1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 /* 31 * Inter-Process Communication Message Facility. 32 * 33 * See os/ipc.c for a description of common IPC functionality. 34 * 35 * Resource controls 36 * ----------------- 37 * 38 * Control: zone.max-msg-ids (rc_zone_msgmni) 39 * Description: Maximum number of message queue ids allowed a zone. 40 * 41 * When msgget() is used to allocate a message queue, one id is 42 * allocated. If the id allocation doesn't succeed, msgget() fails 43 * and errno is set to ENOSPC. Upon successful msgctl(, IPC_RMID) 44 * the id is deallocated. 45 * 46 * Control: project.max-msg-ids (rc_project_msgmni) 47 * Description: Maximum number of message queue ids allowed a project. 48 * 49 * When msgget() is used to allocate a message queue, one id is 50 * allocated. If the id allocation doesn't succeed, msgget() fails 51 * and errno is set to ENOSPC. Upon successful msgctl(, IPC_RMID) 52 * the id is deallocated. 53 * 54 * Control: process.max-msg-qbytes (rc_process_msgmnb) 55 * Description: Maximum number of bytes of messages on a message queue. 56 * 57 * When msgget() successfully allocates a message queue, the minimum 58 * enforced value of this limit is used to initialize msg_qbytes. 59 * 60 * Control: process.max-msg-messages (rc_process_msgtql) 61 * Description: Maximum number of messages on a message queue. 62 * 63 * When msgget() successfully allocates a message queue, the minimum 64 * enforced value of this limit is used to initialize a per-queue 65 * limit on the number of messages. 66 */ 67 68 #include <sys/types.h> 69 #include <sys/t_lock.h> 70 #include <sys/param.h> 71 #include <sys/cred.h> 72 #include <sys/user.h> 73 #include <sys/proc.h> 74 #include <sys/time.h> 75 #include <sys/ipc.h> 76 #include <sys/ipc_impl.h> 77 #include <sys/msg.h> 78 #include <sys/msg_impl.h> 79 #include <sys/list.h> 80 #include <sys/systm.h> 81 #include <sys/sysmacros.h> 82 #include <sys/cpuvar.h> 83 #include <sys/kmem.h> 84 #include <sys/ddi.h> 85 #include <sys/errno.h> 86 #include <sys/cmn_err.h> 87 #include <sys/debug.h> 88 #include <sys/project.h> 89 #include <sys/modctl.h> 90 #include <sys/syscall.h> 91 #include <sys/policy.h> 92 #include <sys/zone.h> 93 94 #include <c2/audit.h> 95 96 /* 97 * The following tunables are obsolete. Though for compatibility we 98 * still read and interpret msginfo_msgmnb, msginfo_msgmni, and 99 * msginfo_msgtql (see os/project.c and os/rctl_proc.c), the preferred 100 * mechanism for administrating the IPC Message facility is through the 101 * resource controls described at the top of this file. 102 */ 103 size_t msginfo_msgmax = 2048; /* (obsolete) */ 104 size_t msginfo_msgmnb = 4096; /* (obsolete) */ 105 int msginfo_msgmni = 50; /* (obsolete) */ 106 int msginfo_msgtql = 40; /* (obsolete) */ 107 int msginfo_msgssz = 8; /* (obsolete) */ 108 int msginfo_msgmap = 0; /* (obsolete) */ 109 ushort_t msginfo_msgseg = 1024; /* (obsolete) */ 110 111 extern rctl_hndl_t rc_zone_msgmni; 112 extern rctl_hndl_t rc_project_msgmni; 113 extern rctl_hndl_t rc_process_msgmnb; 114 extern rctl_hndl_t rc_process_msgtql; 115 static ipc_service_t *msq_svc; 116 static zone_key_t msg_zone_key; 117 118 static void msg_dtor(kipc_perm_t *); 119 static void msg_rmid(kipc_perm_t *); 120 static void msg_remove_zone(zoneid_t, void *); 121 122 /* 123 * Module linkage information for the kernel. 124 */ 125 static ssize_t msgsys(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, 126 uintptr_t a4, uintptr_t a5); 127 128 static struct sysent ipcmsg_sysent = { 129 6, 130 #ifdef _LP64 131 SE_ARGC | SE_NOUNLOAD | SE_64RVAL, 132 #else 133 SE_ARGC | SE_NOUNLOAD | SE_32RVAL1, 134 #endif 135 (int (*)())msgsys 136 }; 137 138 #ifdef _SYSCALL32_IMPL 139 static ssize32_t msgsys32(int opcode, uint32_t a0, uint32_t a1, uint32_t a2, 140 uint32_t a4, uint32_t a5); 141 142 static struct sysent ipcmsg_sysent32 = { 143 6, 144 SE_ARGC | SE_NOUNLOAD | SE_32RVAL1, 145 (int (*)())msgsys32 146 }; 147 #endif /* _SYSCALL32_IMPL */ 148 149 static struct modlsys modlsys = { 150 &mod_syscallops, "System V message facility", &ipcmsg_sysent 151 }; 152 153 #ifdef _SYSCALL32_IMPL 154 static struct modlsys modlsys32 = { 155 &mod_syscallops32, "32-bit System V message facility", &ipcmsg_sysent32 156 }; 157 #endif 158 159 /* 160 * Big Theory statement for message queue correctness 161 * 162 * The msgrcv and msgsnd functions no longer uses cv_broadcast to wake up 163 * receivers who are waiting for an event. Using the cv_broadcast method 164 * resulted in negative scaling when the number of waiting receivers are large 165 * (the thundering herd problem). Instead, the receivers waiting to receive a 166 * message are now linked in a queue-like fashion and awaken one at a time in 167 * a controlled manner. 168 * 169 * Receivers can block on two different classes of waiting list: 170 * 1) "sendwait" list, which is the more complex list of the two. The 171 * receiver will be awakened by a sender posting a new message. There 172 * are two types of "sendwait" list used: 173 * a) msg_wait_snd: handles all receivers who are looking for 174 * a message type >= 0, but was unable to locate a match. 175 * 176 * slot 0: reserved for receivers that have designated they 177 * will take any message type. 178 * rest: consist of receivers requesting a specific type 179 * but the type was not present. The entries are 180 * hashed into a bucket in an attempt to keep 181 * any list search relatively short. 182 * b) msg_wait_snd_ngt: handles all receivers that have designated 183 * a negative message type. Unlike msg_wait_snd, the hash bucket 184 * serves a range of negative message types (-1 to -5, -6 to -10 185 * and so forth), where the last bucket is reserved for all the 186 * negative message types that hash outside of MSG_MAX_QNUM - 1. 