1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/user.h> 30 #include <sys/proc.h> 31 #include <sys/cpuvar.h> 32 #include <sys/thread.h> 33 #include <sys/debug.h> 34 #include <sys/msacct.h> 35 #include <sys/time.h> 36 37 /* 38 * Mega-theory block comment: 39 * 40 * Microstate accounting uses finite states and the transitions between these 41 * states to measure timing and accounting information. The state information 42 * is presently tracked for threads (via microstate accounting) and cpus (via 43 * cpu microstate accounting). In each case, these accounting mechanisms use 44 * states and transitions to measure time spent in each state instead of 45 * clock-based sampling methodologies. 46 * 47 * For microstate accounting: 48 * state transitions are accomplished by calling new_mstate() to switch between 49 * states. Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur 50 * by calling restore_mstate() which restores a thread to its previously running 51 * state. This code is primarialy executed by the dispatcher in disp() before 52 * running a process that was put to sleep. If the thread was not in a sleeping 53 * state, this call has little effect other than to update the count of time the 54 * thread has spent waiting on run-queues in its lifetime. 55 * 56 * For cpu microstate accounting: 57 * Cpu microstate accounting is similar to the microstate accounting for threads 58 * but it tracks user, system, and idle time for cpus. Cpu microstate 59 * accounting does not track interrupt times as there is a pre-existing 60 * interrupt accounting mechanism for this purpose. Cpu microstate accounting 61 * tracks time that user threads have spent active, idle, or in the system on a 62 * given cpu. Cpu microstate accounting has fewer states which allows it to 63 * have better defined transitions. The states transition in the following 64 * order: 65 * 66 * CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE 67 * 68 * In order to get to the idle state, the cpu microstate must first go through 69 * the system state, and vice-versa for the user state from idle. The switching 70 * of the microstates from user to system is done as part of the regular thread 71 * microstate accounting code, except for the idle state which is switched by 72 * the dispatcher before it runs the idle loop. 73 * 74 * Cpu percentages: 75 * Cpu percentages are now handled by and based upon microstate accounting 76 * information (the same is true for load averages). The routines which handle 77 * the growing/shrinking and exponentiation of cpu percentages have been moved 78 * here as it now makes more sense for them to be generated from the microstate 79 * code. Cpu percentages are generated similarly to the way they were before; 80 * however, now they are based upon high-resolution timestamps and the 81 * timestamps are modified at various state changes instead of during a clock() 82 * interrupt. This allows us to generate more accurate cpu percentages which 83 * are also in-sync with microstate data. 84 */ 85 86 /* 87 * Initialize the microstate level and the 88 * associated accounting information for an LWP. 89 */ 90 void 91 init_mstate( 92 kthread_t *t, 93 int init_state) 94 { 95 struct mstate *ms; 96 klwp_t *lwp; 97 hrtime_t curtime; 98 99 ASSERT(init_state != LMS_WAIT_CPU); 100 ASSERT((unsigned)init_state < NMSTATES); 101 102 if ((lwp = ttolwp(t)) != NULL) { 103 ms = &lwp->lwp_mstate; 104 curtime = gethrtime_unscaled(); 105 ms->ms_prev = LMS_SYSTEM; 106 ms->ms_start = curtime; 107 ms->ms_term = 0; 108 ms->ms_state_start = curtime; 109 t->t_mstate = init_state; 110 t->t_waitrq = 0; 111 t->t_hrtime = curtime; 112 if ((t->t_proc_flag & TP_MSACCT) == 0) 113 t->t_proc_flag |= TP_MSACCT; 114 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct)); 115 } 116 } 117 118 /* 119 * Initialize the microstate level and associated accounting information 120 * for the specified cpu 121 */ 122 123 void 124 init_cpu_mstate( 125 cpu_t *cpu, 126 int init_state) 127 { 128 ASSERT(init_state != CMS_DISABLED); 129 130 cpu->cpu_mstate = init_state; 131 cpu->cpu_mstate_start = gethrtime_unscaled(); 132 cpu->cpu_waitrq = 0; 133 bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct)); 134 } 135 136 /* 137 * sets cpu state to OFFLINE. We don't actually track this time, 138 * but it serves as a useful placeholder state for when we're not 139 * doing anything. 