1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/user.h> 32 #include <sys/proc.h> 33 #include <sys/cpuvar.h> 34 #include <sys/thread.h> 35 #include <sys/debug.h> 36 #include <sys/msacct.h> 37 #include <sys/time.h> 38 39 /* 40 * Mega-theory block comment: 41 * 42 * Microstate accounting uses finite states and the transitions between these 43 * states to measure timing and accounting information. The state information 44 * is presently tracked for threads (via microstate accounting) and cpus (via 45 * cpu microstate accounting). In each case, these accounting mechanisms use 46 * states and transitions to measure time spent in each state instead of 47 * clock-based sampling methodologies. 48 * 49 * For microstate accounting: 50 * state transitions are accomplished by calling new_mstate() to switch between 51 * states. Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur 52 * by calling restore_mstate() which restores a thread to its previously running 53 * state. This code is primarialy executed by the dispatcher in disp() before 54 * running a process that was put to sleep. If the thread was not in a sleeping 55 * state, this call has little effect other than to update the count of time the 56 * thread has spent waiting on run-queues in its lifetime. 57 * 58 * For cpu microstate accounting: 59 * Cpu microstate accounting is similar to the microstate accounting for threads 60 * but it tracks user, system, and idle time for cpus. Cpu microstate 61 * accounting does not track interrupt times as there is a pre-existing 62 * interrupt accounting mechanism for this purpose. Cpu microstate accounting 63 * tracks time that user threads have spent active, idle, or in the system on a 64 * given cpu. Cpu microstate accounting has fewer states which allows it to 65 * have better defined transitions. The states transition in the following 66 * order: 67 * 68 * CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE 69 * 70 * In order to get to the idle state, the cpu microstate must first go through 71 * the system state, and vice-versa for the user state from idle. The switching 72 * of the microstates from user to system is done as part of the regular thread 73 * microstate accounting code, except for the idle state which is switched by 74 * the dispatcher before it runs the idle loop. 75 * 76 * Cpu percentages: 77 * Cpu percentages are now handled by and based upon microstate accounting 78 * information (the same is true for load averages). The routines which handle 79 * the growing/shrinking and exponentiation of cpu percentages have been moved 80 * here as it now makes more sense for them to be generated from the microstate 81 * code. Cpu percentages are generated similarly to the way they were before; 82 * however, now they are based upon high-resolution timestamps and the 83 * timestamps are modified at various state changes instead of during a clock() 84 * interrupt. This allows us to generate more accurate cpu percentages which 85 * are also in-sync with microstate data. 86 */ 87 88 /* 89 * Initialize the microstate level and the 90 * associated accounting information for an LWP. 91 */ 92 void 93 init_mstate( 94 kthread_t *t, 95 int init_state) 96 { 97 struct mstate *ms; 98 klwp_t *lwp; 99 hrtime_t curtime; 100 101 ASSERT(init_state != LMS_WAIT_CPU); 102 ASSERT((unsigned)init_state < NMSTATES); 103 104 if ((lwp = ttolwp(t)) != NULL) { 105 ms = &lwp->lwp_mstate; 106 curtime = gethrtime_unscaled(); 107 ms->ms_prev = LMS_SYSTEM; 108 ms->ms_start = curtime; 109 ms->ms_term = 0; 110 ms->ms_state_start = curtime; 111 t->t_mstate = init_state; 112 t->t_waitrq = 0; 113 t->t_hrtime = curtime; 114 if ((t->t_proc_flag & TP_MSACCT) == 0) 115 t->t_proc_flag |= TP_MSACCT; 116 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct)); 117 } 118 } 119 120 /* 121 * Initialize the microstate level and associated accounting information 122 * for the specified cpu 123 */ 124 125 void 126 init_cpu_mstate( 127 cpu_t *cpu, 128 int init_state) 129 { 130 ASSERT(init_state != CMS_DISABLED); 131 132 cpu->cpu_mstate = init_state; 133 cpu->cpu_mstate_start = gethrtime_unscaled(); 134 cpu->cpu_waitrq = 0; 135 bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct)); 136 } 137 138 /* 139 * sets cpu state to OFFLINE. We don't actually track this time, 140 * but it serves as a useful placeholder state for when we're not 141 * doing anything. 