1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * modctl system call for loadable module support. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/exec.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/conf.h> 40 #include <sys/time.h> 41 #include <sys/reboot.h> 42 #include <sys/fs/ufs_fsdir.h> 43 #include <sys/kmem.h> 44 #include <sys/sysconf.h> 45 #include <sys/cmn_err.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunndi.h> 49 #include <sys/ndi_impldefs.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/ddi_implfuncs.h> 52 #include <sys/bootconf.h> 53 #include <sys/dc_ki.h> 54 #include <sys/cladm.h> 55 #include <sys/dtrace.h> 56 #include <sys/kdi.h> 57 58 #include <sys/devpolicy.h> 59 #include <sys/modctl.h> 60 #include <sys/kobj.h> 61 #include <sys/devops.h> 62 #include <sys/autoconf.h> 63 #include <sys/hwconf.h> 64 #include <sys/callb.h> 65 #include <sys/debug.h> 66 #include <sys/cpuvar.h> 67 #include <sys/sysmacros.h> 68 #include <sys/sysevent.h> 69 #include <sys/sysevent_impl.h> 70 #include <sys/instance.h> 71 #include <sys/modhash.h> 72 #include <sys/modhash_impl.h> 73 #include <sys/dacf_impl.h> 74 #include <sys/vfs.h> 75 #include <sys/pathname.h> 76 #include <sys/console.h> 77 #include <sys/policy.h> 78 #include <ipp/ipp_impl.h> 79 #include <sys/fs/dv_node.h> 80 #include <sys/strsubr.h> 81 #include <sys/fs/sdev_node.h> 82 83 static int mod_circdep(struct modctl *); 84 static int modinfo(modid_t, struct modinfo *); 85 86 static void mod_uninstall_all(void); 87 static int mod_getinfo(struct modctl *, struct modinfo *); 88 static struct modctl *allocate_modp(const char *, const char *); 89 90 static int mod_load(struct modctl *, int); 91 static void mod_unload(struct modctl *); 92 static int modinstall(struct modctl *); 93 static int moduninstall(struct modctl *); 94 95 static struct modctl *mod_hold_by_name_common(struct modctl *, const char *); 96 static struct modctl *mod_hold_next_by_id(modid_t); 97 static struct modctl *mod_hold_loaded_mod(struct modctl *, char *, int *); 98 static struct modctl *mod_hold_installed_mod(char *, int, int, int *); 99 100 static void mod_release(struct modctl *); 101 static void mod_make_requisite(struct modctl *, struct modctl *); 102 static int mod_install_requisites(struct modctl *); 103 static void check_esc_sequences(char *, char *); 104 static struct modctl *mod_hold_by_name_requisite(struct modctl *, char *); 105 106 /* 107 * module loading thread control structure. Calls to kobj_load_module()() are 108 * handled off to a separate thead using this structure. 109 */ 110 struct loadmt { 111 ksema_t sema; 112 struct modctl *mp; 113 int usepath; 114 kthread_t *owner; 115 int retval; 116 }; 117 118 static void modload_thread(struct loadmt *); 119 120 kcondvar_t mod_cv; 121 kcondvar_t mod_uninstall_cv; /* Communication between swapper */ 122 /* and the uninstall daemon. */ 123 kmutex_t mod_lock; /* protects &modules insert linkage, */ 124 /* mod_busy, mod_want, and mod_ref. */ 125 /* blocking operations while holding */ 126 /* mod_lock should be avoided */ 127 kmutex_t mod_uninstall_lock; /* protects mod_uninstall_cv */ 128 kthread_id_t mod_aul_thread; 129 130 int modunload_wait; 131 kmutex_t modunload_wait_mutex; 132 kcondvar_t modunload_wait_cv; 133 int modunload_active_count; 134 int modunload_disable_count; 135 136 int isminiroot; /* set if running as miniroot */ 137 int modrootloaded; /* set after root driver and fs are loaded */ 138 int moddebug = 0x0; /* debug flags for module writers */ 139 int swaploaded; /* set after swap driver and fs are loaded */ 140 int bop_io_quiesced = 0; /* set when BOP I/O can no longer be used */ 141 int last_module_id; 142 clock_t mod_uninstall_interval = 0; 143 int ddi_modclose_unload = 1; /* 0 -> just decrement reference */ 144 145 struct devnames *devnamesp; 146 struct devnames orphanlist; 147 148 krwlock_t devinfo_tree_lock; /* obsolete, to be removed */ 149 150 #define MAJBINDFILE "/etc/name_to_major" 151 #define SYSBINDFILE "/etc/name_to_sysnum" 152 153 static char majbind[] = MAJBINDFILE; 154 static char sysbind[] = SYSBINDFILE; 155 static uint_t mod_autounload_key; /* for module autounload detection */ 156 157 extern int obpdebug; 158 extern int make_mbind(char *, int, char *, struct bind **); 159 160 #define DEBUGGER_PRESENT ((boothowto & RB_DEBUG) || (obpdebug != 0)) 161 162 static int minorperm_loaded = 0; 163 164 void 165 mod_setup(void) 166 { 167 struct sysent *callp; 168 int callnum, exectype; 169 int num_devs; 170 int i; 171 172 /* 173 * Initialize the list of loaded driver dev_ops. 174 * XXX - This must be done before reading the system file so that 175 * forceloads of drivers will work. 176 */ 177 num_devs = read_binding_file(majbind, mb_hashtab, make_mbind); 178 /* 179 * Since read_binding_file is common code, it doesn't enforce that all 180 * of the binding file entries have major numbers <= MAXMAJ32. Thus, 181 * ensure that we don't allocate some massive amount of space due to a 182 * bad entry. We can't have major numbers bigger than MAXMAJ32 183 * until file system support for larger major numbers exists. 184 */ 185 186 /* 187 * Leave space for expansion, but not more than L_MAXMAJ32 188 */ 189 devcnt = MIN(num_devs + 30, L_MAXMAJ32); 190 devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP); 191 for (i = 0; i < devcnt; i++) 192 devopsp[i] = &mod_nodev_ops; 193 194 init_devnamesp(devcnt); 195 196 /* 197 * Sync up with the work that the stand-alone linker has already done. 198 */ 199 (void) kobj_sync(); 200 201 if (boothowto & RB_DEBUG) 202 kdi_dvec_modavail(); 203 204 make_aliases(mb_hashtab); 205 206 /* 207 * Initialize streams device implementation structures. 208 */ 209 devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP); 210 211 /* 212 * If the cl_bootstrap module is present, 213 * we should be configured as a cluster. Loading this module 214 * will set "cluster_bootflags" to non-zero. 215 */ 216 (void) modload("misc", "cl_bootstrap"); 217 218 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 219 init_syscallnames(NSYSCALL); 220 221 /* 222 * Start up dynamic autoconfiguration framework (dacf). 223 */ 224 mod_hash_init(); 225 dacf_init(); 226 227 /* 228 * Start up IP policy framework (ipp). 229 */ 230 ipp_init(); 231 232 /* 233 * Allocate loadable native system call locks. 234 */ 235 for (callnum = 0, callp = sysent; callnum < NSYSCALL; 236 callnum++, callp++) { 237 if (LOADABLE_SYSCALL(callp)) { 238 if (mod_getsysname(callnum) != NULL) { 239 callp->sy_lock = 240 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 241 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 242 } else { 243 callp->sy_flags &= ~SE_LOADABLE; 244 callp->sy_callc = nosys; 245 } 246 #ifdef DEBUG 247 } else { 248 /* 249 * Do some sanity checks on the sysent table 250 */ 251 switch (callp->sy_flags & SE_RVAL_MASK) { 252 case SE_32RVAL1: 253 /* only r_val1 returned */ 254 case SE_32RVAL1 | SE_32RVAL2: 255 /* r_val1 and r_val2 returned */ 256 case SE_64RVAL: 257 /* 64-bit rval returned */ 258 break; 259 default: 260 cmn_err(CE_WARN, "sysent[%d]: bad flags %x", 261 callnum, callp->sy_flags); 262 } 263 #endif 264 } 265 } 266 267 #ifdef _SYSCALL32_IMPL 268 /* 269 * Allocate loadable system call locks for 32-bit compat syscalls 270 */ 271 for (callnum = 0, callp = sysent32; callnum < NSYSCALL; 272 callnum++, callp++) { 273 if (LOADABLE_SYSCALL(callp)) { 274 if (mod_getsysname(callnum) != NULL) { 275 callp->sy_lock = 276 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 277 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 278 } else { 279 callp->sy_flags &= ~SE_LOADABLE; 280 callp->sy_callc = nosys; 281 } 282 #ifdef DEBUG 283 } else { 284 /* 285 * Do some sanity checks on the sysent table 286 */ 287 switch (callp->sy_flags & SE_RVAL_MASK) { 288 case SE_32RVAL1: 289 /* only r_val1 returned */ 290 case SE_32RVAL1 | SE_32RVAL2: 291 /* r_val1 and r_val2 returned */ 292 case SE_64RVAL: 293 /* 64-bit rval returned */ 294 break; 295 default: 296 cmn_err(CE_WARN, "sysent32[%d]: bad flags %x", 297 callnum, callp->sy_flags); 298 goto skip; 299 } 300 301 /* 302 * Cross-check the native and compatibility tables. 303 */ 304 if (callp->sy_callc == nosys || 305 sysent[callnum].sy_callc == nosys) 306 continue; 307 /* 308 * If only one or the other slot is loadable, then 309 * there's an error -- they should match! 310 */ 311 if ((callp->sy_callc == loadable_syscall) ^ 312 (sysent[callnum].sy_callc == loadable_syscall)) { 313 cmn_err(CE_WARN, "sysent[%d] loadable?", 314 callnum); 315 } 316 /* 317 * This is more of a heuristic test -- if the 318 * system call returns two values in the 32-bit 319 * world, it should probably return two 32-bit 320 * values in the 64-bit world too. 321 */ 322 if (((callp->sy_flags & SE_32RVAL2) == 0) ^ 323 ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) { 324 cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!", 325 callnum); 326 } 327 skip:; 328 #endif /* DEBUG */ 329 } 330 } 331 #endif /* _SYSCALL32_IMPL */ 332 333 /* 334 * Allocate loadable exec locks. (Assumes all execs are loadable) 335 */ 336 for (exectype = 0; exectype < nexectype; exectype++) { 337 execsw[exectype].exec_lock = 338 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 339 rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL); 340 } 341 342 read_class_file(); 343 344 /* init thread specific structure for mod_uninstall_all */ 345 tsd_create(&mod_autounload_key, NULL); 346 } 347 348 static int 349 modctl_modload(int use_path, char *filename, int *rvp) 350 { 351 struct modctl *modp; 352 int retval = 0; 353 char *filenamep; 354 int modid; 355 356 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 357 358 if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) { 359 retval = EFAULT; 360 goto out; 361 } 362 363 filenamep[MOD_MAXPATH - 1] = 0; 364 modp = mod_hold_installed_mod(filenamep, use_path, 0, &retval); 365 366 if (modp == NULL) 367 goto out; 368 369 modp->mod_loadflags |= MOD_NOAUTOUNLOAD; 370 modid = modp->mod_id; 371 mod_release_mod(modp); 372 CPU_STATS_ADDQ(CPU, sys, modload, 1); 373 if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0) 374 retval = EFAULT; 375 out: 376 kmem_free(filenamep, MOD_MAXPATH); 377 378 return (retval); 379 } 380 381 static int 382 modctl_modunload(modid_t id) 383 { 384 int rval = 0; 385 386 if (id == 0) { 387 #ifdef DEBUG 388 /* 389 * Turn on mod_uninstall_daemon 390 */ 391 if (mod_uninstall_interval == 0) { 392 mod_uninstall_interval = 60; 393 modreap(); 394 return (rval); 395 } 396 #endif 397 mod_uninstall_all(); 398 } else { 399 rval = modunload(id); 400 } 401 return (rval); 402 } 403 404 