synchronous stop.
946 		 */
947 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
948 		    !(p->p_proc_flag & P_PR_ASYNC)) {
949 			int notify;
950 
951 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
952 				notify = 0;
953 				thread_lock(tx);
954 				if (ISTOPPED(tx) ||
955 				    (tx->t_proc_flag & TP_PRSTOP)) {
956 					thread_unlock(tx);
957 					continue;
958 				}
959 				tx->t_proc_flag |= TP_PRSTOP;
960 				tx->t_sig_check = 1;
961 				if (tx->t_state == TS_SLEEP &&
962 				    (tx->t_flag & T_WAKEABLE)) {
963 					/*
964 					 * Don't actually wake it up if it's
965 					 * in one of the lwp_*() syscalls.
966 					 * Mark it virtually stopped and
967 					 * notify /proc waiters (below).
968 					 */
969 					if (tx->t_wchan0 == NULL)
970 						setrun_locked(tx);
971 					else {
972 						tx->t_proc_flag |= TP_PRVSTOP;
973 						tx->t_stoptime = stoptime;
974 						notify = 1;
975 					}
976 				}
977 
978 				/* Move waiting thread to run queue */
979 				if (ISWAITING(tx))
980 					setrun_locked(tx);
981 
982 				/*
983 				 * force the thread into the kernel
984 				 * if it is not already there.
985 				 */
986 				if (tx->t_state == TS_ONPROC &&
987 				    tx->t_cpu != CPU)
988 					poke_cpu(tx->t_cpu->cpu_id);
989 				thread_unlock(tx);
990 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
991 				if (notify && lep->le_trace)
992 					prnotify(lep->le_trace);
993 			}
994 			/*
995 			 * We do this just in case one of the threads we asked
996 			 * to stop is in holdlwps() (called from cfork()) or
997 			 * lwp_suspend().
998 			 */
999 			cv_broadcast(&p->p_holdlwps);
1000 		}
1001 		break;
1002 	}
1003 
1004 	t->t_stoptime = stoptime;
1005 
1006 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1007 		/*
1008 		 * Determine if the whole process is jobstopped.
1009 		 */
1010 		if (jobstopped(p)) {
1011 			sigqueue_t *sqp;
1012 			int sig;
1013 
1014 			if ((sig = p->p_stopsig) == 0)
1015 				p->p_stopsig = (uchar_t)(sig = what);
1016 			mutex_exit(&p->p_lock);
1017 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1018 			mutex_enter(&pidlock);
1019 			/*
1020 			 * The last lwp to stop notifies the parent.
1021 			 * Turn off the CLDCONT flag now so the first
1022 			 * lwp to continue knows what to do.
1023 			 */
1024 			p->p_pidflag &= ~CLDCONT;
1025 			p->p_wcode = CLD_STOPPED;
1026 			p->p_wdata = sig;
1027 			sigcld(p, sqp);
1028 			/*
1029 			 * Grab p->p_lock before releasing pidlock so the
1030 			 * parent and the child don't have a race condition.
1031 			 */
1032 			mutex_enter(&p->p_lock);
1033 			mutex_exit(&pidlock);
1034 			p->p_stopsig = 0;
1035 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1036 			/*
1037 			 * Set p->p_stopsig and wake up sleeping lwps
1038 			 * so they will stop in sympathy with this lwp.
1039 			 */
1040 			p->p_stopsig = (uchar_t)what;
1041 			pokelwps(p);
1042 			/*
1043 			 * We do this just in case one of the threads we asked
1044 			 * to stop is in holdlwps() (called from cfork()) or
1045 			 * lwp_suspend().
1046 			 */
1047 			cv_broadcast(&p->p_holdlwps);
1048 		}
1049 	}
1050 
1051 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1052 		/*
1053 		 * Do process-level notification when all lwps are
1054 		 * either stopped on events of interest to /proc
1055 		 * or are stopped showing PR_SUSPENDED or are zombies.
1056 		 */
1057 		procstop = 1;
1058 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1059 			if (VSTOPPED(tx))
1060 				continue;
1061 			thread_lock(tx);
1062 			switch (tx->t_state) {
1063 			case TS_ZOMB:
1064 				break;
1065 			case TS_STOPPED:
1066 				/* neither ISTOPPED nor SUSPENDED? */
1067 				if ((tx->t_schedflag &
1068 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1069 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1070 					procstop = 0;
1071 				break;
1072 			case TS_SLEEP:
1073 				/* not paused for watchpoints? */
1074 				if (!(tx->t_flag & T_WAKEABLE) ||
1075 				    tx->t_wchan0 == NULL ||
1076 				    !(tx->t_proc_flag & TP_PAUSE))
1077 					procstop = 0;
1078 				break;
1079 			default:
1080 				procstop = 0;
1081 				break;
1082 			}
1083 			thread_unlock(tx);
1084 		}
1085 		if (procstop) {
1086 			/* there must not be any remapped watched pages now */
1087 			ASSERT(p->p_mapcnt == 0);
1088 			if (p->p_proc_flag & P_PR_PTRACE) {
1089 				/* ptrace() compatibility */
1090 				mutex_exit(&p->p_lock);
1091 				mutex_enter(&pidlock);
1092 				p->p_wcode = CLD_TRAPPED;
1093 				p->p_wdata = (why == PR_SIGNALLED)?
1094 				    what : SIGTRAP;
1095 				cv_broadcast(&p->p_parent->p_cv);
1096 				/*
1097 				 * Grab p->p_lock before releasing pidlock so
1098 				 * parent and child don't have a race condition.
1099 				 */
1100 				mutex_enter(&p->p_lock);
1101 				mutex_exit(&pidlock);
1102 			}
1103 			if (p->p_trace)			/* /proc */
1104 				prnotify(p->p_trace);
1105 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1106 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1107 		}
1108 		if (why != PR_SUSPENDED) {
1109 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1110 			if (lep->le_trace)		/* /proc */
1111 				prnotify(lep->le_trace);
1112 			/*
1113 			 * Special notification for creation of the agent lwp.
1114 			 */
1115 			if (t == p->p_agenttp &&
1116 			    (t->t_proc_flag & TP_PRSTOP) &&
1117 			    p->p_trace)
1118 				prnotify(p->p_trace);
1119 			/*
1120 			 * The situation may have changed since we dropped
1121 			 * and reacquired p->p_lock. Double-check now
1122 			 * whether we should stop or not.
1123 			 */
1124 			if (!(t->t_proc_flag & TP_STOPPING)) {
1125 				if (t->t_proc_flag & TP_PRSTOP)
1126 					t->t_proc_flag |= TP_STOPPING;
1127 			}
1128 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1129 			prnostep(lwp);
1130 		}
1131 	}
1132 
1133 	if (why == PR_SUSPENDED) {
1134 
1135 		/*
1136 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1137 		 * because checks for TP_PAUSE take precedence over checks for
1138 		 * SHOLDWATCH.  If a thread is trying to stop because of
1139 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1140 		 * waiting for the rest of the threads to enter a stopped state.
1141 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1142 		 * lwp and not know it, so broadcast just in case.
1143 		 */
1144 		if (what == SUSPEND_PAUSE ||
1145 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1146 			cv_broadcast(&p->p_holdlwps);
1147 
1148 	}
1149 
1150 	/*
1151 	 * Need to do this here (rather than after the thread is officially
1152 	 * stopped) because we can't call mutex_enter from a stopped thread.
1153 	 */
1154 	if (why == PR_CHECKPOINT)
1155 		del_one_utstop();
1156 
1157 	thread_lock(t);
1158 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1159 	t->t_schedflag |= flags;
1160 	t->t_whystop = (short)why;
1161 	t->t_whatstop = (short)what;
1162 	CL_STOP(t, why, what);
1163 	(void) new_mstate(t, LMS_STOPPED);
1164 	thread_stop(t);			/* set stop state and drop lock */
1165 
1166 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1167 		/*
1168 		 * We may have gotten a SIGKILL or a SIGCONT when
1169 		 * we released p->p_lock; make one last check.
1170 		 * Also check for a /proc run-on-last-close.
1171 		 */
1172 		if (sigismember(&t->t_sig, SIGKILL) ||
1173 		    sigismember(&p->p_sig, SIGKILL) ||
1174 		    (t->t_proc_flag & TP_LWPEXIT) ||
1175 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1176 			p->p_stopsig = 0;
1177 			thread_lock(t);
1178 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1179 			setrun_locked(t);
1180 			thread_unlock_nopreempt(t);
1181 		} else if (why == PR_JOBCONTROL) {
1182 			if (p->p_flag & SSCONT) {
1183 				/*
1184 				 * This resulted from a SIGCONT posted
1185 				 * while we were not holding p->p_lock.