142 */ 143 144 void 145 term_cpu_mstate(struct cpu *cpu) 146 { 147 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 148 cpu->cpu_mstate = CMS_DISABLED; 149 cpu->cpu_mstate_start = 0; 150 } 151 152 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */ 153 154 #define NEW_CPU_MSTATE(state) \ 155 gen = cpu->cpu_mstate_gen; \ 156 cpu->cpu_mstate_gen = 0; \ 157 /* Need membar_producer() here if stores not ordered / TSO */ \ 158 cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \ 159 cpu->cpu_mstate = state; \ 160 cpu->cpu_mstate_start = curtime; \ 161 /* Need membar_producer() here if stores not ordered / TSO */ \ 162 cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen; 163 164 void 165 new_cpu_mstate(int cmstate, hrtime_t curtime) 166 { 167 cpu_t *cpu = CPU; 168 uint16_t gen; 169 170 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 171 ASSERT(cmstate < NCMSTATES); 172 ASSERT(cmstate != CMS_DISABLED); 173 174 /* 175 * This function cannot be re-entrant on a given CPU. As such, 176 * we ASSERT and panic if we are called on behalf of an interrupt. 177 * The one exception is for an interrupt which has previously 178 * blocked. Such an interrupt is being scheduled by the dispatcher 179 * just like a normal thread, and as such cannot arrive here 180 * in a re-entrant manner. 181 */ 182 183 ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL); 184 ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread); 185 186 /* 187 * LOCKING, or lack thereof: 188 * 189 * Updates to CPU mstate can only be made by the CPU 190 * itself, and the above check to ignore interrupts 191 * should prevent recursion into this function on a given 192 * processor. i.e. no possible write contention. 193 * 194 * However, reads of CPU mstate can occur at any time 195 * from any CPU. Any locking added to this code path 196 * would seriously impact syscall performance. So, 197 * instead we have a best-effort protection for readers. 198 * The reader will want to account for any time between 199 * cpu_mstate_start and the present time. This requires 200 * some guarantees that the reader is getting coherent 201 * information. 202 * 203 * We use a generation counter, which is set to 0 before 204 * we start making changes, and is set to a new value 205 * after we're done. Someone reading the CPU mstate 206 * should check for the same non-zero value of this 207 * counter both before and after reading all state. The 208 * important point is that the reader is not a 209 * performance-critical path, but this function is. 210 * 211 * The ordering of writes is critical. cpu_mstate_gen must 212 * be visibly zero on all CPUs before we change cpu_mstate 213 * and cpu_mstate_start. Additionally, cpu_mstate_gen must 214 * not be restored to oldgen+1 until after all of the other 215 * writes have become visible. 216 * 217 * Normally one puts membar_producer() calls to accomplish 218 * this. Unfortunately this routine is extremely performance 219 * critical (esp. in syscall_mstate below) and we cannot 220 * afford the additional time, particularly on some x86 221 * architectures with extremely slow sfence calls. On a 222 * CPU which guarantees write ordering (including sparc, x86, 223 * and amd64) this is not a problem. The compiler could still 224 * reorder the writes, so we make the four cpu fields 225 * volatile to prevent this. 226 * 227 * TSO warning: should we port to a non-TSO (or equivalent) 228 * CPU, this will break. 