static int 405 modctl_modinfo(modid_t id, struct modinfo *umodi) 406 { 407 int retval; 408 struct modinfo modi; 409 #if defined(_SYSCALL32_IMPL) 410 int nobase; 411 struct modinfo32 modi32; 412 #endif 413 414 if (get_udatamodel() == DATAMODEL_NATIVE) { 415 if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0) 416 return (EFAULT); 417 } 418 #ifdef _SYSCALL32_IMPL 419 else { 420 bzero(&modi, sizeof (modi)); 421 if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0) 422 return (EFAULT); 423 modi.mi_info = modi32.mi_info; 424 modi.mi_id = modi32.mi_id; 425 modi.mi_nextid = modi32.mi_nextid; 426 nobase = modi.mi_info & MI_INFO_NOBASE; 427 } 428 #endif 429 /* 430 * This flag is -only- for the kernels use. 431 */ 432 modi.mi_info &= ~MI_INFO_LINKAGE; 433 434 retval = modinfo(id, &modi); 435 if (retval) 436 return (retval); 437 438 if (get_udatamodel() == DATAMODEL_NATIVE) { 439 if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0) 440 retval = EFAULT; 441 #ifdef _SYSCALL32_IMPL 442 } else { 443 int i; 444 445 if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX) 446 return (EOVERFLOW); 447 448 modi32.mi_info = modi.mi_info; 449 modi32.mi_state = modi.mi_state; 450 modi32.mi_id = modi.mi_id; 451 modi32.mi_nextid = modi.mi_nextid; 452 modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base; 453 modi32.mi_size = modi.mi_size; 454 modi32.mi_rev = modi.mi_rev; 455 modi32.mi_loadcnt = modi.mi_loadcnt; 456 bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name)); 457 for (i = 0; i < MODMAXLINK32; i++) { 458 modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0; 459 bcopy(modi.mi_msinfo[i].msi_linkinfo, 460 modi32.mi_msinfo[i].msi_linkinfo, 461 sizeof (modi32.mi_msinfo[0].msi_linkinfo)); 462 } 463 if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0) 464 retval = EFAULT; 465 #endif 466 } 467 468 return (retval); 469 } 470 471 /* 472 * Return the last major number in the range of permissible major numbers. 473 */ 474 /*ARGSUSED*/ 475 static int 476 modctl_modreserve(modid_t id, int *data) 477 { 478 if (copyout(&devcnt, data, sizeof (devcnt)) != 0) 479 return (EFAULT); 480 return (0); 481 } 482 483 static int 484 modctl_add_major(int *data) 485 { 486 struct modconfig mc; 487 int i, rv; 488 struct aliases alias; 489 struct aliases *ap; 490 char name[MAXMODCONFNAME]; 491 char cname[MAXMODCONFNAME]; 492 char *drvname; 493 494 bzero(&mc, sizeof (struct modconfig)); 495 if (get_udatamodel() == DATAMODEL_NATIVE) { 496 if (copyin(data, &mc, sizeof (struct modconfig)) != 0) 497 return (EFAULT); 498 } 499 #ifdef _SYSCALL32_IMPL 500 else { 501 struct modconfig32 modc32; 502 503 if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0) 504 return (EFAULT); 505 else { 506 bcopy(modc32.drvname, mc.drvname, 507 sizeof (modc32.drvname)); 508 bcopy(modc32.drvclass, mc.drvclass, 509 sizeof (modc32.drvclass)); 510 mc.major = modc32.major; 511 mc.num_aliases = modc32.num_aliases; 512 mc.ap = (struct aliases *)(uintptr_t)modc32.ap; 513 } 514 } 515 #endif 516 517 /* 518 * If the driver is already in the mb_hashtab, and the name given 519 * doesn't match that driver's name, fail. Otherwise, pass, since 520 * we may be adding aliases. 521 */ 522 if ((drvname = mod_major_to_name(mc.major)) != NULL && 523 strcmp(drvname, mc.drvname) != 0) 524 return (EINVAL); 525 526 /* 527 * Add each supplied driver alias to mb_hashtab 528 */ 529 ap = mc.ap; 530 for (i = 0; i < mc.num_aliases; i++) { 531 bzero(&alias, sizeof (struct aliases)); 532 533 if (get_udatamodel() == DATAMODEL_NATIVE) { 534 if (copyin(ap, &alias, sizeof (struct aliases)) != 0) 535 return (EFAULT); 536 537 if (alias.a_len > MAXMODCONFNAME) 538 return (EINVAL); 539 540 if (copyin(alias.a_name, name, alias.a_len) != 0) 541 return (EFAULT); 542 543 if (name[alias.a_len - 1] != '\0') 544 return (EINVAL); 545 } 546 #ifdef _SYSCALL32_IMPL 547 else { 548 struct aliases32 al32; 549 550 bzero(&al32, sizeof (struct aliases32)); 551 if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) 552 return (EFAULT); 553 554 if (al32.a_len > MAXMODCONFNAME) 555 return (EINVAL); 556 557 if (copyin((void *)(uintptr_t)al32.a_name, 558 name, al32.a_len) != 0) 559 return (EFAULT); 560 561 if (name[al32.a_len - 1] != '\0') 562 return (EINVAL); 563 564 alias.a_next = (void *)(uintptr_t)al32.a_next; 565 } 566 #endif 567 check_esc_sequences(name, cname); 568 (void) make_mbind(cname, mc.major, NULL, mb_hashtab); 569 ap = alias.a_next; 570 } 571 572 /* 573 * Try to establish an mbinding for mc.drvname, and add it to devnames. 574 * Add class if any after establishing the major number 575 */ 576 (void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab); 577 rv = make_devname(mc.drvname, mc.major); 578 579 if (rv == 0) { 580 if (mc.drvclass[0] != '\0') 581 add_class(mc.drvname, mc.drvclass); 582 (void) i_ddi_load_drvconf(mc.major); 583 i_ddi_bind_devs(); 584 i_ddi_di_cache_invalidate(KM_SLEEP); 585 } 586 return (rv); 587 } 588 589 static int 590 modctl_rem_major(major_t major) 591 { 592 struct devnames *dnp; 593 594 if (major >= devcnt) 595 return (EINVAL); 596 597 /* mark devnames as removed */ 598 dnp = &devnamesp[major]; 599 LOCK_DEV_OPS(&dnp->dn_lock); 600 if (dnp->dn_name == NULL || 601 (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) { 602 UNLOCK_DEV_OPS(&dnp->dn_lock); 603 return (EINVAL); 604 } 605 dnp->dn_flags |= DN_DRIVER_REMOVED; 606 pm_driver_removed(major); 607 UNLOCK_DEV_OPS(&dnp->dn_lock); 608 609 (void) i_ddi_unload_drvconf(major); 610 i_ddi_unbind_devs(major); 611 i_ddi_di_cache_invalidate(KM_SLEEP); 612 return (0); 613 } 614 615 static struct vfs * 616 path_to_vfs(char *name) 617 { 618 vnode_t *vp; 619 struct vfs *vfsp; 620 621 if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp)) 622 return (NULL); 623 624 vfsp = vp->v_vfsp; 625 VN_RELE(vp); 626 return (vfsp); 627 } 628 629 static int 630 new_vfs_in_modpath() 631 { 632 static int n_modpath = 0; 633 static char *modpath_copy; 634 static struct pathvfs { 635 char *path; 636 struct vfs *vfsp; 637 } *pathvfs; 638 639 int i, new_vfs = 0; 640 char *tmp, *tmp1; 641 struct vfs *vfsp; 642 643 if (n_modpath != 0) { 644 for (i = 0; i < n_modpath; i++) { 645 vfsp = path_to_vfs(pathvfs[i].path); 646 if (vfsp != pathvfs[i].vfsp) { 647 pathvfs[i].vfsp = vfsp; 648 if (vfsp) 649 new_vfs = 1; 650 } 651 } 652 return (new_vfs); 653 } 654 655 /* 656 * First call, initialize the pathvfs structure 657 */ 658 modpath_copy = i_ddi_strdup(default_path, KM_SLEEP); 659 tmp = modpath_copy; 660 n_modpath = 1; 661 tmp1 = strchr(tmp, ' '); 662 while (tmp1) { 663 *tmp1 = '\0'; 664 n_modpath++; 665 tmp = tmp1 + 1; 666 tmp1 = strchr(tmp, ' '); 667 } 668 669 pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP); 670 tmp = modpath_copy; 671 for (i = 0; i < n_modpath; i++) { 672 pathvfs[i].path = tmp; 673 vfsp = path_to_vfs(tmp); 674 pathvfs[i].vfsp = vfsp; 675 tmp += strlen(tmp) + 1; 676 } 677 return (1); /* always reread driver.conf the first time */ 678 } 679 680 static int 681 modctl_load_drvconf(major_t major) 682 { 683 int ret; 684 685 if (major != (major_t)-1) { 686 ret = i_ddi_load_drvconf(major); 687 if (ret == 0) 688 i_ddi_bind_devs(); 689 return (ret); 690 } 691 692 /* 693 * We are invoked to rescan new driver.conf files. It is 694 * only necessary if a new file system was mounted in the 695 * module_path. Because rescanning driver.conf files can 696 * take some time on older platforms (sun4m), the following 697 * code skips unnecessary driver.conf rescans to optimize 698 * boot performance. 699 */ 700 if (new_vfs_in_modpath()) { 701 (void) i_ddi_load_drvconf((major_t)-1); 702 /* 703 * If we are still initializing io subsystem, 704 * load drivers with ddi-forceattach property 705 */ 706 if (!i_ddi_io_initialized()) 707 i_ddi_forceattach_drivers(); 708 } 709 return (0); 710 } 711 712 static int 713 modctl_unload_drvconf(major_t major) 714 { 715 int ret; 716 717 if (major >= devcnt) 718 return (EINVAL); 719 720 ret = i_ddi_unload_drvconf(major); 721 if (ret != 0) 722 return (ret); 723 (void) i_ddi_unbind_devs(major); 724 725 return (0); 726 } 727 728 static void 729 check_esc_sequences(char *str, char *cstr) 730 { 731 int i; 732 size_t len; 733 char *p; 734 735 len = strlen(str); 736 for (i = 0; i < len; i++, str++, cstr++) { 737 if (*str != '\\') { 738 *cstr = *str; 739 } else { 740 p = str + 1; 741 /* 742 * we only handle octal escape sequences for SPACE 743 */ 744 if (*p++ == '0' && *p++ == '4' && *p == '0') { 745 *cstr = ' '; 746 str += 3; 747 } else { 748 *cstr = *str; 749 } 750 } 751 } 752 *cstr = 0; 753 } 754 755 static int 756 modctl_getmodpathlen(int *data) 757 { 758 int len; 759 len = strlen(default_path); 760 if (copyout(&len, data, sizeof (len)) != 0) 761 return (EFAULT); 762 return (0); 763 } 764 765 static int 766 modctl_getmodpath(char *data) 767 { 768 if (copyout(default_path, data, strlen(default_path) + 1) != 0) 769 return (EFAULT); 770 return (0); 771 } 772 773 static int 774 modctl_read_sysbinding_file(void) 775 { 776 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 777 return (0); 778 } 779 780 static int 781 modctl_getmaj(char *uname, uint_t ulen, int *umajorp) 782 { 783 char name[256]; 784 int retval; 785 major_t major; 786 787 if (ulen == 0) 788 return (EINVAL); 789 if ((retval = copyinstr(uname, name, 790 (ulen < 256) ? ulen : 256, 0)) != 0) 791 return (retval); 792 if ((major = mod_name_to_major(name)) == (major_t)-1) 793 return (ENODEV); 794 if (copyout(&major, umajorp, sizeof (major_t)) != 0) 795 return (EFAULT); 796 return (0); 797 } 798 799 static char ** 800 convert_constraint_string(char *constraints, size_t len) 801 { 802 int i; 803 int n; 804 char *p; 805 char **array; 806 807 ASSERT(constraints != NULL); 808 ASSERT(len > 0); 809 810 for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1) 811 ; 812 813 n = i; 814 815 if (n == 0) { 816 kmem_free(constraints, len); 817 return (NULL); 818 } 819 820 array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP); 821 822 for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) { 823 array[i] = i_ddi_strdup(p, KM_SLEEP); 824 } 825 array[n] = NULL; 826 827 kmem_free(constraints, len); 828 829 return (array); 830 } 831 /*ARGSUSED*/ 832 static int 833 modctl_retire(char *path, char *uconstraints, size_t ulen) 834 { 835 char *pathbuf; 836 char *devpath; 837 size_t pathsz; 838 int retval; 839 char *constraints; 840 char **cons_array; 841 842 if (path == NULL) 843 return (EINVAL); 844 845 if ((uconstraints == NULL) ^ (ulen == 0)) 846 return (EINVAL); 847 848 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 849 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 850 if (retval != 0) { 851 kmem_free(pathbuf, MAXPATHLEN); 852 return (retval); 853 } 854 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 855 kmem_free(pathbuf, MAXPATHLEN); 856 857 /* 858 * First check if the device is already retired. 