187 * This is done this way to simplify the operation of locating a 188 * negative message type. 189 * 190 * 2) "copyout" list, where the receiver is awakened by another 191 * receiver after a message is copied out. This is a linked list 192 * of waiters that are awakened one at a time. Although the solution is 193 * not optimal, the complexity that would be added in for waking 194 * up the right entry far exceeds any potential pay back (too many 195 * correctness and corner case issues). 196 * 197 * The lists are doubly linked. In the case of the "sendwait" 198 * list, this allows the thread to remove itself from the list without having 199 * to traverse the list. In the case of the "copyout" list it simply allows 200 * us to use common functions with the "sendwait" list. 201 * 202 * To make sure receivers are not hung out to dry, we must guarantee: 203 * 1. If any queued message matches any receiver, then at least one 204 * matching receiver must be processing the request. 205 * 2. Blocking on the copyout queue is only temporary while messages 206 * are being copied out. The process is guaranted to wakeup 207 * when it gets to front of the queue (copyout is a FIFO). 208 * 209 * Rules for blocking and waking up: 210 * 1. A receiver entering msgrcv must examine all messages for a match 211 * before blocking on a sendwait queue. 212 * 2. If the receiver blocks because the message it chose is already 213 * being copied out, then when it wakes up needs to start start 214 * checking the messages from the beginning. 215 * 3) When ever a process returns from msgrcv for any reason, if it 216 * had attempted to copy a message or blocked waiting for a copy 217 * to complete it needs to wakeup the next receiver blocked on 218 * a copy out. 219 * 4) When a message is sent, the sender selects a process waiting 220 * for that type of message. This selection process rotates between 221 * receivers types of 0, negative and positive to prevent starvation of 222 * any one particular receiver type. 223 * 5) The following are the scenarios for processes that are awakened 224 * by a msgsnd: 225 * a) The process finds the message and is able to copy 226 * it out. Once complete, the process returns. 227 * b) The message that was sent that triggered the wakeup is no 228 * longer available (another process found the message first). 229 * We issue a wakeup on copy queue and then go back to 230 * sleep waiting for another matching message to be sent. 231 * c) The message that was supposed to be processed was 232 * already serviced by another process. However a different 233 * message is present which we can service. The message 234 * is copied and the process returns. 235 * d) The message is found, but some sort of error occurs that 236 * prevents the message from being copied. The receiver 237 * wakes up the next sender that can service this message 238 * type and returns an error to the caller. 239 * e) The message is found, but it is marked as being copied 240 * out. The receiver then goes to sleep on the copyout 241 * queue where it will be awakened again sometime in the future. 242 * 243 * 244 * 6) Whenever a message is found that matches the message type designated, 245 * but is being copied out we have to block on the copyout queue. 246 * After process copying finishes the copy out, it must wakeup (either 247 * directly or indirectly) all receivers who blocked on its copyout, 248 * so they are guaranteed a chance to examine the remaining messages. 249 * This is implemented via a chain of wakeups: Y wakes X, who wakes Z, 250 * and so on. The chain cannot be broken. This leads to the following 251 * cases: 252 * a) A receiver is finished copying the message (or encountered) 253 * an error), the first entry on the copyout queue is woken 254 * up. 255 * b) When the receiver is woken up, it attempts to locate 256 * a message type match. 257 * c) If a message type is found and 258 * -- MSG_RCVCOPY flag is not set, the message is 259 * marked for copying out. Regardless of the copyout 260 * success the next entry on the copyout queue is 261 * awakened and the operation is completed. 262 * -- MSG_RCVCOPY is set, we simply go back to sleep again 263 * on the copyout queue. 264 * d) If the message type is not found then we wakeup the next 265 * process on the copyout queue. 266 * 7) If a msgsnd is unable to complete for of any of the following reasons 267 * a) the msgq has no space for the message 268 * b) the maximum number of messages allowed has been reached 269 * then one of two things happen: 270 * 1) If the passed in msg_flag has IPC_NOWAIT set, then 271 * an error is returned. 272 * 2) The IPC_NOWAIT bit is not set in msg_flag, then the 273 * the thread is placed to sleep until the request can be 274 * serviced. 275 * 8) When waking a thread waiting to send a message, a check is done to 276 * verify that the operation being asked for by the thread will complete. 277 * This decision making process is done in a loop where the oldest request 278 * is checked first. The search will continue until there is no more 279 * room on the msgq or we have checked all the waiters. 