1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/proc.h> 34 #include <sys/cpuvar.h> 35 #include <sys/thread.h> 36 #include <sys/debug.h> 37 #include <sys/msacct.h> 38 #include <sys/time.h> 39 40 /* 41 * Mega-theory block comment: 42 * 43 * Microstate accounting uses finite states and the transitions between these 44 * states to measure timing and accounting information. The state information 45 * is presently tracked for threads (via microstate accounting) and cpus (via 46 * cpu microstate accounting). In each case, these accounting mechanisms use 47 * states and transitions to measure time spent in each state instead of 48 * clock-based sampling methodologies. 49 * 50 * For microstate accounting: 51 * state transitions are accomplished by calling new_mstate() to switch between 52 * states. Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur 53 * by calling restore_mstate() which restores a thread to its previously running 54 * state. This code is primarialy executed by the dispatcher in disp() before 55 * running a process that was put to sleep. If the thread was not in a sleeping 56 * state, this call has little effect other than to update the count of time the 57 * thread has spent waiting on run-queues in its lifetime. 58 * 59 * For cpu microstate accounting: 60 * Cpu microstate accounting is similar to the microstate accounting for threads 61 * but it tracks user, system, and idle time for cpus. Cpu microstate 62 * accounting does not track interrupt times as there is a pre-existing 63 * interrupt accounting mechanism for this purpose. Cpu microstate accounting 64 * tracks time that user threads have spent active, idle, or in the system on a 65 * given cpu. Cpu microstate accounting has fewer states which allows it to 66 * have better defined transitions. The states transition in the following 67 * order: 68 * 69 * CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE 70 * 71 * In order to get to the idle state, the cpu microstate must first go through 72 * the system state, and vice-versa for the user state from idle. The switching 73 * of the microstates from user to system is done as part of the regular thread 74 * microstate accounting code, except for the idle state which is switched by 75 * the dispatcher before it runs the idle loop. 76 * 77 * Cpu percentages: 78 * Cpu percentages are now handled by and based upon microstate accounting 79 * information (the same is true for load averages). The routines which handle 80 * the growing/shrinking and exponentiation of cpu percentages have been moved 81 * here as it now makes more sense for them to be generated from the microstate 82 * code. Cpu percentages are generated similarly to the way they were before; 83 * however, now they are based upon high-resolution timestamps and the 84 * timestamps are modified at various state changes instead of during a clock() 85 * interrupt. This allows us to generate more accurate cpu percentages which 86 * are also in-sync with microstate data. 87 */ 88 89 /* 90 * Initialize the microstate level and the 91 * associated accounting information for an LWP. 92 */ 93 void 94 init_mstate( 95 kthread_t *t, 96 int init_state) 97 { 98 struct mstate *ms; 99 klwp_t *lwp; 100 hrtime_t curtime; 101 102 ASSERT(init_state != LMS_WAIT_CPU); 103 ASSERT((unsigned)init_state < NMSTATES); 104 105 if ((lwp = ttolwp(t)) != NULL) { 106 ms = &lwp->lwp_mstate; 107 curtime = gethrtime_unscaled(); 108 ms->ms_prev = LMS_SYSTEM; 109 ms->ms_start = curtime; 110 