140 */ 141 142 void 143 term_cpu_mstate(struct cpu *cpu) 144 { 145 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 146 cpu->cpu_mstate = CMS_DISABLED; 147 cpu->cpu_mstate_start = 0; 148 } 149 150 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */ 151 152 #define NEW_CPU_MSTATE(state) \ 153 gen = cpu->cpu_mstate_gen; \ 154 cpu->cpu_mstate_gen = 0; \ 155 /* Need membar_producer() here if stores not ordered / TSO */ \ 156 cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \ 157 cpu->cpu_mstate = state; \ 158 cpu->cpu_mstate_start = curtime; \ 159 /* Need membar_producer() here if stores not ordered / TSO */ \ 160 cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen; 161 162 void 163 new_cpu_mstate(int cmstate, hrtime_t curtime) 164 { 165 cpu_t *cpu = CPU; 166 uint16_t gen; 167 168 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 169 ASSERT(cmstate < NCMSTATES); 170 ASSERT(cmstate != CMS_DISABLED); 171 172 /* 173 * This function cannot be re-entrant on a given CPU. As such, 174 * we ASSERT and panic if we are called on behalf of an interrupt. 175 * The one exception is for an interrupt which has previously 176 * blocked. Such an interrupt is being scheduled by the dispatcher 177 * just like a normal thread, and as such cannot arrive here 178 * in a re-entrant manner. 179 */ 180 181 ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL); 182 ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread); 183 184 /* 185 * LOCKING, or lack thereof: 186 * 187 * Updates to CPU mstate can only be made by the CPU 188 * itself, and the above check to ignore interrupts 189 * should prevent recursion into this function on a given 190 * processor. i.e. no possible write contention. 191 * 192 * However, reads of CPU mstate can occur at any time 193 * from any CPU. Any locking added to this code path 194 * would seriously impact syscall performance. So, 195 * instead we have a best-effort protection for readers. 196 * The reader will want to account for any time between 197 * cpu_mstate_start and the present time. This requires 198 * some guarantees that the reader is getting coherent 199 * information. 200 * 201 * We use a generation counter, which is set to 0 before 202 * we start making changes, and is set to a new value 203 * after we're done. Someone reading the CPU mstate 204 * should check for the same non-zero value of this 205 * counter both before and after reading all state. The 206 * important point is that the reader is not a 207 * performance-critical path, but this function is. 208 * 209 * The ordering of writes is critical. cpu_mstate_gen must 210 * be visibly zero on all CPUs before we change cpu_mstate 211 * and cpu_mstate_start. Additionally, cpu_mstate_gen must 212 * not be restored to oldgen+1 until after all of the other 213 * writes have become visible. 214 * 215 * Normally one puts membar_producer() calls to accomplish 216 * this. Unfortunately this routine is extremely performance 217 * critical (esp. in syscall_mstate below) and we cannot 218 * afford the additional time, particularly on some x86 219 * architectures with extremely slow sfence calls. On a 220 * CPU which guarantees write ordering (including sparc, x86, 221 * and amd64) this is not a problem. The compiler could still 222 * reorder the writes, so we make the four cpu fields 223 * volatile to prevent this. 224 * 225 * TSO warning: should we port to a non-TSO (or equivalent) 226 * CPU, this will break. 