1186 				 */
1187 				p->p_stopsig = 0;
1188 				thread_lock(t);
1189 				t->t_schedflag |= TS_XSTART;
1190 				setrun_locked(t);
1191 				thread_unlock_nopreempt(t);
1192 			}
1193 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1194 			/*
1195 			 * This resulted from a /proc run-on-last-close.
1196 			 */
1197 			thread_lock(t);
1198 			t->t_schedflag |= TS_PSTART;
1199 			setrun_locked(t);
1200 			thread_unlock_nopreempt(t);
1201 		}
1202 	}
1203 
1204 	t->t_proc_flag &= ~TP_STOPPING;
1205 	mutex_exit(&p->p_lock);
1206 
1207 	swtch();
1208 	setallwatch();	/* reestablish any watchpoints set while stopped */
1209 	mutex_enter(&p->p_lock);
1210 	prbarrier(p);	/* barrier against /proc locking */
1211 }
1212 
1213 /* Interface for resetting user thread stop count. */
1214 void
1215 utstop_init(void)
1216 {
1217 	mutex_enter(&thread_stop_lock);
1218 	num_utstop = 0;
1219 	mutex_exit(&thread_stop_lock);
1220 }
1221 
1222 /* Interface for registering a user thread stop request. */
1223 void
1224 add_one_utstop(void)
1225 {
1226 	mutex_enter(&thread_stop_lock);
1227 	num_utstop++;
1228 	mutex_exit(&thread_stop_lock);
1229 }
1230 
1231 /* Interface for cancelling a user thread stop request */
1232 void
1233 del_one_utstop(void)
1234 {
1235 	mutex_enter(&thread_stop_lock);
1236 	num_utstop--;
1237 	if (num_utstop == 0)
1238 		cv_broadcast(&utstop_cv);
1239 	mutex_exit(&thread_stop_lock);
1240 }
1241 
1242 /* Interface to wait for all user threads to be stopped */
1243 void
1244 utstop_timedwait(clock_t ticks)
1245 {
1246 	mutex_enter(&thread_stop_lock);
1247 	if (num_utstop > 0)
1248 		(void) cv_reltimedwait(&utstop_cv, &thread_stop_lock, ticks,
1249 		    TR_CLOCK_TICK);
1250 	mutex_exit(&thread_stop_lock);
1251 }
1252 
1253 /*
1254  * Perform the action specified by the current signal.
1255  * The usual sequence is:
1256  * 	if (issig())
1257  * 		psig();
1258  * The signal bit has already been cleared by issig(),
1259  * the current signal number has been stored in lwp_cursig,
1260  * and the current siginfo is now referenced by lwp_curinfo.
1261  */
1262 void
1263 psig(void)
1264 {
1265 	kthread_t *t = curthread;
1266 	proc_t *p = ttoproc(t);
1267 	klwp_t *lwp = ttolwp(t);
1268 	void (*func)();
1269 	int sig, rc, code, ext;
1270 	pid_t pid = -1;
1271 	id_t ctid = 0;
1272 	zoneid_t zoneid = -1;
1273 	sigqueue_t *sqp = NULL;
1274 	uint32_t auditing = AU_AUDITING();
1275 
1276 	mutex_enter(&p->p_lock);
1277 	schedctl_finish_sigblock(t);
1278 	code = CLD_KILLED;
1279 
1280 	if (p->p_flag & SEXITLWPS) {
1281 		lwp_exit();
1282 		return;			/* not reached */
1283 	}
1284 	sig = lwp->lwp_cursig;
1285 	ext = lwp->lwp_extsig;
1286 
1287 	ASSERT(sig < NSIG);
1288 
1289 	/*
1290 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1291 	 * dropped between issig() and psig(), a debugger may have cleared
1292 	 * lwp_cursig via /proc in the intervening window.
1293 	 */
1294 	if (sig == 0) {
1295 		if (lwp->lwp_curinfo) {
1296 			siginfofree(lwp->lwp_curinfo);
1297 			lwp->lwp_curinfo = NULL;
1298 		}
1299 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1300 			t->t_flag &= ~T_TOMASK;
1301 			t->t_hold = lwp->lwp_sigoldmask;
1302 		}
1303 		mutex_exit(&p->p_lock);
1304 		return;
1305 	}
1306 	func = PTOU(curproc)->u_signal[sig-1];
1307 
1308 	/*
1309 	 * The signal disposition could have changed since we promoted
1310 	 * this signal from pending to current (we dropped p->p_lock).
1311 	 * This can happen only in a multi-threaded process.
1312 	 */
1313 	if (sigismember(&p->p_ignore, sig) ||
1314 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1315 		lwp->lwp_cursig = 0;
1316 		lwp->lwp_extsig = 0;
1317 		if (lwp->lwp_curinfo) {
1318 			siginfofree(lwp->lwp_curinfo);
1319 			lwp->lwp_curinfo = NULL;
1320 		}
1321 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1322 			t->t_flag &= ~T_TOMASK;
1323 			t->t_hold = lwp->lwp_sigoldmask;
1324 		}
1325 		mutex_exit(&p->p_lock);
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * We check lwp_curinfo first since pr_setsig can actually
1331 	 * stuff a sigqueue_t there for SIGKILL.
1332 	 */
1333 	if (lwp->lwp_curinfo) {
1334 		sqp = lwp->lwp_curinfo;
1335 	} else if (sig == SIGKILL && p->p_killsqp) {
1336 		sqp = p->p_killsqp;
1337 	}
1338 
1339 	if (sqp != NULL) {
1340 		if (SI_FROMUSER(&sqp->sq_info)) {
1341 			pid = sqp->sq_info.si_pid;
1342 			ctid = sqp->sq_info.si_ctid;
1343 			zoneid = sqp->sq_info.si_zoneid;
1344 		}
1345 		/*
1346 		 * If we have a sigqueue_t, its sq_external value
1347 		 * trumps the lwp_extsig value.  It is theoretically
1348 		 * possible to make lwp_extsig reflect reality, but it
1349 		 * would unnecessarily complicate things elsewhere.
1350 		 */
1351 		ext = sqp->sq_external;
1352 	}
1353 
1354 	if (func == SIG_DFL) {
1355 		mutex_exit(&p->p_lock);
1356 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1357 		    NULL, void (*)(void), func);
1358 	} else {
1359 		k_siginfo_t *sip = NULL;
1360 
1361 		/*
1362 		 * If DTrace user-land tracing is active, give DTrace a
1363 		 * chance to defer the signal until after tracing is
1364 		 * complete.
1365 		 */
1366 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1367 			mutex_exit(&p->p_lock);
1368 			return;
1369 		}
1370 
1371 		/*
1372 		 * save siginfo pointer here, in case the
1373 		 * the signal's reset bit is on
1374 		 *
1375 		 * The presence of a current signal prevents paging
1376 		 * from succeeding over a network.  We copy the current
1377 		 * signal information to the side and cancel the current
1378 		 * signal so that sendsig() will succeed.
1379 		 */
1380 		if (sigismember(&p->p_siginfo, sig)) {
1381 			sip = &lwp->lwp_siginfo;
1382 			if (sqp) {
1383 				bcopy(&sqp->sq_info, sip, sizeof (*sip));
1384 				/*
1385 				 * If we were interrupted out of a system call
1386 				 * due to pthread_cancel(), inform libc.
1387 				 */
1388 				if (sig == SIGCANCEL &&
1389 				    sip->si_code == SI_LWP &&
1390 				    t->t_sysnum != 0)
1391 					schedctl_cancel_eintr();
1392 			} else if (sig == SIGPROF && sip->si_signo == SIGPROF &&
1393 			    t->t_rprof != NULL && t->t_rprof->rp_anystate) {
1394 				/* EMPTY */;
1395 			} else {
1396 				bzero(sip, sizeof (*sip));
1397 				sip->si_signo = sig;
1398 				sip->si_code = SI_NOINFO;
1399 			}
1400 		}
1401 
1402 		if (t->t_flag & T_TOMASK)
1403 			t->t_flag &= ~T_TOMASK;
1404 		else
1405 			lwp->lwp_sigoldmask = t->t_hold;
1406 		sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]);
1407 		if (!sigismember(&PTOU(curproc)->u_signodefer, sig))
1408 			sigaddset(&t->t_hold, sig);
1409 		if (sigismember(&PTOU(curproc)->u_sigresethand, sig))
1410 			setsigact(sig, SIG_DFL, &nullsmask, 0);
1411 
1412 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1413 		    sip, void (*)(void), func);
1414 
1415 		lwp->lwp_cursig = 0;
1416 		lwp->lwp_extsig = 0;
1417 		if (lwp->lwp_curinfo) {
1418 			/* p->p_killsqp is freed by freeproc */
1419 			siginfofree(lwp->lwp_curinfo);
1420 			lwp->lwp_curinfo = NULL;
1421 		}
1422 		mutex_exit(&p->p_lock);
1423 		lwp->lwp_ru.nsignals++;
1424 
1425 		if (p->p_model == DATAMODEL_NATIVE)
1426 			rc = sendsig(sig, sip, func);
1427 #ifdef _SYSCALL32_IMPL
1428 		else
1429 			rc = sendsig32(sig, sip, func);
1430 #endif	/* _SYSCALL32_IMPL */
1431 		if (rc)
1432 			return;
1433 		sig = lwp->lwp_cursig = SIGSEGV;
1434 		ext = 0;	/* lwp_extsig was set above */
1435 		pid = -1;
1436 		ctid = 0;
1437 	}
1438 
1439 	if (sigismember(&coredefault, sig)) {
1440 		/*
1441 		 * Terminate all LWPs but don't discard them.
