xref: /titanic_41/usr/src/uts/common/os/pid.c (revision 1816cb7076d3ec8a78ef9ac9f895574e13c43645)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/proc.h>
37 #include <sys/kmem.h>
38 #include <sys/tuneable.h>
39 #include <sys/var.h>
40 #include <sys/cred.h>
41 #include <sys/systm.h>
42 #include <sys/prsystm.h>
43 #include <sys/vnode.h>
44 #include <sys/session.h>
45 #include <sys/cpuvar.h>
46 #include <sys/cmn_err.h>
47 #include <sys/bitmap.h>
48 #include <sys/debug.h>
49 #include <c2/audit.h>
50 #include <sys/zone.h>
51 
52 /* directory entries for /proc */
53 union procent {
54 	proc_t *pe_proc;
55 	union procent *pe_next;
56 };
57 
58 struct pid pid0 = {
59 	0,		/* pid_prinactive */
60 	1,		/* pid_pgorphaned */
61 	0,		/* pid_padding	*/
62 	0,		/* pid_prslot	*/
63 	0,		/* pid_id	*/
64 	NULL,		/* pid_pglink	*/
65 	NULL,		/* pid_pgtail	*/
66 	NULL,		/* pid_link	*/
67 	3		/* pid_ref	*/
68 };
69 
70 static int pid_hashlen = 4;	/* desired average hash chain length */
71 static int pid_hashsz;		/* number of buckets in the hash table */
72 
73 #define	HASHPID(pid)	(pidhash[((pid)&(pid_hashsz-1))])
74 
75 extern uint_t nproc;
76 extern struct kmem_cache *process_cache;
77 static void	upcount_init(void);
78 
79 kmutex_t	pidlock;	/* global process lock */
80 kmutex_t	pr_pidlock;	/* /proc global process lock */
81 kcondvar_t	*pr_pid_cv;	/* for /proc, one per process slot */
82 struct plock	*proc_lock;	/* persistent array of p_lock's */
83 
84 /*
85  * See the comment above pid_getlockslot() for a detailed explanation of this
86  * constant.  Note that a PLOCK_SHIFT of 3 implies 64-byte coherence
87  * granularity; if the coherence granularity is ever changed, this constant
88  * should be modified to reflect the change to minimize proc_lock false
89  * sharing (correctness, however, is guaranteed regardless of the coherence
90  * granularity).
91  */
92 #define	PLOCK_SHIFT	3
93 
94 static kmutex_t	pidlinklock;
95 static struct pid **pidhash;
96 static pid_t minpid;
97 static pid_t mpid;
98 static union procent *procdir;
99 static union procent *procentfree;
100 
101 static struct pid *
102 pid_lookup(pid_t pid)
103 {
104 	struct pid *pidp;
105 
106 	ASSERT(MUTEX_HELD(&pidlinklock));
107 
108 	for (pidp = HASHPID(pid); pidp; pidp = pidp->pid_link) {
109 		if (pidp->pid_id == pid) {
110 			ASSERT(pidp->pid_ref > 0);
111 			break;
112 		}
113 	}
114 	return (pidp);
115 }
116 
117 struct pid *
118 pid_find(pid_t pid)
119 {
120 	struct pid *pidp;
121 
122 	mutex_enter(&pidlinklock);
123 	pidp = pid_lookup(pid);
124 	mutex_exit(&pidlinklock);
125 
126 	return (pidp);
127 }
128 
129 void
130 pid_setmin(void)
131 {
132 	if (jump_pid && jump_pid > mpid)
133 		minpid = mpid = jump_pid;
134 	else
135 		minpid = mpid + 1;
136 }
137 
138 /*
139  * When prslots are simply used as an index to determine a process' p_lock,
140  * adjacent prslots share adjacent p_locks.  On machines where the size
141  * of a mutex is smaller than that of a cache line (which, as of this writing,
142  * is true for all machines on which Solaris runs), this can potentially
143  * induce false sharing.  The standard solution for false sharing is to pad
144  * out one's data structures (in this case, struct plock).  However,
145  * given the size and (generally) sparse use of the proc_lock array, this
146  * is suboptimal.  We therefore stride through the proc_lock array with
147  * a stride of PLOCK_SHIFT.  PLOCK_SHIFT should be defined as:
148  *
149  *   log_2 (coherence_granularity / sizeof (kmutex_t))
150  *
151  * Under this scheme, false sharing is still possible -- but only when
152  * the number of active processes is very large.  Note that the one-to-one
153  * mapping between prslots and lockslots is maintained.