ms->ms_term = 0; 111 ms->ms_state_start = curtime; 112 t->t_mstate = init_state; 113 t->t_waitrq = 0; 114 t->t_hrtime = curtime; 115 if ((t->t_proc_flag & TP_MSACCT) == 0) 116 t->t_proc_flag |= TP_MSACCT; 117 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct)); 118 } 119 } 120 121 /* 122 * Initialize the microstate level and associated accounting information 123 * for the specified cpu 124 */ 125 126 void 127 init_cpu_mstate( 128 cpu_t *cpu, 129 int init_state) 130 { 131 ASSERT(init_state != CMS_DISABLED); 132 133 cpu->cpu_mstate = init_state; 134 cpu->cpu_mstate_start = gethrtime_unscaled(); 135 cpu->cpu_waitrq = 0; 136 bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct)); 137 } 138 139 /* 140 * sets cpu state to OFFLINE. We don't actually track this time, 141 * but it serves as a useful placeholder state for when we're not 142 * doing anything. 143 */ 144 145 void 146 term_cpu_mstate(struct cpu *cpu) 147 { 148 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 149 cpu->cpu_mstate = CMS_DISABLED; 150 cpu->cpu_mstate_start = 0; 151 } 152 153 void 154 new_cpu_mstate(cpu_t *cpu, int cmstate) 155 { 156 hrtime_t curtime; 157 hrtime_t newtime; 158 hrtime_t oldtime; 159 hrtime_t *mstimep; 160 161 ASSERT(cpu->cpu_mstate != CMS_DISABLED); 162 ASSERT(cmstate < NCMSTATES); 163 ASSERT(cmstate != CMS_DISABLED); 164 ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread); 165 166 curtime = gethrtime_unscaled(); 167 mstimep = &cpu->cpu_acct[cpu->cpu_mstate]; 168 do { 169 newtime = curtime - cpu->cpu_mstate_start; 170 if (newtime < 0) { 171 /* force CAS to fail */ 172 curtime = gethrtime_unscaled(); 173 oldtime = *mstimep - 1; 174 continue; 175 } 176 oldtime = *mstimep; 177 newtime += oldtime; 178 cpu->cpu_mstate = cmstate; 179 cpu->cpu_mstate_start = curtime; 180 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 181 } 182 183 /* 184 * Return an aggregation of microstate times in scaled nanoseconds (high-res 185 * time). This keeps in mind that p_acct is already scaled, and ms_acct is 186 * not. 187 */ 188 hrtime_t 189 mstate_aggr_state(proc_t *p, int a_state) 190 { 191 struct mstate *ms; 192 kthread_t *t; 193 klwp_t *lwp; 194 hrtime_t aggr_time; 195 hrtime_t scaledtime; 196 197 ASSERT(MUTEX_HELD(&p->p_lock)); 198 ASSERT((unsigned)a_state < NMSTATES); 199 200 aggr_time = p->p_acct[a_state]; 201 if (a_state == LMS_SYSTEM) 202 aggr_time += p->p_acct[LMS_TRAP]; 203 204 t = p->p_tlist; 205 if (t == NULL) 206 return (aggr_time); 207 208 do { 209 if (t->t_proc_flag & TP_LWPEXIT) 210 continue; 211 212 lwp = ttolwp(t); 213 ms = &lwp->lwp_mstate; 214 scaledtime = ms->ms_acct[a_state]; 215 scalehrtime(&scaledtime); 216 aggr_time += scaledtime; 217 if (a_state == LMS_SYSTEM) { 218 scaledtime = ms->ms_acct[LMS_TRAP]; 219 scalehrtime(&scaledtime); 220 aggr_time += scaledtime; 221 } 222 } while ((t = t->t_forw) != p->p_tlist); 223 224 return (aggr_time); 225 } 226 227 void 228 syscall_mstate(int fromms, int toms) 229 { 230 kthread_t *t = curthread; 231 struct mstate *ms; 232 hrtime_t *mstimep; 233 hrtime_t curtime; 234 klwp_t *lwp; 235 struct cpu *cpup; 236 hrtime_t newtime; 237 238 if ((lwp = ttolwp(t)) == NULL) 239 return; 240 241 ASSERT(fromms < NMSTATES); 242 ASSERT(toms < NMSTATES); 243 244 ms = &lwp->lwp_mstate; 245 mstimep = &ms->ms_acct[fromms]; 246 curtime = gethrtime_unscaled(); 247 newtime = curtime - ms->ms_state_start; 248 while (newtime < 0) { 249 curtime = gethrtime_unscaled(); 250 newtime = curtime - ms->ms_state_start; 251 } 252 *mstimep += newtime; 253 t->t_mstate = toms; 254 ms->ms_state_start = curtime; 255 ms->ms_prev = fromms; 256 /* 257 * Here, you could call new_cpu_mstate() to switch the cpu 258 * microstate. However, in the interest of making things 259 * as expeditious as possible, the relevant work has been inlined. 