280 */ 281 282 static uint_t msg_type_hash(long); 283 static int msgq_check_err(kmsqid_t *qp, int cvres); 284 static int msg_rcvq_sleep(list_t *, msgq_wakeup_t *, kmutex_t **, 285 kmsqid_t *); 286 static int msg_copyout(kmsqid_t *, long, kmutex_t **, size_t *, size_t, 287 struct msg *, struct ipcmsgbuf *, int); 288 static void msg_rcvq_wakeup_all(list_t *); 289 static void msg_wakeup_senders(kmsqid_t *); 290 static void msg_wakeup_rdr(kmsqid_t *, msg_select_t **, long); 291 static msgq_wakeup_t *msg_fnd_any_snd(kmsqid_t *, int, long); 292 static msgq_wakeup_t *msg_fnd_any_rdr(kmsqid_t *, int, long); 293 static msgq_wakeup_t *msg_fnd_neg_snd(kmsqid_t *, int, long); 294 static msgq_wakeup_t *msg_fnd_spc_snd(kmsqid_t *, int, long); 295 static struct msg *msgrcv_lookup(kmsqid_t *, long); 296 297 msg_select_t msg_fnd_sndr[] = { 298 { msg_fnd_any_snd, &msg_fnd_sndr[1] }, 299 { msg_fnd_spc_snd, &msg_fnd_sndr[2] }, 300 { msg_fnd_neg_snd, &msg_fnd_sndr[0] } 301 }; 302 303 msg_select_t msg_fnd_rdr[1] = { 304 { msg_fnd_any_rdr, &msg_fnd_rdr[0] }, 305 }; 306 307 static struct modlinkage modlinkage = { 308 MODREV_1, 309 &modlsys, 310 #ifdef _SYSCALL32_IMPL 311 &modlsys32, 312 #endif 313 NULL 314 }; 315 316 #define MSG_SMALL_INIT (size_t)-1 317 int 318 _init(void) 319 { 320 int result; 321 322 msq_svc = ipcs_create("msqids", rc_project_msgmni, rc_zone_msgmni, 323 sizeof (kmsqid_t), msg_dtor, msg_rmid, AT_IPC_MSG, 324 offsetof(ipc_rqty_t, ipcq_msgmni)); 325 zone_key_create(&msg_zone_key, NULL, msg_remove_zone, NULL); 326 327 if ((result = mod_install(&modlinkage)) == 0) 328 return (0); 329 330 (void) zone_key_delete(msg_zone_key); 331 ipcs_destroy(msq_svc); 332 333 return (result); 334 } 335 336 int 337 _fini(void) 338 { 339 return (EBUSY); 340 } 341 342 int 343 _info(struct modinfo *modinfop) 344 { 345 return (mod_info(&modlinkage, modinfop)); 346 } 347 348 static void 349 msg_dtor(kipc_perm_t *perm) 350 { 351 kmsqid_t *qp = (kmsqid_t *)perm; 352 int ii; 353 354 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 355 ASSERT(list_is_empty(&qp->msg_wait_snd[ii])); 356 ASSERT(list_is_empty(&qp->msg_wait_snd_ngt[ii])); 357 list_destroy(&qp->msg_wait_snd[ii]); 358 list_destroy(&qp->msg_wait_snd_ngt[ii]); 359 } 360 ASSERT(list_is_empty(&qp->msg_cpy_block)); 361 ASSERT(list_is_empty(&qp->msg_wait_rcv)); 362 list_destroy(&qp->msg_cpy_block); 363 ASSERT(qp->msg_snd_cnt == 0); 364 ASSERT(qp->msg_cbytes == 0); 365 list_destroy(&qp->msg_list); 366 list_destroy(&qp->msg_wait_rcv); 367 } 368 369 370 #define msg_hold(mp) (mp)->msg_copycnt++ 371 372 /* 373 * msg_rele - decrement the reference count on the message. When count 374 * reaches zero, free message header and contents. 375 */ 376 static void 377 msg_rele(struct msg *mp) 378 { 379 ASSERT(mp->msg_copycnt > 0); 380 if (mp->msg_copycnt-- == 1) { 381 if (mp->msg_addr) 382 kmem_free(mp->msg_addr, mp->msg_size); 383 kmem_free(mp, sizeof (struct msg)); 384 } 385 } 386 387 /* 388 * msgunlink - Unlink msg from queue, decrement byte count and wake up anyone 389 * waiting for free bytes on queue. 390 * 391 * Called with queue locked. 392 */ 393 static void 394 msgunlink(kmsqid_t *qp, struct msg *mp) 395 { 396 list_remove(&qp->msg_list, mp); 397 qp->msg_qnum--; 398 qp->msg_cbytes -= mp->msg_size; 399 msg_rele(mp); 400 401 /* Wake up waiting writers */ 402 msg_wakeup_senders(qp); 403 } 404 405 static void 406 msg_rmid(kipc_perm_t *perm) 407 { 408 kmsqid_t *qp = (kmsqid_t *)perm; 409 struct msg *mp; 410 int ii; 411 412 413 while ((mp = list_head(&qp->msg_list)) != NULL) 414 msgunlink(qp, mp); 415 ASSERT(qp->msg_cbytes == 0); 416 417 /* 418 * Wake up everyone who is in a wait state of some sort 419 * for this message queue. 420 */ 421 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 422 msg_rcvq_wakeup_all(&qp->msg_wait_snd[ii]); 423 msg_rcvq_wakeup_all(&qp->msg_wait_snd_ngt[ii]); 424 } 425 msg_rcvq_wakeup_all(&qp->msg_cpy_block); 426 msg_rcvq_wakeup_all(&qp->msg_wait_rcv); 427 } 428 429 /* 430 * msgctl system call. 431 * 432 * gets q lock (via ipc_lookup), releases before return. 433 * may call users of msg_lock 434 */ 435 static int 436 msgctl(int msgid, int cmd, void *arg) 437 { 438 STRUCT_DECL(msqid_ds, ds); /* SVR4 queue work area */ 439 kmsqid_t *qp; /* ptr to associated q */ 440 int error; 441 struct cred *cr; 442 model_t mdl = get_udatamodel(); 443 struct msqid_ds64 ds64; 444 kmutex_t *lock; 445 proc_t *pp = curproc; 446 447 STRUCT_INIT(ds, mdl); 448 cr = CRED(); 449 450 /* 451 * Perform pre- or non-lookup actions (e.g. copyins, RMID). 452 */ 453 switch (cmd) { 454 case IPC_SET: 455 if (copyin(arg, STRUCT_BUF(ds), STRUCT_SIZE(ds))) 456 return (set_errno(EFAULT)); 457 break; 458 459 case IPC_SET64: 460 if (copyin(arg, &ds64, sizeof (struct msqid_ds64))) 461 return (set_errno(EFAULT)); 462 break; 463 464 case IPC_RMID: 465 if (error = ipc_rmid(msq_svc, msgid, cr)) 466 return (set_errno(error)); 467 return (0); 468 } 469 470 /* 471 * get msqid_ds for this msgid 472 */ 473 if ((lock = ipc_lookup(msq_svc, msgid, (kipc_perm_t **)&qp)) == NULL) 474 return (set_errno(EINVAL)); 475 476 switch (cmd) { 477 case IPC_SET: 478 if (STRUCT_FGET(ds, msg_qbytes) > qp->msg_qbytes && 479 secpolicy_ipc_config(cr) != 0) { 480 mutex_exit(lock); 481 return (set_errno(EPERM)); 482 } 483 if (error = ipcperm_set(msq_svc, cr, &qp->msg_perm, 484 &STRUCT_BUF(ds)->msg_perm, mdl)) { 485 mutex_exit(lock); 486 return (set_errno(error)); 487 } 488 qp->msg_qbytes = STRUCT_FGET(ds, msg_qbytes); 489 qp->msg_ctime = gethrestime_sec(); 490 break; 491 492 case IPC_STAT: 493 if (error = ipcperm_access(&qp->msg_perm, MSG_R, cr)) { 494 mutex_exit(lock); 495 return (set_errno(error)); 496 } 497 498 if (qp->msg_rcv_cnt) 499 qp->msg_perm.ipc_mode |= MSG_RWAIT; 500 if (qp->msg_snd_cnt) 501 qp->msg_perm.ipc_mode |= MSG_WWAIT; 502 ipcperm_stat(&STRUCT_BUF(ds)->msg_perm, &qp->msg_perm, mdl); 503 qp->msg_perm.ipc_mode &= ~(MSG_RWAIT|MSG_WWAIT); 504 STRUCT_FSETP(ds, msg_first, NULL); /* kernel addr */ 505 STRUCT_FSETP(ds, msg_last, NULL); 506 STRUCT_FSET(ds, msg_cbytes, qp->msg_cbytes); 