859 * If it is, this becomes a NOP 860 */ 861 if (e_ddi_device_retired(devpath)) { 862 cmn_err(CE_NOTE, "Device: already retired: %s", devpath); 863 kmem_free(devpath, strlen(devpath) + 1); 864 return (0); 865 } 866 867 cons_array = NULL; 868 if (uconstraints) { 869 constraints = kmem_alloc(ulen, KM_SLEEP); 870 if (copyin(uconstraints, constraints, ulen)) { 871 kmem_free(constraints, ulen); 872 kmem_free(devpath, strlen(devpath) + 1); 873 return (EFAULT); 874 } 875 cons_array = convert_constraint_string(constraints, ulen); 876 } 877 878 /* 879 * Try to retire the device first. The following 880 * routine will return an error only if the device 881 * is not retireable i.e. retire constraints forbid 882 * a retire. A return of success from this routine 883 * indicates that device is retireable. 884 */ 885 retval = e_ddi_retire_device(devpath, cons_array); 886 if (retval != DDI_SUCCESS) { 887 cmn_err(CE_WARN, "constraints forbid retire: %s", devpath); 888 kmem_free(devpath, strlen(devpath) + 1); 889 return (ENOTSUP); 890 } 891 892 /* 893 * Ok, the retire succeeded. Persist the retire. 894 * If retiring a nexus, we need to only persist the 895 * nexus retire. Any children of a retired nexus 896 * are automatically covered by the retire store 897 * code. 898 */ 899 retval = e_ddi_retire_persist(devpath); 900 if (retval != 0) { 901 cmn_err(CE_WARN, "Failed to persist device retire: error %d: " 902 "%s", retval, devpath); 903 kmem_free(devpath, strlen(devpath) + 1); 904 return (retval); 905 } 906 if (moddebug & MODDEBUG_RETIRE) 907 cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath); 908 909 kmem_free(devpath, strlen(devpath) + 1); 910 return (0); 911 } 912 913 static int 914 modctl_is_retired(char *path, int *statep) 915 { 916 char *pathbuf; 917 char *devpath; 918 size_t pathsz; 919 int error; 920 int status; 921 922 if (path == NULL || statep == NULL) 923 return (EINVAL); 924 925 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 926 error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 927 if (error != 0) { 928 kmem_free(pathbuf, MAXPATHLEN); 929 return (error); 930 } 931 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 932 kmem_free(pathbuf, MAXPATHLEN); 933 934 if (e_ddi_device_retired(devpath)) 935 status = 1; 936 else 937 status = 0; 938 kmem_free(devpath, strlen(devpath) + 1); 939 940 return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0); 941 } 942 943 static int 944 modctl_unretire(char *path) 945 { 946 char *pathbuf; 947 char *devpath; 948 size_t pathsz; 949 int retired; 950 int retval; 951 952 if (path == NULL) 953 return (EINVAL); 954 955 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 956 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 957 if (retval != 0) { 958 kmem_free(pathbuf, MAXPATHLEN); 959 return (retval); 960 } 961 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 962 kmem_free(pathbuf, MAXPATHLEN); 963 964 /* 965 * We check if a device is retired (first) before 966 * unpersisting the retire, because we use the 967 * retire store to determine if a device is retired. 968 * If we unpersist first, the device will always appear 969 * to be unretired. For the rationale behind unpersisting 970 * a device that is not retired, see the next comment. 971 */ 972 retired = e_ddi_device_retired(devpath); 973 974 /* 975 * We call unpersist unconditionally because the lookup 976 * for retired devices (e_ddi_device_retired()), skips "bypassed" 977 * devices. We still want to be able remove "bypassed" entries 978 * from the persistent store, so we unpersist unconditionally 979 * i.e. whether or not the entry is found on a lookup. 980 * 981 * e_ddi_retire_unpersist() returns 1 if it found and cleared 982 * an entry from the retire store or 0 otherwise. 983 */ 984 if (e_ddi_retire_unpersist(devpath)) 985 if (moddebug & MODDEBUG_RETIRE) { 986 cmn_err(CE_NOTE, "Unpersisted retire of device: %s", 987 devpath); 988 } 989 990 /* 991 * Check if the device is already unretired. If so, 992 * the unretire becomes a NOP 993 */ 994 if (!retired) { 995 cmn_err(CE_NOTE, "Not retired: %s", devpath); 996 kmem_free(devpath, strlen(devpath) + 1); 997 return (0); 998 } 999 1000 retval = e_ddi_unretire_device(devpath); 1001 if (retval != 0) { 1002 cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n", 1003 retval, devpath); 1004 } 1005 1006 kmem_free(devpath, strlen(devpath) + 1); 1007 1008 return (retval); 1009 } 1010 1011 static int 1012 modctl_getname(char *uname, uint_t ulen, int *umajorp) 1013 { 1014 char *name; 1015 major_t major; 1016 1017 if (copyin(umajorp, &major, sizeof (major)) != 0) 1018 return (EFAULT); 1019 if ((name = mod_major_to_name(major)) == NULL) 1020 return (ENODEV); 1021 if ((strlen(name) + 1) > ulen) 1022 return (ENOSPC); 1023 return (copyoutstr(name, uname, ulen, NULL)); 1024 } 1025 1026 static int 1027 modctl_devt2instance(dev_t dev, int *uinstancep) 1028 { 1029 int instance; 1030 1031 if ((instance = dev_to_instance(dev)) == -1) 1032 return (EINVAL); 1033 1034 return (copyout(&instance, uinstancep, sizeof (int))); 1035 } 1036 1037 /* 1038 * Return the sizeof of the device id. 1039 */ 1040 static int 1041 modctl_sizeof_devid(dev_t dev, uint_t *len) 1042 { 1043 uint_t sz; 1044 ddi_devid_t devid; 1045 1046 /* get device id */ 1047 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1048 return (EINVAL); 1049 1050 sz = ddi_devid_sizeof(devid); 1051 ddi_devid_free(devid); 1052 1053 /* copyout device id size */ 1054 if (copyout(&sz, len, sizeof (sz)) != 0) 1055 return (EFAULT); 1056 1057 return (0); 1058 } 1059 1060 /* 1061 * Return a copy of the device id. 1062 */ 1063 static int 1064 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid) 1065 { 1066 uint_t sz; 1067 ddi_devid_t devid; 1068 int err = 0; 1069 1070 /* get device id */ 1071 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1072 return (EINVAL); 1073 1074 sz = ddi_devid_sizeof(devid); 1075 1076 /* Error if device id is larger than space allocated */ 1077 if (sz > len) { 1078 ddi_devid_free(devid); 1079 return (ENOSPC); 1080 } 1081 1082 /* copy out device id */ 1083 if (copyout(devid, udevid, sz) != 0) 1084 err = EFAULT; 1085 ddi_devid_free(devid); 1086 return (err); 1087 } 1088 1089 /* 1090 * return the /devices paths associated with the specified devid and 1091 * minor name. 1092 */ 1093 /*ARGSUSED*/ 1094 static int 1095 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag, 1096 size_t *ulensp, char *upaths) 1097 { 1098 ddi_devid_t devid = NULL; 1099 int devid_len; 1100 char *minor_name = NULL; 1101 dev_info_t *dip = NULL; 1102 struct ddi_minor_data *dmdp; 1103 char *path = NULL; 1104 int ulens; 1105 int lens; 1106 int len; 1107 dev_t *devlist = NULL; 1108 int ndevs; 1109 int i; 1110 int ret = 0; 1111 1112 /* 1113 * If upaths is NULL then we are only computing the amount of space 1114 * needed to hold the paths and returning the value in *ulensp. If we 1115 * are copying out paths then we get the amount of space allocated by 1116 * the caller. If the actual space needed for paths is larger, or 1117 * things are changing out from under us, then we return EAGAIN. 1118 */ 1119 if (upaths) { 1120 if (ulensp == NULL) 1121 return (EINVAL); 1122 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 1123 return (EFAULT); 1124 } 1125 1126 /* 1127 * copyin enough of the devid to determine the length then 1128 * reallocate and copy in the entire devid. 1129 */ 1130 devid_len = ddi_devid_sizeof(NULL); 1131 devid = kmem_alloc(devid_len, KM_SLEEP); 1132 if (copyin(udevid, devid, devid_len)) { 1133 ret = EFAULT; 1134 goto out; 1135 } 1136 len = devid_len; 1137 devid_len = ddi_devid_sizeof(devid); 1138 kmem_free(devid, len); 1139 devid = kmem_alloc(devid_len, KM_SLEEP); 1140 if (copyin(udevid, devid, devid_len)) { 1141 ret = EFAULT; 1142 goto out; 1143 } 1144 1145 /* copyin the minor name if specified. */ 1146 minor_name = uminor_name; 1147 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1148 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1149 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) { 1150 minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1151 if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) { 1152 ret = EFAULT; 1153 goto out; 1154 } 1155 } 1156 1157 /* 1158 * Use existing function to resolve the devid into a devlist. 1159 * 1160 * NOTE: there is a loss of spectype information in the current 1161 * ddi_lyr_devid_to_devlist implementation. We work around this by not 1162 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor 1163 * node forms in the loop processing the devlist below. It would be 1164 * best if at some point the use of this interface here was replaced 1165 * with a path oriented call. 1166 */ 1167 if (ddi_lyr_devid_to_devlist(devid, 1168 (minor_name == DEVID_MINOR_NAME_ALL) ? 1169 DEVID_MINOR_NAME_ALL_CHR : minor_name, 1170 &ndevs, &devlist) != DDI_SUCCESS) { 1171 ret = EINVAL; 1172 goto out; 1173 } 1174 1175 /* 1176 * loop over the devlist, converting each devt to a path and doing 1177 * a copyout of the path and computation of the amount of space 1178 * needed to hold all the paths 1179 */ 1180 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1181 for (i = 0, lens = 0; i < ndevs; i++) { 1182 1183 /* find the dip associated with the dev_t */ 1184 if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL) 1185 continue; 1186 1187 /* loop over all the minor nodes, skipping ones we don't want */ 1188 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 1189 if ((dmdp->ddm_dev != devlist[i]) || 1190 (dmdp->type != DDM_MINOR)) 1191 continue; 1192 1193 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1194 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1195 (minor_name != DEVID_MINOR_NAME_ALL_BLK) && 1196 strcmp(minor_name, dmdp->ddm_name)) 1197 continue; 1198 else { 1199 if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) && 1200 (dmdp->ddm_spec_type != S_IFCHR)) 1201 continue; 1202 if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) && 1203 (dmdp->ddm_spec_type != S_IFBLK)) 1204 continue; 1205 } 1206 1207 /* XXX need ddi_pathname_minor(dmdp, path); interface */ 1208 if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type, 1209 path) != DDI_SUCCESS) { 1210 ret = EAGAIN; 1211 goto out; 1212 } 1213 len = strlen(path) + 1; 1214 *(path + len) = '\0'; /* set double termination */ 1215 lens += len; 1216 1217 /* copyout the path with double terminations */ 1218 if (upaths) { 1219 if (lens > ulens) { 1220 ret = EAGAIN; 1221 goto out; 1222 } 1223 if (copyout(path, upaths, len + 1)) { 1224 ret = EFAULT; 1225 goto out; 1226 } 1227 upaths += len; 1228 } 1229 } 1230 ddi_release_devi(dip); 1231 dip = NULL; 1232 } 1233 lens++; /* add one for double termination */ 1234 1235 /* copy out the amount of space needed to hold the paths */ 1236 if (ulensp && copyout(&lens, ulensp, sizeof (lens))) { 1237 ret = EFAULT; 1238 goto out; 1239 } 1240 ret = 0; 1241 1242 out: if (dip) 1243 ddi_release_devi(dip); 1244 if (path) 1245 kmem_free(path, MAXPATHLEN); 1246 if (devlist) 1247 ddi_lyr_free_devlist(devlist, ndevs); 1248 if (minor_name && 1249 (minor_name != DEVID_MINOR_NAME_ALL) && 1250 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1251 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) 1252 kmem_free(minor_name, MAXPATHLEN); 1253 if (devid) 1254 kmem_free(devid, devid_len); 1255 return (ret); 1256 } 1257 1258 /* 1259 * Return the size of the minor name. 1260 */ 1261 static int 1262 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len) 1263 { 1264 uint_t sz; 1265 char *name; 1266 1267 /* get the minor name */ 1268 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1269 return (EINVAL); 1270 1271 sz = strlen(name) + 1; 1272 kmem_free(name, sz); 1273 1274 /* copy out the size of the minor name */ 1275 if (copyout(&sz, len, sizeof (sz)) != 0) 1276 return (EFAULT); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Return the minor name. 1283 */ 1284 static int 1285 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname) 1286 { 1287 uint_t sz; 1288 char *name; 1289 int err = 0; 1290 1291 /* get the minor name */ 1292 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1293 return (EINVAL); 1294 1295 sz = strlen(name) + 1; 1296 1297 /* Error if the minor name is larger than the space allocated */ 1298 if (sz > len) { 1299 kmem_free(name, sz); 1300 return (ENOSPC); 1301 } 1302 1303 /* copy out the minor name */ 1304 if (copyout(name, uname, sz) != 0) 1305 err = EFAULT; 1306 kmem_free(name, sz); 1307 return (err); 1308 } 1309 1310 /* 1311 * Return the size of the (dev_t,spectype) devfspath name. 1312 */ 1313 static int 1314 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len) 1315 { 1316 uint_t sz; 1317 char *name; 1318 1319 /* get the path name */ 1320 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1321 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1322 kmem_free(name, MAXPATHLEN); 1323 return (EINVAL); 1324 } 1325 1326 sz = strlen(name) + 1; 1327 kmem_free(name, MAXPATHLEN); 1328 1329 /* copy out the size of the path name */ 1330 if (copyout(&sz, len, sizeof (sz)) != 0) 1331 return (EFAULT); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Return the (dev_t,spectype) devfspath name. 1338 */ 1339 static int 1340 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname) 1341 { 1342 uint_t sz; 1343 char *name; 1344 int err = 0; 1345 1346 /* get the path name */ 1347 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1348 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1349 kmem_free(name, MAXPATHLEN); 1350 return (EINVAL); 1351 } 1352 1353 sz = strlen(name) + 1; 1354 1355 /* Error if the path name is larger than the space allocated */ 1356 if (sz > len) { 1357 kmem_free(name, MAXPATHLEN); 1358 return (ENOSPC); 1359 } 1360 1361 /* copy out the path name */ 1362 if (copyout(name, uname, sz) != 0) 1363 err = EFAULT; 1364 kmem_free(name, MAXPATHLEN); 1365 return (err); 1366 } 1367 1368 /* 1369 * Return the size of the (major,instance) devfspath name. 1370 */ 1371 static int 1372 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len) 1373 { 1374 uint_t sz; 1375 char *name; 1376 1377 /* get the path name */ 1378 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1379 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1380 kmem_free(name, MAXPATHLEN); 1381 return (EINVAL); 1382 } 1383 1384 sz = strlen(name) + 1; 1385 kmem_free(name, MAXPATHLEN); 1386 1387 /* copy out the size of the path name */ 1388 if (copyout(&sz, len, sizeof (sz)) != 0) 1389 return (EFAULT); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * Return the (major_instance) devfspath name. 1396 * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to 1397 * return a path - it uses the instance tree. 1398 */ 1399 static int 1400 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname) 1401 { 1402 uint_t sz; 1403 char *name; 1404 int err = 0; 1405 1406 /* get the path name */ 1407 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1408 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1409 kmem_free(name, MAXPATHLEN); 1410 return (EINVAL); 1411 } 1412 1413 sz = strlen(name) + 1; 1414 1415 /* Error if the path name is larger than the space allocated */ 1416 if (sz > len) { 1417 kmem_free(name, MAXPATHLEN); 1418 return (ENOSPC); 1419 } 1420 1421 /* copy out the path name */ 1422 if (copyout(name, uname, sz) != 0) 1423 err = EFAULT; 1424 kmem_free(name, MAXPATHLEN); 1425 return (err); 1426 } 1427 1428 static int 1429 modctl_get_fbname(char *path) 1430 { 1431 extern dev_t fbdev; 1432 char *pathname = NULL; 1433 int rval = 0; 1434 1435 /* make sure fbdev is set before we plunge in */ 1436 if (fbdev == NODEV) 1437 return (ENODEV); 1438 1439 pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1440 if ((rval = ddi_dev_pathname(fbdev, S_IFCHR, 1441 pathname)) == DDI_SUCCESS) { 1442 if (copyout(pathname, path, strlen(pathname)+1) != 0) { 1443 rval = EFAULT; 1444 } 1445 } 1446 kmem_free(pathname, MAXPATHLEN); 1447 return (rval); 1448 } 1449 1450 /* 1451 * modctl_reread_dacf() 1452 * Reread the dacf rules database from the named binding file. 1453 * If NULL is specified, pass along the NULL, it means 'use the default'. 1454 */ 1455 static int 1456 modctl_reread_dacf(char *path) 1457 { 1458 int rval = 0; 1459 char *filename, *filenamep; 1460 1461 filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1462 1463 if (path == NULL) { 1464 filenamep = NULL; 1465 } else { 1466 if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) { 1467 rval = EFAULT; 1468 goto out; 1469 } 1470 filenamep = filename; 1471 filenamep[MAXPATHLEN - 1] = '\0'; 1472 } 1473 1474 rval = read_dacf_binding_file(filenamep); 1475 out: 1476 kmem_free(filename, MAXPATHLEN); 1477 return (rval); 1478 } 1479 1480 /*ARGSUSED*/ 1481 static int 1482 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4, 1483 uint_t flag) 1484 { 1485 int error = 0; 1486 char *filenamep; 1487 1488 switch (subcmd) { 1489 1490 case MODEVENTS_FLUSH: 1491 /* flush all currently queued events */ 1492 log_sysevent_flushq(subcmd, flag); 1493 break; 1494 1495 case MODEVENTS_SET_DOOR_UPCALL_FILENAME: 1496 /* 1497 * bind door_upcall to filename 1498 * this should only be done once per invocation 1499 * of the event daemon. 1500 */ 1501 1502 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 1503 1504 if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) { 1505 error = EFAULT; 1506 } else { 1507 error = log_sysevent_filename(filenamep); 1508 } 1509 kmem_free(filenamep, MOD_MAXPATH); 1510 break; 1511 1512 case MODEVENTS_GETDATA: 1513 error = log_sysevent_copyout_data((sysevent_id_t *)a2, 1514 (size_t)a3, (caddr_t)a4); 1515 break; 1516 1517 case MODEVENTS_FREEDATA: 1518 error = log_sysevent_free_data((sysevent_id_t *)a2); 1519 break; 1520 case MODEVENTS_POST_EVENT: 1521 error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3, 1522 (sysevent_id_t *)a4); 1523 break; 1524 case MODEVENTS_REGISTER_EVENT: 1525 error = log_sysevent_register((char *)a2, (char *)a3, 1526 (se_pubsub_t *)a4); 1527 break; 1528 default: 1529 error = EINVAL; 1530 } 1531 1532 return (error); 1533 } 1534 1535 static void 1536 free_mperm(mperm_t *mp) 1537 { 1538 int len; 1539 1540 if (mp->mp_minorname) { 1541 len = strlen(mp->mp_minorname) + 1; 1542 kmem_free(mp->mp_minorname, len); 1543 } 1544 kmem_free(mp, sizeof (mperm_t)); 1545 } 1546 1547 #define MP_NO_DRV_ERR \ 1548 "/etc/minor_perm: no driver for %s\n" 1549 1550 #define MP_EMPTY_MINOR \ 1551 "/etc/minor_perm: empty minor name for driver %s\n" 1552 1553 #define MP_NO_MINOR \ 1554 "/etc/minor_perm: no minor matching %s for driver %s\n" 1555 1556 /* 1557 * Remove mperm entry with matching minorname 1558 */ 1559 static void 1560 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1561 { 1562 mperm_t **mp_head; 1563 mperm_t *freemp = NULL; 1564 struct devnames *dnp = &devnamesp[major]; 1565 mperm_t **wildmp; 1566 1567 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1568 1569 LOCK_DEV_OPS(&dnp->dn_lock); 1570 if (strcmp(mp->mp_minorname, "*") == 0) { 1571 wildmp = ((is_clone == 0) ? 1572 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1573 if (*wildmp) 1574 freemp = *wildmp; 1575 *wildmp = NULL; 1576 } else { 1577 mp_head = &dnp->dn_mperm; 1578 while (*mp_head) { 1579 if (strcmp((*mp_head)->mp_minorname, 1580 mp->mp_minorname) != 0) { 1581 mp_head = &(*mp_head)->mp_next; 1582 continue; 1583 } 1584 /* remove the entry */ 1585 freemp = *mp_head; 1586 *mp_head = freemp->mp_next; 1587 break; 1588 } 1589 } 1590 if (freemp) { 1591 if (moddebug & MODDEBUG_MINORPERM) { 1592 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1593 drvname, freemp->mp_minorname, 1594 freemp->mp_mode & 0777, 1595 freemp->mp_uid, freemp->mp_gid); 1596 } 1597 free_mperm(freemp); 1598 } else { 1599 if (moddebug & MODDEBUG_MINORPERM) { 1600 cmn_err(CE_CONT, MP_NO_MINOR, 1601 drvname, mp->mp_minorname); 1602 } 1603 } 1604 1605 UNLOCK_DEV_OPS(&dnp->dn_lock); 1606 } 1607 1608 /* 1609 * Add minor perm entry 1610 */ 1611 static void 1612 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1613 { 1614 mperm_t **mp_head; 1615 mperm_t *freemp = NULL; 1616 struct devnames *dnp = &devnamesp[major]; 1617 mperm_t **wildmp; 1618 1619 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1620 1621 /* 1622 * Note that update_drv replace semantics require 1623 * replacing matching entries with the new permissions. 1624 */ 1625 LOCK_DEV_OPS(&dnp->dn_lock); 1626 if (strcmp(mp->mp_minorname, "*") == 0) { 1627 wildmp = ((is_clone == 0) ? 