260 */ 261 kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */ 262 cpup = t->t_cpu; 263 ASSERT(cpup->cpu_mstate != CMS_DISABLED); 264 if ((toms != LMS_USER) && (cpup->cpu_mstate != CMS_SYSTEM)) { 265 mstimep = &cpup->cpu_acct[CMS_USER]; 266 newtime = curtime - cpup->cpu_mstate_start; 267 while (newtime < 0) { 268 curtime = gethrtime_unscaled(); 269 newtime = curtime - cpup->cpu_mstate_start; 270 } 271 *mstimep += newtime; 272 cpup->cpu_mstate = CMS_SYSTEM; 273 cpup->cpu_mstate_start = curtime; 274 } else if ((toms == LMS_USER) && (cpup->cpu_mstate != CMS_USER)) { 275 mstimep = &cpup->cpu_acct[CMS_SYSTEM]; 276 newtime = curtime - cpup->cpu_mstate_start; 277 while (newtime < 0) { 278 curtime = gethrtime_unscaled(); 279 newtime = curtime - cpup->cpu_mstate_start; 280 } 281 *mstimep += newtime; 282 cpup->cpu_mstate = CMS_USER; 283 cpup->cpu_mstate_start = curtime; 284 } 285 kpreempt_enable(); 286 } 287 288 /* 289 * The following is for computing the percentage of cpu time used recently 290 * by an lwp. The function cpu_decay() is also called from /proc code. 291 * 292 * exp_x(x): 293 * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude, 294 * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1]. 295 * 296 * Scaling for 64-bit scaled integer: 297 * The binary point is to the right of the high-order bit 298 * of the low-order 32-bit word. 299 */ 300 301 #define LSHIFT 31 302 #define LSI_ONE ((uint32_t)1 << LSHIFT) /* 32-bit scaled integer 1 */ 303 304 #ifdef DEBUG 305 uint_t expx_cnt = 0; /* number of calls to exp_x() */ 306 uint_t expx_mul = 0; /* number of long multiplies in exp_x() */ 307 #endif 308 309 static uint64_t 310 exp_x(uint64_t x) 311 { 312 int i; 313 uint64_t ull; 314 uint32_t ui; 315 316 #ifdef DEBUG 317 expx_cnt++; 318 #endif 319 /* 320 * By the formula: 321 * exp(-x) = exp(-x/2) * exp(-x/2) 322 * we keep halving x until it becomes small enough for 323 * the following approximation to be accurate enough: 324 * exp(-x) = 1 - x 325 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below). 326 * Our final error will be smaller than 4% . 327 */ 328 329 /* 330 * Use a uint64_t for the initial shift calculation. 331 */ 332 ull = x >> (LSHIFT-2); 333 334 /* 335 * Short circuit: 336 * A number this large produces effectively 0 (actually .005). 337 * This way, we will never do more than 5 multiplies. 338 */ 339 if (ull >= (1 << 5)) 340 return (0); 341 342 ui = ull; /* OK. Now we can use a uint_t. */ 343 for (i = 0; ui != 0; i++) 344 ui >>= 1; 345 346 if (i != 0) { 347 #ifdef DEBUG 348 expx_mul += i; /* seldom happens */ 349 #endif 350 x >>= i; 351 } 352 353 /* 354 * Now we compute 1 - x and square it the number of times 355 * that we halved x above to produce the final result: 356 */ 357 x = LSI_ONE - x; 358 while (i--) 359 x = (x * x) >> LSHIFT; 360 361 return (x); 362 } 363 364 /* 365 * Given the old percent cpu and a time delta in nanoseconds, 366 * return the new decayed percent cpu: pct * exp(-tau), 367 * where 'tau' is the time delta multiplied by a decay factor. 368 * We have chosen the decay factor (cpu_decay_factor in param.c) 369 * to make the decay over five seconds be approximately 20%. 