1442 		 * If another lwp beat us to the punch by calling exit(),
1443 		 * evaporate now.
1444 		 */
1445 		proc_is_exiting(p);
1446 		if (exitlwps(1) != 0) {
1447 			mutex_enter(&p->p_lock);
1448 			lwp_exit();
1449 		}
1450 		/* if we got a SIGKILL from anywhere, no core dump */
1451 		if (p->p_flag & SKILLED) {
1452 			sig = SIGKILL;
1453 			ext = (p->p_flag & SEXTKILLED) != 0;
1454 		} else {
1455 			if (auditing)		/* audit core dump */
1456 				audit_core_start(sig);
1457 			if (core(sig, ext) == 0)
1458 				code = CLD_DUMPED;
1459 			if (auditing)		/* audit core dump */
1460 				audit_core_finish(code);
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * Generate a contract event once if the process is killed
1466 	 * by a signal.
1467 	 */
1468 	if (ext) {
1469 		proc_is_exiting(p);
1470 		if (exitlwps(0) != 0) {
1471 			mutex_enter(&p->p_lock);
1472 			lwp_exit();
1473 		}
1474 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1475 		    zoneid);
1476 	}
1477 
1478 	exit(code, sig);
1479 }
1480 
1481 /*
1482  * Find next unheld signal in ssp for thread t.
1483  */
1484 int
1485 fsig(k_sigset_t *ssp, kthread_t *t)
1486 {
1487 	proc_t *p = ttoproc(t);
1488 	user_t *up = PTOU(p);
1489 	int i;
1490 	k_sigset_t temp;
1491 
1492 	ASSERT(MUTEX_HELD(&p->p_lock));
1493 
1494 	/*
1495 	 * Don't promote any signals for the parent of a vfork()d
1496 	 * child that hasn't yet released the parent's memory.
1497 	 */
1498 	if (p->p_flag & SVFWAIT)
1499 		return (0);
1500 
1501 	temp = *ssp;
1502 	sigdiffset(&temp, &t->t_hold);
1503 
1504 	/*
1505 	 * Don't promote stopping signals (except SIGSTOP) for a child
1506 	 * of vfork() that hasn't yet released the parent's memory.
1507 	 */
1508 	if (p->p_flag & SVFORK)
1509 		sigdiffset(&temp, &holdvfork);
1510 
1511 	/*
1512 	 * Don't promote a signal that will stop
1513 	 * the process when lwp_nostop is set.
1514 	 */
1515 	if (ttolwp(t)->lwp_nostop) {
1516 		sigdelset(&temp, SIGSTOP);
1517 		if (!p->p_pgidp->pid_pgorphaned) {
1518 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1519 				sigdelset(&temp, SIGTSTP);
1520 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1521 				sigdelset(&temp, SIGTTIN);
1522 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1523 				sigdelset(&temp, SIGTTOU);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1529 	 * The rest are promoted in signal number order.
1530 	 */
1531 	if (sigismember(&temp, SIGKILL))
1532 		return (SIGKILL);
1533 	if (sigismember(&temp, SIGPROF))
1534 		return (SIGPROF);
1535 
1536 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1537 		if (temp.__sigbits[i])
1538 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1539 			    lowbit(temp.__sigbits[i]));
1540 	}
1541 
1542 	return (0);
1543 }
1544 
1545 void
1546 setsigact(int sig, void (*disp)(), const k_sigset_t *mask, int flags)
1547 {
1548 	proc_t *p = ttoproc(curthread);
1549 	kthread_t *t;
1550 
1551 	ASSERT(MUTEX_HELD(&p->p_lock));
1552 
1553 	PTOU(curproc)->u_signal[sig - 1] = disp;
1554 
1555 	/*
1556 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1557 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1558 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1559 	 * properly together when the signal is set to default or is
1560 	 * being temporarily ignored.
1561 	 */
1562 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1563 		sigaddset(&p->p_siginfo, sig);
1564 	else
1565 		sigdelset(&p->p_siginfo, sig);
1566 
1567 	if (disp != SIG_DFL && disp != SIG_IGN) {
1568 		sigdelset(&p->p_ignore, sig);
1569 		PTOU(curproc)->u_sigmask[sig - 1] = *mask;
1570 		if (!sigismember(&cantreset, sig)) {
1571 			if (flags & SA_RESETHAND)
1572 				sigaddset(&PTOU(curproc)->u_sigresethand, sig);
1573 			else
1574 				sigdelset(&PTOU(curproc)->u_sigresethand, sig);
1575 		}
1576 		if (flags & SA_NODEFER)
1577 			sigaddset(&PTOU(curproc)->u_signodefer, sig);
1578 		else
1579 			sigdelset(&PTOU(curproc)->u_signodefer, sig);
1580 		if (flags & SA_RESTART)
1581 			sigaddset(&PTOU(curproc)->u_sigrestart, sig);
1582 		else
1583 			sigdelset(&PTOU(curproc)->u_sigrestart, sig);
1584 		if (flags & SA_ONSTACK)
1585 			sigaddset(&PTOU(curproc)->u_sigonstack, sig);
1586 		else
1587 			sigdelset(&PTOU(curproc)->u_sigonstack, sig);
1588 	} else if (disp == SIG_IGN ||
1589 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1590 		/*
1591 		 * Setting the signal action to SIG_IGN results in the
1592 		 * discarding of all pending signals of that signal number.
1593 		 * Setting the signal action to SIG_DFL does the same *only*
1594 		 * if the signal's default behavior is to be ignored.
1595 		 */
1596 		sigaddset(&p->p_ignore, sig);
1597 		sigdelset(&p->p_sig, sig);
1598 		sigdelset(&p->p_extsig, sig);
1599 		sigdelq(p, NULL, sig);
1600 		t = p->p_tlist;
1601 		do {
1602 			sigdelset(&t->t_sig, sig);
1603 			sigdelset(&t->t_extsig, sig);
1604 			sigdelq(p, t, sig);
1605 		} while ((t = t->t_forw) != p->p_tlist);
1606 	} else {
1607 		/*
1608 		 * The signal action is being set to SIG_DFL and the default
1609 		 * behavior is to do something: make sure it is not ignored.
1610 		 */
1611 		sigdelset(&p->p_ignore, sig);
1612 	}
1613 
1614 	if (sig == SIGCLD) {
1615 		if (flags & SA_NOCLDWAIT)
1616 			p->p_flag |= SNOWAIT;
1617 		else
1618 			p->p_flag &= ~SNOWAIT;
1619 
1620 		if (flags & SA_NOCLDSTOP)
1621 			p->p_flag &= ~SJCTL;
1622 		else
1623 			p->p_flag |= SJCTL;
1624 
1625 		if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) {
1626 			proc_t *cp, *tp;
1627 
1628 			mutex_exit(&p->p_lock);
1629 			mutex_enter(&pidlock);
1630 			for (cp = p->p_child; cp != NULL; cp = tp) {
1631 				tp = cp->p_sibling;
1632 				if (cp->p_stat == SZOMB &&
1633 				    !(cp->p_pidflag & CLDWAITPID))
1634 					freeproc(cp);
1635 			}
1636 			mutex_exit(&pidlock);
1637 			mutex_enter(&p->p_lock);
1638 		}
1639 	}
1640 }
1641 
1642 /*
1643  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1644  * Called from exec_common() for a process undergoing execve()
1645  * and from cfork() for a newly-created child of vfork().
1646  * In the vfork() case, 'p' is not the current process.
1647  * In both cases, there is only one thread in the process.