1628 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1629 if (*wildmp) 1630 freemp = *wildmp; 1631 *wildmp = mp; 1632 } else { 1633 mperm_t *p, *v = NULL; 1634 for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) { 1635 if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) { 1636 if (v == NULL) 1637 dnp->dn_mperm = mp; 1638 else 1639 v->mp_next = mp; 1640 mp->mp_next = p->mp_next; 1641 freemp = p; 1642 goto replaced; 1643 } 1644 } 1645 if (p == NULL) { 1646 mp_head = &dnp->dn_mperm; 1647 if (*mp_head == NULL) { 1648 *mp_head = mp; 1649 } else { 1650 mp->mp_next = *mp_head; 1651 *mp_head = mp; 1652 } 1653 } 1654 } 1655 replaced: 1656 if (freemp) { 1657 if (moddebug & MODDEBUG_MINORPERM) { 1658 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1659 drvname, freemp->mp_minorname, 1660 freemp->mp_mode & 0777, 1661 freemp->mp_uid, freemp->mp_gid); 1662 } 1663 free_mperm(freemp); 1664 } 1665 if (moddebug & MODDEBUG_MINORPERM) { 1666 cmn_err(CE_CONT, "> %s %s 0%o %d %d\n", 1667 drvname, mp->mp_minorname, mp->mp_mode & 0777, 1668 mp->mp_uid, mp->mp_gid); 1669 } 1670 UNLOCK_DEV_OPS(&dnp->dn_lock); 1671 } 1672 1673 1674 static int 1675 process_minorperm(int cmd, nvlist_t *nvl) 1676 { 1677 char *minor; 1678 major_t major; 1679 mperm_t *mp; 1680 nvpair_t *nvp; 1681 char *name; 1682 int is_clone; 1683 major_t minmaj; 1684 1685 ASSERT(cmd == MODLOADMINORPERM || 1686 cmd == MODADDMINORPERM || cmd == MODREMMINORPERM); 1687 1688 nvp = NULL; 1689 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 1690 name = nvpair_name(nvp); 1691 1692 is_clone = 0; 1693 (void) nvpair_value_string(nvp, &minor); 1694 major = ddi_name_to_major(name); 1695 if (major != (major_t)-1) { 1696 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 1697 if (minor == NULL || strlen(minor) == 0) { 1698 if (moddebug & MODDEBUG_MINORPERM) { 1699 cmn_err(CE_CONT, MP_EMPTY_MINOR, name); 1700 } 1701 minor = "*"; 1702 } 1703 1704 /* 1705 * The minor name of a node using the clone 1706 * driver must be the driver name. To avoid 1707 * multiple searches, we map entries in the form 1708 * clone:<driver> to <driver>:*. This also allows us 1709 * to filter out some of the litter in /etc/minor_perm. 1710 * Minor perm alias entries where the name is not 1711 * the driver kept on the clone list itself. 1712 * This all seems very fragile as a driver could 1713 * be introduced with an existing alias name. 1714 */ 1715 if (strcmp(name, "clone") == 0) { 1716 minmaj = ddi_name_to_major(minor); 1717 if (minmaj != (major_t)-1) { 1718 if (moddebug & MODDEBUG_MINORPERM) { 1719 cmn_err(CE_CONT, 1720 "mapping %s:%s to %s:*\n", 1721 name, minor, minor); 1722 } 1723 major = minmaj; 1724 name = minor; 1725 minor = "*"; 1726 is_clone = 1; 1727 } 1728 } 1729 1730 if (mp) { 1731 mp->mp_minorname = 1732 i_ddi_strdup(minor, KM_SLEEP); 1733 } 1734 } else { 1735 mp = NULL; 1736 if (moddebug & MODDEBUG_MINORPERM) { 1737 cmn_err(CE_CONT, MP_NO_DRV_ERR, name); 1738 } 1739 } 1740 1741 /* mode */ 1742 nvp = nvlist_next_nvpair(nvl, nvp); 1743 ASSERT(strcmp(nvpair_name(nvp), "mode") == 0); 1744 if (mp) 1745 (void) nvpair_value_int32(nvp, (int *)&mp->mp_mode); 1746 /* uid */ 1747 nvp = nvlist_next_nvpair(nvl, nvp); 1748 ASSERT(strcmp(nvpair_name(nvp), "uid") == 0); 1749 if (mp) 1750 (void) nvpair_value_uint32(nvp, &mp->mp_uid); 1751 /* gid */ 1752 nvp = nvlist_next_nvpair(nvl, nvp); 1753 ASSERT(strcmp(nvpair_name(nvp), "gid") == 0); 1754 if (mp) { 1755 (void) nvpair_value_uint32(nvp, &mp->mp_gid); 1756 1757 if (cmd == MODREMMINORPERM) { 1758 rem_minorperm(major, name, mp, is_clone); 1759 free_mperm(mp); 1760 } else { 1761 add_minorperm(major, name, mp, is_clone); 1762 } 1763 } 1764 } 1765 1766 if (cmd == MODLOADMINORPERM) 1767 minorperm_loaded = 1; 1768 1769 /* 1770 * Reset permissions of cached dv_nodes 1771 */ 1772 (void) devfs_reset_perm(DV_RESET_PERM); 1773 1774 return (0); 1775 } 1776 1777 static int 1778 modctl_minorperm(int cmd, char *usrbuf, size_t buflen) 1779 { 1780 int error; 1781 nvlist_t *nvl; 1782 char *buf = kmem_alloc(buflen, KM_SLEEP); 1783 1784 if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) { 1785 kmem_free(buf, buflen); 1786 return (error); 1787 } 1788 1789 error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP); 1790 kmem_free(buf, buflen); 1791 if (error) 1792 return (error); 1793 1794 error = process_minorperm(cmd, nvl); 1795 nvlist_free(nvl); 1796 return (error); 1797 } 1798 1799 struct walk_args { 1800 char *wa_drvname; 1801 list_t wa_pathlist; 1802 }; 1803 1804 struct path_elem { 1805 char *pe_dir; 1806 char *pe_nodename; 1807 list_node_t pe_node; 1808 int pe_dirlen; 1809 }; 1810 1811 /*ARGSUSED*/ 1812 static int 1813 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg) 1814 { 1815 struct walk_args *wargs = (struct walk_args *)arg; 1816 struct path_elem *pe; 1817 char *nodename; 1818 1819 /* 1820 * Search may be restricted to a single driver in the case of rem_drv 1821 */ 1822 if (wargs->wa_drvname && 1823 strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0) 1824 return (INST_WALK_CONTINUE); 1825 1826 pe = kmem_zalloc(sizeof (*pe), KM_SLEEP); 1827 pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP); 1828 pe->pe_dirlen = strlen(pe->pe_dir) + 1; 1829 ASSERT(strrchr(pe->pe_dir, '/') != NULL); 1830 nodename = strrchr(pe->pe_dir, '/'); 1831 *nodename++ = 0; 1832 pe->pe_nodename = nodename; 1833 list_insert_tail(&wargs->wa_pathlist, pe); 1834 1835 return (INST_WALK_CONTINUE); 1836 } 1837 1838 /* 1839 * /devices attribute nodes clean-up optionally performed 1840 * when removing a driver (rem_drv -C). 1841 * 1842 * Removing attribute nodes allows a machine to be reprovisioned 1843 * without the side-effect of inadvertently picking up stale 1844 * device node ownership or permissions. 1845 * 1846 * Preserving attributes (not performing cleanup) allows devices 1847 * attribute changes to be preserved across upgrades, as 1848 * upgrade rather heavy-handedly does a rem_drv/add_drv cycle. 1849 */ 1850 static int 1851 modctl_remdrv_cleanup(const char *u_drvname) 1852 { 1853 struct walk_args *wargs; 1854 struct path_elem *pe; 1855 char *drvname; 1856 int err, rval = 0; 1857 1858 drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP); 1859 if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) { 1860 kmem_free(drvname, MAXMODCONFNAME); 1861 return (err); 1862 } 1863 1864 /* 1865 * First go through the instance database. For each 1866 * instance of a device bound to the driver being 1867 * removed, remove any underlying devfs attribute nodes. 1868 * 1869 * This is a two-step process. First we go through 1870 * the instance data itself, constructing a list of 1871 * the nodes discovered. The second step is then 1872 * to find and remove any devfs attribute nodes 1873 * for the instances discovered in the first step. 1874 * The two-step process avoids any difficulties 1875 * which could arise by holding the instance data 1876 * lock with simultaneous devfs operations. 1877 */ 1878 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP); 1879 1880 wargs->wa_drvname = drvname; 1881 list_create(&wargs->wa_pathlist, 1882 sizeof (struct path_elem), offsetof(struct path_elem, pe_node)); 1883 1884 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs); 1885 1886 for (pe = list_head(&wargs->wa_pathlist); pe != NULL; 1887 pe = list_next(&wargs->wa_pathlist, pe)) { 1888 err = devfs_remdrv_cleanup((const char *)pe->pe_dir, 1889 (const char *)pe->pe_nodename); 1890 if (rval == 0) 1891 rval = err; 1892 } 1893 1894 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) { 1895 list_remove(&wargs->wa_pathlist, pe); 1896 kmem_free(pe->pe_dir, pe->pe_dirlen); 1897 kmem_free(pe, sizeof (*pe)); 1898 } 1899 kmem_free(wargs, sizeof (*wargs)); 1900 1901 /* 1902 * Pseudo nodes aren't recorded in the instance database 1903 * so any such nodes need to be handled separately. 1904 */ 1905 err = devfs_remdrv_cleanup("pseudo", (const char *)drvname); 1906 if (rval == 0) 1907 rval = err; 1908 1909 kmem_free(drvname, MAXMODCONFNAME); 1910 return (rval); 1911 } 1912 1913 /* 1914 * Perform a cleanup of non-existent /devices attribute nodes, 1915 * similar to rem_drv -C, but for all drivers/devices. 1916 * This is also optional, performed as part of devfsadm -C. 1917 */ 1918 void 1919 dev_devices_cleanup() 1920 { 1921 struct walk_args *wargs; 1922 struct path_elem *pe; 1923 dev_info_t *devi; 1924 char *path; 1925 int err; 1926 1927 /* 1928 * It's expected that all drivers have been loaded and 1929 * module unloading disabled while performing cleanup. 1930 */ 1931 ASSERT(modunload_disable_count > 0); 1932 1933 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP); 1934 wargs->wa_drvname = NULL; 1935 list_create(&wargs->wa_pathlist, 1936 sizeof (struct path_elem), offsetof(struct path_elem, pe_node)); 1937 1938 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs); 1939 1940 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1941 1942 for (pe = list_head(&wargs->wa_pathlist); pe != NULL; 1943 pe = list_next(&wargs->wa_pathlist, pe)) { 1944 (void) snprintf(path, MAXPATHLEN, "%s/%s", 1945 pe->pe_dir, pe->pe_nodename); 1946 devi = e_ddi_hold_devi_by_path(path, 0); 1947 if (devi != NULL) { 1948 ddi_release_devi(devi); 1949 } else { 1950 err = devfs_remdrv_cleanup((const char *)pe->pe_dir, 1951 (const char *)pe->pe_nodename); 1952 if (err) { 1953 cmn_err(CE_CONT, 1954 "devfs: %s: clean-up error %d\n", 1955 path, err); 1956 } 1957 } 1958 } 1959 1960 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) { 1961 list_remove(&wargs->wa_pathlist, pe); 1962 kmem_free(pe->pe_dir, pe->pe_dirlen); 1963 kmem_free(pe, sizeof (*pe)); 1964 } 1965 kmem_free(wargs, sizeof (*wargs)); 1966 kmem_free(path, MAXPATHLEN); 1967 } 1968 1969 static int 1970 modctl_allocpriv(const char *name) 1971 { 1972 char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP); 1973 int error; 1974 1975 if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) { 1976 kmem_free(pstr, PRIVNAME_MAX); 1977 return (error); 1978 } 1979 error = priv_getbyname(pstr, PRIV_ALLOC); 1980 if (error < 0) 1981 error = -error; 1982 else 1983 error = 0; 1984 kmem_free(pstr, PRIVNAME_MAX); 1985 return (error); 1986 } 1987 1988 static int 1989 modctl_devexists(const char *upath, int pathlen) 1990 { 1991 char *path; 1992 int ret; 1993 1994 /* 1995 * copy in the path, including the terminating null 1996 */ 1997 pathlen++; 1998 if (pathlen <= 1 || pathlen > MAXPATHLEN) 1999 return (EINVAL); 2000 path = kmem_zalloc(pathlen + 1, KM_SLEEP); 2001 if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) { 2002 ret = sdev_modctl_devexists(path); 2003 } 2004 2005 kmem_free(path, pathlen + 1); 2006 return (ret); 2007 } 2008 2009 static int 2010 modctl_devreaddir(const char *udir, int udirlen, 2011 char *upaths, int64_t *ulensp) 2012 { 2013 char *paths = NULL; 2014 char **dirlist = NULL; 2015 char *dir; 2016 int64_t ulens; 2017 int64_t lens; 2018 int i, n; 2019 int ret = 0; 2020 char *p; 2021 int npaths; 2022 int npaths_alloc; 2023 2024 /* 2025 * If upaths is NULL then we are only computing the amount of space 2026 * needed to return the paths, with the value returned in *ulensp. If we 2027 * are copying out paths then we get the amount of space allocated by 2028 * the caller. If the actual space needed for paths is larger, or 2029 * things are changing out from under us, then we return EAGAIN. 