370 * 371 * 'pct' is a 32-bit scaled integer <= 1 372 * The binary point is to the right of the high-order bit 373 * of the 32-bit word. 374 */ 375 static uint32_t 376 cpu_decay(uint32_t pct, hrtime_t nsec) 377 { 378 uint64_t delta = (uint64_t)nsec; 379 380 delta /= cpu_decay_factor; 381 return ((pct * exp_x(delta)) >> LSHIFT); 382 } 383 384 /* 385 * Given the old percent cpu and a time delta in nanoseconds, 386 * return the new grown percent cpu: 1 - ( 1 - pct ) * exp(-tau) 387 */ 388 static uint32_t 389 cpu_grow(uint32_t pct, hrtime_t nsec) 390 { 391 return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec)); 392 } 393 394 395 /* 396 * Defined to determine whether a lwp is still on a processor. 397 */ 398 399 #define T_ONPROC(kt) \ 400 ((kt)->t_mstate < LMS_SLEEP) 401 #define T_OFFPROC(kt) \ 402 ((kt)->t_mstate >= LMS_SLEEP) 403 404 uint_t 405 cpu_update_pct(kthread_t *t, hrtime_t newtime) 406 { 407 hrtime_t delta; 408 hrtime_t hrlb; 409 uint_t pctcpu; 410 uint_t npctcpu; 411 412 /* 413 * This routine can get called at PIL > 0, this *has* to be 414 * done atomically. Holding locks here causes bad things to happen. 415 * (read: deadlock). 416 */ 417 418 do { 419 if (T_ONPROC(t) && t->t_waitrq == 0) { 420 hrlb = t->t_hrtime; 421 delta = newtime - hrlb; 422 if (delta < 0) { 423 newtime = gethrtime_unscaled(); 424 delta = newtime - hrlb; 425 } 426 t->t_hrtime = newtime; 427 scalehrtime(&delta); 428 pctcpu = t->t_pctcpu; 429 npctcpu = cpu_grow(pctcpu, delta); 430 } else { 431 hrlb = t->t_hrtime; 432 delta = newtime - hrlb; 433 if (delta < 0) { 434 newtime = gethrtime_unscaled(); 435 delta = newtime - hrlb; 436 } 437 t->t_hrtime = newtime; 438 scalehrtime(&delta); 439 pctcpu = t->t_pctcpu; 440 npctcpu = cpu_decay(pctcpu, delta); 441 } 442 } while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu); 443 444 return (npctcpu); 445 } 446 447 /* 448 * Change the microstate level for the LWP and update the 449 * associated accounting information. Return the previous 450 * LWP state. 451 */ 452 int 453 new_mstate(kthread_t *t, int new_state) 454 { 455 struct mstate *ms; 456 unsigned state; 457 hrtime_t *mstimep; 458 hrtime_t curtime; 459 hrtime_t newtime; 460 hrtime_t oldtime; 461 klwp_t *lwp; 462 463 ASSERT(new_state != LMS_WAIT_CPU); 464 ASSERT((unsigned)new_state < NMSTATES); 465 ASSERT(t == curthread || THREAD_LOCK_HELD(t)); 466 467 if ((lwp = ttolwp(t)) == NULL) 468 return (LMS_SYSTEM); 469 470 curtime = gethrtime_unscaled(); 471 472 /* adjust cpu percentages before we go any further */ 473 (void) cpu_update_pct(t, curtime); 474 475 ms = &lwp->lwp_mstate; 476 state = t->t_mstate; 477 do { 478 switch (state) { 479 case LMS_TFAULT: 480 case LMS_DFAULT: 481 case LMS_KFAULT: 482 case LMS_USER_LOCK: 483 mstimep = &ms->ms_acct[LMS_SYSTEM]; 484 break; 485 default: 486 mstimep = &ms->ms_acct[state]; 487 break; 488 } 489 newtime = curtime - ms->ms_state_start; 490 if (newtime < 0) { 491 curtime = gethrtime_unscaled(); 492 oldtime = *mstimep - 1; /* force CAS to fail */ 493 continue; 494 } 495 oldtime = *mstimep; 496 newtime += oldtime; 497 t->t_mstate = new_state; 498 ms->ms_state_start = curtime; 499 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 500 /* 501 * Remember the previous running microstate. 