227 * 228 * The reader stills needs the membar_consumer() calls because, 229 * although the volatiles prevent the compiler from reordering 230 * loads, the CPU can still do so. 231 */ 232 233 NEW_CPU_MSTATE(cmstate); 234 } 235 236 /* 237 * Return an aggregation of user and system CPU time consumed by 238 * the specified thread in scaled nanoseconds. 239 */ 240 hrtime_t 241 mstate_thread_onproc_time(kthread_t *t) 242 { 243 hrtime_t aggr_time; 244 hrtime_t now; 245 hrtime_t waitrq; 246 hrtime_t state_start; 247 struct mstate *ms; 248 klwp_t *lwp; 249 int mstate; 250 251 ASSERT(THREAD_LOCK_HELD(t)); 252 253 if ((lwp = ttolwp(t)) == NULL) 254 return (0); 255 256 mstate = t->t_mstate; 257 waitrq = t->t_waitrq; 258 ms = &lwp->lwp_mstate; 259 state_start = ms->ms_state_start; 260 261 aggr_time = ms->ms_acct[LMS_USER] + 262 ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 263 264 now = gethrtime_unscaled(); 265 266 /* 267 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is 268 * inconsistent, so it is possible that now < state_start. 269 */ 270 if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) { 271 /* if waitrq is zero, count all of the time. */ 272 if (waitrq == 0) { 273 waitrq = now; 274 } 275 276 if (waitrq > state_start) { 277 aggr_time += waitrq - state_start; 278 } 279 } 280 281 scalehrtime(&aggr_time); 282 return (aggr_time); 283 } 284 285 /* 286 * Return the amount of onproc and runnable time this thread has experienced. 287 * 288 * Because the fields we read are not protected by locks when updated 289 * by the thread itself, this is an inherently racey interface. In 290 * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much 291 * as it might appear to. 292 * 293 * The implication for users of this interface is that onproc and runnable 294 * are *NOT* monotonically increasing; they may temporarily be larger than 295 * they should be. 296 */ 297 void 298 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable) 299 { 300 struct mstate *const ms = &ttolwp(t)->lwp_mstate; 301 302 int mstate; 303 hrtime_t now; 304 hrtime_t state_start; 305 hrtime_t waitrq; 306 hrtime_t aggr_onp; 307 hrtime_t aggr_run; 308 309 ASSERT(THREAD_LOCK_HELD(t)); 310 ASSERT(t->t_procp->p_flag & SSYS); 311 ASSERT(ttolwp(t) != NULL); 312 313 /* shouldn't be any non-SYSTEM on-CPU time */ 314 ASSERT(ms->ms_acct[LMS_USER] == 0); 315 ASSERT(ms->ms_acct[LMS_TRAP] == 0); 316 317 mstate = t->t_mstate; 318 waitrq = t->t_waitrq; 319 state_start = ms->ms_state_start; 320 321 aggr_onp = ms->ms_acct[LMS_SYSTEM]; 322 aggr_run = ms->ms_acct[LMS_WAIT_CPU]; 323 324 now = gethrtime_unscaled(); 325 326 /* if waitrq == 0, then there is no time to account to TS_RUN */ 327 if (waitrq == 0) 328 waitrq = now; 329 330 /* If there is system time to accumulate, do so */ 331 if (mstate == LMS_SYSTEM && state_start < waitrq) 332 aggr_onp += waitrq - state_start; 333 334 if (waitrq < now) 335 aggr_run += now - waitrq; 336 337 scalehrtime(&aggr_onp); 338 scalehrtime(&aggr_run); 339 340 *onproc = aggr_onp; 341 *runnable = aggr_run; 342 } 343 344 /* 345 * Return an aggregation of microstate times in scaled nanoseconds (high-res 346 * time). This keeps in mind that p_acct is already scaled, and ms_acct is 347 * not. 348 */ 349 hrtime_t 350 mstate_aggr_state(proc_t *p, int a_state) 351 { 352 struct mstate *ms; 353 kthread_t *t; 354 klwp_t *lwp; 355 hrtime_t aggr_time; 356 hrtime_t scaledtime; 357 358 ASSERT(MUTEX_HELD(&p->p_lock)); 359 ASSERT((unsigned)a_state < NMSTATES); 360 361 aggr_time = p->p_acct[a_state]; 362 if (a_state == LMS_SYSTEM) 363 aggr_time += p->p_acct[LMS_TRAP]; 364 365 t = p->p_tlist; 