xref: /titanic_41/usr/src/uts/common/os/sig.c (revision 23a276b1252962c987a613be470dde26561247b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/bitmap.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/proc.h>
42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
43 #include <sys/signal.h>
44 #include <sys/siginfo.h>
45 #include <sys/fault.h>
46 #include <sys/ucontext.h>
47 #include <sys/procfs.h>
48 #include <sys/wait.h>
49 #include <sys/class.h>
50 #include <sys/mman.h>
51 #include <sys/procset.h>
52 #include <sys/kmem.h>
53 #include <sys/cpuvar.h>
54 #include <sys/prsystm.h>
55 #include <sys/debug.h>
56 #include <vm/as.h>
57 #include <sys/bitmap.h>
58 #include <c2/audit.h>
59 #include <sys/core.h>
60 #include <sys/schedctl.h>
61 #include <sys/contract/process_impl.h>
62 #include <sys/dtrace.h>
63 #include <sys/sdt.h>
64 
65 				/* MUST be contiguous */
66 k_sigset_t nullsmask = {0, 0};
67 
68 k_sigset_t fillset = {FILLSET0, FILLSET1};
69 
70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
71 
72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
73 
74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
75 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
76 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
77 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
78 			|sigmask(SIGJVM2))};
79 
80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
81 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
82 
83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
84 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
85 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
86 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
87 
88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
89 			0};
90 
91 static	int	isjobstop(int);
92 static	void	post_sigcld(proc_t *, sigqueue_t *);
93 
94 /*
95  * Internal variables for counting number of user thread stop requests posted.
96  * They may not be accurate at some special situation such as that a virtually
97  * stopped thread starts to run.
98  */
99 static int num_utstop;
100 /*
101  * Internal variables for broadcasting an event when all thread stop requests
102  * are processed.
103  */
104 static kcondvar_t utstop_cv;
105 
106 static kmutex_t thread_stop_lock;
107 void del_one_utstop(void);
108 
109 /*
110  * Send the specified signal to the specified process.
111  */
112 void
113 psignal(proc_t *p, int sig)
114 {
115 	mutex_enter(&p->p_lock);
116 	sigtoproc(p, NULL, sig);
117 	mutex_exit(&p->p_lock);
118 }
119 
120 /*
121  * Send the specified signal to the specified thread.
122  */
123 void
124 tsignal(kthread_t *t, int sig)
125 {
126 	proc_t *p = ttoproc(t);
127 
128 	mutex_enter(&p->p_lock);
129 	sigtoproc(p, t, sig);
130 	mutex_exit(&p->p_lock);
131 }
132 
133 int
134 signal_is_blocked(kthread_t *t, int sig)
135 {
136 	return (sigismember(&t->t_hold, sig) ||
137 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
138 }
139 
140 /*
141  * Return true if the signal can safely be discarded on generation.
142  * That is, if there is no need for the signal on the receiving end.
143  * The answer is true if the process is a zombie or
144  * if all of these conditions are true:
145  *	the signal is being ignored
146  *	the process is single-threaded
147  *	the signal is not being traced by /proc
148  * 	the signal is not blocked by the process
149  */
150 static int
151 sig_discardable(proc_t *p, int sig)
152 {
153 	kthread_t *t = p->p_tlist;
154 
155 	return (t == NULL ||		/* if zombie or ... */
156 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
157 	    t->t_forw == t &&			/* and single-threaded */
158 	    !tracing(p, sig) &&			/* and no /proc tracing */
159 	    !signal_is_blocked(t, sig)));	/* and signal not blocked */
160 }
161 
162 /*
163  * Return true if this thread is going to eat this signal soon.
164  * Note that, if the signal is SIGKILL, we force stopped threads to be
165  * set running (to make SIGKILL be a sure kill), but only if the process
166  * is not currently locked by /proc (the P_PR_LOCK flag).  Code in /proc
167  * relies on the fact that a process will not change shape while P_PR_LOCK
168  * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
169  * We wish that we could simply call prbarrier() below, in sigtoproc(), to
170  * ensure that the process is not locked by /proc, but prbarrier() drops
171  * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
172  */
173 int
174 eat_signal(kthread_t *t, int sig)
175 {
176 	int rval = 0;
177 	ASSERT(THREAD_LOCK_HELD(t));
178 
179 	/*
180 	 * Do not do anything if the target thread has the signal blocked.
181 	 */
182 	if (!signal_is_blocked(t, sig)) {
183 		t->t_sig_check = 1;	/* have thread do an issig */
184 		if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) {
185 			setrun_locked(t);
186 			rval = 1;
187 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
188 		    !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
189 			ttoproc(t)->p_stopsig = 0;
190 			t->t_dtrace_stop = 0;
191 			t->t_schedflag |= TS_XSTART | TS_PSTART;
192 			setrun_locked(t);
193 		} else if (t != curthread && t->t_state == TS_ONPROC) {
194 			aston(t);	/* make it do issig promptly */
195 			if (t->t_cpu != CPU)
196 				poke_cpu(t->t_cpu->cpu_id);
197 			rval = 1;
198 		} else if (t->t_state == TS_RUN) {
199 			rval = 1;
200 		}
201 	}
202 
203 	return (rval);
204 }
205 
206 /*
207  * Post a signal.
208  * If a non-null thread pointer is passed, then post the signal
209  * to the thread/lwp, otherwise post the signal to the process.
210  */
211 void
212 sigtoproc(proc_t *p, kthread_t *t, int sig)
213 {
214 	kthread_t *tt;
215 	int ext = !(curproc->p_flag & SSYS) &&
216 	    (curproc->p_ct_process != p->p_ct_process);
217 
218 	ASSERT(MUTEX_HELD(&p->p_lock));
219 
220 	if (sig <= 0 || sig >= NSIG)
221 		return;
222 
223 	/*
224 	 * Regardless of origin or directedness,
225 	 * SIGKILL kills all lwps in the process immediately
226 	 * and jobcontrol signals affect all lwps in the process.
227 	 */
228 	if (sig == SIGKILL) {
229 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
230 		t = NULL;
231 	} else if (sig == SIGCONT) {
232 		/*
233 		 * The SSCONT flag will remain set until a stopping
234 		 * signal comes in (below).  This is harmless.
235 		 */
236 		p->p_flag |= SSCONT;
237 		sigdelq(p, NULL, SIGSTOP);
238 		sigdelq(p, NULL, SIGTSTP);
239 		sigdelq(p, NULL, SIGTTOU);
240 		sigdelq(p, NULL, SIGTTIN);
241 		sigdiffset(&p->p_sig, &stopdefault);
242 		sigdiffset(&p->p_extsig, &stopdefault);
243 		p->p_stopsig = 0;
244 		if ((tt = p->p_tlist) != NULL) {
245 			do {
246 				sigdelq(p, tt, SIGSTOP);
247 				sigdelq(p, tt, SIGTSTP);
248 				sigdelq(p, tt, SIGTTOU);
249 				sigdelq(p, tt, SIGTTIN);
250 				sigdiffset(&tt->t_sig, &stopdefault);
251 				sigdiffset(&tt->t_extsig, &stopdefault);
252 			} while ((tt = tt->t_forw) != p->p_tlist);
253 		}
254 		if ((tt = p->p_tlist) != NULL) {
255 			do {
256 				thread_lock(tt);
257 				if (tt->t_state == TS_STOPPED &&
258 				    tt->t_whystop == PR_JOBCONTROL) {
259 					tt->t_schedflag |= TS_XSTART;
260 					setrun_locked(tt);
261 				}
262 				thread_unlock(tt);
263 			} while ((tt = tt->t_forw) != p->p_tlist);
264 		}
265 	} else if (sigismember(&stopdefault, sig)) {
266 		/*
267 		 * This test has a race condition which we can't fix:
268 		 * By the time the stopping signal is received by
269 		 * the target process/thread, the signal handler
270 		 * and/or the detached state might have changed.
271 		 */
272 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
273 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
274 			p->p_flag &= ~SSCONT;
275 		sigdelq(p, NULL, SIGCONT);
276 		sigdelset(&p->p_sig, SIGCONT);
277 		sigdelset(&p->p_extsig, SIGCONT);
278 		if ((tt = p->p_tlist) != NULL) {
279 			do {
280 				sigdelq(p, tt, SIGCONT);
281 				sigdelset(&tt->t_sig, SIGCONT);
282 				sigdelset(&tt->t_extsig, SIGCONT);
283 			} while ((tt = tt->t_forw) != p->p_tlist);
284 		}
285 	}
286 
287 	if (sig_discardable(p, sig)) {
288 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
289 		    proc_t *, p, int, sig);
290 		return;
291 	}
292 
293 	if (t != NULL) {
294 		/*
295 		 * This is a directed signal, wake up the lwp.
296 		 */
297 		sigaddset(&t->t_sig, sig);
298 		if (ext)
299 			sigaddset(&t->t_extsig, sig);
300 		thread_lock(t);
301 		(void) eat_signal(t, sig);
302 		thread_unlock(t);
303 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
304 	} else if ((tt = p->p_tlist) != NULL) {
305 		/*
306 		 * Make sure that some lwp that already exists
307 		 * in the process fields the signal soon.
308 		 * Wake up an interruptibly sleeping lwp if necessary.
309 		 */
310 		int su = 0;
311 
312 		sigaddset(&p->p_sig, sig);
313 		if (ext)
314 			sigaddset(&p->p_extsig, sig);
315 		do {
316 			thread_lock(tt);
317 			if (eat_signal(tt, sig)) {
318 				thread_unlock(tt);
319 				break;
320 			}
321 			if (sig == SIGKILL && SUSPENDED(tt))
322 				su++;
323 			thread_unlock(tt);
324 		} while ((tt = tt->t_forw) != p->p_tlist);
325 		/*
326 		 * If the process is deadlocked, make somebody run and die.
327 		 */
328 		if (sig == SIGKILL && p->p_stat != SIDL &&
329 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
330 		    !(p->p_proc_flag & P_PR_LOCK)) {
331 			thread_lock(tt);
332 			p->p_lwprcnt++;
333 			tt->t_schedflag |= TS_CSTART;
334 			setrun_locked(tt);
335 			thread_unlock(tt);
336 		}
337 
338 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
339 	}
340 }
341 
342 static int
343 isjobstop(int sig)
344 {
345 	proc_t *p = ttoproc(curthread);
346 
347 	ASSERT(MUTEX_HELD(&p->p_lock));
348 
349 	if (u.u_signal[sig-1] == SIG_DFL && sigismember(&stopdefault, sig)) {
350 		/*
351 		 * If SIGCONT has been posted since we promoted this signal
352 		 * from pending to current, then don't do a jobcontrol stop.
353 		 */
354 		if (!(p->p_flag & SSCONT) &&
355 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
356 		    curthread != p->p_agenttp) {
357 			sigqueue_t *sqp;
358 
359 			stop(PR_JOBCONTROL, sig);
360 			mutex_exit(&p->p_lock);
361 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
362 			mutex_enter(&pidlock);
363 			/*
364 			 * Only the first lwp to continue notifies the parent.