229 * 230 * The reader stills needs the membar_consumer() calls because, 231 * although the volatiles prevent the compiler from reordering 232 * loads, the CPU can still do so. 233 */ 234 235 NEW_CPU_MSTATE(cmstate); 236 } 237 238 /* 239 * Return an aggregation of microstate times in scaled nanoseconds (high-res 240 * time). This keeps in mind that p_acct is already scaled, and ms_acct is 241 * not. 242 */ 243 hrtime_t 244 mstate_aggr_state(proc_t *p, int a_state) 245 { 246 struct mstate *ms; 247 kthread_t *t; 248 klwp_t *lwp; 249 hrtime_t aggr_time; 250 hrtime_t scaledtime; 251 252 ASSERT(MUTEX_HELD(&p->p_lock)); 253 ASSERT((unsigned)a_state < NMSTATES); 254 255 aggr_time = p->p_acct[a_state]; 256 if (a_state == LMS_SYSTEM) 257 aggr_time += p->p_acct[LMS_TRAP]; 258 259 t = p->p_tlist; 260 if (t == NULL) 261 return (aggr_time); 262 263 do { 264 if (t->t_proc_flag & TP_LWPEXIT) 265 continue; 266 267 lwp = ttolwp(t); 268 ms = &lwp->lwp_mstate; 269 scaledtime = ms->ms_acct[a_state]; 270 scalehrtime(&scaledtime); 271 aggr_time += scaledtime; 272 if (a_state == LMS_SYSTEM) { 273 scaledtime = ms->ms_acct[LMS_TRAP]; 274 scalehrtime(&scaledtime); 275 aggr_time += scaledtime; 276 } 277 } while ((t = t->t_forw) != p->p_tlist); 278 279 return (aggr_time); 280 } 281 282 283 void 284 syscall_mstate(int fromms, int toms) 285 { 286 kthread_t *t = curthread; 287 struct mstate *ms; 288 hrtime_t *mstimep; 289 hrtime_t curtime; 290 klwp_t *lwp; 291 hrtime_t newtime; 292 cpu_t *cpu; 293 uint16_t gen; 294 295 if ((lwp = ttolwp(t)) == NULL) 296 return; 297 298 ASSERT(fromms < NMSTATES); 299 ASSERT(toms < NMSTATES); 300 301 ms = &lwp->lwp_mstate; 302 mstimep = &ms->ms_acct[fromms]; 303 curtime = gethrtime_unscaled(); 304 newtime = curtime - ms->ms_state_start; 305 while (newtime < 0) { 306 curtime = gethrtime_unscaled(); 307 newtime = curtime - ms->ms_state_start; 308 } 309 *mstimep += newtime; 310 t->t_mstate = toms; 311 ms->ms_state_start = curtime; 312 ms->ms_prev = fromms; 313 kpreempt_disable(); /* don't change CPU while changing CPU's state */ 314 cpu = CPU; 315 ASSERT(cpu == t->t_cpu); 316 if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) { 317 NEW_CPU_MSTATE(CMS_SYSTEM); 318 } else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) { 319 NEW_CPU_MSTATE(CMS_USER); 320 } 321 kpreempt_enable(); 322 } 323 324 #undef NEW_CPU_MSTATE 325 326 /* 327 * The following is for computing the percentage of cpu time used recently 328 * by an lwp. The function cpu_decay() is also called from /proc code. 329 * 330 * exp_x(x): 331 * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude, 332 * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1]. 333 * 334 * Scaling for 64-bit scaled integer: 335 * The binary point is to the right of the high-order bit 336 * of the low-order 32-bit word. 337 */ 338 339 #define LSHIFT 31 340 #define LSI_ONE ((uint32_t)1 << LSHIFT) /* 32-bit scaled integer 1 */ 341 342 #ifdef DEBUG 343 uint_t expx_cnt = 0; /* number of calls to exp_x() */ 344 uint_t expx_mul = 0; /* number of long multiplies in exp_x() */ 345 #endif 346 347 static uint64_t 348 exp_x(uint64_t x) 349 { 350 int i; 351 uint64_t ull; 352 uint32_t ui; 353 354 #ifdef DEBUG 355 expx_cnt++; 356 #endif 357 /* 358 * By the formula: 359 * exp(-x) = exp(-x/2) * exp(-x/2) 360 * we keep halving x until it becomes small enough for 361 * the following approximation to be accurate enough: 362 * exp(-x) = 1 - x 363 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below). 364 * Our final error will be smaller than 4% . 365 */ 366 367 /* 368 * Use a uint64_t for the initial shift calculation. 369 */ 370 ull = x >> (LSHIFT-2); 371 372 /* 373 * Short circuit: 374 * A number this large produces effectively 0 (actually .005). 375 * This way, we will never do more than 5 multiplies. 