154  */
155 static int
156 pid_getlockslot(int prslot)
157 {
158 	int even = (v.v_proc >> PLOCK_SHIFT) << PLOCK_SHIFT;
159 	int perlap = even >> PLOCK_SHIFT;
160 
161 	if (prslot >= even)
162 		return (prslot);
163 
164 	return (((prslot % perlap) << PLOCK_SHIFT) + (prslot / perlap));
165 }
166 
167 /*
168  * This function allocates a pid structure, a free pid, and optionally a
169  * slot in the proc table for it.
170  *
171  * pid_allocate() returns the new pid on success, -1 on failure.
172  */
173 pid_t
174 pid_allocate(proc_t *prp, int flags)
175 {
176 	struct pid *pidp;
177 	union procent *pep;
178 	pid_t newpid, startpid;
179 
180 	pidp = kmem_zalloc(sizeof (struct pid), KM_SLEEP);
181 
182 	mutex_enter(&pidlinklock);
183 	if ((flags & PID_ALLOC_PROC) && (pep = procentfree) == NULL) {
184 		/*
185 		 * ran out of /proc directory entries
186 		 */
187 		goto failed;
188 	}
189 
190 	/*
191 	 * Allocate a pid
192 	 */
193 	startpid = mpid;
194 	do  {
195 		newpid = (++mpid == maxpid ? mpid = minpid : mpid);
196 	} while (pid_lookup(newpid) && newpid != startpid);
197 
198 	if (newpid == startpid && pid_lookup(newpid)) {
199 		/* couldn't find a free pid */
200 		goto failed;
201 	}
202 
203 	/*
204 	 * Put pid into the pid hash table.
205 	 */
206 	pidp->pid_link = HASHPID(newpid);
207 	HASHPID(newpid) = pidp;
208 	pidp->pid_ref = 1;
209 	pidp->pid_id = newpid;
210 
211 	if (flags & PID_ALLOC_PROC) {
212 		procentfree = pep->pe_next;
213 		pidp->pid_prslot = pep - procdir;
214 		pep->pe_proc = prp;
215 		prp->p_pidp = pidp;
216 		prp->p_lockp = &proc_lock[pid_getlockslot(pidp->pid_prslot)];
217 	} else {
218 		pidp->pid_prslot = 0;
219 	}
220 
221 	mutex_exit(&pidlinklock);
222 
223 	return (newpid);
224 
225 failed:
226 	mutex_exit(&pidlinklock);
227 	kmem_free(pidp, sizeof (struct pid));
228 	return (-1);
229 }
230 
231 /*
232  * decrement the reference count for pid
233  */
234 int
235 pid_rele(struct pid *pidp)
236 {
237 	struct pid **pidpp;
238 
239 	mutex_enter(&pidlinklock);
240 	ASSERT(pidp != &pid0);
241 
242 	pidpp = &HASHPID(pidp->pid_id);
243 	for (;;) {
244 		ASSERT(*pidpp != NULL);
245 		if (*pidpp == pidp)
246 			break;
247 		pidpp = &(*pidpp)->pid_link;
248 	}
249 
250 	*pidpp = pidp->pid_link;
251 	mutex_exit(&pidlinklock);
252 
253 	kmem_free(pidp, sizeof (*pidp));
254 	return (0);
255 }
256 
257 void
258 proc_entry_free(struct pid *pidp)
259 {
260 	mutex_enter(&pidlinklock);
261 	pidp->pid_prinactive = 1;
262 	procdir[pidp->pid_prslot].pe_next = procentfree;
263 	procentfree = &procdir[pidp->pid_prslot];
264 	mutex_exit(&pidlinklock);
265 }
266 
267 void
268 pid_exit(proc_t *prp)
269 {
270 	struct pid *pidp;
271 
272 	ASSERT(MUTEX_HELD(&pidlock));
273 
274 	/*
275 	 * Exit process group.  If it is NULL, it's because fork failed
276 	 * before calling pgjoin().