365 			 */
366 			if (p->p_pidflag & CLDCONT)
367 				siginfofree(sqp);
368 			else {
369 				p->p_pidflag |= CLDCONT;
370 				p->p_wcode = CLD_CONTINUED;
371 				p->p_wdata = SIGCONT;
372 				sigcld(p, sqp);
373 			}
374 			mutex_exit(&pidlock);
375 			mutex_enter(&p->p_lock);
376 		}
377 		return (1);
378 	}
379 	return (0);
380 }
381 
382 /*
383  * Returns true if the current process has a signal to process, and
384  * the signal is not held.  The signal to process is put in p_cursig.
385  * This is asked at least once each time a process enters the system
386  * (though this can usually be done without actually calling issig by
387  * checking the pending signal masks).  A signal does not do anything
388  * directly to a process; it sets a flag that asks the process to do
389  * something to itself.
390  *
391  * The "why" argument indicates the allowable side-effects of the call:
392  *
393  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
394  * stop the process if a stop has been requested or if a traced signal
395  * is pending.
396  *
397  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
398  * a signal might be pending (FORREAL is needed to tell for sure).
399  *
400  * XXX: Changes to the logic in these routines should be propagated
401  * to lm_sigispending().  See bug 1201594.
402  */
403 
404 static int issig_forreal(void);
405 static int issig_justlooking(void);
406 
407 int
408 issig(int why)
409 {
410 	ASSERT(why == FORREAL || why == JUSTLOOKING);
411 
412 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
413 }
414 
415 
416 static int
417 issig_justlooking(void)
418 {
419 	kthread_t *t = curthread;
420 	klwp_t *lwp = ttolwp(t);
421 	proc_t *p = ttoproc(t);
422 	k_sigset_t set;
423 
424 	/*
425 	 * This function answers the question:
426 	 * "Is there any reason to call issig_forreal()?"
427 	 *
428 	 * We have to answer the question w/o grabbing any locks
429 	 * because we are (most likely) being called after we
430 	 * put ourselves on the sleep queue.
431 	 */
432 
433 	if (t->t_dtrace_stop | t->t_dtrace_sig)
434 		return (1);
435 
436 	/*
437 	 * Another piece of complexity in this process.  When single-stepping a
438 	 * process, we don't want an intervening signal or TP_PAUSE request to
439 	 * suspend the current thread.  Otherwise, the controlling process will
440 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
441 	 * We will trigger any remaining signals when we re-enter the kernel on
442 	 * the single step trap.
443 	 */
444 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
445 		return (0);
446 
447 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
448 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
449 	    (!lwp->lwp_nostop_r && ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
450 		(t->t_proc_flag & TP_HOLDLWP))) ||
451 	    (!lwp->lwp_nostop && (p->p_stopsig | (t->t_proc_flag &
452 		(TP_PRSTOP|TP_CHKPT|TP_PAUSE)))) ||
453 	    lwp->lwp_cursig)
454 		return (1);
455 
456 	if (p->p_flag & SVFWAIT)
457 		return (0);
458 	set = p->p_sig;
459 	sigorset(&set, &t->t_sig);
460 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
461 		sigandset(&set, &cantmask);
462 	else
463 		sigdiffset(&set, &t->t_hold);
464 	if (p->p_flag & SVFORK)
465 		sigdiffset(&set, &holdvfork);
466 
467 	if (!sigisempty(&set)) {
468 		int sig;
469 
470 		for (sig = 1; sig < NSIG; sig++) {
471 			if (sigismember(&set, sig) &&
472 			    (tracing(p, sig) ||
473 			    !sigismember(&p->p_ignore, sig))) {
474 				/*
475 				 * Don't promote a signal that will stop
476 				 * the process when lwp_nostop is set.
477 				 */
478 				if (!lwp->lwp_nostop ||
479 				    u.u_signal[sig-1] != SIG_DFL ||
480 				    !sigismember(&stopdefault, sig))
481 					return (1);
482 			}
483 		}
484 	}
485 
486 	return (0);
487 }
488 
489 static int
490 issig_forreal(void)
491 {
492 	int sig = 0, ext = 0;
493 	kthread_t *t = curthread;
494 	klwp_t *lwp = ttolwp(t);
495 	proc_t *p = ttoproc(t);
496 	int toproc = 0;
497 	int sigcld_found = 0;
498 	int nostop_break = 0;
499 
500 	ASSERT(t->t_state == TS_ONPROC);
501 
502 	mutex_enter(&p->p_lock);
503 	schedctl_finish_sigblock(t);
504 
505 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
506 		if (t->t_dtrace_stop) {
507 			/*
508 			 * If DTrace's "stop" action has been invoked on us,
509 			 * set TP_PRSTOP.
510 			 */
511 			t->t_proc_flag |= TP_PRSTOP;
512 		}
513 
514 		if (t->t_dtrace_sig != 0) {
515 			k_siginfo_t info;
516 
517 			/*
518 			 * Post the signal generated as the result of
519 			 * DTrace's "raise" action as a normal signal before
520 			 * the full-fledged signal checking begins.
521 			 */
522 			bzero(&info, sizeof (info));
523 			info.si_signo = t->t_dtrace_sig;
524 			info.si_code = SI_DTRACE;
525 
526 			sigaddq(p, NULL, &info, KM_NOSLEEP);
527 
528 			t->t_dtrace_sig = 0;
529 		}
530 	}
531 
532 	for (;;) {
533 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
534 			lwp->lwp_cursig = sig = SIGKILL;
535 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
536 			break;
537 		}
538 
539 		/*
540 		 * Another piece of complexity in this process.  When
541 		 * single-stepping a process, we don't want an intervening
542 		 * signal or TP_PAUSE request to suspend the current thread.
543 		 * Otherwise, the controlling process will hang beacuse we will
544 		 * be stopped with TS_PSTART set in t_schedflag.  We will
545 		 * trigger any remaining signals when we re-enter the kernel on
546 		 * the single step trap.
547 		 */
548 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
549 			sig = 0;
550 			break;
551 		}
552 
553 		/*
554 		 * Hold the lwp here for watchpoint manipulation.
555 		 */
556 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
557 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
558 			continue;
559 		}
560 
561 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
562 			if ((sig = lwp->lwp_cursig) != 0) {
563 				/*
564 				 * Make sure we call ISSIG() in post_syscall()
565 				 * to re-validate this current signal.
566 				 */
567 				t->t_sig_check = 1;
568 			}
569 			break;
570 		}
571 
572 		/*
573 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
574 		 * or requests.  Honor other stop requests or signals later.
575 		 * Go back to top of loop here to check if an exit or hold
576 		 * event has occurred while stopped.
577 		 */
578 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
579 			stop(PR_CHECKPOINT, 0);
580 			continue;
581 		}
582 
583 		/*
584 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
585 		 * with signals or /proc.  Another lwp is executing fork1(),
586 		 * or is undergoing watchpoint activity (remapping a page),
587 		 * or is executing lwp_suspend() on this lwp.
588 		 * Again, go back to top of loop to check if an exit
589 		 * or hold event has occurred while stopped.
590 		 * We explicitly allow this form of stopping of one
591 		 * lwp in a process by another lwp in the same process,
592 		 * even if lwp->lwp_nostop is set, because otherwise a
593 		 * process can become deadlocked on a fork1().
594 		 * Allow this only if lwp_nostop_r is not set,
595 		 * to avoid a recursive call to prstop().
596 		 */
597 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
598 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop_r) {
599 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
600 			continue;
601 		}
602 
603 		/*
604 		 * Honor requested stop before dealing with the
605 		 * current signal; a debugger may change it.
606 		 * Do not want to go back to loop here since this is a special
607 		 * stop that means: make incremental progress before the next
608 		 * stop. The danger is that returning to top of loop would most
609 		 * likely drop the thread right back here to stop soon after it
610 		 * was continued, violating the incremental progress request.
611 		 */
612 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
613 			stop(PR_REQUESTED, 0);
614 
615 		/*
616 		 * If a debugger wants us to take a signal it will have
617 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
618 		 * or if it's being ignored, we continue on looking for another
619 		 * signal.  Otherwise we return the specified signal, provided
620 		 * it's not a signal that causes a job control stop.
621 		 *
622 		 * When stopped on PR_JOBCONTROL, there is no current
623 		 * signal; we cancel lwp->lwp_cursig temporarily before
624 		 * calling isjobstop().  The current signal may be reset
625 		 * by a debugger while we are stopped in isjobstop().
626 		 */
627 		if ((sig = lwp->lwp_cursig) != 0) {
628 			ext = lwp->lwp_extsig;
629 			lwp->lwp_cursig = 0;
630 			lwp->lwp_extsig = 0;
631 			if (!sigismember(&p->p_ignore, sig) &&
632 			    !isjobstop(sig)) {
633 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
634 					sig = SIGKILL;
635 					ext = (p->p_flag & SEXTKILLED) != 0;
636 				}
637 				lwp->lwp_cursig = (uchar_t)sig;
638 				lwp->lwp_extsig = (uchar_t)ext;
639 				break;
640 			}
641 			/*
642 			 * The signal is being ignored or it caused a
643 			 * job-control stop.  If another current signal
644 			 * has not been established, return the current
645 			 * siginfo, if any, to the memory manager.
646 			 */
647 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
648 				siginfofree(lwp->lwp_curinfo);
649 				lwp->lwp_curinfo = NULL;
650 			}
651 			/*
652 			 * Loop around again in case we were stopped
653 			 * on a job control signal and a /proc stop
654 			 * request was posted or another current signal
655 			 * was established while we were stopped.
656 			 */
657 			continue;
658 		}
659 
660 		if (p->p_stopsig && !lwp->lwp_nostop &&
661 		    curthread != p->p_agenttp) {
662 			/*
663 			 * Some lwp in the process has already stopped
664 			 * showing PR_JOBCONTROL.  This is a stop in
665 			 * sympathy with the other lwp, even if this
666 			 * lwp is blocking the stopping signal.
667 			 */
668 			stop(PR_JOBCONTROL, p->p_stopsig);
669 			continue;
670 		}
671 
672 		/*
673 		 * Loop on the pending signals until we find a
674 		 * non-held signal that is traced or not ignored.
675 		 * First check the signals pending for the lwp,
676 		 * then the signals pending for the process as a whole.
677 		 */
678 		for (;;) {
679 			k_sigset_t tsig;
680 
681 			tsig = t->t_sig;
682 			if ((sig = fsig(&tsig, t)) != 0) {
683 				if (sig == SIGCLD)
684 					sigcld_found = 1;
685 				toproc = 0;
686 				if (tracing(p, sig) ||
687 				    !sigismember(&p->p_ignore, sig)) {
688 					if (sigismember(&t->t_extsig, sig))
689 						ext = 1;
690 					break;
691 				}
692 				sigdelset(&t->t_sig, sig);
693 				sigdelset(&t->t_extsig, sig);
694 				sigdelq(p, t, sig);
695 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
696 				if (sig == SIGCLD)
697 					sigcld_found = 1;
698 				toproc = 1;
699 				if (tracing(p, sig) ||
700 				    !sigismember(&p->p_ignore, sig)) {
701 					if (sigismember(&p->p_extsig, sig))
702 						ext = 1;
703 					break;
704 				}
705 				sigdelset(&p->p_sig, sig);
706 				sigdelset(&p->p_extsig, sig);
707 				sigdelq(p, NULL, sig);
708 			} else {
709 				/* no signal was found */
710 				break;
711 			}
712 		}
713 
714 		if (sig == 0) {	/* no signal was found */
715 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
716 				lwp->lwp_cursig = SIGKILL;
717 				sig = SIGKILL;
718 				ext = (p->p_flag & SEXTKILLED) != 0;
719 			}
720 			break;
721 		}
722 
723 		/*
724 		 * If we have been informed not to stop (i.e., we are being
725 		 * called from within a network operation), then don't promote
726 		 * the signal at this time, just return the signal number.