366 if (t == NULL) 367 return (aggr_time); 368 369 do { 370 if (t->t_proc_flag & TP_LWPEXIT) 371 continue; 372 373 lwp = ttolwp(t); 374 ms = &lwp->lwp_mstate; 375 scaledtime = ms->ms_acct[a_state]; 376 scalehrtime(&scaledtime); 377 aggr_time += scaledtime; 378 if (a_state == LMS_SYSTEM) { 379 scaledtime = ms->ms_acct[LMS_TRAP]; 380 scalehrtime(&scaledtime); 381 aggr_time += scaledtime; 382 } 383 } while ((t = t->t_forw) != p->p_tlist); 384 385 return (aggr_time); 386 } 387 388 389 void 390 syscall_mstate(int fromms, int toms) 391 { 392 kthread_t *t = curthread; 393 struct mstate *ms; 394 hrtime_t *mstimep; 395 hrtime_t curtime; 396 klwp_t *lwp; 397 hrtime_t newtime; 398 cpu_t *cpu; 399 uint16_t gen; 400 401 if ((lwp = ttolwp(t)) == NULL) 402 return; 403 404 ASSERT(fromms < NMSTATES); 405 ASSERT(toms < NMSTATES); 406 407 ms = &lwp->lwp_mstate; 408 mstimep = &ms->ms_acct[fromms]; 409 curtime = gethrtime_unscaled(); 410 newtime = curtime - ms->ms_state_start; 411 while (newtime < 0) { 412 curtime = gethrtime_unscaled(); 413 newtime = curtime - ms->ms_state_start; 414 } 415 *mstimep += newtime; 416 t->t_mstate = toms; 417 ms->ms_state_start = curtime; 418 ms->ms_prev = fromms; 419 kpreempt_disable(); /* don't change CPU while changing CPU's state */ 420 cpu = CPU; 421 ASSERT(cpu == t->t_cpu); 422 if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) { 423 NEW_CPU_MSTATE(CMS_SYSTEM); 424 } else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) { 425 NEW_CPU_MSTATE(CMS_USER); 426 } 427 kpreempt_enable(); 428 } 429 430 #undef NEW_CPU_MSTATE 431 432 /* 433 * The following is for computing the percentage of cpu time used recently 434 * by an lwp. The function cpu_decay() is also called from /proc code. 435 * 436 * exp_x(x): 437 * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude, 438 * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1]. 439 * 440 * Scaling for 64-bit scaled integer: 441 * The binary point is to the right of the high-order bit 442 * of the low-order 32-bit word. 443 */ 444 445 #define LSHIFT 31 446 #define LSI_ONE ((uint32_t)1 << LSHIFT) /* 32-bit scaled integer 1 */ 447 448 #ifdef DEBUG 449 uint_t expx_cnt = 0; /* number of calls to exp_x() */ 450 uint_t expx_mul = 0; /* number of long multiplies in exp_x() */ 451 #endif 452 453 static uint64_t 454 exp_x(uint64_t x) 455 { 456 int i; 457 uint64_t ull; 458 uint32_t ui; 459 460 #ifdef DEBUG 461 expx_cnt++; 462 #endif 463 /* 464 * By the formula: 465 * exp(-x) = exp(-x/2) * exp(-x/2) 466 * we keep halving x until it becomes small enough for 467 * the following approximation to be accurate enough: 468 * exp(-x) = 1 - x 469 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below). 470 * Our final error will be smaller than 4% . 471 */ 472 473 /* 474 * Use a uint64_t for the initial shift calculation. 475 */ 476 ull = x >> (LSHIFT-2); 477 478 /* 479 * Short circuit: 480 * A number this large produces effectively 0 (actually .005). 481 * This way, we will never do more than 5 multiplies. 482 */ 483 if (ull >= (1 << 5)) 484 return (0); 485 486 ui = ull; /* OK. Now we can use a uint_t. */ 487 for (i = 0; ui != 0; i++) 488 ui >>= 1; 489 490 if (i != 0) { 491 #ifdef DEBUG 492 expx_mul += i; /* seldom happens */ 493 #endif 494 x >>= i; 495 } 496 497 /* 498 * Now we compute 1 - x and square it the number of times 499 * that we halved x above to produce the final result: 500 */ 501 x = LSI_ONE - x; 502 while (i--) 503 x = (x * x) >> LSHIFT; 504 505 return (x); 506 } 507 508 /* 509 * Given the old percent cpu and a time delta in nanoseconds, 510 * return the new decayed percent cpu: pct * exp(-tau), 511 * where 'tau' is the time delta multiplied by a decay factor. 512 * We have chosen the decay factor (cpu_decay_factor in param.c) 513 * to make the decay over five seconds be approximately 20%. 