277 	 */
278 	ASSERT(prp->p_pgidp != NULL || prp->p_stat == SIDL);
279 	if (prp->p_pgidp != NULL)
280 		pgexit(prp);
281 
282 	sess_rele(prp->p_sessp, B_TRUE);
283 
284 	pidp = prp->p_pidp;
285 
286 	proc_entry_free(pidp);
287 
288 	if (audit_active)
289 		audit_pfree(prp);
290 
291 	if (practive == prp) {
292 		practive = prp->p_next;
293 	}
294 
295 	if (prp->p_next) {
296 		prp->p_next->p_prev = prp->p_prev;
297 	}
298 	if (prp->p_prev) {
299 		prp->p_prev->p_next = prp->p_next;
300 	}
301 
302 	PID_RELE(pidp);
303 
304 	mutex_destroy(&prp->p_crlock);
305 	kmem_cache_free(process_cache, prp);
306 	nproc--;
307 }
308 
309 /*
310  * Find a process visible from the specified zone given its process ID.
311  */
312 proc_t *
313 prfind_zone(pid_t pid, zoneid_t zoneid)
314 {
315 	struct pid *pidp;
316 	proc_t *p;
317 
318 	ASSERT(MUTEX_HELD(&pidlock));
319 
320 	mutex_enter(&pidlinklock);
321 	pidp = pid_lookup(pid);
322 	mutex_exit(&pidlinklock);
323 	if (pidp != NULL && pidp->pid_prinactive == 0) {
324 		p = procdir[pidp->pid_prslot].pe_proc;
325 		if (zoneid == ALL_ZONES || p->p_zone->zone_id == zoneid)
326 			return (p);
327 	}
328 	return (NULL);
329 }
330 
331 /*
332  * Find a process given its process ID.  This obeys zone restrictions,
333  * so if the caller is in a non-global zone it won't find processes
334  * associated with other zones.  Use prfind_zone(pid, ALL_ZONES) to
335  * bypass this restriction.
336  */
337 proc_t *
338 prfind(pid_t pid)
339 {
340 	zoneid_t zoneid;
341 
342 	if (INGLOBALZONE(curproc))
343 		zoneid = ALL_ZONES;
344 	else
345 		zoneid = getzoneid();
346 	return (prfind_zone(pid, zoneid));
347 }
348 
349 proc_t *
350 pgfind_zone(pid_t pgid, zoneid_t zoneid)
351 {
352 	struct pid *pidp;
353 
354 	ASSERT(MUTEX_HELD(&pidlock));
355 
356 	mutex_enter(&pidlinklock);
357 	pidp = pid_lookup(pgid);
358 	mutex_exit(&pidlinklock);
359 	if (pidp != NULL) {
360 		proc_t *p = pidp->pid_pglink;
361 
362 		if (zoneid == ALL_ZONES || pgid == 0 || p == NULL ||
363 		    p->p_zone->zone_id == zoneid)
364 			return (p);
365 	}
366 	return (NULL);
367 }
368 
369 /*
370  * return the head of the list of processes whose process group ID is 'pgid',
371  * or NULL, if no such process group
372  */
373 proc_t *
374 pgfind(pid_t pgid)
375 {
376 	zoneid_t zoneid;
377 
378 	if (INGLOBALZONE(curproc))
379 		zoneid = ALL_ZONES;
380 	else
381 		zoneid = getzoneid();
382 	return (pgfind_zone(pgid, zoneid));
383 }
384 
385 /*
386  * Sets P_PR_LOCK on a non-system process.  Process must be fully created
387  * and not exiting to succeed.
388  *
389  * Returns 0 on success.
390  * Returns 1 if P_PR_LOCK is set.
391  * Returns -1 if proc is in invalid state.