1648  */
1649 void
1650 sigdefault(proc_t *p)
1651 {
1652 	kthread_t *t = p->p_tlist;
1653 	struct user *up = PTOU(p);
1654 	int sig;
1655 
1656 	ASSERT(MUTEX_HELD(&p->p_lock));
1657 
1658 	for (sig = 1; sig < NSIG; sig++) {
1659 		if (up->u_signal[sig - 1] != SIG_DFL &&
1660 		    up->u_signal[sig - 1] != SIG_IGN) {
1661 			up->u_signal[sig - 1] = SIG_DFL;
1662 			sigemptyset(&up->u_sigmask[sig - 1]);
1663 			if (sigismember(&ignoredefault, sig)) {
1664 				sigdelq(p, NULL, sig);
1665 				sigdelq(p, t, sig);
1666 			}
1667 			if (sig == SIGCLD)
1668 				p->p_flag &= ~(SNOWAIT|SJCTL);
1669 		}
1670 	}
1671 	sigorset(&p->p_ignore, &ignoredefault);
1672 	sigfillset(&p->p_siginfo);
1673 	sigdiffset(&p->p_siginfo, &cantmask);
1674 	sigdiffset(&p->p_sig, &ignoredefault);
1675 	sigdiffset(&p->p_extsig, &ignoredefault);
1676 	sigdiffset(&t->t_sig, &ignoredefault);
1677 	sigdiffset(&t->t_extsig, &ignoredefault);
1678 }
1679 
1680 void
1681 sigcld(proc_t *cp, sigqueue_t *sqp)
1682 {
1683 	proc_t *pp = cp->p_parent;
1684 
1685 	ASSERT(MUTEX_HELD(&pidlock));
1686 
1687 	switch (cp->p_wcode) {
1688 	case CLD_EXITED:
1689 	case CLD_DUMPED:
1690 	case CLD_KILLED:
1691 		ASSERT(cp->p_stat == SZOMB);
1692 		/*
1693 		 * The broadcast on p_srwchan_cv is a kludge to
1694 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1695 		 */
1696 		cv_broadcast(&cp->p_srwchan_cv);
1697 
1698 		/*
1699 		 * Add to newstate list of the parent
1700 		 */
1701 		add_ns(pp, cp);
1702 
1703 		cv_broadcast(&pp->p_cv);
1704 		if ((pp->p_flag & SNOWAIT) ||
1705 		    PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) {
1706 			if (!(cp->p_pidflag & CLDWAITPID))
1707 				freeproc(cp);
1708 		} else if (!(cp->p_pidflag & CLDNOSIGCHLD)) {
1709 			post_sigcld(cp, sqp);
1710 			sqp = NULL;
1711 		}
1712 		break;
1713 
1714 	case CLD_STOPPED:
1715 	case CLD_CONTINUED:
1716 		cv_broadcast(&pp->p_cv);
1717 		if (pp->p_flag & SJCTL) {
1718 			post_sigcld(cp, sqp);
1719 			sqp = NULL;
1720 		}
1721 		break;
1722 	}
1723 
1724 	if (sqp)
1725 		siginfofree(sqp);
1726 }
1727 
1728 /*
1729  * Common code called from sigcld() and from
1730  * waitid() and issig_forreal() via sigcld_repost().
1731  * Give the parent process a SIGCLD if it does not have one pending,
1732  * else mark the child process so a SIGCLD can be posted later.
1733  */
1734 static void
1735 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1736 {
1737 	proc_t *pp = cp->p_parent;
1738 	k_siginfo_t info;
1739 
1740 	ASSERT(MUTEX_HELD(&pidlock));
1741 	mutex_enter(&pp->p_lock);
1742 
1743 	/*
1744 	 * If a SIGCLD is pending, then just mark the child process
1745 	 * so that its SIGCLD will be posted later, when the first
1746 	 * SIGCLD is taken off the queue or when the parent is ready
1747 	 * to receive it or accept it, if ever.
1748 	 */
1749 	if (sigismember(&pp->p_sig, SIGCLD)) {
1750 		cp->p_pidflag |= CLDPEND;
1751 	} else {
1752 		cp->p_pidflag &= ~CLDPEND;
1753 		if (sqp == NULL) {
1754 			/*
1755 			 * This can only happen when the parent is init.
1756 			 * (See call to sigcld(q, NULL) in exit().)
1757 			 * Use KM_NOSLEEP to avoid deadlock.
1758 			 */
1759 			ASSERT(pp == proc_init);
1760 			winfo(cp, &info, 0);
1761 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1762 		} else {
1763 			winfo(cp, &sqp->sq_info, 0);
1764 			sigaddqa(pp, NULL, sqp);
1765 			sqp = NULL;
1766 		}
1767 	}
1768 
1769 	mutex_exit(&pp->p_lock);
1770 
1771 	if (sqp)
1772 		siginfofree(sqp);
1773 }
1774 
1775 /*
1776  * Search for a child that has a pending SIGCLD for us, the parent.
1777  * The queue of SIGCLD signals is implied by the list of children.
1778  * We post the SIGCLD signals one at a time so they don't get lost.
1779  * When one is dequeued, another is enqueued, until there are no more.
1780  */
1781 void
1782 sigcld_repost()
1783 {
1784 	proc_t *pp = curproc;
1785 	proc_t *cp;
1786 	sigqueue_t *sqp;
1787 
1788 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1789 	mutex_enter(&pidlock);
1790 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1791 		if (cp->p_pidflag & CLDPEND) {
1792 			post_sigcld(cp, sqp);
1793 			mutex_exit(&pidlock);
1794 			return;
1795 		}
1796 	}
1797 	mutex_exit(&pidlock);
1798 	kmem_free(sqp, sizeof (sigqueue_t));
1799 }
1800 
1801 /*
1802  * count number of sigqueue send by sigaddqa()
1803  */
1804 void
1805 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1806 {
1807 	sigqhdr_t *sqh;
1808 
1809 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1810 	ASSERT(sqh);
1811 
1812 	mutex_enter(&sqh->sqb_lock);
1813 	sqh->sqb_sent++;
1814 	mutex_exit(&sqh->sqb_lock);
1815 
1816 	if (cmd == SN_SEND)
1817 		sigaddqa(p, t, sigqp);
1818 	else
1819 		siginfofree(sigqp);
1820 }
1821 
1822 int
1823 sigsendproc(proc_t *p, sigsend_t *pv)
1824 {
1825 	struct cred *cr;
1826 	proc_t *myprocp = curproc;
1827 
1828 	ASSERT(MUTEX_HELD(&pidlock));
1829 
1830 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1831 		return (EPERM);
1832 
1833 	cr = CRED();
1834 
1835 	if (pv->checkperm == 0 ||
1836 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1837 	    prochasprocperm(p, myprocp, cr)) {
1838 		pv->perm++;
1839 		if (pv->sig) {
1840 			/* Make sure we should be setting si_pid and friends */
1841 			ASSERT(pv->sicode <= 0);
1842 			if (SI_CANQUEUE(pv->sicode)) {
1843 				sigqueue_t *sqp;
1844 
1845 				mutex_enter(&myprocp->p_lock);
1846 				sqp = sigqalloc(myprocp->p_sigqhdr);
1847 				mutex_exit(&myprocp->p_lock);
1848 				if (sqp == NULL)
1849 					return (EAGAIN);
1850 				sqp->sq_info.si_signo = pv->sig;
1851 				sqp->sq_info.si_code = pv->sicode;
1852 				sqp->sq_info.si_pid = myprocp->p_pid;
1853 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1854 				sqp->sq_info.si_zoneid = getzoneid();
1855 				sqp->sq_info.si_uid = crgetruid(cr);
1856 				sqp->sq_info.si_value = pv->value;
1857 				mutex_enter(&p->p_lock);
1858 				sigqsend(SN_SEND, p, NULL, sqp);
1859 				mutex_exit(&p->p_lock);
1860 			} else {
1861 				k_siginfo_t info;
1862 				bzero(&info, sizeof (info));
1863 				info.si_signo = pv->sig;
1864 				info.si_code = pv->sicode;
1865 				info.si_pid = myprocp->p_pid;
1866 				info.si_ctid = PRCTID(myprocp);
1867 				info.si_zoneid = getzoneid();
1868 				info.si_uid = crgetruid(cr);
1869 				mutex_enter(&p->p_lock);
1870 				/*
1871 				 * XXX: Should be KM_SLEEP but
1872 				 * we have to avoid deadlock.
1873 				 */
1874 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1875 				mutex_exit(&p->p_lock);
1876 			}
1877 		}
1878 	}
1879 
1880 	return (0);
1881 }
1882 
1883 int
1884 sigsendset(procset_t *psp, sigsend_t *pv)
1885 {
1886 	int error;
1887 
1888 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1889 	if (error == 0 && pv->perm == 0)
1890 		return (EPERM);
1891 
1892 	return (error);
1893 }
1894 
1895 /*
1896  * Dequeue a queued siginfo structure.
1897  * If a non-null thread pointer is passed then dequeue from
1898  * the thread queue, otherwise dequeue from the process queue.