727 		 * We will call issig() again later when it is safe.
728 		 *
729 		 * fsig() does not return a jobcontrol stopping signal
730 		 * with a default action of stopping the process if
731 		 * lwp_nostop is set, so we won't be causing a bogus
732 		 * EINTR by this action.  (Such a signal is eaten by
733 		 * isjobstop() when we loop around to do final checks.)
734 		 */
735 		if (lwp->lwp_nostop) {
736 			nostop_break = 1;
737 			break;
738 		}
739 
740 		/*
741 		 * Promote the signal from pending to current.
742 		 *
743 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
744 		 * if no siginfo_t exists for this signal.
745 		 */
746 		lwp->lwp_cursig = (uchar_t)sig;
747 		lwp->lwp_extsig = (uchar_t)ext;
748 		t->t_sig_check = 1;	/* so post_syscall will see signal */
749 		ASSERT(lwp->lwp_curinfo == NULL);
750 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
751 
752 		if (tracing(p, sig))
753 			stop(PR_SIGNALLED, sig);
754 
755 		/*
756 		 * Loop around to check for requested stop before
757 		 * performing the usual current-signal actions.
758 		 */
759 	}
760 
761 	mutex_exit(&p->p_lock);
762 
763 	/*
764 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
765 	 * Don't do it if we are returning SIGCLD and the signal
766 	 * handler will be reset by psig(); this enables reliable
767 	 * delivery of SIGCLD even when using the old, broken
768 	 * signal() interface for setting the signal handler.
769 	 */
770 	if (sigcld_found &&
771 	    (sig != SIGCLD || !sigismember(&u.u_sigresethand, SIGCLD)))
772 		sigcld_repost();
773 
774 	if (sig != 0)
775 		(void) undo_watch_step(NULL);
776 
777 	/*
778 	 * If we have been blocked since the p_lock was dropped off
779 	 * above, then this promoted signal might have been handled
780 	 * already when we were on the way back from sleep queue, so
781 	 * just ignore it.
782 	 * If we have been informed not to stop, just return the signal
783 	 * number. Also see comments above.
784 	 */
785 	if (!nostop_break) {
786 		sig = lwp->lwp_cursig;
787 	}
788 
789 	return (sig != 0);
790 }
791 
792 /*
793  * Return true if the process is currently stopped showing PR_JOBCONTROL.
794  * This is true only if all of the process's lwp's are so stopped.
795  * If this is asked by one of the lwps in the process, exclude that lwp.
796  */
797 int
798 jobstopped(proc_t *p)
799 {
800 	kthread_t *t;
801 
802 	ASSERT(MUTEX_HELD(&p->p_lock));
803 
804 	if ((t = p->p_tlist) == NULL)
805 		return (0);
806 
807 	do {
808 		thread_lock(t);
809 		/* ignore current, zombie and suspended lwps in the test */
810 		if (!(t == curthread || t->t_state == TS_ZOMB ||
811 		    SUSPENDED(t)) &&
812 		    (t->t_state != TS_STOPPED ||
813 		    t->t_whystop != PR_JOBCONTROL)) {
814 			thread_unlock(t);
815 			return (0);
816 		}
817 		thread_unlock(t);
818 	} while ((t = t->t_forw) != p->p_tlist);
819 
820 	return (1);
821 }
822 
823 /*
824  * Put ourself (curthread) into the stopped state and notify tracers.
825  */
826 void
827 stop(int why, int what)
828 {
829 	kthread_t	*t = curthread;
830 	proc_t		*p = ttoproc(t);
831 	klwp_t		*lwp = ttolwp(t);
832 	kthread_t	*tx;
833 	lwpent_t	*lep;
834 	int		procstop;
835 	int		flags = TS_ALLSTART;
836 	hrtime_t	stoptime;
837 
838 	/*
839 	 * Can't stop a system process.
840 	 */
841 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
842 		return;
843 
844 	ASSERT(MUTEX_HELD(&p->p_lock));
845 
846 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
847 		/*
848 		 * Don't stop an lwp with SIGKILL pending.
849 		 * Don't stop if the process or lwp is exiting.
850 		 */
851 		if (lwp->lwp_cursig == SIGKILL ||
852 		    sigismember(&t->t_sig, SIGKILL) ||
853 		    sigismember(&p->p_sig, SIGKILL) ||
854 		    (t->t_proc_flag & TP_LWPEXIT) ||
855 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
856 			p->p_stopsig = 0;
857 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
858 			return;
859 		}
860 	}
861 
862 	/*
863 	 * Make sure we don't deadlock on a recursive call to prstop().
864 	 * prstop() sets the lwp_nostop_r flag and increments lwp_nostop.
865 	 */
866 	if (lwp->lwp_nostop_r ||
867 	    (lwp->lwp_nostop &&
868 	    (why != PR_SUSPENDED || what != SUSPEND_NORMAL)))
869 		return;
870 
871 	/*
872 	 * Make sure the lwp is in an orderly state for inspection
873 	 * by a debugger through /proc or for dumping via core().
874 	 */
875 	schedctl_finish_sigblock(t);
876 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
877 	mutex_exit(&p->p_lock);
878 	stoptime = gethrtime();
879 	prstop(why, what);
880 	(void) undo_watch_step(NULL);
881 	mutex_enter(&p->p_lock);
882 	ASSERT(t->t_state == TS_ONPROC);
883 
884 	switch (why) {
885 	case PR_CHECKPOINT:
886 		/*
887 		 * The situation may have changed since we dropped
888 		 * and reacquired p->p_lock. Double-check now
889 		 * whether we should stop or not.
890 		 */
891 		if (!(t->t_proc_flag & TP_CHKPT)) {
892 			t->t_proc_flag &= ~TP_STOPPING;
893 			return;
894 		}
895 		t->t_proc_flag &= ~TP_CHKPT;
896 		flags &= ~TS_RESUME;
897 		break;
898 
899 	case PR_JOBCONTROL:
900 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
901 			what == SIGTTIN || what == SIGTTOU);
902 		flags &= ~TS_XSTART;
903 		break;
904 
905 	case PR_SUSPENDED:
906 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
907 		/*
908 		 * The situation may have changed since we dropped
909 		 * and reacquired p->p_lock.  Double-check now
910 		 * whether we should stop or not.
911 		 */
912 		if (what == SUSPEND_PAUSE) {
913 			if (!(t->t_proc_flag & TP_PAUSE)) {
914 				t->t_proc_flag &= ~TP_STOPPING;
915 				return;
916 			}
917 			flags &= ~TS_UNPAUSE;
918 		} else {
919 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
920 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
921 				t->t_proc_flag &= ~TP_STOPPING;
922 				return;
923 			}
924 			/*
925 			 * If SHOLDFORK is in effect and we are stopping
926 			 * while asleep (not at the top of the stack),
927 			 * we return now to allow the hold to take effect
928 			 * when we reach the top of the kernel stack.
929 			 */
930 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
931 				t->t_proc_flag &= ~TP_STOPPING;
932 				return;
933 			}
934 			flags &= ~TS_CSTART;
935 		}
936 		break;
937 
938 	default:	/* /proc stop */
939 		flags &= ~TS_PSTART;
940 		/*
941 		 * Do synchronous stop unless the async-stop flag is set.
942 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
943 		 * then no debugger is present and we also do synchronous stop.
944 		 */
945 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
946 		    !(p->p_proc_flag & P_PR_ASYNC)) {
947 			int notify;
948 
949 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
950 				notify = 0;
951 				thread_lock(tx);
952 				if (ISTOPPED(tx) ||
953 				    (tx->t_proc_flag & TP_PRSTOP)) {
954 					thread_unlock(tx);
955 					continue;
956 				}
957 				tx->t_proc_flag |= TP_PRSTOP;
958 				tx->t_sig_check = 1;
959 				if (tx->t_state == TS_SLEEP &&
960 				    (tx->t_flag & T_WAKEABLE)) {
961 					/*
962 					 * Don't actually wake it up if it's
963 					 * in one of the lwp_*() syscalls.
964 					 * Mark it virtually stopped and
965 					 * notify /proc waiters (below).
966 					 */
967 					if (tx->t_wchan0 == NULL)
968 						setrun_locked(tx);
969 					else {
970 						tx->t_proc_flag |= TP_PRVSTOP;
971 						tx->t_stoptime = stoptime;
972 						notify = 1;
973 					}
974 				}
975 				/*
976 				 * force the thread into the kernel
977 				 * if it is not already there.
978 				 */
979 				if (tx->t_state == TS_ONPROC &&
980 				    tx->t_cpu != CPU)
981 					poke_cpu(tx->t_cpu->cpu_id);
982 				thread_unlock(tx);
983 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
984 				if (notify && lep->le_trace)
985 					prnotify(lep->le_trace);
986 			}
987 			/*
988 			 * We do this just in case one of the threads we asked
989 			 * to stop is in holdlwps() (called from cfork()) or
990 			 * lwp_suspend().
991 			 */
992 			cv_broadcast(&p->p_holdlwps);
993 		}
994 		break;
995 	}
996 
997 	t->t_stoptime = stoptime;
998 
999 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1000 		/*
1001 		 * Determine if the whole process is jobstopped.
1002 		 */
1003 		if (jobstopped(p)) {
1004 			sigqueue_t *sqp;
1005 			int sig;
1006 
1007 			if ((sig = p->p_stopsig) == 0)
1008 				p->p_stopsig = (uchar_t)(sig = what);
1009 			mutex_exit(&p->p_lock);
1010 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1011 			mutex_enter(&pidlock);
1012 			/*
1013 			 * The last lwp to stop notifies the parent.
1014 			 * Turn off the CLDCONT flag now so the first
1015 			 * lwp to continue knows what to do.
1016 			 */
1017 			p->p_pidflag &= ~CLDCONT;
1018 			p->p_wcode = CLD_STOPPED;
1019 			p->p_wdata = sig;
1020 			sigcld(p, sqp);
1021 			/*
1022 			 * Grab p->p_lock before releasing pidlock so the
1023 			 * parent and the child don't have a race condition.
1024 			 */
1025 			mutex_enter(&p->p_lock);
1026 			mutex_exit(&pidlock);
1027 			p->p_stopsig = 0;
1028 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1029 			/*
1030 			 * Set p->p_stopsig and wake up sleeping lwps
1031 			 * so they will stop in sympathy with this lwp.
1032 			 */
1033 			p->p_stopsig = (uchar_t)what;
1034 			pokelwps(p);
1035 			/*
1036 			 * We do this just in case one of the threads we asked
1037 			 * to stop is in holdlwps() (called from cfork()) or
1038 			 * lwp_suspend().
1039 			 */
1040 			cv_broadcast(&p->p_holdlwps);
1041 		}
1042 	}
1043 
1044 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1045 		/*
1046 		 * Do process-level notification when all lwps are
1047 		 * either stopped on events of interest to /proc
1048 		 * or are stopped showing PR_SUSPENDED or are zombies.