2030 */ 2031 if (upaths) { 2032 if (ulensp == NULL) 2033 return (EINVAL); 2034 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 2035 return (EFAULT); 2036 } 2037 2038 /* 2039 * copyin the /dev path including terminating null 2040 */ 2041 udirlen++; 2042 if (udirlen <= 1 || udirlen > MAXPATHLEN) 2043 return (EINVAL); 2044 dir = kmem_zalloc(udirlen + 1, KM_SLEEP); 2045 if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0) 2046 goto err; 2047 2048 if ((ret = sdev_modctl_readdir(dir, &dirlist, 2049 &npaths, &npaths_alloc)) != 0) { 2050 ASSERT(dirlist == NULL); 2051 goto err; 2052 } 2053 2054 lens = 0; 2055 for (i = 0; i < npaths; i++) { 2056 lens += strlen(dirlist[i]) + 1; 2057 } 2058 lens++; /* add one for double termination */ 2059 2060 if (upaths) { 2061 if (lens > ulens) { 2062 ret = EAGAIN; 2063 goto out; 2064 } 2065 2066 paths = kmem_alloc(lens, KM_SLEEP); 2067 2068 p = paths; 2069 for (i = 0; i < npaths; i++) { 2070 n = strlen(dirlist[i]) + 1; 2071 bcopy(dirlist[i], p, n); 2072 p += n; 2073 } 2074 *p = 0; 2075 2076 if (copyout(paths, upaths, lens)) { 2077 ret = EFAULT; 2078 goto err; 2079 } 2080 } 2081 2082 out: 2083 /* copy out the amount of space needed to hold the paths */ 2084 if (copyout(&lens, ulensp, sizeof (lens))) 2085 ret = EFAULT; 2086 2087 err: 2088 if (dirlist) 2089 sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc); 2090 if (paths) 2091 kmem_free(paths, lens); 2092 kmem_free(dir, udirlen + 1); 2093 return (ret); 2094 } 2095 2096 int 2097 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2) 2098 { 2099 int error = 0; 2100 2101 switch (subcmd) { 2102 case MODDEVNAME_LOOKUPDOOR: 2103 case MODDEVNAME_DEVFSADMNODE: 2104 error = devname_filename_register(subcmd, (char *)a1); 2105 break; 2106 case MODDEVNAME_NSMAPS: 2107 error = devname_nsmaps_register((char *)a1, (size_t)a2); 2108 break; 2109 case MODDEVNAME_PROFILE: 2110 error = devname_profile_update((char *)a1, (size_t)a2); 2111 break; 2112 case MODDEVNAME_RECONFIG: 2113 i_ddi_set_reconfig(); 2114 break; 2115 case MODDEVNAME_SYSAVAIL: 2116 i_ddi_set_sysavail(); 2117 break; 2118 default: 2119 error = EINVAL; 2120 break; 2121 } 2122 2123 return (error); 2124 } 2125 2126 /*ARGSUSED5*/ 2127 int 2128 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, 2129 uintptr_t a5) 2130 { 2131 int error = EINVAL; 2132 dev_t dev; 2133 2134 if (secpolicy_modctl(CRED(), cmd) != 0) 2135 return (set_errno(EPERM)); 2136 2137 switch (cmd) { 2138 case MODLOAD: /* load a module */ 2139 error = modctl_modload((int)a1, (char *)a2, (int *)a3); 2140 break; 2141 2142 case MODUNLOAD: /* unload a module */ 2143 error = modctl_modunload((modid_t)a1); 2144 break; 2145 2146 case MODINFO: /* get module status */ 2147 error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2); 2148 break; 2149 2150 case MODRESERVED: /* get last major number in range */ 2151 error = modctl_modreserve((modid_t)a1, (int *)a2); 2152 break; 2153 2154 case MODSETMINIROOT: /* we are running in miniroot */ 2155 isminiroot = 1; 2156 error = 0; 2157 break; 2158 2159 case MODADDMAJBIND: /* read major binding file */ 2160 error = modctl_add_major((int *)a2); 2161 break; 2162 2163 case MODGETPATHLEN: /* get modpath length */ 2164 error = modctl_getmodpathlen((int *)a2); 2165 break; 2166 2167 case MODGETPATH: /* get modpath */ 2168 error = modctl_getmodpath((char *)a2); 2169 break; 2170 2171 case MODREADSYSBIND: /* read system call binding file */ 2172 error = modctl_read_sysbinding_file(); 2173 break; 2174 2175 case MODGETMAJBIND: /* get major number for named device */ 2176 error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3); 2177 break; 2178 2179 case MODGETNAME: /* get name of device given major number */ 2180 error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3); 2181 break; 2182 2183 case MODDEVT2INSTANCE: 2184 if (get_udatamodel() == DATAMODEL_NATIVE) { 2185 dev = (dev_t)a1; 2186 } 2187 #ifdef _SYSCALL32_IMPL 2188 else { 2189 dev = expldev(a1); 2190 } 2191 #endif 2192 error = modctl_devt2instance(dev, (int *)a2); 2193 break; 2194 2195 case MODSIZEOF_DEVID: /* sizeof device id of device given dev_t */ 2196 if (get_udatamodel() == DATAMODEL_NATIVE) { 2197 dev = (dev_t)a1; 2198 } 2199 #ifdef _SYSCALL32_IMPL 2200 else { 2201 dev = expldev(a1); 2202 } 2203 #endif 2204 error = modctl_sizeof_devid(dev, (uint_t *)a2); 2205 break; 2206 2207 case MODGETDEVID: /* get device id of device given dev_t */ 2208 if (get_udatamodel() == DATAMODEL_NATIVE) { 2209 dev = (dev_t)a1; 2210 } 2211 #ifdef _SYSCALL32_IMPL 2212 else { 2213 dev = expldev(a1); 2214 } 2215 #endif 2216 error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3); 2217 break; 2218 2219 case MODSIZEOF_MINORNAME: /* sizeof minor nm (dev_t,spectype) */ 2220 if (get_udatamodel() == DATAMODEL_NATIVE) { 2221 error = modctl_sizeof_minorname((dev_t)a1, (int)a2, 2222 (uint_t *)a3); 2223 } 2224 #ifdef _SYSCALL32_IMPL 2225 else { 2226 error = modctl_sizeof_minorname(expldev(a1), (int)a2, 2227 (uint_t *)a3); 2228 } 2229 2230 #endif 2231 break; 2232 2233 case MODGETMINORNAME: /* get minor name of (dev_t,spectype) */ 2234 if (get_udatamodel() == DATAMODEL_NATIVE) { 2235 error = modctl_get_minorname((dev_t)a1, (int)a2, 2236 (uint_t)a3, (char *)a4); 2237 } 2238 #ifdef _SYSCALL32_IMPL 2239 else { 2240 error = modctl_get_minorname(expldev(a1), (int)a2, 2241 (uint_t)a3, (char *)a4); 2242 } 2243 #endif 2244 break; 2245 2246 case MODGETDEVFSPATH_LEN: /* sizeof path nm of (dev_t,spectype) */ 2247 if (get_udatamodel() == DATAMODEL_NATIVE) { 2248 error = modctl_devfspath_len((dev_t)a1, (int)a2, 2249 (uint_t *)a3); 2250 } 2251 #ifdef _SYSCALL32_IMPL 2252 else { 2253 error = modctl_devfspath_len(expldev(a1), (int)a2, 2254 (uint_t *)a3); 2255 } 2256 2257 #endif 2258 break; 2259 2260 case MODGETDEVFSPATH: /* get path name of (dev_t,spec) type */ 2261 if (get_udatamodel() == DATAMODEL_NATIVE) { 2262 error = modctl_devfspath((dev_t)a1, (int)a2, 2263 (uint_t)a3, (char *)a4); 2264 } 2265 #ifdef _SYSCALL32_IMPL 2266 else { 2267 error = modctl_devfspath(expldev(a1), (int)a2, 2268 (uint_t)a3, (char *)a4); 2269 } 2270 #endif 2271 break; 2272 2273 case MODGETDEVFSPATH_MI_LEN: /* sizeof path nm of (major,instance) */ 2274 error = modctl_devfspath_mi_len((major_t)a1, (int)a2, 2275 (uint_t *)a3); 2276 break; 2277 2278 case MODGETDEVFSPATH_MI: /* get path name of (major,instance) */ 2279 error = modctl_devfspath_mi((major_t)a1, (int)a2, 2280 (uint_t)a3, (char *)a4); 2281 break; 2282 2283 2284 case MODEVENTS: 2285 error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5); 2286 break; 2287 2288 case MODGETFBNAME: /* get the framebuffer name */ 2289 error = modctl_get_fbname((char *)a1); 2290 break; 2291 2292 case MODREREADDACF: /* reread dacf rule database from given file */ 2293 error = modctl_reread_dacf((char *)a1); 2294 break; 2295 2296 case MODLOADDRVCONF: /* load driver.conf file for major */ 2297 error = modctl_load_drvconf((major_t)a1); 2298 break; 2299 2300 case MODUNLOADDRVCONF: /* unload driver.conf file for major */ 2301 error = modctl_unload_drvconf((major_t)a1); 2302 break; 2303 2304 case MODREMMAJBIND: /* remove a major binding */ 2305 error = modctl_rem_major((major_t)a1); 2306 break; 2307 2308 case MODDEVID2PATHS: /* get paths given devid */ 2309 error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2, 2310 (uint_t)a3, (size_t *)a4, (char *)a5); 2311 break; 2312 2313 case MODSETDEVPOLICY: /* establish device policy */ 2314 error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3); 2315 break; 2316 2317 case MODGETDEVPOLICY: /* get device policy */ 2318 error = devpolicy_get((int *)a1, (size_t)a2, 2319 (devplcysys_t *)a3); 2320 break; 2321 2322 case MODALLOCPRIV: 2323 error = modctl_allocpriv((const char *)a1); 2324 break; 2325 2326 case MODGETDEVPOLICYBYNAME: 2327 error = devpolicy_getbyname((size_t)a1, 2328 (devplcysys_t *)a2, (char *)a3); 2329 break; 2330 2331 case MODLOADMINORPERM: 2332 case MODADDMINORPERM: 2333 case MODREMMINORPERM: 2334 error = modctl_minorperm(cmd, (char *)a1, (size_t)a2); 2335 break; 2336 2337 case MODREMDRVCLEANUP: 2338 error = modctl_remdrv_cleanup((const char *)a1); 2339 break; 2340 2341 case MODDEVEXISTS: /* non-reconfiguring /dev lookup */ 2342 error = modctl_devexists((const char *)a1, (size_t)a2); 2343 break; 2344 2345 case MODDEVREADDIR: /* non-reconfiguring /dev readdir */ 2346 error = modctl_devreaddir((const char *)a1, (size_t)a2, 2347 (char *)a3, (int64_t *)a4); 2348 break; 2349 2350 case MODDEVNAME: 2351 error = modctl_moddevname((int)a1, a2, a3); 2352 break; 2353 2354 case MODRETIRE: /* retire device named by physpath a1 */ 2355 error = modctl_retire((char *)a1, (char *)a2, (size_t)a3); 2356 break; 2357 2358 case MODISRETIRED: /* check if a device is retired. */ 2359 error = modctl_is_retired((char *)a1, (int *)a2); 2360 break; 2361 2362 case MODUNRETIRE: /* unretire device named by physpath a1 */ 2363 error = modctl_unretire((char *)a1); 2364 break; 2365 2366 default: 2367 error = EINVAL; 2368 break; 2369 } 2370 2371 return (error ? set_errno(error) : 0); 2372 } 2373 2374 /* 2375 * Calls to kobj_load_module()() are handled off to this routine in a 2376 * separate thread. 2377 */ 2378 static void 2379 modload_thread(struct loadmt *ltp) 2380 { 2381 /* load the module and signal the creator of this thread */ 2382 kmutex_t cpr_lk; 2383 callb_cpr_t cpr_i; 2384 2385 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 2386 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload"); 2387 /* borrow the devi lock from thread which invoked us */ 2388 pm_borrow_lock(ltp->owner); 2389 ltp->retval = kobj_load_module(ltp->mp, ltp->usepath); 2390 pm_return_lock(); 2391 sema_v(<p->sema); 2392 mutex_enter(&cpr_lk); 2393 CALLB_CPR_EXIT(&cpr_i); 2394 mutex_destroy(&cpr_lk); 2395 thread_exit(); 2396 } 2397 2398 /* 2399 * load a module, adding a reference if caller specifies rmodp. If rmodp 2400 * is specified then an errno is returned, otherwise a module index is 2401 * returned (-1 on error). 2402 */ 2403 static int 2404 modrload(char *subdir, char *filename, struct modctl **rmodp) 2405 { 2406 struct modctl *modp; 2407 size_t size; 2408 char *fullname; 2409 int retval = EINVAL; 2410 int id = -1; 2411 2412 if (rmodp) 2413 *rmodp = NULL; /* avoid garbage */ 2414 2415 if (subdir != NULL) { 2416 /* 2417 * refuse / in filename to prevent "../" escapes. 