507 STRUCT_FSET(ds, msg_qnum, qp->msg_qnum); 508 STRUCT_FSET(ds, msg_qbytes, qp->msg_qbytes); 509 STRUCT_FSET(ds, msg_lspid, qp->msg_lspid); 510 STRUCT_FSET(ds, msg_lrpid, qp->msg_lrpid); 511 STRUCT_FSET(ds, msg_stime, qp->msg_stime); 512 STRUCT_FSET(ds, msg_rtime, qp->msg_rtime); 513 STRUCT_FSET(ds, msg_ctime, qp->msg_ctime); 514 break; 515 516 case IPC_SET64: 517 mutex_enter(&pp->p_lock); 518 if ((ds64.msgx_qbytes > qp->msg_qbytes) && 519 secpolicy_ipc_config(cr) != 0 && 520 rctl_test(rc_process_msgmnb, pp->p_rctls, pp, 521 ds64.msgx_qbytes, RCA_SAFE) & RCT_DENY) { 522 mutex_exit(&pp->p_lock); 523 mutex_exit(lock); 524 return (set_errno(EPERM)); 525 } 526 mutex_exit(&pp->p_lock); 527 if (error = ipcperm_set64(msq_svc, cr, &qp->msg_perm, 528 &ds64.msgx_perm)) { 529 mutex_exit(lock); 530 return (set_errno(error)); 531 } 532 qp->msg_qbytes = ds64.msgx_qbytes; 533 qp->msg_ctime = gethrestime_sec(); 534 break; 535 536 case IPC_STAT64: 537 if (qp->msg_rcv_cnt) 538 qp->msg_perm.ipc_mode |= MSG_RWAIT; 539 if (qp->msg_snd_cnt) 540 qp->msg_perm.ipc_mode |= MSG_WWAIT; 541 ipcperm_stat64(&ds64.msgx_perm, &qp->msg_perm); 542 qp->msg_perm.ipc_mode &= ~(MSG_RWAIT|MSG_WWAIT); 543 ds64.msgx_cbytes = qp->msg_cbytes; 544 ds64.msgx_qnum = qp->msg_qnum; 545 ds64.msgx_qbytes = qp->msg_qbytes; 546 ds64.msgx_lspid = qp->msg_lspid; 547 ds64.msgx_lrpid = qp->msg_lrpid; 548 ds64.msgx_stime = qp->msg_stime; 549 ds64.msgx_rtime = qp->msg_rtime; 550 ds64.msgx_ctime = qp->msg_ctime; 551 break; 552 553 default: 554 mutex_exit(lock); 555 return (set_errno(EINVAL)); 556 } 557 558 mutex_exit(lock); 559 560 /* 561 * Do copyout last (after releasing mutex). 562 */ 563 switch (cmd) { 564 case IPC_STAT: 565 if (copyout(STRUCT_BUF(ds), arg, STRUCT_SIZE(ds))) 566 return (set_errno(EFAULT)); 567 break; 568 569 case IPC_STAT64: 570 if (copyout(&ds64, arg, sizeof (struct msqid_ds64))) 571 return (set_errno(EFAULT)); 572 break; 573 } 574 575 return (0); 576 } 577 578 /* 579 * Remove all message queues associated with a given zone. Called by 580 * zone_shutdown when the zone is halted. 581 */ 582 /*ARGSUSED1*/ 583 static void 584 msg_remove_zone(zoneid_t zoneid, void *arg) 585 { 586 ipc_remove_zone(msq_svc, zoneid); 587 } 588 589 /* 590 * msgget system call. 591 */ 592 static int 593 msgget(key_t key, int msgflg) 594 { 595 kmsqid_t *qp; 596 kmutex_t *lock; 597 int id, error; 598 int ii; 599 proc_t *pp = curproc; 600 601 top: 602 if (error = ipc_get(msq_svc, key, msgflg, (kipc_perm_t **)&qp, &lock)) 603 return (set_errno(error)); 604 605 if (IPC_FREE(&qp->msg_perm)) { 606 mutex_exit(lock); 607 mutex_exit(&pp->p_lock); 608 609 list_create(&qp->msg_list, sizeof (struct msg), 610 offsetof(struct msg, msg_node)); 611 qp->msg_qnum = 0; 612 qp->msg_lspid = qp->msg_lrpid = 0; 613 qp->msg_stime = qp->msg_rtime = 0; 614 qp->msg_ctime = gethrestime_sec(); 615 qp->msg_ngt_cnt = 0; 616 qp->msg_neg_copy = 0; 617 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 618 list_create(&qp->msg_wait_snd[ii], 619 sizeof (msgq_wakeup_t), 620 offsetof(msgq_wakeup_t, msgw_list)); 621 list_create(&qp->msg_wait_snd_ngt[ii], 622 sizeof (msgq_wakeup_t), 623 offsetof(msgq_wakeup_t, msgw_list)); 624 } 625 /* 626 * The proper initialization of msg_lowest_type is to the 627 * highest possible value. By doing this we guarantee that 628 * when the first send happens, the lowest type will be set 629 * properly. 630 */ 631 qp->msg_lowest_type = MSG_SMALL_INIT; 632 list_create(&qp->msg_cpy_block, 633 sizeof (msgq_wakeup_t), 634 offsetof(msgq_wakeup_t, msgw_list)); 635 list_create(&qp->msg_wait_rcv, 636 sizeof (msgq_wakeup_t), 637 offsetof(msgq_wakeup_t, msgw_list)); 638 qp->msg_fnd_sndr = &msg_fnd_sndr[0]; 639 qp->msg_fnd_rdr = &msg_fnd_rdr[0]; 640 qp->msg_rcv_cnt = 0; 641 qp->msg_snd_cnt = 0; 642 qp->msg_snd_smallest = MSG_SMALL_INIT; 643 644 if (error = ipc_commit_begin(msq_svc, key, msgflg, 645 (kipc_perm_t *)qp)) { 646 if (error == EAGAIN) 647 goto top; 648 return (set_errno(error)); 649 } 650 qp->msg_qbytes = rctl_enforced_value(rc_process_msgmnb, 651 pp->p_rctls, pp); 652 qp->msg_qmax = rctl_enforced_value(rc_process_msgtql, 653 pp->p_rctls, pp); 654 lock = ipc_commit_end(msq_svc, &qp->msg_perm); 655 } 656 if (audit_active) 657 audit_ipcget(AT_IPC_MSG, (void *)qp); 658 id = qp->msg_perm.ipc_id; 659 mutex_exit(lock); 660 return (id); 661 } 662 663 static ssize_t 664 msgrcv(int msqid, struct ipcmsgbuf *msgp, size_t msgsz, long msgtyp, int msgflg) 665 { 666 struct msg *smp; /* ptr to best msg on q */ 667 kmsqid_t *qp; /* ptr to associated q */ 668 kmutex_t *lock; 669 size_t xtsz; /* transfer byte count */ 670 int error = 0; 671 int cvres; 672 uint_t msg_hash; 673 msgq_wakeup_t msg_entry; 674 675 CPU_STATS_ADDQ(CPU, sys, msg, 1); /* bump msg send/rcv count */ 676 677 msg_hash = msg_type_hash(msgtyp); 678 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) { 679 return ((ssize_t)set_errno(EINVAL)); 680 } 681 ipc_hold(msq_svc, (kipc_perm_t *)qp); 682 683 if (error = ipcperm_access(&qp->msg_perm, MSG_R, CRED())) { 684 goto msgrcv_out; 685 } 686 687 /* 688 * Various information (including the condvar_t) required for the 689 * process to sleep is provided by it's stack. 690 */ 691 msg_entry.msgw_thrd = curthread; 692 msg_entry.msgw_snd_wake = 0; 693 msg_entry.msgw_type = msgtyp; 694 findmsg: 695 smp = msgrcv_lookup(qp, msgtyp); 696 697 if (smp) { 698 /* 699 * We found a possible message to copy out. 700 */ 701 if ((smp->msg_flags & MSG_RCVCOPY) == 0) { 702 long t = msg_entry.msgw_snd_wake; 703 long copy_type = smp->msg_type; 704 705 /* 706 * It is available, attempt to copy it. 707 */ 708 error = msg_copyout(qp, msgtyp, &lock, &xtsz, msgsz, 709 smp, msgp, msgflg); 710 711 /* 712 * It is possible to consume a different message 713 * type then what originally awakened for (negative 714 * types). If this happens a check must be done to 715 * to determine if another receiver is available 716 * for the waking message type, Failure to do this 717 * can result in a message on the queue that can be 718 * serviced by a sleeping receiver. 