1049 		 */
1050 		procstop = 1;
1051 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1052 			if (VSTOPPED(tx))
1053 				continue;
1054 			thread_lock(tx);
1055 			switch (tx->t_state) {
1056 			case TS_ZOMB:
1057 				break;
1058 			case TS_STOPPED:
1059 				/* neither ISTOPPED nor SUSPENDED? */
1060 				if ((tx->t_schedflag &
1061 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1062 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1063 					procstop = 0;
1064 				break;
1065 			case TS_SLEEP:
1066 				/* not paused for watchpoints? */
1067 				if (!(tx->t_flag & T_WAKEABLE) ||
1068 				    tx->t_wchan0 == NULL ||
1069 				    !(tx->t_proc_flag & TP_PAUSE))
1070 					procstop = 0;
1071 				break;
1072 			default:
1073 				procstop = 0;
1074 				break;
1075 			}
1076 			thread_unlock(tx);
1077 		}
1078 		if (procstop) {
1079 			/* there must not be any remapped watched pages now */
1080 			ASSERT(p->p_mapcnt == 0);
1081 			if (p->p_proc_flag & P_PR_PTRACE) {
1082 				/* ptrace() compatibility */
1083 				mutex_exit(&p->p_lock);
1084 				mutex_enter(&pidlock);
1085 				p->p_wcode = CLD_TRAPPED;
1086 				p->p_wdata = (why == PR_SIGNALLED)?
1087 				    what : SIGTRAP;
1088 				cv_broadcast(&p->p_parent->p_cv);
1089 				/*
1090 				 * Grab p->p_lock before releasing pidlock so
1091 				 * parent and child don't have a race condition.
1092 				 */
1093 				mutex_enter(&p->p_lock);
1094 				mutex_exit(&pidlock);
1095 			}
1096 			if (p->p_trace)			/* /proc */
1097 				prnotify(p->p_trace);
1098 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1099 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1100 		}
1101 		if (why != PR_SUSPENDED) {
1102 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1103 			if (lep->le_trace)		/* /proc */
1104 				prnotify(lep->le_trace);
1105 			/*
1106 			 * Special notification for creation of the agent lwp.
1107 			 */
1108 			if (t == p->p_agenttp &&
1109 			    (t->t_proc_flag & TP_PRSTOP) &&
1110 			    p->p_trace)
1111 				prnotify(p->p_trace);
1112 			/*
1113 			 * The situation may have changed since we dropped
1114 			 * and reacquired p->p_lock. Double-check now
1115 			 * whether we should stop or not.
1116 			 */
1117 			if (!(t->t_proc_flag & TP_STOPPING)) {
1118 				if (t->t_proc_flag & TP_PRSTOP)
1119 					t->t_proc_flag |= TP_STOPPING;
1120 			}
1121 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1122 			prnostep(lwp);
1123 		}
1124 	}
1125 
1126 	if (why == PR_SUSPENDED) {
1127 
1128 		/*
1129 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1130 		 * because checks for TP_PAUSE take precedence over checks for
1131 		 * SHOLDWATCH.  If a thread is trying to stop because of
1132 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1133 		 * waiting for the rest of the threads to enter a stopped state.
1134 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1135 		 * lwp and not know it, so broadcast just in case.
1136 		 */
1137 		if (what == SUSPEND_PAUSE ||
1138 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1139 			cv_broadcast(&p->p_holdlwps);
1140 
1141 	}
1142 
1143 	/*
1144 	 * Need to do this here (rather than after the thread is officially
1145 	 * stopped) because we can't call mutex_enter from a stopped thread.
1146 	 */
1147 	if (why == PR_CHECKPOINT)
1148 		del_one_utstop();
1149 
1150 	thread_lock(t);
1151 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1152 	t->t_schedflag |= flags;
1153 	t->t_whystop = (short)why;
1154 	t->t_whatstop = (short)what;
1155 	CL_STOP(t, why, what);
1156 	(void) new_mstate(t, LMS_STOPPED);
1157 	thread_stop(t);			/* set stop state and drop lock */
1158 
1159 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1160 		/*
1161 		 * We may have gotten a SIGKILL or a SIGCONT when
1162 		 * we released p->p_lock; make one last check.
1163 		 * Also check for a /proc run-on-last-close.
1164 		 */
1165 		if (sigismember(&t->t_sig, SIGKILL) ||
1166 		    sigismember(&p->p_sig, SIGKILL) ||
1167 		    (t->t_proc_flag & TP_LWPEXIT) ||
1168 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1169 			p->p_stopsig = 0;
1170 			thread_lock(t);
1171 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1172 			setrun_locked(t);
1173 			thread_unlock_nopreempt(t);
1174 		} else if (why == PR_JOBCONTROL) {
1175 			if (p->p_flag & SSCONT) {
1176 				/*
1177 				 * This resulted from a SIGCONT posted
1178 				 * while we were not holding p->p_lock.
1179 				 */
1180 				p->p_stopsig = 0;
1181 				thread_lock(t);
1182 				t->t_schedflag |= TS_XSTART;
1183 				setrun_locked(t);
1184 				thread_unlock_nopreempt(t);
1185 			}
1186 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1187 			/*
1188 			 * This resulted from a /proc run-on-last-close.
1189 			 */
1190 			thread_lock(t);
1191 			t->t_schedflag |= TS_PSTART;
1192 			setrun_locked(t);
1193 			thread_unlock_nopreempt(t);
1194 		}
1195 	}
1196 
1197 	t->t_proc_flag &= ~TP_STOPPING;
1198 	mutex_exit(&p->p_lock);
1199 
1200 	swtch();
1201 	setallwatch();	/* reestablish any watchpoints set while stopped */
1202 	mutex_enter(&p->p_lock);
1203 	prbarrier(p);	/* barrier against /proc locking */
1204 }
1205 
1206 /* Interface for resetting user thread stop count. */
1207 void
1208 utstop_init(void)
1209 {
1210 	mutex_enter(&thread_stop_lock);
1211 	num_utstop = 0;
1212 	mutex_exit(&thread_stop_lock);
1213 }
1214 
1215 /* Interface for registering a user thread stop request. */
1216 void
1217 add_one_utstop(void)
1218 {
1219 	mutex_enter(&thread_stop_lock);
1220 	num_utstop++;
1221 	mutex_exit(&thread_stop_lock);
1222 }
1223 
1224 /* Interface for cancelling a user thread stop request */
1225 void
1226 del_one_utstop(void)
1227 {
1228 	mutex_enter(&thread_stop_lock);
1229 	num_utstop--;
1230 	if (num_utstop == 0)
1231 		cv_broadcast(&utstop_cv);
1232 	mutex_exit(&thread_stop_lock);
1233 }
1234 
1235 /* Interface to wait for all user threads to be stopped */
1236 void
1237 utstop_timedwait(clock_t ticks)
1238 {
1239 	mutex_enter(&thread_stop_lock);
1240 	if (num_utstop > 0)
1241 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1242 		    ticks + lbolt);
1243 	mutex_exit(&thread_stop_lock);
1244 }
1245 
1246 /*
1247  * Perform the action specified by the current signal.
1248  * The usual sequence is:
1249  * 	if (issig())
1250  * 		psig();
1251  * The signal bit has already been cleared by issig(),
1252  * the current signal number has been stored in lwp_cursig,
1253  * and the current siginfo is now referenced by lwp_curinfo.
1254  */
1255 void
1256 psig(void)
1257 {
1258 	kthread_t *t = curthread;
1259 	proc_t *p = ttoproc(t);
1260 	klwp_t *lwp = ttolwp(t);
1261 	void (*func)();
1262 	int sig, rc, code, ext;
1263 	pid_t pid = -1;
1264 	id_t ctid = 0;
1265 	zoneid_t zoneid = -1;
1266 	sigqueue_t *sqp = NULL;
1267 
1268 	mutex_enter(&p->p_lock);
1269 	schedctl_finish_sigblock(t);
1270 	code = CLD_KILLED;
1271 
1272 	if (p->p_flag & SEXITLWPS) {
1273 		lwp_exit();
1274 		return;			/* not reached */
1275 	}
1276 	sig = lwp->lwp_cursig;
1277 	ext = lwp->lwp_extsig;
1278 
1279 	ASSERT(sig < NSIG);
1280 
1281 	/*
1282 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1283 	 * dropped between issig() and psig(), a debugger may have cleared
1284 	 * lwp_cursig via /proc in the intervening window.
1285 	 */
1286 	if (sig == 0) {
1287 		if (lwp->lwp_curinfo) {
1288 			siginfofree(lwp->lwp_curinfo);
1289 			lwp->lwp_curinfo = NULL;
1290 		}
1291 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1292 			t->t_flag &= ~T_TOMASK;
1293 			t->t_hold = lwp->lwp_sigoldmask;
1294 		}
1295 		mutex_exit(&p->p_lock);
1296 		return;
1297 	}
1298 	func = u.u_signal[sig-1];
1299 
1300 	/*
1301 	 * The signal disposition could have changed since we promoted
1302 	 * this signal from pending to current (we dropped p->p_lock).
1303 	 * This can happen only in a multi-threaded process.
1304 	 */
1305 	if (sigismember(&p->p_ignore, sig) ||
1306 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1307 		lwp->lwp_cursig = 0;
1308 		lwp->lwp_extsig = 0;
1309 		if (lwp->lwp_curinfo) {
1310 			siginfofree(lwp->lwp_curinfo);
1311 			lwp->lwp_curinfo = NULL;
1312 		}
1313 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1314 			t->t_flag &= ~T_TOMASK;
1315 			t->t_hold = lwp->lwp_sigoldmask;
1316 		}
1317 		mutex_exit(&p->p_lock);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * We check lwp_curinfo first since pr_setsig can actually
1323 	 * stuff a sigqueue_t there for SIGKILL.
1324 	 */
1325 	if (lwp->lwp_curinfo) {
1326 		sqp = lwp->lwp_curinfo;
1327 	} else if (sig == SIGKILL && p->p_killsqp) {
1328 		sqp = p->p_killsqp;
1329 	}
1330 
1331 	if (sqp != NULL) {
1332 		if (SI_FROMUSER(&sqp->sq_info)) {
1333 			pid = sqp->sq_info.si_pid;
1334 			ctid = sqp->sq_info.si_ctid;
1335 			zoneid = sqp->sq_info.si_zoneid;
1336 		}
1337 		/*
1338 		 * If we have a sigqueue_t, its sq_external value
1339 		 * trumps the lwp_extsig value.  It is theoretically
1340 		 * possible to make lwp_extsig reflect reality, but it
1341 		 * would unnecessarily complicate things elsewhere.
1342 		 */
1343 		ext = sqp->sq_external;
1344 	}
1345 
1346 	if (func == SIG_DFL) {
1347 		mutex_exit(&p->p_lock);
1348 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1349 		    NULL, void (*)(void), func);
1350 	} else {
1351 		k_siginfo_t *sip = NULL;
1352 
1353 		/*
1354 		 * If DTrace user-land tracing is active, give DTrace a
1355 		 * chance to defer the signal until after tracing is
1356 		 * complete.
1357 		 */
1358 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1359 			mutex_exit(&p->p_lock);
1360 			return;
1361 		}
1362 
1363 		/*
1364 		 * save siginfo pointer here, in case the
1365 		 * the signal's reset bit is on
1366 		 *
1367 		 * The presence of a current signal prevents paging
1368 		 * from succeeding over a network.  We copy the current
1369 		 * signal information to the side and cancel the current
1370 		 * signal so that sendsig() will succeed.