2418 */ 2419 if (strchr(filename, '/') != NULL) 2420 return (rmodp ? retval : id); 2421 2422 /* 2423 * allocate enough space for <subdir>/<filename><NULL> 2424 */ 2425 size = strlen(subdir) + strlen(filename) + 2; 2426 fullname = kmem_zalloc(size, KM_SLEEP); 2427 (void) sprintf(fullname, "%s/%s", subdir, filename); 2428 } else { 2429 fullname = filename; 2430 } 2431 2432 modp = mod_hold_installed_mod(fullname, 1, 0, &retval); 2433 if (modp != NULL) { 2434 id = modp->mod_id; 2435 if (rmodp) { 2436 /* add mod_ref and return *rmodp */ 2437 mutex_enter(&mod_lock); 2438 modp->mod_ref++; 2439 mutex_exit(&mod_lock); 2440 *rmodp = modp; 2441 } 2442 mod_release_mod(modp); 2443 CPU_STATS_ADDQ(CPU, sys, modload, 1); 2444 } 2445 2446 done: if (subdir != NULL) 2447 kmem_free(fullname, size); 2448 return (rmodp ? retval : id); 2449 } 2450 2451 /* 2452 * This is the primary kernel interface to load a module. It loads and 2453 * installs the named module. It does not hold mod_ref of the module, so 2454 * a module unload attempt can occur at any time - it is up to the 2455 * _fini/mod_remove implementation to determine if unload will succeed. 2456 */ 2457 int 2458 modload(char *subdir, char *filename) 2459 { 2460 return (modrload(subdir, filename, NULL)); 2461 } 2462 2463 /* 2464 * Load a module using a series of qualified names from most specific to least 2465 * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try: 2466 * Value returned in *chosen 2467 * foo/bar.baz.1.2.3 3 2468 * foo/bar.baz.1.2 2 2469 * foo/bar.baz.1 1 2470 * foo/bar.baz 0 2471 * 2472 * Return the module ID on success; -1 if no module was loaded. On success 2473 * and if 'chosen' is not NULL we also return the number of suffices that 2474 * were in the module we chose to load. 2475 */ 2476 int 2477 modload_qualified(const char *subdir, const char *p1, 2478 const char *p2, const char *delim, uint_t suffv[], int suffc, int *chosen) 2479 { 2480 char path[MOD_MAXPATH]; 2481 size_t n, resid = sizeof (path); 2482 char *p = path; 2483 2484 char **dotv; 2485 int i, rc, id; 2486 modctl_t *mp; 2487 2488 if (p2 != NULL) 2489 n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2); 2490 else 2491 n = snprintf(p, resid, "%s/%s", subdir, p1); 2492 2493 if (n >= resid) 2494 return (-1); 2495 2496 p += n; 2497 resid -= n; 2498 dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP); 2499 2500 for (i = 0; i < suffc; i++) { 2501 dotv[i] = p; 2502 n = snprintf(p, resid, "%s%u", delim, suffv[i]); 2503 2504 if (n >= resid) { 2505 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2506 return (-1); 2507 } 2508 2509 p += n; 2510 resid -= n; 2511 } 2512 2513 dotv[suffc] = p; 2514 2515 for (i = suffc; i >= 0; i--) { 2516 dotv[i][0] = '\0'; 2517 mp = mod_hold_installed_mod(path, 1, 1, &rc); 2518 2519 if (mp != NULL) { 2520 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2521 id = mp->mod_id; 2522 mod_release_mod(mp); 2523 if (chosen != NULL) 2524 *chosen = i; 2525 return (id); 2526 } 2527 } 2528 2529 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2530 return (-1); 2531 } 2532 2533 /* 2534 * Load a module. 2535 */ 2536 int 2537 modloadonly(char *subdir, char *filename) 2538 { 2539 struct modctl *modp; 2540 char *fullname; 2541 size_t size; 2542 int id, retval; 2543 2544 if (subdir != NULL) { 2545 /* 2546 * allocate enough space for <subdir>/<filename><NULL> 2547 */ 2548 size = strlen(subdir) + strlen(filename) + 2; 2549 fullname = kmem_zalloc(size, KM_SLEEP); 2550 (void) sprintf(fullname, "%s/%s", subdir, filename); 2551 } else { 2552 fullname = filename; 2553 } 2554 2555 modp = mod_hold_loaded_mod(NULL, fullname, &retval); 2556 if (modp) { 2557 id = modp->mod_id; 2558 mod_release_mod(modp); 2559 } 2560 2561 if (subdir != NULL) 2562 kmem_free(fullname, size); 2563 2564 if (retval == 0) 2565 return (id); 2566 return (-1); 2567 } 2568 2569 /* 2570 * Try to uninstall and unload a module, removing a reference if caller 2571 * specifies rmodp. 2572 */ 2573 static int 2574 modunrload(modid_t id, struct modctl **rmodp, int unload) 2575 { 2576 struct modctl *modp; 2577 int retval; 2578 2579 if (rmodp) 2580 *rmodp = NULL; /* avoid garbage */ 2581 2582 if ((modp = mod_hold_by_id((modid_t)id)) == NULL) 2583 return (EINVAL); 2584 2585 if (rmodp) { 2586 mutex_enter(&mod_lock); 2587 modp->mod_ref--; 2588 mutex_exit(&mod_lock); 2589 *rmodp = modp; 2590 } 2591 2592 if (unload) { 2593 retval = moduninstall(modp); 2594 if (retval == 0) { 2595 mod_unload(modp); 2596 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 2597 } else if (retval == EALREADY) 2598 retval = 0; /* already unloaded, not an error */ 2599 } else 2600 retval = 0; 2601 2602 mod_release_mod(modp); 2603 return (retval); 2604 } 2605 2606 /* 2607 * Uninstall and unload a module. 2608 */ 2609 int 2610 modunload(modid_t id) 2611 { 2612 int retval; 2613 2614 /* synchronize with any active modunload_disable() */ 2615 modunload_begin(); 2616 if (ddi_root_node()) 2617 (void) devfs_clean(ddi_root_node(), NULL, 0); 2618 retval = modunrload(id, NULL, 1); 2619 modunload_end(); 2620 return (retval); 2621 } 2622 2623 /* 2624 * Return status of a loaded module. 2625 */ 2626 static int 2627 modinfo(modid_t id, struct modinfo *modinfop) 2628 { 2629 struct modctl *modp; 2630 modid_t mid; 2631 int i; 2632 2633 mid = modinfop->mi_id; 2634 if (modinfop->mi_info & MI_INFO_ALL) { 2635 while ((modp = mod_hold_next_by_id(mid++)) != NULL) { 2636 if ((modinfop->mi_info & MI_INFO_CNT) || 2637 modp->mod_installed) 2638 break; 2639 mod_release_mod(modp); 2640 } 2641 if (modp == NULL) 2642 return (EINVAL); 2643 } else { 2644 modp = mod_hold_by_id(id); 2645 if (modp == NULL) 2646 return (EINVAL); 2647 if (!(modinfop->mi_info & MI_INFO_CNT) && 2648 (modp->mod_installed == 0)) { 2649 mod_release_mod(modp); 2650 return (EINVAL); 2651 } 2652 } 2653 2654 modinfop->mi_rev = 0; 2655 modinfop->mi_state = 0; 2656 for (i = 0; i < MODMAXLINK; i++) { 2657 modinfop->mi_msinfo[i].msi_p0 = -1; 2658 modinfop->mi_msinfo[i].msi_linkinfo[0] = 0; 2659 } 2660 if (modp->mod_loaded) { 2661 modinfop->mi_state = MI_LOADED; 2662 kobj_getmodinfo(modp->mod_mp, modinfop); 2663 } 2664 if (modp->mod_installed) { 2665 modinfop->mi_state |= MI_INSTALLED; 2666 2667 (void) mod_getinfo(modp, modinfop); 2668 } 2669 2670 modinfop->mi_id = modp->mod_id; 2671 modinfop->mi_loadcnt = modp->mod_loadcnt; 2672 (void) strcpy(modinfop->mi_name, modp->mod_modname); 2673 2674 mod_release_mod(modp); 2675 return (0); 2676 } 2677 2678 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s"; 2679 static char no_err[] = "No error function for weak stub %s"; 2680 2681 /* 2682 * used by the stubs themselves to load and hold a module. 2683 * Returns 0 if the module is successfully held; 2684 * the stub needs to call mod_release_stub(). 2685 * -1 if the stub should just call the err_fcn. 2686 * Note that this code is stretched out so that we avoid subroutine calls 2687 * and optimize for the most likely case. That is, the case where the 2688 * module is loaded and installed and not held. In that case we just inc 2689 * the mod_ref count and continue. 2690 */ 2691 int 2692 mod_hold_stub(struct mod_stub_info *stub) 2693 { 2694 struct modctl *mp; 2695 struct mod_modinfo *mip; 2696 2697 mip = stub->mods_modinfo; 2698 2699 mutex_enter(&mod_lock); 2700 2701 /* we do mod_hold_by_modctl inline for speed */ 2702 2703 mod_check_again: 2704 if ((mp = mip->mp) != NULL) { 2705 if (mp->mod_busy == 0) { 2706 if (mp->mod_installed) { 2707 /* increment the reference count */ 2708 mp->mod_ref++; 2709 ASSERT(mp->mod_ref && mp->mod_installed); 2710 mutex_exit(&mod_lock); 2711 return (0); 2712 } else { 2713 mp->mod_busy = 1; 2714 mp->mod_inprogress_thread = 2715 (curthread == NULL ? 2716 (kthread_id_t)-1 : curthread); 2717 } 2718 } else { 2719 /* 2720 * wait one time and then go see if someone 2721 * else has resolved the stub (set mip->mp). 2722 */ 2723 if (mod_hold_by_modctl(mp, 2724 MOD_WAIT_ONCE | MOD_LOCK_HELD)) 2725 goto mod_check_again; 2726 2727 /* 2728 * what we have now may have been unloaded!, in 2729 * that case, mip->mp will be NULL, we'll hit this 2730 * module and load again.. 2731 */ 2732 cmn_err(CE_PANIC, "mod_hold_stub should have blocked"); 2733 } 2734 mutex_exit(&mod_lock); 2735 } else { 2736 /* first time we've hit this module */ 2737 mutex_exit(&mod_lock); 2738 mp = mod_hold_by_name(mip->modm_module_name); 2739 mip->mp = mp; 2740 } 2741 2742 /* 2743 * If we are here, it means that the following conditions 2744 * are satisfied. 2745 * 2746 * mip->mp != NULL 2747 * this thread has set the mp->mod_busy = 1 2748 * mp->mod_installed = 0 2749 * 2750 */ 2751 ASSERT(mp != NULL); 2752 ASSERT(mp->mod_busy == 1); 2753 2754 if (mp->mod_installed == 0) { 2755 /* Module not loaded, if weak stub don't load it */ 2756 if (stub->mods_flag & MODS_WEAK) { 2757 if (stub->mods_errfcn == NULL) { 2758 mod_release_mod(mp); 2759 cmn_err(CE_PANIC, no_err, 2760 mip->modm_module_name); 2761 } 2762 } else { 2763 /* Not a weak stub so load the module */ 2764 2765 if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) { 2766 /* 2767 * If mod_load() was successful 2768 * and modinstall() failed, then 2769 * unload the module. 2770 */ 2771 if (mp->mod_loaded) 2772 mod_unload(mp); 2773 2774 mod_release_mod(mp); 2775 if (stub->mods_errfcn == NULL) { 2776 cmn_err(CE_PANIC, mod_stub_err, 2777 mip->modm_module_name); 2778 } else { 2779 return (-1); 2780 } 2781 } 2782 } 2783 } 2784 2785 /* 2786 * At this point module is held and loaded. Release 2787 * the mod_busy and mod_inprogress_thread before 2788 * returning. We actually call mod_release() here so 2789 * that if another stub wants to access this module, 2790 * it can do so. mod_ref is incremented before mod_release() 2791 * is called to prevent someone else from snatching the 2792 * module from this thread. 2793 */ 2794 mutex_enter(&mod_lock); 2795 mp->mod_ref++; 2796 ASSERT(mp->mod_ref && 2797 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2798 mod_release(mp); 2799 mutex_exit(&mod_lock); 2800 return (0); 2801 } 2802 2803 void 2804 mod_release_stub(struct mod_stub_info *stub) 2805 { 2806 struct modctl *mp = stub->mods_modinfo->mp; 2807 2808 /* inline mod_release_mod */ 2809 mutex_enter(&mod_lock); 2810 ASSERT(mp->mod_ref && 2811 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2812 mp->mod_ref--; 2813 if (mp->mod_want) { 2814 mp->mod_want = 0; 2815 cv_broadcast(&mod_cv); 2816 } 2817 mutex_exit(&mod_lock); 2818 } 2819 2820 static struct modctl * 2821 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status) 2822 { 2823 struct modctl *modp; 2824 int retval; 2825 2826 /* 2827 * Hold the module. 