719 */ 720 if (!error && t && (copy_type != t)) 721 msg_wakeup_rdr(qp, &qp->msg_fnd_sndr, t); 722 723 /* 724 * Don't forget to wakeup a sleeper that blocked because 725 * we were copying things out. 726 */ 727 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 728 goto msgrcv_out; 729 } 730 /* 731 * The selected message is being copied out, so block. We do 732 * not need to wake the next person up on the msg_cpy_block list 733 * due to the fact some one is copying out and they will get 734 * things moving again once the copy is completed. 735 */ 736 cvres = msg_rcvq_sleep(&qp->msg_cpy_block, 737 &msg_entry, &lock, qp); 738 error = msgq_check_err(qp, cvres); 739 if (error) { 740 goto msgrcv_out; 741 } 742 goto findmsg; 743 } 744 /* 745 * There isn't a message to copy out that matches the designated 746 * criteria. 747 */ 748 if (msgflg & IPC_NOWAIT) { 749 error = ENOMSG; 750 goto msgrcv_out; 751 } 752 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 753 754 /* 755 * Wait for new message. We keep the negative and positive types 756 * separate for performance reasons. 757 */ 758 msg_entry.msgw_snd_wake = 0; 759 if (msgtyp >= 0) { 760 cvres = msg_rcvq_sleep(&qp->msg_wait_snd[msg_hash], 761 &msg_entry, &lock, qp); 762 } else { 763 qp->msg_ngt_cnt++; 764 cvres = msg_rcvq_sleep(&qp->msg_wait_snd_ngt[msg_hash], 765 &msg_entry, &lock, qp); 766 qp->msg_ngt_cnt--; 767 } 768 769 if (!(error = msgq_check_err(qp, cvres))) { 770 goto findmsg; 771 } 772 773 msgrcv_out: 774 if (error) { 775 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 776 if (msg_entry.msgw_snd_wake) { 777 msg_wakeup_rdr(qp, &qp->msg_fnd_sndr, 778 msg_entry.msgw_snd_wake); 779 } 780 ipc_rele(msq_svc, (kipc_perm_t *)qp); 781 return ((ssize_t)set_errno(error)); 782 } 783 ipc_rele(msq_svc, (kipc_perm_t *)qp); 784 return ((ssize_t)xtsz); 785 } 786 787 static int 788 msgq_check_err(kmsqid_t *qp, int cvres) 789 { 790 if (IPC_FREE(&qp->msg_perm)) { 791 return (EIDRM); 792 } 793 794 if (cvres == 0) { 795 return (EINTR); 796 } 797 798 return (0); 799 } 800 801 static int 802 msg_copyout(kmsqid_t *qp, long msgtyp, kmutex_t **lock, size_t *xtsz_ret, 803 size_t msgsz, struct msg *smp, struct ipcmsgbuf *msgp, int msgflg) 804 { 805 size_t xtsz; 806 STRUCT_HANDLE(ipcmsgbuf, umsgp); 807 model_t mdl = get_udatamodel(); 808 int copyerror = 0; 809 810 STRUCT_SET_HANDLE(umsgp, mdl, msgp); 811 if (msgsz < smp->msg_size) { 812 if ((msgflg & MSG_NOERROR) == 0) { 813 return (E2BIG); 814 } else { 815 xtsz = msgsz; 816 } 817 } else { 818 xtsz = smp->msg_size; 819 } 820 *xtsz_ret = xtsz; 821 822 /* 823 * To prevent a DOS attack we mark the message as being 824 * copied out and release mutex. When the copy is completed 825 * we need to acquire the mutex and make the appropriate updates. 826 */ 827 ASSERT((smp->msg_flags & MSG_RCVCOPY) == 0); 828 smp->msg_flags |= MSG_RCVCOPY; 829 msg_hold(smp); 830 if (msgtyp < 0) { 831 ASSERT(qp->msg_neg_copy == 0); 832 qp->msg_neg_copy = 1; 833 } 834 mutex_exit(*lock); 835 836 if (mdl == DATAMODEL_NATIVE) { 837 copyerror = copyout(&smp->msg_type, msgp, 838 sizeof (smp->msg_type)); 839 } else { 840 /* 841 * 32-bit callers need an imploded msg type. 842 */ 843 int32_t msg_type32 = smp->msg_type; 844 845 copyerror = copyout(&msg_type32, msgp, 846 sizeof (msg_type32)); 847 } 848 849 if (copyerror == 0 && xtsz) { 850 copyerror = copyout(smp->msg_addr, 851 STRUCT_FADDR(umsgp, mtext), xtsz); 852 } 853 854 /* 855 * Reclaim the mutex and make sure the message queue still exists. 856 */ 857 858 *lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 859 if (msgtyp < 0) { 860 qp->msg_neg_copy = 0; 861 } 862 ASSERT(smp->msg_flags & MSG_RCVCOPY); 863 smp->msg_flags &= ~MSG_RCVCOPY; 864 msg_rele(smp); 865 if (IPC_FREE(&qp->msg_perm)) { 866 return (EIDRM); 867 } 868 if (copyerror) { 869 return (EFAULT); 870 } 871 qp->msg_lrpid = ttoproc(curthread)->p_pid; 872 qp->msg_rtime = gethrestime_sec(); 873 msgunlink(qp, smp); 874 return (0); 875 } 876 877 static struct msg * 878 msgrcv_lookup(kmsqid_t *qp, long msgtyp) 879 { 880 struct msg *smp = NULL; 881 long qp_low; 882 struct msg *mp; /* ptr to msg on q */ 883 long low_msgtype; 884 static struct msg neg_copy_smp; 885 886 mp = list_head(&qp->msg_list); 887 if (msgtyp == 0) { 888 smp = mp; 889 } else { 890 qp_low = qp->msg_lowest_type; 891 if (msgtyp > 0) { 892 /* 893 * If our lowest possible message type is larger than 894 * the message type desired, then we know there is 895 * no entry present. 896 */ 897 if (qp_low > msgtyp) { 898 return (NULL); 899 } 900 901 for (; mp; mp = list_next(&qp->msg_list, mp)) { 902 if (msgtyp == mp->msg_type) { 903 smp = mp; 904 break; 905 } 906 } 907 } else { 908 /* 909 * We have kept track of the lowest possible message 910 * type on the send queue. This allows us to terminate 911 * the search early if we find a message type of that 912 * type. Note, the lowest type may not be the actual 913 * lowest value in the system, it is only guaranteed 914 * that there isn't a value lower than that. 915 */ 916 low_msgtype = -msgtyp; 917 if (low_msgtype < qp_low) { 918 return (NULL); 919 } 920 if (qp->msg_neg_copy) { 921 neg_copy_smp.msg_flags = MSG_RCVCOPY; 922 return (&neg_copy_smp); 923 } 924 for (; mp; mp = list_next(&qp->msg_list, mp)) { 925 if (mp->msg_type <= low_msgtype && 926 !