1371 		 */
1372 		if (sigismember(&p->p_siginfo, sig)) {
1373 			if (sqp) {
1374 				bcopy(&sqp->sq_info, &lwp->lwp_siginfo,
1375 				    sizeof (k_siginfo_t));
1376 				sip = &lwp->lwp_siginfo;
1377 			} else if (sig == SIGPROF &&
1378 			    t->t_rprof != NULL &&
1379 			    t->t_rprof->rp_anystate &&
1380 			    lwp->lwp_siginfo.si_signo == SIGPROF) {
1381 				sip = &lwp->lwp_siginfo;
1382 			}
1383 		}
1384 
1385 		if (t->t_flag & T_TOMASK)
1386 			t->t_flag &= ~T_TOMASK;
1387 		else
1388 			lwp->lwp_sigoldmask = t->t_hold;
1389 		sigorset(&t->t_hold, &u.u_sigmask[sig-1]);
1390 		if (!sigismember(&u.u_signodefer, sig))
1391 			sigaddset(&t->t_hold, sig);
1392 		if (sigismember(&u.u_sigresethand, sig))
1393 			setsigact(sig, SIG_DFL, nullsmask, 0);
1394 
1395 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1396 		    sip, void (*)(void), func);
1397 
1398 		lwp->lwp_cursig = 0;
1399 		lwp->lwp_extsig = 0;
1400 		if (lwp->lwp_curinfo) {
1401 			/* p->p_killsqp is freed by freeproc */
1402 			siginfofree(lwp->lwp_curinfo);
1403 			lwp->lwp_curinfo = NULL;
1404 		}
1405 		mutex_exit(&p->p_lock);
1406 		lwp->lwp_ru.nsignals++;
1407 
1408 		if (p->p_model == DATAMODEL_NATIVE)
1409 			rc = sendsig(sig, sip, func);
1410 #ifdef _SYSCALL32_IMPL
1411 		else
1412 			rc = sendsig32(sig, sip, func);
1413 #endif	/* _SYSCALL32_IMPL */
1414 		if (rc)
1415 			return;
1416 		sig = lwp->lwp_cursig = SIGSEGV;
1417 		ext = 0;	/* lwp_extsig was set above */
1418 		pid = -1;
1419 		ctid = 0;
1420 	}
1421 
1422 	if (sigismember(&coredefault, sig)) {
1423 		/*
1424 		 * Terminate all LWPs but don't discard them.
1425 		 * If another lwp beat us to the punch by calling exit(),
1426 		 * evaporate now.
1427 		 */
1428 		proc_is_exiting(p);
1429 		if (exitlwps(1) != 0) {
1430 			mutex_enter(&p->p_lock);
1431 			lwp_exit();
1432 		}
1433 		/* if we got a SIGKILL from anywhere, no core dump */
1434 		if (p->p_flag & SKILLED) {
1435 			sig = SIGKILL;
1436 			ext = (p->p_flag & SEXTKILLED) != 0;
1437 		} else {
1438 #ifdef C2_AUDIT
1439 			if (audit_active)		/* audit core dump */
1440 				audit_core_start(sig);
1441 #endif
1442 			if (core(sig, ext) == 0)
1443 				code = CLD_DUMPED;
1444 #ifdef C2_AUDIT
1445 			if (audit_active)		/* audit core dump */
1446 				audit_core_finish(code);
1447 #endif
1448 		}
1449 	}
1450 	if (ext)
1451 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1452 		    zoneid);
1453 
1454 	exit(code, sig);
1455 }
1456 
1457 /*
1458  * Find next unheld signal in ssp for thread t.
1459  */
1460 int
1461 fsig(k_sigset_t *ssp, kthread_t *t)
1462 {
1463 	proc_t *p = ttoproc(t);
1464 	user_t *up = PTOU(p);
1465 	int i;
1466 	k_sigset_t temp;
1467 
1468 	ASSERT(MUTEX_HELD(&p->p_lock));
1469 
1470 	/*
1471 	 * Don't promote any signals for the parent of a vfork()d
1472 	 * child that hasn't yet released the parent's memory.
1473 	 */
1474 	if (p->p_flag & SVFWAIT)
1475 		return (0);
1476 
1477 	temp = *ssp;
1478 	sigdiffset(&temp, &t->t_hold);
1479 
1480 	/*
1481 	 * Don't promote stopping signals (except SIGSTOP) for a child
1482 	 * of vfork() that hasn't yet released the parent's memory.
1483 	 */
1484 	if (p->p_flag & SVFORK)
1485 		sigdiffset(&temp, &holdvfork);
1486 
1487 	/*
1488 	 * Don't promote a signal that will stop
1489 	 * the process when lwp_nostop is set.
1490 	 */
1491 	if (ttolwp(t)->lwp_nostop) {
1492 		sigdelset(&temp, SIGSTOP);
1493 		if (!p->p_pgidp->pid_pgorphaned) {
1494 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1495 				sigdelset(&temp, SIGTSTP);
1496 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1497 				sigdelset(&temp, SIGTTIN);
1498 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1499 				sigdelset(&temp, SIGTTOU);
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1505 	 * The rest are promoted in signal number order.
1506 	 */
1507 	if (sigismember(&temp, SIGKILL))
1508 		return (SIGKILL);
1509 	if (sigismember(&temp, SIGPROF))
1510 		return (SIGPROF);
1511 
1512 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1513 		if (temp.__sigbits[i])
1514 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1515 			    lowbit(temp.__sigbits[i]));
1516 	}
1517 
1518 	return (0);
1519 }
1520 
1521 void
1522 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1523 {
1524 	proc_t *p = ttoproc(curthread);
1525 	kthread_t *t;
1526 
1527 	ASSERT(MUTEX_HELD(&p->p_lock));
1528 
1529 	u.u_signal[sig - 1] = disp;
1530 
1531 	/*
1532 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1533 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1534 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1535 	 * properly together when the signal is set to default or is
1536 	 * being temporarily ignored.
1537 	 */
1538 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1539 		sigaddset(&p->p_siginfo, sig);
1540 	else
1541 		sigdelset(&p->p_siginfo, sig);
1542 
1543 	if (disp != SIG_DFL && disp != SIG_IGN) {
1544 		sigdelset(&p->p_ignore, sig);
1545 		u.u_sigmask[sig - 1] = mask;
1546 		if (!sigismember(&cantreset, sig)) {
1547 			if (flags & SA_RESETHAND)
1548 				sigaddset(&u.u_sigresethand, sig);
1549 			else
1550 				sigdelset(&u.u_sigresethand, sig);
1551 		}
1552 		if (flags & SA_NODEFER)
1553 			sigaddset(&u.u_signodefer, sig);
1554 		else
1555 			sigdelset(&u.u_signodefer, sig);
1556 		if (flags & SA_RESTART)
1557 			sigaddset(&u.u_sigrestart, sig);
1558 		else
1559 			sigdelset(&u.u_sigrestart, sig);
1560 		if (flags & SA_ONSTACK)
1561 			sigaddset(&u.u_sigonstack, sig);
1562 		else
1563 			sigdelset(&u.u_sigonstack, sig);
1564 
1565 	} else if (disp == SIG_IGN ||
1566 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1567 		/*
1568 		 * Setting the signal action to SIG_IGN results in the
1569 		 * discarding of all pending signals of that signal number.
1570 		 * Setting the signal action to SIG_DFL does the same *only*
1571 		 * if the signal's default behavior is to be ignored.
1572 		 */
1573 		sigaddset(&p->p_ignore, sig);
1574 		sigdelset(&p->p_sig, sig);
1575 		sigdelset(&p->p_extsig, sig);
1576 		sigdelq(p, NULL, sig);
1577 		t = p->p_tlist;
1578 		do {
1579 			sigdelset(&t->t_sig, sig);
1580 			sigdelset(&t->t_extsig, sig);
1581 			sigdelq(p, t, sig);
1582 		} while ((t = t->t_forw) != p->p_tlist);
1583 
1584 	} else {
1585 		/*
1586 		 * The signal action is being set to SIG_DFL and the default
1587 		 * behavior is to do something: make sure it is not ignored.
1588 		 */
1589 		sigdelset(&p->p_ignore, sig);
1590 	}
1591 
1592 	if (sig == SIGCLD) {
1593 		if (flags & SA_NOCLDWAIT)
1594 			p->p_flag |= SNOWAIT;
1595 		else
1596 			p->p_flag &= ~SNOWAIT;
1597 
1598 		if (flags & SA_NOCLDSTOP)
1599 			p->p_flag &= ~SJCTL;
1600 		else
1601 			p->p_flag |= SJCTL;
1602 
1603 		if (p->p_flag & SNOWAIT || disp == SIG_IGN) {
1604 			proc_t *cp, *tp;
1605 
1606 			mutex_exit(&p->p_lock);
1607 			mutex_enter(&pidlock);
1608 			for (cp = p->p_child; cp != NULL; cp = tp) {
1609 				tp = cp->p_sibling;
1610 				if (cp->p_stat == SZOMB)
1611 					freeproc(cp);
1612 			}
1613 			mutex_exit(&pidlock);
1614 			mutex_enter(&p->p_lock);
1615 		}
1616 	}
1617 }
1618 
1619 /*
1620  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1621  * Called from exec_common() for a process undergoing execve()
1622  * and from cfork() for a newly-created child of vfork().
1623  * In the vfork() case, 'p' is not the current process.
1624  * In both cases, there is only one thread in the process.
1625  */
1626 void
1627 sigdefault(proc_t *p)
1628 {
1629 	kthread_t *t = p->p_tlist;
1630 	struct user *up = PTOU(p);
1631 	int sig;
1632 
1633 	ASSERT(MUTEX_HELD(&p->p_lock));
1634 
1635 	for (sig = 1; sig < NSIG; sig++) {
1636 		if (up->u_signal[sig - 1] != SIG_DFL &&
1637 		    up->u_signal[sig - 1] != SIG_IGN) {
1638 			up->u_signal[sig - 1] = SIG_DFL;
1639 			sigemptyset(&up->u_sigmask[sig - 1]);
1640 			if (sigismember(&ignoredefault, sig)) {
1641 				sigdelq(p, NULL, sig);
1642 				sigdelq(p, t, sig);
1643 			}
1644 			if (sig == SIGCLD)
1645 				p->p_flag &= ~(SNOWAIT|SJCTL);
1646 		}
1647 	}
1648 	sigorset(&p->p_ignore, &ignoredefault);
1649 	sigfillset(&p->p_siginfo);
1650 	sigdiffset(&p->p_siginfo, &cantmask);
1651 	sigdiffset(&p->p_sig, &ignoredefault);
1652 	sigdiffset(&p->p_extsig, &ignoredefault);
1653 	sigdiffset(&t->t_sig, &ignoredefault);
1654 	sigdiffset(&t->t_extsig, &ignoredefault);
1655 }
1656 
1657 void
1658 sigcld(proc_t *cp, sigqueue_t *sqp)
1659 {
1660 	proc_t *pp = cp->p_parent;
1661 
1662 	ASSERT(MUTEX_HELD(&pidlock));
1663 
1664 	switch (cp->p_wcode) {
1665 	case CLD_EXITED:
1666 	case CLD_DUMPED:
1667 	case CLD_KILLED:
1668 		ASSERT(cp->p_stat == SZOMB);
1669 		/*
1670 		 * The broadcast on p_srwchan_cv is a kludge to
1671 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1672 		 */
1673 		cv_broadcast(&cp->p_srwchan_cv);
1674 
1675 		/*
1676 		 * Add to newstate list of the parent
1677 		 */
1678 		add_ns(pp, cp);
1679 
1680 		cv_broadcast(&pp->p_cv);
1681 		if ((pp->p_flag & SNOWAIT) ||
1682 		    (PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN))
1683 			freeproc(cp);
1684 		else {
1685 			post_sigcld(cp, sqp);
1686 			sqp = NULL;
1687 		}
1688 		break;
1689 
1690 	case CLD_STOPPED:
1691 	case CLD_CONTINUED:
1692 		cv_broadcast(&pp->p_cv);
1693 		if (pp->p_flag & SJCTL) {
1694 			post_sigcld(cp, sqp);
1695 			sqp = NULL;
1696 		}
1697 		break;
1698 	}
1699 
1700 	if (sqp)
1701 		siginfofree(sqp);
1702 }
1703 
1704 /*
1705  * Common code called from sigcld() and issig_forreal()
1706  * Give the parent process a SIGCLD if it does not have one pending,
1707  * else mark the child process so a SIGCLD can be posted later.