376 */ 377 if (ull >= (1 << 5)) 378 return (0); 379 380 ui = ull; /* OK. Now we can use a uint_t. */ 381 for (i = 0; ui != 0; i++) 382 ui >>= 1; 383 384 if (i != 0) { 385 #ifdef DEBUG 386 expx_mul += i; /* seldom happens */ 387 #endif 388 x >>= i; 389 } 390 391 /* 392 * Now we compute 1 - x and square it the number of times 393 * that we halved x above to produce the final result: 394 */ 395 x = LSI_ONE - x; 396 while (i--) 397 x = (x * x) >> LSHIFT; 398 399 return (x); 400 } 401 402 /* 403 * Given the old percent cpu and a time delta in nanoseconds, 404 * return the new decayed percent cpu: pct * exp(-tau), 405 * where 'tau' is the time delta multiplied by a decay factor. 406 * We have chosen the decay factor (cpu_decay_factor in param.c) 407 * to make the decay over five seconds be approximately 20%. 408 * 409 * 'pct' is a 32-bit scaled integer <= 1 410 * The binary point is to the right of the high-order bit 411 * of the 32-bit word. 412 */ 413 static uint32_t 414 cpu_decay(uint32_t pct, hrtime_t nsec) 415 { 416 uint64_t delta = (uint64_t)nsec; 417 418 delta /= cpu_decay_factor; 419 return ((pct * exp_x(delta)) >> LSHIFT); 420 } 421 422 /* 423 * Given the old percent cpu and a time delta in nanoseconds, 424 * return the new grown percent cpu: 1 - ( 1 - pct ) * exp(-tau) 425 */ 426 static uint32_t 427 cpu_grow(uint32_t pct, hrtime_t nsec) 428 { 429 return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec)); 430 } 431 432 433 /* 434 * Defined to determine whether a lwp is still on a processor. 435 */ 436 437 #define T_ONPROC(kt) \ 438 ((kt)->t_mstate < LMS_SLEEP) 439 #define T_OFFPROC(kt) \ 440 ((kt)->t_mstate >= LMS_SLEEP) 441 442 uint_t 443 cpu_update_pct(kthread_t *t, hrtime_t newtime) 444 { 445 hrtime_t delta; 446 hrtime_t hrlb; 447 uint_t pctcpu; 448 uint_t npctcpu; 449 450 /* 451 * This routine can get called at PIL > 0, this *has* to be 452 * done atomically. Holding locks here causes bad things to happen. 453 * (read: deadlock). 454 */ 455 456 do { 457 if (T_ONPROC(t) && t->t_waitrq == 0) { 458 hrlb = t->t_hrtime; 459 delta = newtime - hrlb; 460 if (delta < 0) { 461 newtime = gethrtime_unscaled(); 462 delta = newtime - hrlb; 463 } 464 t->t_hrtime = newtime; 465 scalehrtime(&delta); 466 pctcpu = t->t_pctcpu; 467 npctcpu = cpu_grow(pctcpu, delta); 468 } else { 469 hrlb = t->t_hrtime; 470 delta = newtime - hrlb; 471 if (delta < 0) { 472 newtime = gethrtime_unscaled(); 473 delta = newtime - hrlb; 474 } 475 t->t_hrtime = newtime; 476 scalehrtime(&delta); 477 pctcpu = t->t_pctcpu; 478 npctcpu = cpu_decay(pctcpu, delta); 479 } 480 } while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu); 481 482 return (npctcpu); 483 } 484 485 /* 486 * Change the microstate level for the LWP and update the 487 * associated accounting information. Return the previous 488 * LWP state. 489 */ 490 int 491 new_mstate(kthread_t *t, int new_state) 492 { 493 struct mstate *ms; 494 unsigned state; 495 hrtime_t *mstimep; 496 hrtime_t curtime; 497 hrtime_t newtime; 498 hrtime_t oldtime; 499 klwp_t *lwp; 500 501 ASSERT(new_state != LMS_WAIT_CPU); 502 ASSERT((unsigned)new_state < NMSTATES); 503 ASSERT(t == curthread || THREAD_LOCK_HELD(t)); 504 505 if ((lwp = ttolwp(t)) == NULL) 506 return (LMS_SYSTEM); 507 508 curtime = gethrtime_unscaled(); 509 510 /* adjust cpu percentages before we go any further */ 511 (void) cpu_update_pct(t, curtime); 512 513 ms = &lwp->lwp_mstate; 514 state = t->t_mstate; 515 do { 516 switch (state) { 517 case LMS_TFAULT: 518 case LMS_DFAULT: 519 case LMS_KFAULT: 520 case LMS_USER_LOCK: 521 mstimep = &ms->ms_acct[LMS_SYSTEM]; 522 break; 523 default: 524 mstimep = &ms->ms_acct[state]; 525 break; 526 } 527 newtime = curtime - ms->ms_state_start; 528 if (newtime < 0) { 529 curtime = gethrtime_unscaled(); 530 oldtime = *mstimep - 1; /* force CAS to fail */ 531 continue; 532 } 533 oldtime = *mstimep; 534 newtime += oldtime; 535 t->t_mstate = new_state; 536 ms->ms_state_start = curtime; 537 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 538 /* 539 * Remember the previous running microstate. 