(smp && smp->msg_type <= mp->msg_type)) { 927 smp = mp; 928 low_msgtype = mp->msg_type; 929 if (low_msgtype == qp_low) { 930 break; 931 } 932 } 933 } 934 if (smp) { 935 /* 936 * Update the lowest message type. 937 */ 938 qp->msg_lowest_type = smp->msg_type; 939 } 940 } 941 } 942 return (smp); 943 } 944 945 /* 946 * msgids system call. 947 */ 948 static int 949 msgids(int *buf, uint_t nids, uint_t *pnids) 950 { 951 int error; 952 953 if (error = ipc_ids(msq_svc, buf, nids, pnids)) 954 return (set_errno(error)); 955 956 return (0); 957 } 958 959 #define RND(x) roundup((x), sizeof (size_t)) 960 #define RND32(x) roundup((x), sizeof (size32_t)) 961 962 /* 963 * msgsnap system call. 964 */ 965 static int 966 msgsnap(int msqid, caddr_t buf, size_t bufsz, long msgtyp) 967 { 968 struct msg *mp; /* ptr to msg on q */ 969 kmsqid_t *qp; /* ptr to associated q */ 970 kmutex_t *lock; 971 size_t size; 972 size_t nmsg; 973 struct msg **snaplist; 974 int error, i; 975 model_t mdl = get_udatamodel(); 976 STRUCT_DECL(msgsnap_head, head); 977 STRUCT_DECL(msgsnap_mhead, mhead); 978 979 STRUCT_INIT(head, mdl); 980 STRUCT_INIT(mhead, mdl); 981 982 if (bufsz < STRUCT_SIZE(head)) 983 return (set_errno(EINVAL)); 984 985 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) 986 return (set_errno(EINVAL)); 987 988 if (error = ipcperm_access(&qp->msg_perm, MSG_R, CRED())) { 989 mutex_exit(lock); 990 return (set_errno(error)); 991 } 992 ipc_hold(msq_svc, (kipc_perm_t *)qp); 993 994 /* 995 * First compute the required buffer size and 996 * the number of messages on the queue. 997 */ 998 size = nmsg = 0; 999 for (mp = list_head(&qp->msg_list); mp; 1000 mp = list_next(&qp->msg_list, mp)) { 1001 if (msgtyp == 0 || 1002 (msgtyp > 0 && msgtyp == mp->msg_type) || 1003 (msgtyp < 0 && mp->msg_type <= -msgtyp)) { 1004 nmsg++; 1005 if (mdl == DATAMODEL_NATIVE) 1006 size += RND(mp->msg_size); 1007 else 1008 size += RND32(mp->msg_size); 1009 } 1010 } 1011 1012 size += STRUCT_SIZE(head) + nmsg * STRUCT_SIZE(mhead); 1013 if (size > bufsz) 1014 nmsg = 0; 1015 1016 if (nmsg > 0) { 1017 /* 1018 * Mark the messages as being copied. 1019 */ 1020 snaplist = (struct msg **)kmem_alloc(nmsg * 1021 sizeof (struct msg *), KM_SLEEP); 1022 i = 0; 1023 for (mp = list_head(&qp->msg_list); mp; 1024 mp = list_next(&qp->msg_list, mp)) { 1025 if (msgtyp == 0 || 1026 (msgtyp > 0 && msgtyp == mp->msg_type) || 1027 (msgtyp < 0 && mp->msg_type <= -msgtyp)) { 1028 msg_hold(mp); 1029 snaplist[i] = mp; 1030 i++; 1031 } 1032 } 1033 } 1034 mutex_exit(lock); 1035 1036 /* 1037 * Copy out the buffer header. 1038 */ 1039 STRUCT_FSET(head, msgsnap_size, size); 1040 STRUCT_FSET(head, msgsnap_nmsg, nmsg); 1041 if (copyout(STRUCT_BUF(head), buf, STRUCT_SIZE(head))) 1042 error = EFAULT; 1043 1044 buf += STRUCT_SIZE(head); 1045 1046 /* 1047 * Now copy out the messages one by one. 1048 */ 1049 for (i = 0; i < nmsg; i++) { 1050 mp = snaplist[i]; 1051 if (error == 0) { 1052 STRUCT_FSET(mhead, msgsnap_mlen, mp->msg_size); 1053 STRUCT_FSET(mhead, msgsnap_mtype, mp->msg_type); 1054 if (copyout(STRUCT_BUF(mhead), buf, STRUCT_SIZE(mhead))) 1055 error = EFAULT; 1056 buf += STRUCT_SIZE(mhead); 1057 1058 if (error == 0 && 1059 mp->msg_size != 0 && 1060 copyout(mp->msg_addr, buf, mp->msg_size)) 1061 error = EFAULT; 1062 if (mdl == DATAMODEL_NATIVE) 1063 buf += RND(mp->msg_size); 1064 else 1065 buf += RND32(mp->msg_size); 1066 } 1067 lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1068 msg_rele(mp); 1069 /* Check for msg q deleted or reallocated */ 1070 if (IPC_FREE(&qp->msg_perm)) 1071 error = EIDRM; 1072 mutex_exit(lock); 1073 } 1074 1075 (void) ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1076 ipc_rele(msq_svc, (kipc_perm_t *)qp); 1077 1078 if (nmsg > 0) 1079 kmem_free(snaplist, nmsg * sizeof (struct msg *)); 1080 1081 if (error) 1082 return (set_errno(error)); 1083 return (0); 1084 } 1085 1086 #define MSG_PREALLOC_LIMIT 8192 1087 1088 /* 1089 * msgsnd system call. 1090 */ 1091 static int 1092 msgsnd(int msqid, struct ipcmsgbuf *msgp, size_t msgsz, int msgflg) 1093 { 1094 kmsqid_t *qp; 1095 kmutex_t *lock = NULL; 1096 struct msg *mp = NULL; 1097 long type; 1098 int error = 0, wait_wakeup = 0; 1099 msgq_wakeup_t msg_entry; 1100 model_t mdl = get_udatamodel(); 1101 STRUCT_HANDLE(ipcmsgbuf, umsgp); 1102 1103 CPU_STATS_ADDQ(CPU, sys, msg, 1); /* bump msg send/rcv count */ 1104 STRUCT_SET_HANDLE(umsgp, mdl, msgp); 1105 1106 if (mdl == DATAMODEL_NATIVE) { 1107 if (copyin(msgp, &type, sizeof (type))) 1108 return (set_errno(EFAULT)); 1109 } else { 1110 int32_t type32; 1111 if (copyin(msgp, &type32, sizeof (type32))) 1112 return (set_errno(EFAULT)); 1113 type = type32; 1114 } 1115 1116 if (type < 1) 1117 return (set_errno(EINVAL)); 1118 1119 /* 1120 * We want the value here large enough that most of the 1121 * the message operations will use the "lockless" path, 1122 * but small enough that a user can not reserve large 1123 * chunks of kernel memory unless they have a valid 1124 * reason to. 1125 */ 1126 if (msgsz <= MSG_PREALLOC_LIMIT) { 1127 /* 1128 * We are small enough that we can afford to do the 1129 * allocation now. This saves dropping the lock 1130 * and then reacquiring the lock. 1131 */ 1132 mp = kmem_zalloc(sizeof (struct msg), KM_SLEEP); 1133 mp->msg_copycnt = 1; 1134 mp->msg_size = msgsz; 1135 if (msgsz) { 1136 mp->msg_addr = kmem_alloc(msgsz, KM_SLEEP); 1137 if (copyin(STRUCT_FADDR(umsgp, mtext), 1138 mp->msg_addr, msgsz) == -1) { 1139 error = EFAULT; 1140 goto msgsnd_out; 1141 } 1142 } 1143 } 1144 1145 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) { 1146 error = EINVAL; 1147 goto msgsnd_out; 1148 } 1149 1150 ipc_hold(msq_svc, (kipc_perm_t *)qp); 1151 1152 if (msgsz > qp->msg_qbytes) { 1153 error = EINVAL; 1154 goto msgsnd_out; 1155 } 1156 1157 if (error = ipcperm_access(&qp->msg_perm, MSG_W, CRED())) 1158 goto msgsnd_out; 1159 1160 top: 1161 /* 1162 * Allocate space on q, message header, & buffer space. 