1708  */
1709 static void
1710 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1711 {
1712 	proc_t *pp = cp->p_parent;
1713 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1714 	k_siginfo_t info;
1715 
1716 	ASSERT(MUTEX_HELD(&pidlock));
1717 	mutex_enter(&pp->p_lock);
1718 
1719 	/*
1720 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1721 	 * then just mark the child process so that its SIGCLD will
1722 	 * be posted later, when the first SIGCLD is taken off the
1723 	 * queue or when the parent is ready to receive it, if ever.
1724 	 */
1725 	if (handler == SIG_DFL || handler == SIG_IGN ||
1726 	    sigismember(&pp->p_sig, SIGCLD))
1727 		cp->p_pidflag |= CLDPEND;
1728 	else {
1729 		cp->p_pidflag &= ~CLDPEND;
1730 		if (sqp == NULL) {
1731 			/*
1732 			 * This can only happen when the parent is init.
1733 			 * (See call to sigcld(q, NULL) in exit().)
1734 			 * Use KM_NOSLEEP to avoid deadlock.
1735 			 */
1736 			ASSERT(pp == proc_init);
1737 			winfo(cp, &info, 0);
1738 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1739 		} else {
1740 			winfo(cp, &sqp->sq_info, 0);
1741 			sigaddqa(pp, NULL, sqp);
1742 			sqp = NULL;
1743 		}
1744 	}
1745 
1746 	mutex_exit(&pp->p_lock);
1747 
1748 	if (sqp)
1749 		siginfofree(sqp);
1750 }
1751 
1752 /*
1753  * Search for a child that has a pending SIGCLD for us, the parent.
1754  * The queue of SIGCLD signals is implied by the list of children.
1755  * We post the SIGCLD signals one at a time so they don't get lost.
1756  * When one is dequeued, another is enqueued, until there are no more.
1757  */
1758 void
1759 sigcld_repost()
1760 {
1761 	proc_t *pp = curproc;
1762 	proc_t *cp;
1763 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1764 	sigqueue_t *sqp;
1765 
1766 	/*
1767 	 * Don't bother if SIGCLD is not now being caught.
1768 	 */
1769 	if (handler == SIG_DFL || handler == SIG_IGN)
1770 		return;
1771 
1772 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1773 	mutex_enter(&pidlock);
1774 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1775 		if (cp->p_pidflag & CLDPEND) {
1776 			post_sigcld(cp, sqp);
1777 			mutex_exit(&pidlock);
1778 			return;
1779 		}
1780 	}
1781 	mutex_exit(&pidlock);
1782 	kmem_free(sqp, sizeof (sigqueue_t));
1783 }
1784 
1785 /*
1786  * count number of sigqueue send by sigaddqa()
1787  */
1788 void
1789 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1790 {
1791 	sigqhdr_t *sqh;
1792 
1793 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1794 	ASSERT(sqh);
1795 
1796 	mutex_enter(&sqh->sqb_lock);
1797 	sqh->sqb_sent++;
1798 	mutex_exit(&sqh->sqb_lock);
1799 
1800 	if (cmd == SN_SEND)
1801 		sigaddqa(p, t, sigqp);
1802 	else
1803 		siginfofree(sigqp);
1804 }
1805 
1806 int
1807 sigsendproc(proc_t *p, sigsend_t *pv)
1808 {
1809 	struct cred *cr;
1810 	proc_t *myprocp = curproc;
1811 
1812 	ASSERT(MUTEX_HELD(&pidlock));
1813 
1814 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1815 		return (EPERM);
1816 
1817 	cr = CRED();
1818 
1819 	if (pv->checkperm == 0 ||
1820 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1821 	    prochasprocperm(p, myprocp, cr)) {
1822 		pv->perm++;
1823 		if (pv->sig) {
1824 			/* Make sure we should be setting si_pid and friends */
1825 			ASSERT(pv->sicode <= 0);
1826 			if (SI_CANQUEUE(pv->sicode)) {
1827 				sigqueue_t *sqp;
1828 
1829 				mutex_enter(&myprocp->p_lock);
1830 				sqp = sigqalloc(myprocp->p_sigqhdr);
1831 				mutex_exit(&myprocp->p_lock);
1832 				if (sqp == NULL)
1833 					return (EAGAIN);
1834 				sqp->sq_info.si_signo = pv->sig;
1835 				sqp->sq_info.si_code = pv->sicode;
1836 				sqp->sq_info.si_pid = myprocp->p_pid;
1837 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1838 				sqp->sq_info.si_zoneid = getzoneid();
1839 				sqp->sq_info.si_uid = crgetruid(cr);
1840 				sqp->sq_info.si_value = pv->value;
1841 				mutex_enter(&p->p_lock);
1842 				sigqsend(SN_SEND, p, NULL, sqp);
1843 				mutex_exit(&p->p_lock);
1844 			} else {
1845 				k_siginfo_t info;
1846 				bzero(&info, sizeof (info));
1847 				info.si_signo = pv->sig;
1848 				info.si_code = pv->sicode;
1849 				info.si_pid = myprocp->p_pid;
1850 				info.si_ctid = PRCTID(myprocp);
1851 				info.si_zoneid = getzoneid();
1852 				info.si_uid = crgetruid(cr);
1853 				mutex_enter(&p->p_lock);
1854 				/*
1855 				 * XXX: Should be KM_SLEEP but
1856 				 * we have to avoid deadlock.
1857 				 */
1858 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1859 				mutex_exit(&p->p_lock);
1860 			}
1861 		}
1862 	}
1863 
1864 	return (0);
1865 }
1866 
1867 int
1868 sigsendset(procset_t *psp, sigsend_t *pv)
1869 {
1870 	int error;
1871 
1872 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1873 	if (error == 0 && pv->perm == 0)
1874 		return (EPERM);
1875 
1876 	return (error);
1877 }
1878 
1879 /*
1880  * Dequeue a queued siginfo structure.
1881  * If a non-null thread pointer is passed then dequeue from
1882  * the thread queue, otherwise dequeue from the process queue.
1883  */
1884 void
1885 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1886 {
1887 	sigqueue_t **psqp, *sqp;
1888 
1889 	ASSERT(MUTEX_HELD(&p->p_lock));
1890 
1891 	*qpp = NULL;
1892 
1893 	if (t != NULL) {
1894 		sigdelset(&t->t_sig, sig);
1895 		sigdelset(&t->t_extsig, sig);
1896 		psqp = &t->t_sigqueue;
1897 	} else {
1898 		sigdelset(&p->p_sig, sig);
1899 		sigdelset(&p->p_extsig, sig);
1900 		psqp = &p->p_sigqueue;
1901 	}
1902 
1903 	for (;;) {
1904 		if ((sqp = *psqp) == NULL)
1905 			return;
1906 		if (sqp->sq_info.si_signo == sig)
1907 			break;
1908 		else
1909 			psqp = &sqp->sq_next;
1910 	}
1911 	*qpp = sqp;
1912 	*psqp = sqp->sq_next;
1913 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1914 		if (sqp->sq_info.si_signo == sig) {
1915 			if (t != (kthread_t *)NULL) {
1916 				sigaddset(&t->t_sig, sig);
1917 				t->t_sig_check = 1;
1918 			} else {
1919 				sigaddset(&p->p_sig, sig);
1920 				set_proc_ast(p);
1921 			}
1922 			break;
1923 		}
1924 	}
1925 }
1926 
1927 /*
1928  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1929  */
1930 void
1931 sigcld_delete(k_siginfo_t *ip)
1932 {
1933 	proc_t *p = curproc;
1934 	int another_sigcld = 0;
1935 	sigqueue_t **psqp, *sqp;
1936 
1937 	ASSERT(ip->si_signo == SIGCLD);
1938 
1939 	mutex_enter(&p->p_lock);
1940 
1941 	if (!sigismember(&p->p_sig, SIGCLD)) {
1942 		mutex_exit(&p->p_lock);
1943 		return;
1944 	}
1945 
1946 	psqp = &p->p_sigqueue;
1947 	for (;;) {
1948 		if ((sqp = *psqp) == NULL) {
1949 			mutex_exit(&p->p_lock);
1950 			return;
1951 		}
1952 		if (sqp->sq_info.si_signo == SIGCLD) {
1953 			if (sqp->sq_info.si_pid == ip->si_pid &&
1954 			    sqp->sq_info.si_code == ip->si_code &&
1955 			    sqp->sq_info.si_status == ip->si_status)
1956 				break;
1957 			another_sigcld = 1;
1958 		}
1959 		psqp = &sqp->sq_next;
1960 	}
1961 	*psqp = sqp->sq_next;
1962 
1963 	siginfofree(sqp);
1964 
1965 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1966 		if (sqp->sq_info.si_signo == SIGCLD)
1967 			another_sigcld = 1;
1968 	}
1969 
1970 	if (!another_sigcld) {
1971 		sigdelset(&p->p_sig, SIGCLD);
1972 		sigdelset(&p->p_extsig, SIGCLD);
1973 	}
1974 
1975 	mutex_exit(&p->p_lock);
1976 }
1977 
1978 /*
1979  * Delete queued siginfo structures.
1980  * If a non-null thread pointer is passed then delete from
1981  * the thread queue, otherwise delete from the process queue.
1982  */
1983 void
1984 sigdelq(proc_t *p, kthread_t *t, int sig)
1985 {
1986 	sigqueue_t **psqp, *sqp;
1987 
1988 	/*
1989 	 * We must be holding p->p_lock unless the process is
1990 	 * being reaped or has failed to get started on fork.
1991 	 */
1992 	ASSERT(MUTEX_HELD(&p->p_lock) ||
1993 	    p->p_stat == SIDL || p->p_stat == SZOMB);
1994 
1995 	if (t != (kthread_t *)NULL)
1996 		psqp = &t->t_sigqueue;
1997 	else
1998 		psqp = &p->p_sigqueue;
1999 
2000 	while (*psqp) {
2001 		sqp = *psqp;
2002 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
2003 			*psqp = sqp->sq_next;
2004 			siginfofree(sqp);
2005 		} else
2006 			psqp = &sqp->sq_next;
2007 	}
2008 }
2009 
2010 /*
2011  * Insert a siginfo structure into a queue.