392  */
393 int
394 sprtrylock_proc(proc_t *p)
395 {
396 	ASSERT(MUTEX_HELD(&p->p_lock));
397 
398 	/* skip system and incomplete processes */
399 	if (p->p_stat == SIDL || p->p_stat == SZOMB ||
400 	    (p->p_flag & (SSYS | SEXITING | SEXITLWPS))) {
401 		return (-1);
402 	}
403 
404 	if (p->p_proc_flag & P_PR_LOCK)
405 		return (1);
406 
407 	p->p_proc_flag |= P_PR_LOCK;
408 	THREAD_KPRI_REQUEST();
409 
410 	return (0);
411 }
412 
413 /*
414  * Wait for P_PR_LOCK to become clear.  Returns with p_lock dropped,
415  * and the proc pointer no longer valid, as the proc may have exited.
416  */
417 void
418 sprwaitlock_proc(proc_t *p)
419 {
420 	kmutex_t *mp;
421 
422 	ASSERT(MUTEX_HELD(&p->p_lock));
423 	ASSERT(p->p_proc_flag & P_PR_LOCK);
424 
425 	/*
426 	 * p_lock is persistent, but p itself is not -- it could
427 	 * vanish during cv_wait().  Load p->p_lock now so we can
428 	 * drop it after cv_wait() without referencing p.
429 	 */
430 	mp = &p->p_lock;
431 	cv_wait(&pr_pid_cv[p->p_slot], mp);
432 	mutex_exit(mp);
433 }
434 
435 /*
436  * If pid exists, find its proc, acquire its p_lock and mark it P_PR_LOCK.
437  * Returns the proc pointer on success, NULL on failure.  sprlock() is
438  * really just a stripped-down version of pr_p_lock() to allow practive
439  * walkers like dofusers() and dumpsys() to synchronize with /proc.
440  */
441 proc_t *
442 sprlock_zone(pid_t pid, zoneid_t zoneid)
443 {
444 	proc_t *p;
445 	int ret;
446 
447 	for (;;) {
448 		mutex_enter(&pidlock);
449 		if ((p = prfind_zone(pid, zoneid)) == NULL) {
450 			mutex_exit(&pidlock);
451 			return (NULL);
452 		}
453 		mutex_enter(&p->p_lock);
454 		mutex_exit(&pidlock);
455 
456 		if (panicstr)
457 			return (p);
458 
459 		ret = sprtrylock_proc(p);
460 		if (ret == -1) {
461 			mutex_exit(&p->p_lock);
462 			return (NULL);
463 		} else if (ret == 0) {
464 			break;
465 		}
466 		sprwaitlock_proc(p);
467 	}
468 	return (p);
469 }
470 
471 proc_t *
472 sprlock(pid_t pid)
473 {
474 	zoneid_t zoneid;
475 
476 	if (INGLOBALZONE(curproc))
477 		zoneid = ALL_ZONES;
478 	else
479 		zoneid = getzoneid();
480 	return (sprlock_zone(pid, zoneid));
481 }
482 
483 void
484 sprlock_proc(proc_t *p)
485 {
486 	ASSERT(MUTEX_HELD(&p->p_lock));
487 
488 	while (p->p_proc_flag & P_PR_LOCK) {
489 		cv_wait(&pr_pid_cv[p->p_slot], &p->p_lock);
490 	}
491 
492 	p->p_proc_flag |= P_PR_LOCK;
493 	THREAD_KPRI_REQUEST();
494 }
495 
496 void
497 sprunlock(proc_t *p)
498 {
499 	if (panicstr) {
500 		mutex_exit(&p->p_lock);
501 		return;
502 	}
503 
504 	ASSERT(p->p_proc_flag & P_PR_LOCK);
505 	ASSERT(MUTEX_HELD(&p->p_lock));
506 
507 	cv_signal(&pr_pid_cv[p->p_slot]);
508 	p->p_proc_flag &= ~P_PR_LOCK;
509 	mutex_exit(&p->p_lock);
510 	THREAD_KPRI_RELEASE();
511 }
512 
513 void
514 pid_init(void)
515 {
516 	int i;
517 
518 	pid_hashsz = 1 << highbit(v.v_proc / pid_hashlen);
519 
520 	pidhash = kmem_zalloc(sizeof (struct pid *) * pid_hashsz, KM_SLEEP);
521 	procdir = kmem_alloc(sizeof (union procent) * v.v_proc, KM_SLEEP);