1163 */ 1164 ASSERT(qp->msg_qnum <= qp->msg_qmax); 1165 while ((msgsz > qp->msg_qbytes - qp->msg_cbytes) || 1166 (qp->msg_qnum == qp->msg_qmax)) { 1167 int cvres; 1168 1169 if (msgflg & IPC_NOWAIT) { 1170 error = EAGAIN; 1171 goto msgsnd_out; 1172 } 1173 1174 wait_wakeup = 0; 1175 qp->msg_snd_cnt++; 1176 msg_entry.msgw_snd_size = msgsz; 1177 msg_entry.msgw_thrd = curthread; 1178 msg_entry.msgw_type = type; 1179 cv_init(&msg_entry.msgw_wake_cv, NULL, 0, NULL); 1180 list_insert_tail(&qp->msg_wait_rcv, &msg_entry); 1181 if (qp->msg_snd_smallest > msgsz) 1182 qp->msg_snd_smallest = msgsz; 1183 cvres = cv_wait_sig(&msg_entry.msgw_wake_cv, lock); 1184 lock = ipc_relock(msq_svc, qp->msg_perm.ipc_id, lock); 1185 qp->msg_snd_cnt--; 1186 if (list_link_active(&msg_entry.msgw_list)) 1187 list_remove(&qp->msg_wait_rcv, &msg_entry); 1188 if (error = msgq_check_err(qp, cvres)) { 1189 goto msgsnd_out; 1190 } 1191 wait_wakeup = 1; 1192 } 1193 1194 if (mp == NULL) { 1195 int failure; 1196 1197 mutex_exit(lock); 1198 ASSERT(msgsz > 0); 1199 mp = kmem_zalloc(sizeof (struct msg), KM_SLEEP); 1200 mp->msg_addr = kmem_alloc(msgsz, KM_SLEEP); 1201 mp->msg_size = msgsz; 1202 mp->msg_copycnt = 1; 1203 1204 failure = (copyin(STRUCT_FADDR(umsgp, mtext), 1205 mp->msg_addr, msgsz) == -1); 1206 lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1207 if (IPC_FREE(&qp->msg_perm)) { 1208 error = EIDRM; 1209 goto msgsnd_out; 1210 } 1211 if (failure) { 1212 error = EFAULT; 1213 goto msgsnd_out; 1214 } 1215 goto top; 1216 } 1217 1218 /* 1219 * Everything is available, put msg on q. 1220 */ 1221 qp->msg_qnum++; 1222 qp->msg_cbytes += msgsz; 1223 qp->msg_lspid = curproc->p_pid; 1224 qp->msg_stime = gethrestime_sec(); 1225 mp->msg_type = type; 1226 if (qp->msg_lowest_type > type) 1227 qp->msg_lowest_type = type; 1228 list_insert_tail(&qp->msg_list, mp); 1229 /* 1230 * Get the proper receiver going. 1231 */ 1232 msg_wakeup_rdr(qp, &qp->msg_fnd_sndr, type); 1233 1234 msgsnd_out: 1235 /* 1236 * We were woken up from the send wait list, but an 1237 * an error occured on placing the message onto the 1238 * msg queue. Given that, we need to do the wakeup 1239 * dance again. 1240 */ 1241 1242 if (wait_wakeup && error) { 1243 msg_wakeup_senders(qp); 1244 } 1245 if (lock) 1246 ipc_rele(msq_svc, (kipc_perm_t *)qp); /* drops lock */ 1247 1248 if (error) { 1249 if (mp) 1250 msg_rele(mp); 1251 return (set_errno(error)); 1252 } 1253 1254 return (0); 1255 } 1256 1257 static void 1258 msg_wakeup_rdr(kmsqid_t *qp, msg_select_t **flist, long type) 1259 { 1260 msg_select_t *walker = *flist; 1261 msgq_wakeup_t *wakeup; 1262 uint_t msg_hash; 1263 1264 msg_hash = msg_type_hash(type); 1265 1266 do { 1267 wakeup = walker->selection(qp, msg_hash, type); 1268 walker = walker->next_selection; 1269 } while (!wakeup && walker != *flist); 1270 1271 *flist = (*flist)->next_selection; 1272 if (wakeup) { 1273 if (type) { 1274 wakeup->msgw_snd_wake = type; 1275 } 1276 cv_signal(&wakeup->msgw_wake_cv); 1277 } 1278 } 1279 1280 static uint_t 1281 msg_type_hash(long msg_type) 1282 { 1283 if (msg_type < 0) { 1284 long hash = -msg_type / MSG_NEG_INTERVAL; 1285 /* 1286 * Negative message types are hashed over an 1287 * interval. Any message type that hashes 1288 * beyond MSG_MAX_QNUM is automatically placed 1289 * in the last bucket. 1290 */ 1291 if (hash > MSG_MAX_QNUM) 1292 hash = MSG_MAX_QNUM; 1293 return (hash); 1294 } 1295 1296 /* 1297 * 0 or positive message type. The first bucket is reserved for 1298 * message receivers of type 0, the other buckets we hash into. 1299 */ 1300 if (msg_type) 1301 return (1 + (msg_type % MSG_MAX_QNUM)); 1302 return (0); 1303 } 1304 1305 /* 1306 * Routines to see if we have a receiver of type 0 either blocked waiting 1307 * for a message. Simply return the first guy on the list. 1308 */ 1309 1310 static msgq_wakeup_t * 1311 /* ARGSUSED */ 1312 msg_fnd_any_snd(kmsqid_t *qp, int msg_hash, long type) 1313 { 1314 msgq_wakeup_t *walker; 1315 1316 walker = list_head(&qp->msg_wait_snd[0]); 1317 1318 if (walker) 1319 list_remove(&qp->msg_wait_snd[0], walker); 1320 return (walker); 1321 } 1322 1323 static msgq_wakeup_t * 1324 /* ARGSUSED */ 1325 msg_fnd_any_rdr(kmsqid_t *qp, int msg_hash, long type) 1326 { 1327 msgq_wakeup_t *walker; 1328 1329 walker = list_head(&qp->msg_cpy_block); 1330 if (walker) 1331 list_remove(&qp->msg_cpy_block, walker); 1332 return (walker); 1333 } 1334 1335 static msgq_wakeup_t * 1336 msg_fnd_spc_snd(kmsqid_t *qp, int msg_hash, long type) 1337 { 1338 msgq_wakeup_t *walker; 1339 1340 walker = list_head(&qp->msg_wait_snd[msg_hash]); 1341 1342 while (walker && walker->msgw_type != type) 1343 walker = list_next(&qp->msg_wait_snd[msg_hash], walker); 1344 if (walker) 1345 list_remove(&qp->msg_wait_snd[msg_hash], walker); 1346 return (walker); 1347 } 1348 1349 /* ARGSUSED */ 1350 static msgq_wakeup_t * 1351 msg_fnd_neg_snd(kmsqid_t *qp, int msg_hash, long type) 1352 { 1353 msgq_wakeup_t *qptr; 1354 int count; 1355 int check_index; 1356 int neg_index; 1357 int nbuckets; 1358 1359 if (!qp->msg_ngt_cnt) { 1360 return (NULL); 1361 } 1362 neg_index = msg_type_hash(-type); 1363 1364 /* 1365 * Check for a match among the negative type queues. Any buckets 1366 * at neg_index or larger can match the type. Use the last send 1367 * time to randomize the starting bucket to prevent starvation. 