540 */ 541 if (state != LMS_SLEEP && state != LMS_STOPPED) 542 ms->ms_prev = state; 543 544 /* 545 * Switch CPU microstate if appropriate 546 */ 547 548 kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */ 549 ASSERT(t->t_cpu == CPU); 550 if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) { 551 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER) 552 new_cpu_mstate(CMS_USER, curtime); 553 else if (new_state != LMS_USER && 554 t->t_cpu->cpu_mstate != CMS_SYSTEM) 555 new_cpu_mstate(CMS_SYSTEM, curtime); 556 } 557 kpreempt_enable(); 558 559 return (ms->ms_prev); 560 } 561 562 /* 563 * Restore the LWP microstate to the previous runnable state. 564 * Called from disp() with the newly selected lwp. 565 */ 566 void 567 restore_mstate(kthread_t *t) 568 { 569 struct mstate *ms; 570 hrtime_t *mstimep; 571 klwp_t *lwp; 572 hrtime_t curtime; 573 hrtime_t waitrq; 574 hrtime_t newtime; 575 hrtime_t oldtime; 576 577 if ((lwp = ttolwp(t)) == NULL) 578 return; 579 580 curtime = gethrtime_unscaled(); 581 (void) cpu_update_pct(t, curtime); 582 ms = &lwp->lwp_mstate; 583 ASSERT((unsigned)t->t_mstate < NMSTATES); 584 do { 585 switch (t->t_mstate) { 586 case LMS_SLEEP: 587 /* 588 * Update the timer for the current sleep state. 589 */ 590 ASSERT((unsigned)ms->ms_prev < NMSTATES); 591 switch (ms->ms_prev) { 592 case LMS_TFAULT: 593 case LMS_DFAULT: 594 case LMS_KFAULT: 595 case LMS_USER_LOCK: 596 mstimep = &ms->ms_acct[ms->ms_prev]; 597 break; 598 default: 599 mstimep = &ms->ms_acct[LMS_SLEEP]; 600 break; 601 } 602 /* 603 * Return to the previous run state. 604 */ 605 t->t_mstate = ms->ms_prev; 606 break; 607 case LMS_STOPPED: 608 mstimep = &ms->ms_acct[LMS_STOPPED]; 609 /* 610 * Return to the previous run state. 611 */ 612 t->t_mstate = ms->ms_prev; 613 break; 614 case LMS_TFAULT: 615 case LMS_DFAULT: 616 case LMS_KFAULT: 617 case LMS_USER_LOCK: 618 mstimep = &ms->ms_acct[LMS_SYSTEM]; 619 break; 620 default: 621 mstimep = &ms->ms_acct[t->t_mstate]; 622 break; 623 } 624 waitrq = t->t_waitrq; /* hopefully atomic */ 625 if (waitrq == 0) { 626 waitrq = curtime; 627 } 628 t->t_waitrq = 0; 629 newtime = waitrq - ms->ms_state_start; 630 if (newtime < 0) { 631 curtime = gethrtime_unscaled(); 632 oldtime = *mstimep - 1; /* force CAS to fail */ 633 continue; 634 } 635 oldtime = *mstimep; 636 newtime += oldtime; 637 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 638 /* 639 * Update the WAIT_CPU timer and per-cpu waitrq total. 640 */ 641 ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq); 642 CPU->cpu_waitrq += (curtime - waitrq); 643 ms->ms_state_start = curtime; 644 } 645 646 /* 647 * Copy lwp microstate accounting and resource usage information 648 * to the process. (lwp is terminating) 649 */ 650 void 651 term_mstate(kthread_t *t) 652 { 653 struct mstate *ms; 654 proc_t *p = ttoproc(t); 655 klwp_t *lwp = ttolwp(t); 656 int i; 657 hrtime_t tmp; 658 659 ASSERT(MUTEX_HELD(&p->p_lock)); 660 661 ms = &lwp->lwp_mstate; 662 (void) new_mstate(t, LMS_STOPPED); 663 ms->ms_term = ms->ms_state_start; 664 tmp = ms->ms_term - ms->ms_start; 665 scalehrtime(&tmp); 666 p->p_mlreal += tmp; 667 for (i = 0; i < NMSTATES; i++) { 668 tmp = ms->ms_acct[i]; 669 scalehrtime(&tmp); 670 p->p_acct[i] += tmp; 671 } 672 p->p_ru.minflt += lwp->lwp_ru.minflt; 673 p->p_ru.majflt += lwp->lwp_ru.majflt; 674 p->p_ru.nswap += lwp->lwp_ru.nswap; 675 p->p_ru.inblock += lwp->lwp_ru.inblock; 676 p->p_ru.oublock += lwp->lwp_ru.oublock; 677 p->p_ru.msgsnd += lwp->lwp_ru.msgsnd; 678 p->p_ru.msgrcv += lwp->lwp_ru.msgrcv; 679 p->p_ru.nsignals += lwp->lwp_ru.nsignals; 680 p->p_ru.nvcsw += lwp->lwp_ru.nvcsw; 681 p->p_ru.nivcsw += lwp->lwp_ru.nivcsw; 682 p->p_ru.sysc += lwp->lwp_ru.sysc; 683 p->p_ru.ioch += lwp->lwp_ru.ioch; 684 p->p_defunct++; 685 } 686