514 * 515 * 'pct' is a 32-bit scaled integer <= 1 516 * The binary point is to the right of the high-order bit 517 * of the 32-bit word. 518 */ 519 static uint32_t 520 cpu_decay(uint32_t pct, hrtime_t nsec) 521 { 522 uint64_t delta = (uint64_t)nsec; 523 524 delta /= cpu_decay_factor; 525 return ((pct * exp_x(delta)) >> LSHIFT); 526 } 527 528 /* 529 * Given the old percent cpu and a time delta in nanoseconds, 530 * return the new grown percent cpu: 1 - ( 1 - pct ) * exp(-tau) 531 */ 532 static uint32_t 533 cpu_grow(uint32_t pct, hrtime_t nsec) 534 { 535 return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec)); 536 } 537 538 539 /* 540 * Defined to determine whether a lwp is still on a processor. 541 */ 542 543 #define T_ONPROC(kt) \ 544 ((kt)->t_mstate < LMS_SLEEP) 545 #define T_OFFPROC(kt) \ 546 ((kt)->t_mstate >= LMS_SLEEP) 547 548 uint_t 549 cpu_update_pct(kthread_t *t, hrtime_t newtime) 550 { 551 hrtime_t delta; 552 hrtime_t hrlb; 553 uint_t pctcpu; 554 uint_t npctcpu; 555 556 /* 557 * This routine can get called at PIL > 0, this *has* to be 558 * done atomically. Holding locks here causes bad things to happen. 559 * (read: deadlock). 560 */ 561 562 do { 563 if (T_ONPROC(t) && t->t_waitrq == 0) { 564 hrlb = t->t_hrtime; 565 delta = newtime - hrlb; 566 if (delta < 0) { 567 newtime = gethrtime_unscaled(); 568 delta = newtime - hrlb; 569 } 570 t->t_hrtime = newtime; 571 scalehrtime(&delta); 572 pctcpu = t->t_pctcpu; 573 npctcpu = cpu_grow(pctcpu, delta); 574 } else { 575 hrlb = t->t_hrtime; 576 delta = newtime - hrlb; 577 if (delta < 0) { 578 newtime = gethrtime_unscaled(); 579 delta = newtime - hrlb; 580 } 581 t->t_hrtime = newtime; 582 scalehrtime(&delta); 583 pctcpu = t->t_pctcpu; 584 npctcpu = cpu_decay(pctcpu, delta); 585 } 586 } while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu); 587 588 return (npctcpu); 589 } 590 591 /* 592 * Change the microstate level for the LWP and update the 593 * associated accounting information. Return the previous 594 * LWP state. 595 */ 596 int 597 new_mstate(kthread_t *t, int new_state) 598 { 599 struct mstate *ms; 600 unsigned state; 601 hrtime_t *mstimep; 602 hrtime_t curtime; 603 hrtime_t newtime; 604 hrtime_t oldtime; 605 klwp_t *lwp; 606 607 ASSERT(new_state != LMS_WAIT_CPU); 608 ASSERT((unsigned)new_state < NMSTATES); 609 ASSERT(t == curthread || THREAD_LOCK_HELD(t)); 610 611 /* 612 * Don't do microstate processing for threads without a lwp (kernel 613 * threads). Also, if we're an interrupt thread that is pinning another 614 * thread, our t_mstate hasn't been initialized. We'd be modifying the 615 * microstate of the underlying lwp which doesn't realize that it's 616 * pinned. In this case, also don't change the microstate. 617 */ 618 if (((lwp = ttolwp(t)) == NULL) || t->t_intr) 619 return (LMS_SYSTEM); 620 621 curtime = gethrtime_unscaled(); 622 623 /* adjust cpu percentages before we go any further */ 624 (void) cpu_update_pct(t, curtime); 625 626 ms = &lwp->lwp_mstate; 627 state = t->t_mstate; 628 do { 629 switch (state) { 630 case LMS_TFAULT: 631 case LMS_DFAULT: 632 case LMS_KFAULT: 633 case LMS_USER_LOCK: 634 mstimep = &ms->ms_acct[LMS_SYSTEM]; 635 break; 636 default: 637 mstimep = &ms->ms_acct[state]; 638 break; 639 } 640 newtime = curtime - ms->ms_state_start; 641 if (newtime < 0) { 642 curtime = gethrtime_unscaled(); 643 oldtime = *mstimep - 1; /* force CAS to fail */ 644 continue; 645 } 646 oldtime = *mstimep; 647 newtime += oldtime; 648 t->t_mstate = new_state; 649 ms->ms_state_start = curtime; 650 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 651 /* 652 * Remember the previous running microstate. 