2012  * If a non-null thread pointer is passed then add to the thread queue,
2013  * otherwise add to the process queue.
2014  *
2015  * The function sigaddqins() is called with sigqueue already allocated.
2016  * It is called from sigaddqa() and sigaddq() below.
2017  *
2018  * The value of si_code implicitly indicates whether sigp is to be
2019  * explicitly queued, or to be queued to depth one.
2020  */
2021 static void
2022 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2023 {
2024 	sigqueue_t **psqp;
2025 	int sig = sigqp->sq_info.si_signo;
2026 
2027 	sigqp->sq_external = (curproc != &p0) &&
2028 	    (curproc->p_ct_process != p->p_ct_process);
2029 
2030 	/*
2031 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2032 	 * is set, and even if it did, we would want to avoid situation
2033 	 * (which would be unique to SIGKILL) where one thread dequeued
2034 	 * the sigqueue_t and another executed psig().  So we create a
2035 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2036 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2037 	 * if (and only if) it was non-extracontractual.
2038 	 */
2039 	if (sig == SIGKILL) {
2040 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2041 			if (p->p_killsqp != NULL)
2042 				siginfofree(p->p_killsqp);
2043 			p->p_killsqp = sigqp;
2044 			sigqp->sq_next = NULL;
2045 		} else {
2046 			siginfofree(sigqp);
2047 		}
2048 		return;
2049 	}
2050 
2051 	ASSERT(sig >= 1 && sig < NSIG);
2052 	if (t != NULL)	/* directed to a thread */
2053 		psqp = &t->t_sigqueue;
2054 	else 		/* directed to a process */
2055 		psqp = &p->p_sigqueue;
2056 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2057 	    sigismember(&p->p_siginfo, sig)) {
2058 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2059 				;
2060 	} else {
2061 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2062 			if ((*psqp)->sq_info.si_signo == sig) {
2063 				siginfofree(sigqp);
2064 				return;
2065 			}
2066 		}
2067 	}
2068 	*psqp = sigqp;
2069 	sigqp->sq_next = NULL;
2070 }
2071 
2072 /*
2073  * The function sigaddqa() is called with sigqueue already allocated.
2074  * If signal is ignored, discard but guarantee KILL and generation semantics.
2075  * It is called from sigqueue() and other places.
2076  */
2077 void
2078 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2079 {
2080 	int sig = sigqp->sq_info.si_signo;
2081 
2082 	ASSERT(MUTEX_HELD(&p->p_lock));
2083 	ASSERT(sig >= 1 && sig < NSIG);
2084 
2085 	if (sig_discardable(p, sig))
2086 		siginfofree(sigqp);
2087 	else
2088 		sigaddqins(p, t, sigqp);
2089 
2090 	sigtoproc(p, t, sig);
2091 }
2092 
2093 /*
2094  * Allocate the sigqueue_t structure and call sigaddqins().
2095  */
2096 void
2097 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2098 {
2099 	sigqueue_t *sqp;
2100 	int sig = infop->si_signo;
2101 
2102 	ASSERT(MUTEX_HELD(&p->p_lock));
2103 	ASSERT(sig >= 1 && sig < NSIG);
2104 
2105 	/*
2106 	 * If the signal will be discarded by sigtoproc() or
2107 	 * if the process isn't requesting siginfo and it isn't
2108 	 * blocking the signal (it *could* change it's mind while
2109 	 * the signal is pending) then don't bother creating one.
2110 	 */
2111 	if (!sig_discardable(p, sig) &&
2112 	    (sigismember(&p->p_siginfo, sig) ||
2113 	    (curproc->p_ct_process != p->p_ct_process) ||
2114 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2115 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2116 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2117 		sqp->sq_func = NULL;
2118 		sqp->sq_next = NULL;
2119 		sigaddqins(p, t, sqp);
2120 	}
2121 	sigtoproc(p, t, sig);
2122 }
2123 
2124 /*
2125  * Handle stop-on-fault processing for the debugger.  Returns 0
2126  * if the fault is cleared during the stop, nonzero if it isn't.
2127  */
2128 int
2129 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2130 {
2131 	proc_t *p = ttoproc(curthread);
2132 	klwp_t *lwp = ttolwp(curthread);
2133 
2134 	ASSERT(prismember(&p->p_fltmask, fault));
2135 
2136 	/*
2137 	 * Record current fault and siginfo structure so debugger can
2138 	 * find it.
2139 	 */
2140 	mutex_enter(&p->p_lock);
2141 	lwp->lwp_curflt = (uchar_t)fault;
2142 	lwp->lwp_siginfo = *sip;
2143 
2144 	stop(PR_FAULTED, fault);
2145 
2146 	fault = lwp->lwp_curflt;
2147 	lwp->lwp_curflt = 0;
2148 	mutex_exit(&p->p_lock);
2149 	return (fault);
2150 }
2151 
2152 void
2153 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2154 {
2155 	s1->__sigbits[0] |= s2->__sigbits[0];
2156 	s1->__sigbits[1] |= s2->__sigbits[1];
2157 }
2158 
2159 void
2160 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2161 {
2162 	s1->__sigbits[0] &= s2->__sigbits[0];
2163 	s1->__sigbits[1] &= s2->__sigbits[1];
2164 }
2165 
2166 void
2167 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2168 {
2169 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2170 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2171 }
2172 
2173 /*
2174  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2175  * if there are any signals the thread might take on return from the kernel.
2176  * If ksigset_t's were a single word, we would do:
2177  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2178  */
2179 int
2180 sigcheck(proc_t *p, kthread_t *t)
2181 {
2182 	sc_shared_t *tdp = t->t_schedctl;
2183 
2184 	/*
2185 	 * If signals are blocked via the schedctl interface
2186 	 * then we only check for the unmaskable signals.
2187 	 */
2188 	if (tdp != NULL && tdp->sc_sigblock)
2189 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2190 		    CANTMASK0);
2191 
2192 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2193 		    ~t->t_hold.__sigbits[0]) |
2194 		(((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2195 		    ~t->t_hold.__sigbits[1]) & FILLSET1));
2196 }
2197 
2198 /* ONC_PLUS EXTRACT START */
2199 void
2200 sigintr(k_sigset_t *smask, int intable)
2201 {
2202 	proc_t *p;
2203 	int owned;
2204 	k_sigset_t lmask;		/* local copy of cantmask */
2205 	klwp_t *lwp = ttolwp(curthread);
2206 
2207 	/*
2208 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2209 	 *    and SIGTERM. (Preserving the existing masks).
2210 	 *    This function supports the -intr nfs and ufs mount option.
2211 	 */
2212 
2213 	/*
2214 	 * don't do kernel threads
2215 	 */
2216 	if (lwp == NULL)
2217 		return;
2218 
2219 	/*
2220 	 * get access to signal mask
2221 	 */
2222 	p = ttoproc(curthread);
2223 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2224 	if (!owned)
2225 		mutex_enter(&p->p_lock);
2226 
2227 	/*
2228 	 * remember the current mask
2229 	 */
2230 	schedctl_finish_sigblock(curthread);
2231 	*smask = curthread->t_hold;
2232 
2233 	/*
2234 	 * mask out all signals
2235 	 */
2236 	sigfillset(&curthread->t_hold);
2237 
2238 	/*
2239 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2240 	 * they aren't already masked (which could happen at exit).
2241 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2242 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2243 	 * to (~cantmask | curhold).
2244 	 */
2245 	lmask = cantmask;
2246 	sigdiffset(&lmask, smask);
2247 	sigdiffset(&curthread->t_hold, &lmask);
2248 
2249 	/*
2250 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2251 	 * Re-enable INT if it's originally enabled and the NFS mount option
2252 	 * nointr is not set.
2253 	 */
2254 	if (!sigismember(smask, SIGHUP))
2255 		sigdelset(&curthread->t_hold, SIGHUP);
2256 	if (!sigismember(smask, SIGINT) && intable)
2257 		sigdelset(&curthread->t_hold, SIGINT);
2258 	if (!sigismember(smask, SIGQUIT))
2259 		sigdelset(&curthread->t_hold, SIGQUIT);
2260 	if (!sigismember(smask, SIGTERM))
2261 		sigdelset(&curthread->t_hold, SIGTERM);
2262 
2263 	/*
2264 	 * release access to signal mask
2265 	 */
2266 	if (!owned)
2267 		mutex_exit(&p->p_lock);
2268 
2269 	/*
2270 	 * Indicate that this lwp is not to be stopped.
2271 	 */
2272 	lwp->lwp_nostop++;
2273 
2274 }
2275 /* ONC_PLUS EXTRACT END */
2276 
2277 void
2278 sigunintr(k_sigset_t *smask)
2279 {
2280 	proc_t *p;
2281 	int owned;
2282 	klwp_t *lwp = ttolwp(curthread);
2283 
2284 	/*
2285 	 * Reset previous mask (See sigintr() above)
2286 	 */
2287 	if (lwp != NULL) {
2288 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2289 		p = ttoproc(curthread);
2290 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2291 		if (!owned)
2292 			mutex_enter(&p->p_lock);
2293 		curthread->t_hold = *smask;
2294 		/* so unmasked signals will be seen */
2295 		curthread->t_sig_check = 1;
2296 		if (!owned)
2297 			mutex_exit(&p->p_lock);
2298 	}
2299 }
2300 
2301 void
2302 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2303 {
2304 	proc_t	*p;
2305 	int owned;
2306 	/*
2307 	 * Save current signal mask in oldmask, then
2308 	 * set it to newmask.
2309 	 */
2310 	if (ttolwp(curthread) != NULL) {
2311 		p = ttoproc(curthread);
2312 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2313 		if (!owned)
2314 			mutex_enter(&p->p_lock);
2315 		schedctl_finish_sigblock(curthread);
2316 		if (oldmask != NULL)
2317 			*oldmask = curthread->t_hold;
2318 		curthread->t_hold = *newmask;
2319 		curthread->t_sig_check = 1;
2320 		if (!owned)
2321 			mutex_exit(&p->p_lock);
2322 	}
2323 }
2324 
2325 /*
2326  * Return true if the signal number is in range
2327  * and the signal code specifies signal queueing.
2328  */
2329 int
2330 sigwillqueue(int sig, int code)
2331 {
2332 	if (sig >= 0 && sig < NSIG) {
2333 		switch (code) {
2334 		case SI_QUEUE:
2335 		case SI_TIMER:
2336 		case SI_ASYNCIO:
2337 		case SI_MESGQ:
2338 			return (1);
2339 		}
2340 	}
2341 	return (0);
2342 }
2343 
2344 #ifndef	UCHAR_MAX
2345 #define	UCHAR_MAX	255
2346 #endif
2347 
2348 /*
2349  * The entire pool (with maxcount entries) is pre-allocated at
2350  * the first sigqueue/signotify call.