1899  */
1900 void
1901 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1902 {
1903 	sigqueue_t **psqp, *sqp;
1904 
1905 	ASSERT(MUTEX_HELD(&p->p_lock));
1906 
1907 	*qpp = NULL;
1908 
1909 	if (t != NULL) {
1910 		sigdelset(&t->t_sig, sig);
1911 		sigdelset(&t->t_extsig, sig);
1912 		psqp = &t->t_sigqueue;
1913 	} else {
1914 		sigdelset(&p->p_sig, sig);
1915 		sigdelset(&p->p_extsig, sig);
1916 		psqp = &p->p_sigqueue;
1917 	}
1918 
1919 	for (;;) {
1920 		if ((sqp = *psqp) == NULL)
1921 			return;
1922 		if (sqp->sq_info.si_signo == sig)
1923 			break;
1924 		else
1925 			psqp = &sqp->sq_next;
1926 	}
1927 	*qpp = sqp;
1928 	*psqp = sqp->sq_next;
1929 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1930 		if (sqp->sq_info.si_signo == sig) {
1931 			if (t != (kthread_t *)NULL) {
1932 				sigaddset(&t->t_sig, sig);
1933 				t->t_sig_check = 1;
1934 			} else {
1935 				sigaddset(&p->p_sig, sig);
1936 				set_proc_ast(p);
1937 			}
1938 			break;
1939 		}
1940 	}
1941 }
1942 
1943 /*
1944  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1945  */
1946 void
1947 sigcld_delete(k_siginfo_t *ip)
1948 {
1949 	proc_t *p = curproc;
1950 	int another_sigcld = 0;
1951 	sigqueue_t **psqp, *sqp;
1952 
1953 	ASSERT(ip->si_signo == SIGCLD);
1954 
1955 	mutex_enter(&p->p_lock);
1956 
1957 	if (!sigismember(&p->p_sig, SIGCLD)) {
1958 		mutex_exit(&p->p_lock);
1959 		return;
1960 	}
1961 
1962 	psqp = &p->p_sigqueue;
1963 	for (;;) {
1964 		if ((sqp = *psqp) == NULL) {
1965 			mutex_exit(&p->p_lock);
1966 			return;
1967 		}
1968 		if (sqp->sq_info.si_signo == SIGCLD) {
1969 			if (sqp->sq_info.si_pid == ip->si_pid &&
1970 			    sqp->sq_info.si_code == ip->si_code &&
1971 			    sqp->sq_info.si_status == ip->si_status)
1972 				break;
1973 			another_sigcld = 1;
1974 		}
1975 		psqp = &sqp->sq_next;
1976 	}
1977 	*psqp = sqp->sq_next;
1978 
1979 	siginfofree(sqp);
1980 
1981 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1982 		if (sqp->sq_info.si_signo == SIGCLD)
1983 			another_sigcld = 1;
1984 	}
1985 
1986 	if (!another_sigcld) {
1987 		sigdelset(&p->p_sig, SIGCLD);
1988 		sigdelset(&p->p_extsig, SIGCLD);
1989 	}
1990 
1991 	mutex_exit(&p->p_lock);
1992 }
1993 
1994 /*
1995  * Delete queued siginfo structures.
1996  * If a non-null thread pointer is passed then delete from
1997  * the thread queue, otherwise delete from the process queue.
1998  */
1999 void
2000 sigdelq(proc_t *p, kthread_t *t, int sig)
2001 {
2002 	sigqueue_t **psqp, *sqp;
2003 
2004 	/*
2005 	 * We must be holding p->p_lock unless the process is
2006 	 * being reaped or has failed to get started on fork.
2007 	 */
2008 	ASSERT(MUTEX_HELD(&p->p_lock) ||
2009 	    p->p_stat == SIDL || p->p_stat == SZOMB);
2010 
2011 	if (t != (kthread_t *)NULL)
2012 		psqp = &t->t_sigqueue;
2013 	else
2014 		psqp = &p->p_sigqueue;
2015 
2016 	while (*psqp) {
2017 		sqp = *psqp;
2018 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
2019 			*psqp = sqp->sq_next;
2020 			siginfofree(sqp);
2021 		} else
2022 			psqp = &sqp->sq_next;
2023 	}
2024 }
2025 
2026 /*
2027  * Insert a siginfo structure into a queue.
2028  * If a non-null thread pointer is passed then add to the thread queue,
2029  * otherwise add to the process queue.
2030  *
2031  * The function sigaddqins() is called with sigqueue already allocated.
2032  * It is called from sigaddqa() and sigaddq() below.
2033  *
2034  * The value of si_code implicitly indicates whether sigp is to be
2035  * explicitly queued, or to be queued to depth one.
2036  */
2037 static void
2038 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2039 {
2040 	sigqueue_t **psqp;
2041 	int sig = sigqp->sq_info.si_signo;
2042 
2043 	sigqp->sq_external = (curproc != &p0) &&
2044 	    (curproc->p_ct_process != p->p_ct_process);
2045 
2046 	/*
2047 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2048 	 * is set, and even if it did, we would want to avoid situation
2049 	 * (which would be unique to SIGKILL) where one thread dequeued
2050 	 * the sigqueue_t and another executed psig().  So we create a
2051 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2052 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2053 	 * if (and only if) it was non-extracontractual.
2054 	 */
2055 	if (sig == SIGKILL) {
2056 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2057 			if (p->p_killsqp != NULL)
2058 				siginfofree(p->p_killsqp);
2059 			p->p_killsqp = sigqp;
2060 			sigqp->sq_next = NULL;
2061 		} else {
2062 			siginfofree(sigqp);
2063 		}
2064 		return;
2065 	}
2066 
2067 	ASSERT(sig >= 1 && sig < NSIG);
2068 	if (t != NULL)	/* directed to a thread */
2069 		psqp = &t->t_sigqueue;
2070 	else 		/* directed to a process */
2071 		psqp = &p->p_sigqueue;
2072 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2073 	    sigismember(&p->p_siginfo, sig)) {
2074 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2075 				;
2076 	} else {
2077 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2078 			if ((*psqp)->sq_info.si_signo == sig) {
2079 				siginfofree(sigqp);
2080 				return;
2081 			}
2082 		}
2083 	}
2084 	*psqp = sigqp;
2085 	sigqp->sq_next = NULL;
2086 }
2087 
2088 /*
2089  * The function sigaddqa() is called with sigqueue already allocated.
2090  * If signal is ignored, discard but guarantee KILL and generation semantics.
2091  * It is called from sigqueue() and other places.
2092  */
2093 void
2094 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2095 {
2096 	int sig = sigqp->sq_info.si_signo;
2097 
2098 	ASSERT(MUTEX_HELD(&p->p_lock));
2099 	ASSERT(sig >= 1 && sig < NSIG);
2100 
2101 	if (sig_discardable(p, sig))
2102 		siginfofree(sigqp);
2103 	else
2104 		sigaddqins(p, t, sigqp);
2105 
2106 	sigtoproc(p, t, sig);
2107 }
2108 
2109 /*
2110  * Allocate the sigqueue_t structure and call sigaddqins().
2111  */
2112 void
2113 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2114 {
2115 	sigqueue_t *sqp;
2116 	int sig = infop->si_signo;
2117 
2118 	ASSERT(MUTEX_HELD(&p->p_lock));
2119 	ASSERT(sig >= 1 && sig < NSIG);
2120 
2121 	/*
2122 	 * If the signal will be discarded by sigtoproc() or
2123 	 * if the process isn't requesting siginfo and it isn't
2124 	 * blocking the signal (it *could* change it's mind while
2125 	 * the signal is pending) then don't bother creating one.
2126 	 */
2127 	if (!sig_discardable(p, sig) &&
2128 	    (sigismember(&p->p_siginfo, sig) ||
2129 	    (curproc->p_ct_process != p->p_ct_process) ||
2130 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2131 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2132 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2133 		sqp->sq_func = NULL;
2134 		sqp->sq_next = NULL;
2135 		sigaddqins(p, t, sqp);
2136 	}
2137 	sigtoproc(p, t, sig);
2138 }
2139 
2140 /*
2141  * Handle stop-on-fault processing for the debugger.  Returns 0
2142  * if the fault is cleared during the stop, nonzero if it isn't.
2143  */
2144 int
2145 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2146 {
2147 	proc_t *p = ttoproc(curthread);
2148 	klwp_t *lwp = ttolwp(curthread);
2149 
2150 	ASSERT(prismember(&p->p_fltmask, fault));
2151 
2152 	/*
2153 	 * Record current fault and siginfo structure so debugger can
2154 	 * find it.