502 */ 503 if (state != LMS_SLEEP && state != LMS_STOPPED) 504 ms->ms_prev = state; 505 506 /* 507 * Switch CPU microstate if appropriate 508 */ 509 kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */ 510 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER) { 511 new_cpu_mstate(t->t_cpu, CMS_USER); 512 } else if (new_state != LMS_USER && 513 t->t_cpu->cpu_mstate != CMS_SYSTEM) { 514 new_cpu_mstate(t->t_cpu, CMS_SYSTEM); 515 } 516 kpreempt_enable(); 517 518 return (ms->ms_prev); 519 } 520 521 static long waitrqis0 = 0; 522 523 /* 524 * Restore the LWP microstate to the previous runnable state. 525 * Called from disp() with the newly selected lwp. 526 */ 527 void 528 restore_mstate(kthread_t *t) 529 { 530 struct mstate *ms; 531 hrtime_t *mstimep; 532 klwp_t *lwp; 533 hrtime_t curtime; 534 hrtime_t waitrq; 535 hrtime_t newtime; 536 hrtime_t oldtime; 537 538 if ((lwp = ttolwp(t)) == NULL) 539 return; 540 541 curtime = gethrtime_unscaled(); 542 (void) cpu_update_pct(t, curtime); 543 ms = &lwp->lwp_mstate; 544 ASSERT((unsigned)t->t_mstate < NMSTATES); 545 do { 546 switch (t->t_mstate) { 547 case LMS_SLEEP: 548 /* 549 * Update the timer for the current sleep state. 550 */ 551 ASSERT((unsigned)ms->ms_prev < NMSTATES); 552 switch (ms->ms_prev) { 553 case LMS_TFAULT: 554 case LMS_DFAULT: 555 case LMS_KFAULT: 556 case LMS_USER_LOCK: 557 mstimep = &ms->ms_acct[ms->ms_prev]; 558 break; 559 default: 560 mstimep = &ms->ms_acct[LMS_SLEEP]; 561 break; 562 } 563 /* 564 * Return to the previous run state. 565 */ 566 t->t_mstate = ms->ms_prev; 567 break; 568 case LMS_STOPPED: 569 mstimep = &ms->ms_acct[LMS_STOPPED]; 570 /* 571 * Return to the previous run state. 572 */ 573 t->t_mstate = ms->ms_prev; 574 break; 575 case LMS_TFAULT: 576 case LMS_DFAULT: 577 case LMS_KFAULT: 578 case LMS_USER_LOCK: 579 mstimep = &ms->ms_acct[LMS_SYSTEM]; 580 break; 581 default: 582 mstimep = &ms->ms_acct[t->t_mstate]; 583 break; 584 } 585 waitrq = t->t_waitrq; /* hopefully atomic */ 586 t->t_waitrq = 0; 587 if (waitrq == 0) { /* should only happen during boot */ 588 waitrq = curtime; 589 waitrqis0++; 590 } 591 newtime = waitrq - ms->ms_state_start; 592 if (newtime < 0) { 593 curtime = gethrtime_unscaled(); 594 oldtime = *mstimep - 1; /* force CAS to fail */ 595 continue; 596 } 597 oldtime = *mstimep; 598 newtime += oldtime; 599 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime); 600 /* 601 * Update the WAIT_CPU timer and per-cpu waitrq total. 602 */ 603 ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq); 604 CPU->cpu_waitrq += (curtime - waitrq); 605 ms->ms_state_start = curtime; 606 } 607 608 /* 609 * Copy lwp microstate accounting and resource usage information 610 * to the process. (lwp is terminating) 611 */ 612 void 613 term_mstate(kthread_t *t) 614 { 615 struct mstate *ms; 616 proc_t *p = ttoproc(t); 617 klwp_t *lwp = ttolwp(t); 618 int i; 619 hrtime_t tmp; 620 621 ASSERT(MUTEX_HELD(&p->p_lock)); 622 623 ms = &lwp->lwp_mstate; 624 (void) new_mstate(t, LMS_STOPPED); 625 ms->ms_term = ms->ms_state_start; 626 tmp = ms->ms_term - ms->ms_start; 627 scalehrtime(&tmp); 628 p->p_mlreal += tmp; 629 for (i = 0; i < NMSTATES; i++) { 630 tmp = ms->ms_acct[i]; 631 scalehrtime(&tmp); 632 p->p_acct[i] += tmp; 633 } 634 p->p_ru.minflt += lwp->lwp_ru.minflt; 635 p->p_ru.majflt += lwp->lwp_ru.majflt; 636 p->p_ru.nswap += lwp->lwp_ru.nswap; 637 p->p_ru.inblock += lwp->lwp_ru.inblock; 638 p->p_ru.oublock += lwp->lwp_ru.oublock; 639 p->p_ru.msgsnd += lwp->lwp_ru.msgsnd; 640 p->p_ru.msgrcv += lwp->lwp_ru.msgrcv; 641 p->p_ru.nsignals += lwp->lwp_ru.nsignals; 642 p->p_ru.nvcsw += lwp->lwp_ru.nvcsw; 643 p->p_ru.nivcsw += lwp->lwp_ru.nivcsw; 644 p->p_ru.sysc += lwp->lwp_ru.sysc; 645 p->p_ru.ioch += lwp->lwp_ru.ioch; 646 p->p_defunct++; 647 } 648