522 	pr_pid_cv = kmem_zalloc(sizeof (kcondvar_t) * v.v_proc, KM_SLEEP);
523 	proc_lock = kmem_zalloc(sizeof (struct plock) * v.v_proc, KM_SLEEP);
524 
525 	nproc = 1;
526 	practive = proc_sched;
527 	proc_sched->p_next = NULL;
528 	procdir[0].pe_proc = proc_sched;
529 
530 	procentfree = &procdir[1];
531 	for (i = 1; i < v.v_proc - 1; i++)
532 		procdir[i].pe_next = &procdir[i+1];
533 	procdir[i].pe_next = NULL;
534 
535 	HASHPID(0) = &pid0;
536 
537 	upcount_init();
538 }
539 
540 proc_t *
541 pid_entry(int slot)
542 {
543 	union procent *pep;
544 	proc_t *prp;
545 
546 	ASSERT(MUTEX_HELD(&pidlock));
547 	ASSERT(slot >= 0 && slot < v.v_proc);
548 
549 	pep = procdir[slot].pe_next;
550 	if (pep >= procdir && pep < &procdir[v.v_proc])
551 		return (NULL);
552 	prp = procdir[slot].pe_proc;
553 	if (prp != 0 && prp->p_stat == SIDL)
554 		return (NULL);
555 	return (prp);
556 }
557 
558 /*
559  * Send the specified signal to all processes whose process group ID is
560  * equal to 'pgid'
561  */
562 
563 void
564 signal(pid_t pgid, int sig)
565 {
566 	struct pid *pidp;
567 	proc_t *prp;
568 
569 	mutex_enter(&pidlock);
570 	mutex_enter(&pidlinklock);
571 	if (pgid == 0 || (pidp = pid_lookup(pgid)) == NULL) {
572 		mutex_exit(&pidlinklock);
573 		mutex_exit(&pidlock);
574 		return;
575 	}
576 	mutex_exit(&pidlinklock);
577 	for (prp = pidp->pid_pglink; prp; prp = prp->p_pglink) {
578 		mutex_enter(&prp->p_lock);
579 		sigtoproc(prp, NULL, sig);
580 		mutex_exit(&prp->p_lock);
581 	}
582 	mutex_exit(&pidlock);
583 }
584 
585 /*
586  * Send the specified signal to the specified process
587  */
588 
589 void
590 prsignal(struct pid *pidp, int sig)
591 {
592 	if (!(pidp->pid_prinactive))
593 		psignal(procdir[pidp->pid_prslot].pe_proc, sig);
594 }
595 
596 #include <sys/sunddi.h>
597 
598 /*
599  * DDI/DKI interfaces for drivers to send signals to processes
600  */
601 
602 /*
603  * obtain an opaque reference to a process for signaling
604  */
605 void *
606 proc_ref(void)
607 {
608 	struct pid *pidp;
609 
610 	mutex_enter(&pidlock);
611 	pidp = curproc->p_pidp;
612 	PID_HOLD(pidp);
613 	mutex_exit(&pidlock);
614 
615 	return (pidp);
616 }
617 
618 /*
619  * release a reference to a process
620  * - a process can exit even if a driver has a reference to it
621  * - one proc_unref for every proc_ref
622  */
623 void
624 proc_unref(void *pref)
625 {
626 	mutex_enter(&pidlock);
627 	PID_RELE((struct pid *)pref);
628 	mutex_exit(&pidlock);
629 }
630 
631 /*
632  * send a signal to a process
633  *
634  * - send the process the signal
635  * - if the process went away, return a -1
636  * - if the process is still there return 0
637  */
638 int
639 proc_signal(void *pref, int sig)
640 {
641 	struct pid *pidp = pref;
642 
643 	prsignal(pidp, sig);
644 	return (pidp->pid_prinactive ? -1 : 0);
645 }
646 
647 
648 static struct upcount	**upc_hash;	/* a boot time allocated array */
649 static ulong_t		upc_hashmask;
650 #define	UPC_HASH(x, y)	((ulong_t)(x ^ y) & upc_hashmask)
651 
652 /*
653  * Get us off the ground.  Called once at boot.