2155 	 */
2156 	mutex_enter(&p->p_lock);
2157 	lwp->lwp_curflt = (uchar_t)fault;
2158 	lwp->lwp_siginfo = *sip;
2159 
2160 	stop(PR_FAULTED, fault);
2161 
2162 	fault = lwp->lwp_curflt;
2163 	lwp->lwp_curflt = 0;
2164 	mutex_exit(&p->p_lock);
2165 	return (fault);
2166 }
2167 
2168 void
2169 sigorset(k_sigset_t *s1, const k_sigset_t *s2)
2170 {
2171 	s1->__sigbits[0] |= s2->__sigbits[0];
2172 	s1->__sigbits[1] |= s2->__sigbits[1];
2173 	s1->__sigbits[2] |= s2->__sigbits[2];
2174 }
2175 
2176 void
2177 sigandset(k_sigset_t *s1, const k_sigset_t *s2)
2178 {
2179 	s1->__sigbits[0] &= s2->__sigbits[0];
2180 	s1->__sigbits[1] &= s2->__sigbits[1];
2181 	s1->__sigbits[2] &= s2->__sigbits[2];
2182 }
2183 
2184 void
2185 sigdiffset(k_sigset_t *s1, const k_sigset_t *s2)
2186 {
2187 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2188 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2189 	s1->__sigbits[2] &= ~(s2->__sigbits[2]);
2190 }
2191 
2192 /*
2193  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2194  * if there are any signals the thread might take on return from the kernel.
2195  * If ksigset_t's were a single word, we would do:
2196  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2197  */
2198 int
2199 sigcheck(proc_t *p, kthread_t *t)
2200 {
2201 	sc_shared_t *tdp = t->t_schedctl;
2202 
2203 	/*
2204 	 * If signals are blocked via the schedctl interface
2205 	 * then we only check for the unmaskable signals.
2206 	 * The unmaskable signal numbers should all be contained
2207 	 * in __sigbits[0] and we assume this for speed.
2208 	 */
2209 #if (CANTMASK1 == 0 && CANTMASK2 == 0)
2210 	if (tdp != NULL && tdp->sc_sigblock)
2211 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2212 		    CANTMASK0);
2213 #else
2214 #error "fix me: CANTMASK1 and CANTMASK2 are not zero"
2215 #endif
2216 
2217 /* see uts/common/sys/signal.h for why this must be true */
2218 #if ((MAXSIG > (2 * 32)) && (MAXSIG <= (3 * 32)))
2219 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2220 	    ~t->t_hold.__sigbits[0]) |
2221 	    ((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2222 	    ~t->t_hold.__sigbits[1]) |
2223 	    (((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
2224 	    ~t->t_hold.__sigbits[2]) & FILLSET2));
2225 #else
2226 #error "fix me: MAXSIG out of bounds"
2227 #endif
2228 }
2229 
2230 void
2231 sigintr(k_sigset_t *smask, int intable)
2232 {
2233 	proc_t *p;
2234 	int owned;
2235 	k_sigset_t lmask;		/* local copy of cantmask */
2236 	klwp_t *lwp = ttolwp(curthread);
2237 
2238 	/*
2239 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2240 	 *    and SIGTERM. (Preserving the existing masks).
2241 	 *    This function supports the -intr nfs and ufs mount option.
2242 	 */
2243 
2244 	/*
2245 	 * don't do kernel threads
2246 	 */
2247 	if (lwp == NULL)
2248 		return;
2249 
2250 	/*
2251 	 * get access to signal mask
2252 	 */
2253 	p = ttoproc(curthread);
2254 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2255 	if (!owned)
2256 		mutex_enter(&p->p_lock);
2257 
2258 	/*
2259 	 * remember the current mask
2260 	 */
2261 	schedctl_finish_sigblock(curthread);
2262 	*smask = curthread->t_hold;
2263 
2264 	/*
2265 	 * mask out all signals
2266 	 */
2267 	sigfillset(&curthread->t_hold);
2268 
2269 	/*
2270 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2271 	 * they aren't already masked (which could happen at exit).
2272 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2273 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2274 	 * to (~cantmask | curhold).
2275 	 */
2276 	lmask = cantmask;
2277 	sigdiffset(&lmask, smask);
2278 	sigdiffset(&curthread->t_hold, &lmask);
2279 
2280 	/*
2281 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2282 	 * Re-enable INT if it's originally enabled and the NFS mount option
2283 	 * nointr is not set.
2284 	 */
2285 	if (!sigismember(smask, SIGHUP))
2286 		sigdelset(&curthread->t_hold, SIGHUP);
2287 	if (!sigismember(smask, SIGINT) && intable)
2288 		sigdelset(&curthread->t_hold, SIGINT);
2289 	if (!sigismember(smask, SIGQUIT))
2290 		sigdelset(&curthread->t_hold, SIGQUIT);
2291 	if (!sigismember(smask, SIGTERM))
2292 		sigdelset(&curthread->t_hold, SIGTERM);
2293 
2294 	/*
2295 	 * release access to signal mask
2296 	 */
2297 	if (!owned)
2298 		mutex_exit(&p->p_lock);
2299 
2300 	/*
2301 	 * Indicate that this lwp is not to be stopped.
2302 	 */
2303 	lwp->lwp_nostop++;
2304 
2305 }
2306 
2307 void
2308 sigunintr(k_sigset_t *smask)
2309 {
2310 	proc_t *p;
2311 	int owned;
2312 	klwp_t *lwp = ttolwp(curthread);
2313 
2314 	/*
2315 	 * Reset previous mask (See sigintr() above)
2316 	 */
2317 	if (lwp != NULL) {
2318 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2319 		p = ttoproc(curthread);
2320 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2321 		if (!owned)
2322 			mutex_enter(&p->p_lock);
2323 		curthread->t_hold = *smask;
2324 		/* so unmasked signals will be seen */
2325 		curthread->t_sig_check = 1;
2326 		if (!owned)
2327 			mutex_exit(&p->p_lock);
2328 	}
2329 }
2330 
2331 void
2332 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2333 {
2334 	proc_t	*p;
2335 	int owned;
2336 	/*
2337 	 * Save current signal mask in oldmask, then
2338 	 * set it to newmask.
2339 	 */
2340 	if (ttolwp(curthread) != NULL) {
2341 		p = ttoproc(curthread);
2342 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2343 		if (!owned)
2344 			mutex_enter(&p->p_lock);
2345 		schedctl_finish_sigblock(curthread);
2346 		if (oldmask != NULL)
2347 			*oldmask = curthread->t_hold;
2348 		curthread->t_hold = *newmask;
2349 		curthread->t_sig_check = 1;
2350 		if (!owned)
2351 			mutex_exit(&p->p_lock);
2352 	}
2353 }
2354 
2355 /*
2356  * Return true if the signal number is in range
2357  * and the signal code specifies signal queueing.
2358  */
2359 int
2360 sigwillqueue(int sig, int code)
2361 {
2362 	if (sig >= 0 && sig < NSIG) {
2363 		switch (code) {
2364 		case SI_QUEUE:
2365 		case SI_TIMER:
2366 		case SI_ASYNCIO:
2367 		case SI_MESGQ:
2368 			return (1);
2369 		}
2370 	}
2371 	return (0);
2372 }
2373 
2374 /*
2375  * The pre-allocated pool (with _SIGQUEUE_PREALLOC entries) is
2376  * allocated at the first sigqueue/signotify call.
2377  */
2378 sigqhdr_t *
2379 sigqhdralloc(size_t size, uint_t maxcount)
2380 {
2381 	size_t i;
2382 	sigqueue_t *sq, *next;
2383 	sigqhdr_t *sqh;
2384 
2385 	/*
2386 	 * Before the introduction of process.max-sigqueue-size
2387 	 * _SC_SIGQUEUE_MAX had this static value.
2388 	 */
2389 #define	_SIGQUEUE_PREALLOC	32
2390 
2391 	i = (_SIGQUEUE_PREALLOC * size) + sizeof (sigqhdr_t);
2392 	ASSERT(maxcount <= INT_MAX);
2393 	sqh = kmem_alloc(i, KM_SLEEP);
2394 	sqh->sqb_count = maxcount;
2395 	sqh->sqb_maxcount = maxcount;
2396 	sqh->sqb_size = i;
2397 	sqh->sqb_pexited = 0;
2398 	sqh->sqb_sent = 0;
2399 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2400 	for (i = _SIGQUEUE_PREALLOC - 1; i != 0; i--) {
2401 		next = (sigqueue_t *)((uintptr_t)sq + size);
2402 		sq->sq_next = next;
2403 		sq = next;
2404 	}
2405 	sq->sq_next = NULL;
2406 	cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2407 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2408 	return (sqh);
2409 }
2410 
2411 static void sigqrel(sigqueue_t *);
2412 
2413 /*
2414  * Allocate a sigqueue/signotify structure from the per process
2415  * pre-allocated pool or allocate a new sigqueue/signotify structure
2416  * if the pre-allocated pool is exhausted.