1368 * Search all buckets from neg_index to MSG_MAX_QNUM, starting 1369 * from the random starting point, and wrapping around after 1370 * MSG_MAX_QNUM. 1371 */ 1372 1373 nbuckets = MSG_MAX_QNUM - neg_index + 1; 1374 check_index = neg_index + (qp->msg_stime % nbuckets); 1375 1376 for (count = nbuckets; count > 0; count--) { 1377 qptr = list_head(&qp->msg_wait_snd_ngt[check_index]); 1378 while (qptr) { 1379 /* 1380 * The lowest hash bucket may actually contain 1381 * message types that are not valid for this 1382 * request. This can happen due to the fact that 1383 * the message buckets actually contain a consecutive 1384 * range of types. 1385 */ 1386 if (-qptr->msgw_type >= type) { 1387 list_remove(&qp->msg_wait_snd_ngt[check_index], 1388 qptr); 1389 return (qptr); 1390 } 1391 qptr = list_next(&qp->msg_wait_snd_ngt[check_index], 1392 qptr); 1393 } 1394 if (++check_index > MSG_MAX_QNUM) { 1395 check_index = neg_index; 1396 } 1397 } 1398 return (NULL); 1399 } 1400 1401 static int 1402 msg_rcvq_sleep(list_t *queue, msgq_wakeup_t *entry, kmutex_t **lock, 1403 kmsqid_t *qp) 1404 { 1405 int cvres; 1406 1407 cv_init(&entry->msgw_wake_cv, NULL, 0, NULL); 1408 1409 list_insert_tail(queue, entry); 1410 1411 qp->msg_rcv_cnt++; 1412 cvres = cv_wait_sig(&entry->msgw_wake_cv, *lock); 1413 *lock = ipc_relock(msq_svc, qp->msg_perm.ipc_id, *lock); 1414 qp->msg_rcv_cnt--; 1415 1416 if (list_link_active(&entry->msgw_list)) { 1417 /* 1418 * We woke up unexpectedly, remove ourself. 1419 */ 1420 list_remove(queue, entry); 1421 } 1422 1423 return (cvres); 1424 } 1425 1426 static void 1427 msg_rcvq_wakeup_all(list_t *q_ptr) 1428 { 1429 msgq_wakeup_t *q_walk; 1430 1431 while (q_walk = list_head(q_ptr)) { 1432 list_remove(q_ptr, q_walk); 1433 cv_signal(&q_walk->msgw_wake_cv); 1434 } 1435 } 1436 1437 /* 1438 * msgsys - System entry point for msgctl, msgget, msgrcv, and msgsnd 1439 * system calls. 1440 */ 1441 static ssize_t 1442 msgsys(int opcode, uintptr_t a1, uintptr_t a2, uintptr_t a3, 1443 uintptr_t a4, uintptr_t a5) 1444 { 1445 ssize_t error; 1446 1447 switch (opcode) { 1448 case MSGGET: 1449 error = msgget((key_t)a1, (int)a2); 1450 break; 1451 case MSGCTL: 1452 error = msgctl((int)a1, (int)a2, (void *)a3); 1453 break; 1454 case MSGRCV: 1455 error = msgrcv((int)a1, (struct ipcmsgbuf *)a2, 1456 (size_t)a3, (long)a4, (int)a5); 1457 break; 1458 case MSGSND: 1459 error = msgsnd((int)a1, (struct ipcmsgbuf *)a2, 1460 (size_t)a3, (int)a4); 1461 break; 1462 case MSGIDS: 1463 error = msgids((int *)a1, (uint_t)a2, (uint_t *)a3); 1464 break; 1465 case MSGSNAP: 1466 error = msgsnap((int)a1, (caddr_t)a2, (size_t)a3, (long)a4); 1467 break; 1468 default: 1469 error = set_errno(EINVAL); 1470 break; 1471 } 1472 1473 return (error); 1474 } 1475 1476 /* 1477 * Determine if a writer who is waiting can process its message. If so 1478 * wake it up. 1479 */ 1480 static void 1481 msg_wakeup_senders(kmsqid_t *qp) 1482 1483 { 1484 struct msgq_wakeup *ptr, *optr; 1485 size_t avail, smallest; 1486 int msgs_out; 1487 1488 /* 1489 * Is there a writer waiting, and if so, can it be serviced? If 1490 * not return back to the caller. 1491 */ 1492 if (IPC_FREE(&qp->msg_perm) || qp->msg_qnum >= qp->msg_qmax) 1493 return; 1494 1495 avail = qp->msg_qbytes - qp->msg_cbytes; 1496 if (avail < qp->msg_snd_smallest) 1497 return; 1498 1499 ptr = list_head(&qp->msg_wait_rcv); 1500 if (ptr == NULL) { 1501 qp->msg_snd_smallest = MSG_SMALL_INIT; 1502 return; 1503 } 1504 optr = ptr; 1505 1506 /* 1507 * smallest: minimum message size of all queued writers 1508 * 1509 * avail: amount of space left on the msgq 1510 * if all the writers we have woken up are successful. 1511 * 1512 * msgs_out: is the number of messages on the message queue if 1513 * all the writers we have woken up are successful. 1514 */ 1515 1516 smallest = MSG_SMALL_INIT; 1517 msgs_out = qp->msg_qnum; 1518 while (ptr) { 1519 ptr = list_next(&qp->msg_wait_rcv, ptr); 1520 if (optr->msgw_snd_size <= avail) { 1521 list_remove(&qp->msg_wait_rcv, optr); 1522 avail -= optr->msgw_snd_size; 1523 cv_signal(&optr->msgw_wake_cv); 1524 msgs_out++; 1525 if (msgs_out == qp->msg_qmax || 1526 avail < qp->msg_snd_smallest) 1527 break; 1528 } else { 1529 if (smallest > optr->msgw_snd_size) 1530 smallest = optr->msgw_snd_size; 1531 } 1532 optr = ptr; 1533 } 1534 1535 /* 1536 * Reset the smallest message size if the entire list has been visited 1537 */ 1538 if (ptr == NULL && smallest != MSG_SMALL_INIT) 1539 qp->msg_snd_smallest = smallest; 1540 } 1541 1542 #ifdef _SYSCALL32_IMPL 1543 /* 1544 * msgsys32 - System entry point for msgctl, msgget, msgrcv, and msgsnd 1545 * system calls for 32-bit callers on LP64 kernel. 1546 */ 1547 static ssize32_t 1548 msgsys32(int opcode, uint32_t a1, uint32_t a2, uint32_t a3, 1549 uint32_t a4, uint32_t a5) 1550 { 1551 ssize_t error; 1552 1553 switch (opcode) { 1554 case MSGGET: 1555 error = msgget((key_t)a1, (int)a2); 1556 break; 1557 case MSGCTL: 1558 error = msgctl((int)a1, (int)a2, (void *)(uintptr_t)a3); 1559 break; 1560 case MSGRCV: 1561 error = msgrcv((int)a1, (struct ipcmsgbuf *)(uintptr_t)a2, 1562 (size_t)a3, (long)(int32_t)a4, (int)a5); 1563 break; 1564 case MSGSND: 1565 error = msgsnd((int)a1, (struct ipcmsgbuf *)(uintptr_t)a2, 1566 (size_t)(int32_t)a3, (int)a4); 1567 break; 1568 case MSGIDS: 1569 error = msgids((int *)(uintptr_t)a1, (uint_t)a2, 1570 (uint_t *)(uintptr_t)a3); 1571 break; 1572 case MSGSNAP: 1573 error = msgsnap((int)a1, (caddr_t)(uintptr_t)a2, (size_t)a3, 1574 (long)(int32_t)a4); 1575 break; 1576 default: 1577 error = set_errno(EINVAL); 1578 break; 1579 } 1580 1581 return (error); 1582 } 1583 #endif /* SYSCALL32_IMPL */ 1584