653 */ 654 if (state != LMS_SLEEP && state != LMS_STOPPED) 655 ms->ms_prev = state; 656 657 /* 658 * Switch CPU microstate if appropriate 659 */ 660 661 kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */ 662 ASSERT(t->t_cpu == CPU); 663 if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) { 664 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER) 665 new_cpu_mstate(CMS_USER, curtime); 666 else if (new_state != LMS_USER && 667 t->t_cpu->cpu_mstate != CMS_SYSTEM) 668 new_cpu_mstate(CMS_SYSTEM, curtime); 669 } 670 kpreempt_enable(); 671 672 return (ms->ms_prev); 673 } 674 675 /* 676 * Restore the LWP microstate to the previous runnable state. 677 * Called from disp() with the newly selected lwp. 678 */ 679 void 680 restore_mstate(kthread_t *t) 681 { 682 struct mstate *ms; 683 hrtime_t *mstimep; 684 klwp_t *lwp; 685 hrtime_t curtime; 686 hrtime_t waitrq; 687 hrtime_t newtime; 688 hrtime_t oldtime; 689 690 /* 691 * Don't call restore mstate of threads without lwps. (Kernel threads) 692 * 693 * threads with t_intr set shouldn't be in the dispatcher, so assert 694 * that nobody here has t_intr. 695 */ 696 ASSERT(t->t_intr == NULL); 697 698 if ((lwp = ttolwp(t)) == NULL) 699 return; 700 701 curtime = gethrtime_unscaled(); 702 (void) cpu_update_pct(t, curtime); 703 ms = &lwp->lwp_mstate; 704 ASSERT((unsigned)t->t_mstate < NMSTATES); 705 do { 706 switch (t->t_mstate) { 707 case LMS_SLEEP: 708 /* 709 * Update the timer for the current sleep state. 710 */ 711 ASSERT((unsigned)ms->ms_prev < NMSTATES); 712 switch (ms->ms_prev) { 713 case LMS_TFAULT: 714 case LMS_DFAULT: 715 case LMS_KFAULT: 716 case LMS_USER_LOCK: 717 mstimep = &ms->ms_acct[ms->ms_prev]; 718 break; 719 default: 720 mstimep = &ms->ms_acct[LMS_SLEEP]; 721 break; 722 } 723 /* 724 * Return to the previous run state. 725 */ 726 t->t_mstate = ms->ms_prev; 727 break; 728 case LMS_STOPPED: 729 mstimep = &ms->ms_acct[LMS_STOPPED]; 730 /* 731 * Return to the previous run state. 732 */ 733 t->t_mstate = ms->ms_prev; 734 break; 735 case LMS_TFAULT: 736 case LMS_DFAULT: 737 case LMS_KFAULT: 738 case LMS_USER_LOCK: 739 mstimep = &ms->ms_acct[LMS_SYSTEM]; 740 break; 741 default: 742 mstimep = &ms->ms_acct[t->t_mstate]; 743 break; 744 } 745 waitrq = t->t_waitrq; /* hopefully atomic */ 746 if (waitrq == 0) { 747 waitrq = curtime; 748 } 749 t->t_waitrq = 0; 750 newtime = waitrq - ms->ms_state_start; 751 if (newtime < 0) { 752 curtime = gethrtime_unscaled(); 753 oldtime = *mstimep - 1; /* force CAS to fail */ 754 continue; 755 } 756 oldtime = *mstimep; 757 newtime += oldtime; 758 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 759 /* 760 * Update the WAIT_CPU timer and per-cpu waitrq total. 761 */ 762 ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq); 763 CPU->cpu_waitrq += (curtime - waitrq); 764 ms->ms_state_start = curtime; 765 } 766 767 /* 768 * Copy lwp microstate accounting and resource usage information 769 * to the process. (lwp is terminating) 770 */ 771 void 772 term_mstate(kthread_t *t) 773 { 774 struct mstate *ms; 775 proc_t *p = ttoproc(t); 776 klwp_t *lwp = ttolwp(t); 777 int i; 778 hrtime_t tmp; 779 780 ASSERT(MUTEX_HELD(&p->p_lock)); 781 782 ms = &lwp->lwp_mstate; 783 (void) new_mstate(t, LMS_STOPPED); 784 ms->ms_term = ms->ms_state_start; 785 tmp = ms->ms_term - ms->ms_start; 786 scalehrtime(&tmp); 787 p->p_mlreal += tmp; 788 for (i = 0; i < NMSTATES; i++) { 789 tmp = ms->ms_acct[i]; 790 scalehrtime(&tmp); 791 p->p_acct[i] += tmp; 792 } 793 p->p_ru.minflt += lwp->lwp_ru.minflt; 794 p->p_ru.majflt += lwp->lwp_ru.majflt; 795 p->p_ru.nswap += lwp->lwp_ru.nswap; 796 p->p_ru.inblock += lwp->lwp_ru.inblock; 797 p->p_ru.oublock += lwp->lwp_ru.oublock; 798 p->p_ru.msgsnd += lwp->lwp_ru.msgsnd; 799 p->p_ru.msgrcv += lwp->lwp_ru.msgrcv; 800 p->p_ru.nsignals += lwp->lwp_ru.nsignals; 801 p->p_ru.nvcsw += lwp->lwp_ru.nvcsw; 802 p->p_ru.nivcsw += lwp->lwp_ru.nivcsw; 803 p->p_ru.sysc += lwp->lwp_ru.sysc; 804 p->p_ru.ioch += lwp->lwp_ru.ioch; 805 p->p_defunct++; 806 } 807