2417  */
2418 sigqueue_t *
2419 sigqalloc(sigqhdr_t *sqh)
2420 {
2421 	sigqueue_t *sq = NULL;
2422 
2423 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2424 
2425 	if (sqh != NULL) {
2426 		mutex_enter(&sqh->sqb_lock);
2427 		if (sqh->sqb_count > 0) {
2428 			sqh->sqb_count--;
2429 			if (sqh->sqb_free == NULL) {
2430 				/*
2431 				 * The pre-allocated pool is exhausted.
2432 				 */
2433 				sq = kmem_alloc(sizeof (sigqueue_t), KM_SLEEP);
2434 				sq->sq_func = NULL;
2435 			} else {
2436 				sq = sqh->sqb_free;
2437 				sq->sq_func = sigqrel;
2438 				sqh->sqb_free = sq->sq_next;
2439 			}
2440 			mutex_exit(&sqh->sqb_lock);
2441 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2442 			sq->sq_backptr = sqh;
2443 			sq->sq_next = NULL;
2444 			sq->sq_external = 0;
2445 		} else {
2446 			mutex_exit(&sqh->sqb_lock);
2447 		}
2448 	}
2449 	return (sq);
2450 }
2451 
2452 /*
2453  * Return a sigqueue structure back to the pre-allocated pool.
2454  */
2455 static void
2456 sigqrel(sigqueue_t *sq)
2457 {
2458 	sigqhdr_t *sqh;
2459 
2460 	/* make sure that p_lock of the affected process is held */
2461 
2462 	sqh = (sigqhdr_t *)sq->sq_backptr;
2463 	mutex_enter(&sqh->sqb_lock);
2464 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2465 		mutex_exit(&sqh->sqb_lock);
2466 		cv_destroy(&sqh->sqb_cv);
2467 		mutex_destroy(&sqh->sqb_lock);
2468 		kmem_free(sqh, sqh->sqb_size);
2469 	} else {
2470 		sqh->sqb_count++;
2471 		sqh->sqb_sent--;
2472 		sq->sq_next = sqh->sqb_free;
2473 		sq->sq_backptr = NULL;
2474 		sqh->sqb_free = sq;
2475 		cv_signal(&sqh->sqb_cv);
2476 		mutex_exit(&sqh->sqb_lock);
2477 	}
2478 }
2479 
2480 /*
2481  * Free up the pre-allocated sigqueue headers of sigqueue pool
2482  * and signotify pool, if possible.
2483  * Called only by the owning process during exec() and exit().
2484  */
2485 void
2486 sigqfree(proc_t *p)
2487 {
2488 	ASSERT(MUTEX_HELD(&p->p_lock));
2489 
2490 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2491 		sigqhdrfree(p->p_sigqhdr);
2492 		p->p_sigqhdr = NULL;
2493 	}
2494 	if (p->p_signhdr != NULL) {	/* signotify pool */
2495 		sigqhdrfree(p->p_signhdr);
2496 		p->p_signhdr = NULL;
2497 	}
2498 }
2499 
2500 /*
2501  * Free up the pre-allocated header and sigq pool if possible.
2502  */
2503 void
2504 sigqhdrfree(sigqhdr_t *sqh)
2505 {
2506 	mutex_enter(&sqh->sqb_lock);
2507 	if (sqh->sqb_sent == 0) {
2508 		mutex_exit(&sqh->sqb_lock);
2509 		cv_destroy(&sqh->sqb_cv);
2510 		mutex_destroy(&sqh->sqb_lock);
2511 		kmem_free(sqh, sqh->sqb_size);
2512 	} else {
2513 		sqh->sqb_pexited = 1;
2514 		mutex_exit(&sqh->sqb_lock);
2515 	}
2516 }
2517 
2518 /*
2519  * Free up a single sigqueue structure.
2520  * No other code should free a sigqueue directly.
2521  */
2522 void
2523 siginfofree(sigqueue_t *sqp)
2524 {
2525 	if (sqp != NULL) {
2526 		if (sqp->sq_func != NULL)
2527 			(sqp->sq_func)(sqp);
2528 		else
2529 			kmem_free(sqp, sizeof (sigqueue_t));
2530 	}
2531 }
2532 
2533 /*
2534  * Generate a synchronous signal caused by a hardware
2535  * condition encountered by an lwp.  Called from trap().
2536  */
2537 void
2538 trapsig(k_siginfo_t *ip, int restartable)
2539 {
2540 	proc_t *p = ttoproc(curthread);
2541 	int sig = ip->si_signo;
2542 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2543 
2544 	ASSERT(sig > 0 && sig < NSIG);
2545 
2546 	if (curthread->t_dtrace_on)
2547 		dtrace_safe_synchronous_signal();
2548 
2549 	mutex_enter(&p->p_lock);
2550 	schedctl_finish_sigblock(curthread);
2551 	/*
2552 	 * Avoid a possible infinite loop if the lwp is holding the
2553 	 * signal generated by a trap of a restartable instruction or
2554 	 * if the signal so generated is being ignored by the process.
2555 	 */
2556 	if (restartable &&
2557 	    (sigismember(&curthread->t_hold, sig) ||
2558 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2559 		sigdelset(&curthread->t_hold, sig);
2560 		p->p_user.u_signal[sig-1] = SIG_DFL;
2561 		sigdelset(&p->p_ignore, sig);
2562 	}
2563 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2564 	sigaddqa(p, curthread, sqp);
2565 	mutex_exit(&p->p_lock);
2566 }
2567 
2568 /*
2569  * Dispatch the real time profiling signal in the traditional way,
2570  * honoring all of the /proc tracing mechanism built into issig().
2571  */
2572 static void
2573 realsigprof_slow(int sysnum, int nsysarg, int error)
2574 {
2575 	kthread_t *t = curthread;
2576 	proc_t *p = ttoproc(t);
2577 	klwp_t *lwp = ttolwp(t);
2578 	k_siginfo_t *sip = &lwp->lwp_siginfo;
2579 	void (*func)();
2580 
2581 	mutex_enter(&p->p_lock);
2582 	func = PTOU(p)->u_signal[SIGPROF - 1];
2583 	if (p->p_rprof_cyclic == CYCLIC_NONE ||
2584 	    func == SIG_DFL || func == SIG_IGN) {
2585 		bzero(t->t_rprof, sizeof (*t->t_rprof));
2586 		mutex_exit(&p->p_lock);
2587 		return;
2588 	}
2589 	if (sigismember(&t->t_hold, SIGPROF)) {
2590 		mutex_exit(&p->p_lock);
2591 		return;
2592 	}
2593 	sip->si_signo = SIGPROF;
2594 	sip->si_code = PROF_SIG;
2595 	sip->si_errno = error;
2596 	hrt2ts(gethrtime(), &sip->si_tstamp);
2597 	sip->si_syscall = sysnum;
2598 	sip->si_nsysarg = nsysarg;
2599 	sip->si_fault = lwp->lwp_lastfault;
2600 	sip->si_faddr = lwp->lwp_lastfaddr;
2601 	lwp->lwp_lastfault = 0;
2602 	lwp->lwp_lastfaddr = NULL;
2603 	sigtoproc(p, t, SIGPROF);
2604 	mutex_exit(&p->p_lock);
2605 	ASSERT(lwp->lwp_cursig == 0);
2606 	if (issig(FORREAL))
2607 		psig();
2608 	sip->si_signo = 0;
2609 	bzero(t->t_rprof, sizeof (*t->t_rprof));
2610 }
2611 
2612 /*
2613  * We are not tracing the SIGPROF signal, or doing any other unnatural
2614  * acts, like watchpoints, so dispatch the real time profiling signal
2615  * directly, bypassing all of the overhead built into issig().
2616  */
2617 static void
2618 realsigprof_fast(int sysnum, int nsysarg, int error)
2619 {
2620 	kthread_t *t = curthread;
2621 	proc_t *p = ttoproc(t);
2622 	klwp_t *lwp = ttolwp(t);
2623 	k_siginfo_t *sip = &lwp->lwp_siginfo;
2624 	void (*func)();
2625 	int rc;
2626 	int code;
2627 
2628 	/*
2629 	 * We don't need to acquire p->p_lock here;
2630 	 * we are manipulating thread-private data.