2351  */
2352 sigqhdr_t *
2353 sigqhdralloc(size_t size, uint_t maxcount)
2354 {
2355 	size_t i;
2356 	sigqueue_t *sq, *next;
2357 	sigqhdr_t *sqh;
2358 
2359 	i = (maxcount * size) + sizeof (sigqhdr_t);
2360 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2361 	sqh = kmem_alloc(i, KM_SLEEP);
2362 	sqh->sqb_count = (uchar_t)maxcount;
2363 	sqh->sqb_maxcount = (uchar_t)maxcount;
2364 	sqh->sqb_size = (ushort_t)i;
2365 	sqh->sqb_pexited = 0;
2366 	sqh->sqb_sent = 0;
2367 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2368 	for (i = maxcount - 1; i != 0; i--) {
2369 		next = (sigqueue_t *)((uintptr_t)sq + size);
2370 		sq->sq_next = next;
2371 		sq = next;
2372 	}
2373 	sq->sq_next = NULL;
2374 	cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2375 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2376 	return (sqh);
2377 }
2378 
2379 static void sigqrel(sigqueue_t *);
2380 
2381 /*
2382  * allocate a sigqueue/signotify structure from the per process
2383  * pre-allocated pool.
2384  */
2385 sigqueue_t *
2386 sigqalloc(sigqhdr_t *sqh)
2387 {
2388 	sigqueue_t *sq = NULL;
2389 
2390 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2391 
2392 	if (sqh != NULL) {
2393 		mutex_enter(&sqh->sqb_lock);
2394 		if (sqh->sqb_count > 0) {
2395 			sqh->sqb_count--;
2396 			sq = sqh->sqb_free;
2397 			sqh->sqb_free = sq->sq_next;
2398 			mutex_exit(&sqh->sqb_lock);
2399 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2400 			sq->sq_backptr = sqh;
2401 			sq->sq_func = sigqrel;
2402 			sq->sq_next = NULL;
2403 			sq->sq_external = 0;
2404 		} else {
2405 			mutex_exit(&sqh->sqb_lock);
2406 		}
2407 	}
2408 	return (sq);
2409 }
2410 
2411 /*
2412  * Return a sigqueue structure back to the pre-allocated pool.
2413  */
2414 static void
2415 sigqrel(sigqueue_t *sq)
2416 {
2417 	sigqhdr_t *sqh;
2418 
2419 	/* make sure that p_lock of the affected process is held */
2420 
2421 	sqh = (sigqhdr_t *)sq->sq_backptr;
2422 	mutex_enter(&sqh->sqb_lock);
2423 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2424 		mutex_exit(&sqh->sqb_lock);
2425 		cv_destroy(&sqh->sqb_cv);
2426 		mutex_destroy(&sqh->sqb_lock);
2427 		kmem_free(sqh, sqh->sqb_size);
2428 	} else {
2429 		sqh->sqb_count++;
2430 		sqh->sqb_sent--;
2431 		sq->sq_next = sqh->sqb_free;
2432 		sq->sq_backptr = NULL;
2433 		sqh->sqb_free = sq;
2434 		cv_signal(&sqh->sqb_cv);
2435 		mutex_exit(&sqh->sqb_lock);
2436 	}
2437 }
2438 
2439 /*
2440  * Free up the pre-allocated sigqueue headers of sigqueue pool
2441  * and signotify pool, if possible.
2442  * Called only by the owning process during exec() and exit().
2443  */
2444 void
2445 sigqfree(proc_t *p)
2446 {
2447 	ASSERT(MUTEX_HELD(&p->p_lock));
2448 
2449 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2450 		sigqhdrfree(p->p_sigqhdr);
2451 		p->p_sigqhdr = NULL;
2452 	}
2453 	if (p->p_signhdr != NULL) {	/* signotify pool */
2454 		sigqhdrfree(p->p_signhdr);
2455 		p->p_signhdr = NULL;
2456 	}
2457 }
2458 
2459 /*
2460  * Free up the pre-allocated header and sigq pool if possible.
2461  */
2462 void
2463 sigqhdrfree(sigqhdr_t *sqh)
2464 {
2465 	mutex_enter(&sqh->sqb_lock);
2466 	if (sqh->sqb_sent == 0) {
2467 		mutex_exit(&sqh->sqb_lock);
2468 		cv_destroy(&sqh->sqb_cv);
2469 		mutex_destroy(&sqh->sqb_lock);
2470 		kmem_free(sqh, sqh->sqb_size);
2471 	} else {
2472 		sqh->sqb_pexited = 1;
2473 		mutex_exit(&sqh->sqb_lock);
2474 	}
2475 }
2476 
2477 /*
2478  * Free up a single sigqueue structure.
2479  * No other code should free a sigqueue directly.
2480  */
2481 void
2482 siginfofree(sigqueue_t *sqp)
2483 {
2484 	if (sqp != NULL) {
2485 		if (sqp->sq_func != NULL)
2486 			(sqp->sq_func)(sqp);
2487 		else
2488 			kmem_free(sqp, sizeof (sigqueue_t));
2489 	}
2490 }
2491 
2492 /*
2493  * Generate a synchronous signal caused by a hardware
2494  * condition encountered by an lwp.  Called from trap().
2495  */
2496 void
2497 trapsig(k_siginfo_t *ip, int restartable)
2498 {
2499 	proc_t *p = ttoproc(curthread);
2500 	int sig = ip->si_signo;
2501 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2502 
2503 	ASSERT(sig > 0 && sig < NSIG);
2504 
2505 	if (curthread->t_dtrace_on)
2506 		dtrace_safe_synchronous_signal();
2507 
2508 	mutex_enter(&p->p_lock);
2509 	schedctl_finish_sigblock(curthread);
2510 	/*
2511 	 * Avoid a possible infinite loop if the lwp is holding the
2512 	 * signal generated by a trap of a restartable instruction or
2513 	 * if the signal so generated is being ignored by the process.
2514 	 */
2515 	if (restartable &&
2516 	    (sigismember(&curthread->t_hold, sig) ||
2517 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2518 		sigdelset(&curthread->t_hold, sig);
2519 		p->p_user.u_signal[sig-1] = SIG_DFL;
2520 		sigdelset(&p->p_ignore, sig);
2521 	}
2522 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2523 	sigaddqa(p, curthread, sqp);
2524 	mutex_exit(&p->p_lock);
2525 }
2526 
2527 #ifdef _SYSCALL32_IMPL
2528 
2529 /*
2530  * It's tricky to transmit a sigval between 32-bit and 64-bit
2531  * process, since in the 64-bit world, a pointer and an integer
2532  * are different sizes.  Since we're constrained by the standards
2533  * world not to change the types, and it's unclear how useful it is
2534  * to send pointers between address spaces this way, we preserve
2535  * the 'int' interpretation for 32-bit processes interoperating
2536  * with 64-bit processes.  The full semantics (pointers or integers)
2537  * are available for N-bit processes interoperating with N-bit
2538  * processes.
2539  */
2540 void
2541 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2542 {
2543 	bzero(dest, sizeof (*dest));
2544 
2545 	/*
2546 	 * The absolute minimum content is si_signo and si_code.
2547 	 */
2548 	dest->si_signo = src->si_signo;
2549 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2550 		return;
2551 
2552 	/*
2553 	 * A siginfo generated by user level is structured
2554 	 * differently from one generated by the kernel.
2555 	 */
2556 	if (SI_FROMUSER(src)) {
2557 		dest->si_pid = src->si_pid;
2558 		dest->si_ctid = src->si_ctid;
2559 		dest->si_zoneid = src->si_zoneid;
2560 		dest->si_uid = src->si_uid;
2561 		if (SI_CANQUEUE(src->si_code))
2562 			dest->si_value.sival_int =
2563 				(int32_t)src->si_value.sival_int;
2564 		return;
2565 	}
2566 
2567 	dest->si_errno = src->si_errno;
2568 
2569 	switch (src->si_signo) {
2570 	default:
2571 		dest->si_pid = src->si_pid;
2572 		dest->si_ctid = src->si_ctid;
2573 		dest->si_zoneid = src->si_zoneid;
2574 		dest->si_uid = src->si_uid;
2575 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2576 		break;
2577 	case SIGCLD:
2578 		dest->si_pid = src->si_pid;
2579 		dest->si_ctid = src->si_ctid;
2580 		dest->si_zoneid = src->si_zoneid;
2581 		dest->si_status = src->si_status;
2582 		dest->si_stime = src->si_stime;
2583 		dest->si_utime = src->si_utime;
2584 		break;
2585 	case SIGSEGV:
2586 	case SIGBUS:
2587 	case SIGILL:
2588 	case SIGTRAP:
2589 	case SIGFPE:
2590 	case SIGEMT:
2591 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2592 		dest->si_trapno = src->si_trapno;
2593 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2594 		break;
2595 	case SIGPOLL:
2596 	case SIGXFSZ:
2597 		dest->si_fd = src->si_fd;
2598 		dest->si_band = src->si_band;
2599 		break;
2600 	case SIGPROF:
2601 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2602 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2603 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2604 		dest->si_syscall = src->si_syscall;
2605 		dest->si_nsysarg = src->si_nsysarg;
2606 		dest->si_fault = src->si_fault;
2607 		break;
2608 	}
2609 }
2610 
2611 void
2612 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2613 {
2614 	bzero(dest, sizeof (*dest));
2615 
2616 	/*
2617 	 * The absolute minimum content is si_signo and si_code.
2618 	 */
2619 	dest->si_signo = src->si_signo;
2620 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2621 		return;
2622 
2623 	/*
2624 	 * A siginfo generated by user level is structured
2625 	 * differently from one generated by the kernel.
2626 	 */
2627 	if (SI_FROMUSER(src)) {
2628 		dest->si_pid = src->si_pid;
2629 		dest->si_ctid = src->si_ctid;
2630 		dest->si_zoneid = src->si_zoneid;
2631 		dest->si_uid = src->si_uid;
2632 		if (SI_CANQUEUE(src->si_code))
2633 			dest->si_value.sival_int =
2634 				(int)src->si_value.sival_int;
2635 		return;
2636 	}
2637 
2638 	dest->si_errno = src->si_errno;
2639 
2640 	switch (src->si_signo) {
2641 	default:
2642 		dest->si_pid = src->si_pid;
2643 		dest->si_ctid = src->si_ctid;
2644 		dest->si_zoneid = src->si_zoneid;
2645 		dest->si_uid = src->si_uid;
2646 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2647 		break;
2648 	case SIGCLD:
2649 		dest->si_pid = src->si_pid;
2650 		dest->si_ctid = src->si_ctid;
2651 		dest->si_zoneid = src->si_zoneid;
2652 		dest->si_status = src->si_status;
2653 		dest->si_stime = src->si_stime;
2654 		dest->si_utime = src->si_utime;
2655 		break;
2656 	case SIGSEGV:
2657 	case SIGBUS:
2658 	case SIGILL:
2659 	case SIGTRAP:
2660 	case SIGFPE:
2661 	case SIGEMT:
2662 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2663 		dest->si_trapno = src->si_trapno;
2664 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2665 		break;
2666 	case SIGPOLL:
2667 	case SIGXFSZ:
2668 		dest->si_fd = src->si_fd;
2669 		dest->si_band = src->si_band;
2670 		break;
2671 	case SIGPROF:
2672 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2673 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2674 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2675 		dest->si_syscall = src->si_syscall;
2676 		dest->si_nsysarg = src->si_nsysarg;
2677 		dest->si_fault = src->si_fault;
2678 		break;
2679 	}
2680 }
2681 
2682 #endif /* _SYSCALL32_IMPL */
2683