654  */
655 void
656 upcount_init(void)
657 {
658 	ulong_t	upc_hashsize;
659 
660 	/*
661 	 * An entry per MB of memory is our current guess
662 	 */
663 	/*
664 	 * 2^20 is a meg, so shifting right by 20 - PAGESHIFT
665 	 * converts pages to megs (without overflowing a u_int
666 	 * if you have more than 4G of memory, like ptob(physmem)/1M
667 	 * would).
668 	 */
669 	upc_hashsize = (1 << highbit(physmem >> (20 - PAGESHIFT)));
670 	upc_hashmask = upc_hashsize - 1;
671 	upc_hash = kmem_zalloc(upc_hashsize * sizeof (struct upcount *),
672 	    KM_SLEEP);
673 }
674 
675 /*
676  * Increment the number of processes associated with a given uid and zoneid.
677  */
678 void
679 upcount_inc(uid_t uid, zoneid_t zoneid)
680 {
681 	struct upcount	**upc, **hupc;
682 	struct upcount	*new;
683 
684 	ASSERT(MUTEX_HELD(&pidlock));
685 	new = NULL;
686 	hupc = &upc_hash[UPC_HASH(uid, zoneid)];
687 top:
688 	upc = hupc;
689 	while ((*upc) != NULL) {
690 		if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
691 			(*upc)->up_count++;
692 			if (new) {
693 				/*
694 				 * did not need `new' afterall.
695 				 */
696 				kmem_free(new, sizeof (*new));
697 			}
698 			return;
699 		}
700 		upc = &(*upc)->up_next;
701 	}
702 
703 	/*
704 	 * There is no entry for this <uid,zoneid> pair.
705 	 * Allocate one.  If we have to drop pidlock, check
706 	 * again.
707 	 */
708 	if (new == NULL) {
709 		new = (struct upcount *)kmem_alloc(sizeof (*new), KM_NOSLEEP);
710 		if (new == NULL) {
711 			mutex_exit(&pidlock);
712 			new = (struct upcount *)kmem_alloc(sizeof (*new),
713 			    KM_SLEEP);
714 			mutex_enter(&pidlock);
715 			goto top;
716 		}
717 	}
718 
719 
720 	/*
721 	 * On the assumption that a new user is going to do some
722 	 * more forks, put the new upcount structure on the front.
723 	 */
724 	upc = hupc;
725 
726 	new->up_uid = uid;
727 	new->up_zoneid = zoneid;
728 	new->up_count = 1;
729 	new->up_next = *upc;
730 
731 	*upc = new;
732 }
733 
734 /*
735  * Decrement the number of processes a given uid and zoneid has.
736  */
737 void
738 upcount_dec(uid_t uid, zoneid_t zoneid)
739 {
740 	struct	upcount **upc;
741 	struct	upcount *done;
742 
743 	ASSERT(MUTEX_HELD(&pidlock));
744 
745 	upc = &upc_hash[UPC_HASH(uid, zoneid)];
746 	while ((*upc) != NULL) {
747 		if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
748 			(*upc)->up_count--;
749 			if ((*upc)->up_count == 0) {
750 				done = *upc;
751 				*upc = (*upc)->up_next;
752 				kmem_free(done, sizeof (*done));
753 			}
754 			return;
755 		}
756 		upc = &(*upc)->up_next;
757 	}
758 	cmn_err(CE_PANIC, "decr_upcount-off the end");
759 }
760 
761 /*
762  * Returns the number of processes a uid has.
763  * Non-existent uid's are assumed to have no processes.
764  */
765 int
766 upcount_get(uid_t uid, zoneid_t zoneid)
767 {
768 	struct	upcount *upc;
769 
770 	ASSERT(MUTEX_HELD(&pidlock));
771 
772 	upc = upc_hash[UPC_HASH(uid, zoneid)];
773 	while (upc != NULL) {
774 		if (upc->up_uid == uid && upc->up_zoneid == zoneid) {
775 			return (upc->up_count);
776 		}
777 		upc = upc->up_next;
778 	}
779 	return (0);
780 }
781