2631 	 */
2632 	func = PTOU(p)->u_signal[SIGPROF - 1];
2633 	if (p->p_rprof_cyclic == CYCLIC_NONE ||
2634 	    func == SIG_DFL || func == SIG_IGN) {
2635 		bzero(t->t_rprof, sizeof (*t->t_rprof));
2636 		return;
2637 	}
2638 	if (lwp->lwp_cursig != 0 ||
2639 	    lwp->lwp_curinfo != NULL ||
2640 	    sigismember(&t->t_hold, SIGPROF)) {
2641 		return;
2642 	}
2643 	sip->si_signo = SIGPROF;
2644 	sip->si_code = PROF_SIG;
2645 	sip->si_errno = error;
2646 	hrt2ts(gethrtime(), &sip->si_tstamp);
2647 	sip->si_syscall = sysnum;
2648 	sip->si_nsysarg = nsysarg;
2649 	sip->si_fault = lwp->lwp_lastfault;
2650 	sip->si_faddr = lwp->lwp_lastfaddr;
2651 	lwp->lwp_lastfault = 0;
2652 	lwp->lwp_lastfaddr = NULL;
2653 	if (t->t_flag & T_TOMASK)
2654 		t->t_flag &= ~T_TOMASK;
2655 	else
2656 		lwp->lwp_sigoldmask = t->t_hold;
2657 	sigorset(&t->t_hold, &PTOU(p)->u_sigmask[SIGPROF - 1]);
2658 	if (!sigismember(&PTOU(p)->u_signodefer, SIGPROF))
2659 		sigaddset(&t->t_hold, SIGPROF);
2660 	lwp->lwp_extsig = 0;
2661 	lwp->lwp_ru.nsignals++;
2662 	if (p->p_model == DATAMODEL_NATIVE)
2663 		rc = sendsig(SIGPROF, sip, func);
2664 #ifdef _SYSCALL32_IMPL
2665 	else
2666 		rc = sendsig32(SIGPROF, sip, func);
2667 #endif	/* _SYSCALL32_IMPL */
2668 	sip->si_signo = 0;
2669 	bzero(t->t_rprof, sizeof (*t->t_rprof));
2670 	if (rc == 0) {
2671 		/*
2672 		 * sendsig() failed; we must dump core with a SIGSEGV.
2673 		 * See psig().  This code is copied from there.
2674 		 */
2675 		lwp->lwp_cursig = SIGSEGV;
2676 		code = CLD_KILLED;
2677 		proc_is_exiting(p);
2678 		if (exitlwps(1) != 0) {
2679 			mutex_enter(&p->p_lock);
2680 			lwp_exit();
2681 		}
2682 		if (audit_active == C2AUDIT_LOADED)
2683 			audit_core_start(SIGSEGV);
2684 		if (core(SIGSEGV, 0) == 0)
2685 			code = CLD_DUMPED;
2686 		if (audit_active == C2AUDIT_LOADED)
2687 			audit_core_finish(code);
2688 		exit(code, SIGSEGV);
2689 	}
2690 }
2691 
2692 /*
2693  * Arrange for the real time profiling signal to be dispatched.
2694  */
2695 void
2696 realsigprof(int sysnum, int nsysarg, int error)
2697 {
2698 	kthread_t *t = curthread;
2699 	proc_t *p = ttoproc(t);
2700 
2701 	if (t->t_rprof->rp_anystate == 0)
2702 		return;
2703 
2704 	schedctl_finish_sigblock(t);
2705 
2706 	/* test for any activity that requires p->p_lock */
2707 	if (tracing(p, SIGPROF) || pr_watch_active(p) ||
2708 	    sigismember(&PTOU(p)->u_sigresethand, SIGPROF)) {
2709 		/* do it the classic slow way */
2710 		realsigprof_slow(sysnum, nsysarg, error);
2711 	} else {
2712 		/* do it the cheating-a-little fast way */
2713 		realsigprof_fast(sysnum, nsysarg, error);
2714 	}
2715 }
2716 
2717 #ifdef _SYSCALL32_IMPL
2718 
2719 /*
2720  * It's tricky to transmit a sigval between 32-bit and 64-bit
2721  * process, since in the 64-bit world, a pointer and an integer
2722  * are different sizes.  Since we're constrained by the standards
2723  * world not to change the types, and it's unclear how useful it is
2724  * to send pointers between address spaces this way, we preserve
2725  * the 'int' interpretation for 32-bit processes interoperating
2726  * with 64-bit processes.  The full semantics (pointers or integers)
2727  * are available for N-bit processes interoperating with N-bit
2728  * processes.
2729  */
2730 void
2731 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2732 {
2733 	bzero(dest, sizeof (*dest));
2734 
2735 	/*
2736 	 * The absolute minimum content is si_signo and si_code.
2737 	 */
2738 	dest->si_signo = src->si_signo;
2739 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2740 		return;
2741 
2742 	/*
2743 	 * A siginfo generated by user level is structured
2744 	 * differently from one generated by the kernel.
2745 	 */
2746 	if (SI_FROMUSER(src)) {
2747 		dest->si_pid = src->si_pid;
2748 		dest->si_ctid = src->si_ctid;
2749 		dest->si_zoneid = src->si_zoneid;
2750 		dest->si_uid = src->si_uid;
2751 		if (SI_CANQUEUE(src->si_code))
2752 			dest->si_value.sival_int =
2753 			    (int32_t)src->si_value.sival_int;
2754 		return;
2755 	}
2756 
2757 	dest->si_errno = src->si_errno;
2758 
2759 	switch (src->si_signo) {
2760 	default:
2761 		dest->si_pid = src->si_pid;
2762 		dest->si_ctid = src->si_ctid;
2763 		dest->si_zoneid = src->si_zoneid;
2764 		dest->si_uid = src->si_uid;
2765 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2766 		break;
2767 	case SIGCLD:
2768 		dest->si_pid = src->si_pid;
2769 		dest->si_ctid = src->si_ctid;
2770 		dest->si_zoneid = src->si_zoneid;
2771 		dest->si_status = src->si_status;
2772 		dest->si_stime = src->si_stime;
2773 		dest->si_utime = src->si_utime;
2774 		break;
2775 	case SIGSEGV:
2776 	case SIGBUS:
2777 	case SIGILL:
2778 	case SIGTRAP:
2779 	case SIGFPE:
2780 	case SIGEMT:
2781 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2782 		dest->si_trapno = src->si_trapno;
2783 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2784 		break;
2785 	case SIGPOLL:
2786 	case SIGXFSZ:
2787 		dest->si_fd = src->si_fd;
2788 		dest->si_band = src->si_band;
2789 		break;
2790 	case SIGPROF:
2791 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2792 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2793 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2794 		dest->si_syscall = src->si_syscall;
2795 		dest->si_nsysarg = src->si_nsysarg;
2796 		dest->si_fault = src->si_fault;
2797 		break;
2798 	}
2799 }
2800 
2801 void
2802 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2803 {
2804 	bzero(dest, sizeof (*dest));
2805 
2806 	/*
2807 	 * The absolute minimum content is si_signo and si_code.
2808 	 */
2809 	dest->si_signo = src->si_signo;
2810 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2811 		return;
2812 
2813 	/*
2814 	 * A siginfo generated by user level is structured
2815 	 * differently from one generated by the kernel.
2816 	 */
2817 	if (SI_FROMUSER(src)) {
2818 		dest->si_pid = src->si_pid;
2819 		dest->si_ctid = src->si_ctid;
2820 		dest->si_zoneid = src->si_zoneid;
2821 		dest->si_uid = src->si_uid;
2822 		if (SI_CANQUEUE(src->si_code))
2823 			dest->si_value.sival_int =
2824 			    (int)src->si_value.sival_int;
2825 		return;
2826 	}
2827 
2828 	dest->si_errno = src->si_errno;
2829 
2830 	switch (src->si_signo) {
2831 	default:
2832 		dest->si_pid = src->si_pid;
2833 		dest->si_ctid = src->si_ctid;
2834 		dest->si_zoneid = src->si_zoneid;
2835 		dest->si_uid = src->si_uid;
2836 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2837 		break;
2838 	case SIGCLD:
2839 		dest->si_pid = src->si_pid;
2840 		dest->si_ctid = src->si_ctid;
2841 		dest->si_zoneid = src->si_zoneid;
2842 		dest->si_status = src->si_status;
2843 		dest->si_stime = src->si_stime;
2844 		dest->si_utime = src->si_utime;
2845 		break;
2846 	case SIGSEGV:
2847 	case SIGBUS:
2848 	case SIGILL:
2849 	case SIGTRAP:
2850 	case SIGFPE:
2851 	case SIGEMT:
2852 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2853 		dest->si_trapno = src->si_trapno;
2854 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2855 		break;
2856 	case SIGPOLL:
2857 	case SIGXFSZ:
2858 		dest->si_fd = src->si_fd;
2859 		dest->si_band = src->si_band;
2860 		break;
2861 	case SIGPROF:
2862 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2863 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2864 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2865 		dest->si_syscall = src->si_syscall;
2866 		dest->si_nsysarg = src->si_nsysarg;
2867 		dest->si_fault = src->si_fault;
2868 		break;
2869 	}
2870 }
2871 
2872 #endif /* _SYSCALL32_IMPL */
2873