2828 */ 2829 modp = mod_hold_by_name_requisite(dep, filename); 2830 if (modp) { 2831 retval = mod_load(modp, 1); 2832 if (retval != 0) { 2833 mod_release_mod(modp); 2834 modp = NULL; 2835 } 2836 *status = retval; 2837 } else { 2838 *status = ENOSPC; 2839 } 2840 2841 /* 2842 * if dep is not NULL, clear the module dependency information. 2843 * This information is set in mod_hold_by_name_common(). 2844 */ 2845 if (dep != NULL && dep->mod_requisite_loading != NULL) { 2846 ASSERT(dep->mod_busy); 2847 dep->mod_requisite_loading = NULL; 2848 } 2849 2850 return (modp); 2851 } 2852 2853 /* 2854 * hold, load, and install the named module 2855 */ 2856 static struct modctl * 2857 mod_hold_installed_mod(char *name, int usepath, int forcecheck, int *r) 2858 { 2859 struct modctl *modp; 2860 int retval; 2861 2862 /* 2863 * Verify that that module in question actually exists on disk 2864 * before allocation of module structure by mod_hold_by_name. 2865 */ 2866 if (modrootloaded && swaploaded || forcecheck) { 2867 if (!kobj_path_exists(name, usepath)) { 2868 *r = ENOENT; 2869 return (NULL); 2870 } 2871 } 2872 2873 /* 2874 * Hold the module. 2875 */ 2876 modp = mod_hold_by_name(name); 2877 if (modp) { 2878 retval = mod_load(modp, usepath); 2879 if (retval != 0) { 2880 mod_release_mod(modp); 2881 modp = NULL; 2882 *r = retval; 2883 } else { 2884 if ((*r = modinstall(modp)) != 0) { 2885 /* 2886 * We loaded it, but failed to _init() it. 2887 * Be kind to developers -- force it 2888 * out of memory now so that the next 2889 * attempt to use the module will cause 2890 * a reload. See 1093793. 2891 */ 2892 mod_unload(modp); 2893 mod_release_mod(modp); 2894 modp = NULL; 2895 } 2896 } 2897 } else { 2898 *r = ENOSPC; 2899 } 2900 return (modp); 2901 } 2902 2903 static char mod_excl_msg[] = 2904 "module %s(%s) is EXCLUDED and will not be loaded\n"; 2905 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n"; 2906 2907 /* 2908 * This routine is needed for dependencies. Users specify dependencies 2909 * by declaring a character array initialized to filenames of dependents. 2910 * So the code that handles dependents deals with filenames (and not 2911 * module names) because that's all it has. We load by filename and once 2912 * we've loaded a file we can get the module name. 2913 * Unfortunately there isn't a single unified filename/modulename namespace. 2914 * C'est la vie. 2915 * 2916 * We allow the name being looked up to be prepended by an optional 2917 * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs") 2918 */ 2919 struct modctl * 2920 mod_find_by_filename(char *subdir, char *filename) 2921 { 2922 struct modctl *mp; 2923 size_t sublen; 2924 2925 ASSERT(!MUTEX_HELD(&mod_lock)); 2926 if (subdir != NULL) 2927 sublen = strlen(subdir); 2928 else 2929 sublen = 0; 2930 2931 mutex_enter(&mod_lock); 2932 mp = &modules; 2933 do { 2934 if (sublen) { 2935 char *mod_filename = mp->mod_filename; 2936 2937 if (strncmp(subdir, mod_filename, sublen) == 0 && 2938 mod_filename[sublen] == '/' && 2939 strcmp(filename, &mod_filename[sublen + 1]) == 0) { 2940 mutex_exit(&mod_lock); 2941 return (mp); 2942 } 2943 } else if (strcmp(filename, mp->mod_filename) == 0) { 2944 mutex_exit(&mod_lock); 2945 return (mp); 2946 } 2947 } while ((mp = mp->mod_next) != &modules); 2948 mutex_exit(&mod_lock); 2949 return (NULL); 2950 } 2951 2952 /* 2953 * Check for circular dependencies. This is called from do_dependents() 2954 * in kobj.c. If we are the thread already loading this module, then 2955 * we're trying to load a dependent that we're already loading which 2956 * means the user specified circular dependencies. 2957 */ 2958 static int 2959 mod_circdep(struct modctl *modp) 2960 { 2961 struct modctl *rmod; 2962 2963 ASSERT(MUTEX_HELD(&mod_lock)); 2964 2965 /* 2966 * Check the mod_inprogress_thread first. 2967 * mod_inprogress_thread is used in mod_hold_stub() 2968 * directly to improve performance. 2969 */ 2970 if (modp->mod_inprogress_thread == curthread) 2971 return (1); 2972 2973 /* 2974 * Check the module circular dependencies. 2975 */ 2976 for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) { 2977 /* 2978 * Check if there is a module circular dependency. 2979 */ 2980 if (rmod->mod_requisite_loading == modp) 2981 return (1); 2982 } 2983 return (0); 2984 } 2985 2986 static int 2987 mod_getinfo(struct modctl *modp, struct modinfo *modinfop) 2988 { 2989 int (*func)(struct modinfo *); 2990 int retval; 2991 2992 ASSERT(modp->mod_busy); 2993 2994 /* primary modules don't do getinfo */ 2995 if (modp->mod_prim) 2996 return (0); 2997 2998 func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info"); 2999 3000 if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) { 3001 cmn_err(CE_WARN, "_info() not defined properly in %s", 3002 modp->mod_filename); 3003 /* 3004 * The semantics of mod_info(9F) are that 0 is failure 3005 * and non-zero is success. 3006 */ 3007 retval = 0; 3008 } else 3009 retval = (*func)(modinfop); /* call _info() function */ 3010 3011 if (moddebug & MODDEBUG_USERDEBUG) 3012 printf("Returned from _info, retval = %x\n", retval); 3013 3014 return (retval); 3015 } 3016 3017 static void 3018 modadd(struct modctl *mp) 3019 { 3020 ASSERT(MUTEX_HELD(&mod_lock)); 3021 3022 mp->mod_id = last_module_id++; 3023 mp->mod_next = &modules; 3024 mp->mod_prev = modules.mod_prev; 3025 modules.mod_prev->mod_next = mp; 3026 modules.mod_prev = mp; 3027 } 3028 3029 /*ARGSUSED*/ 3030 static struct modctl * 3031 allocate_modp(const char *filename, const char *modname) 3032 { 3033 struct modctl *mp; 3034 3035 mp = kobj_zalloc(sizeof (*mp), KM_SLEEP); 3036 mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP); 3037 (void) strcpy(mp->mod_modname, modname); 3038 return (mp); 3039 } 3040 3041 /* 3042 * Get the value of a symbol. This is a wrapper routine that 3043 * calls kobj_getsymvalue(). kobj_getsymvalue() may go away but this 3044 * wrapper will prevent callers from noticing. 3045 */ 3046 uintptr_t 3047 modgetsymvalue(char *name, int kernelonly) 3048 { 3049 return (kobj_getsymvalue(name, kernelonly)); 3050 } 3051 3052 /* 3053 * Get the symbol nearest an address. This is a wrapper routine that 3054 * calls kobj_getsymname(). kobj_getsymname() may go away but this 3055 * wrapper will prevent callers from noticing. 3056 */ 3057 char * 3058 modgetsymname(uintptr_t value, ulong_t *offset) 3059 { 3060 return (kobj_getsymname(value, offset)); 3061 } 3062 3063 /* 3064 * Lookup a symbol in a specified module. These are wrapper routines that 3065 * call kobj_lookup(). kobj_lookup() may go away but these wrappers will 3066 * prevent callers from noticing. 3067 */ 3068 uintptr_t 3069 modlookup(const char *modname, const char *symname) 3070 { 3071 struct modctl *modp; 3072 uintptr_t val; 3073 3074 if ((modp = mod_hold_by_name(modname)) == NULL) 3075 return (0); 3076 val = kobj_lookup(modp->mod_mp, symname); 3077 mod_release_mod(modp); 3078 return (val); 3079 } 3080 3081 uintptr_t 3082 modlookup_by_modctl(modctl_t *modp, const char *symname) 3083 { 3084 ASSERT(modp->mod_ref > 0 || modp->mod_busy); 3085 3086 return (kobj_lookup(modp->mod_mp, symname)); 3087 } 3088 3089 /* 3090 * Ask the user for the name of the system file and the default path 3091 * for modules. 3092 */ 3093 void 3094 mod_askparams() 3095 { 3096 static char s0[64]; 3097 intptr_t fd; 3098 3099 if ((fd = kobj_open(systemfile)) != -1L) 3100 kobj_close(fd); 3101 else 3102 systemfile = NULL; 3103 3104 /*CONSTANTCONDITION*/ 3105 while (1) { 3106 printf("Name of system file [%s]: ", 3107 systemfile ? systemfile : "/dev/null"); 3108 3109 console_gets(s0, sizeof (s0)); 3110 3111 if (s0[0] == '\0') 3112 break; 3113 else if (strcmp(s0, "/dev/null") == 0) { 3114 systemfile = NULL; 3115 break; 3116 } else { 3117 if ((fd = kobj_open(s0)) != -1L) { 3118 kobj_close(fd); 3119 systemfile = s0; 3120 break; 3121 } 3122 } 3123 printf("can't find file %s\n", s0); 3124 } 3125 } 3126 3127 static char loading_msg[] = "loading '%s' id %d\n"; 3128 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n"; 3129 3130 /* 3131 * Common code for loading a module (but not installing it). 3132 * Handoff the task of module loading to a separate thread 3133 * with a large stack if possible, since this code may recurse a few times. 3134 * Return zero if there are no errors or an errno value. 3135 */ 3136 static int 3137 mod_load(struct modctl *mp, int usepath) 3138 { 3139 int retval; 3140 struct modinfo *modinfop = NULL; 3141 struct loadmt lt; 3142 3143 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3144 ASSERT(mp->mod_busy); 3145 3146 if (mp->mod_loaded) 3147 return (0); 3148 3149 if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 || 3150 mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) { 3151 if (moddebug & MODDEBUG_LOADMSG) { 3152 printf(mod_excl_msg, mp->mod_filename, 3153 mp->mod_modname); 3154 } 3155 return (ENXIO); 3156 } 3157 if (moddebug & MODDEBUG_LOADMSG2) 3158 printf(loading_msg, mp->mod_filename, mp->mod_id); 3159 3160 if (curthread != &t0) { 3161 lt.mp = mp; 3162 lt.usepath = usepath; 3163 lt.owner = curthread; 3164 sema_init(<.sema, 0, NULL, SEMA_DEFAULT, NULL); 3165 3166 /* create thread to hand of call to */ 3167 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3168 modload_thread, <, 0, &p0, TS_RUN, maxclsyspri); 3169 3170 /* wait for thread to complete kobj_load_module */ 3171 sema_p(<.sema); 3172 3173 sema_destroy(<.sema); 3174 retval = lt.retval; 3175 } else 3176 retval = kobj_load_module(mp, usepath); 3177 3178 if (mp->mod_mp) { 3179 ASSERT(retval == 0); 3180 mp->mod_loaded = 1; 3181 mp->mod_loadcnt++; 3182 if (moddebug & MODDEBUG_LOADMSG) { 3183 printf(load_msg, mp->mod_filename, mp->mod_id, 3184 (void *)((struct module *)mp->mod_mp)->text, 3185 (void *)((struct module *)mp->mod_mp)->data, 3186 ((struct module *)mp->mod_mp)->text_size, 3187 ((struct module *)mp->mod_mp)->data_size); 3188 } 3189 3190 /* 3191 * XXX - There should be a better way to get this. 3192 */ 3193 modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP); 3194 modinfop->mi_info = MI_INFO_LINKAGE; 3195 if (mod_getinfo(mp, modinfop) == 0) 3196 mp->mod_linkage = NULL; 3197 else { 3198 mp->mod_linkage = (void *)modinfop->mi_base; 3199 ASSERT(mp->mod_linkage->ml_rev == MODREV_1); 3200 } 3201 3202 /* 3203 * DCS: bootstrapping code. If the driver is loaded 3204 * before root mount, it is assumed that the driver 3205 * may be used before mounting root. In order to 3206 * access mappings of global to local minor no.'s 3207 * during installation/open of the driver, we load 3208 * them into memory here while the BOP_interfaces 3209 * are still up. 3210 */ 3211 if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) { 3212 retval = clboot_modload(mp); 3213 } 3214 3215 kmem_free(modinfop, sizeof (struct modinfo)); 3216 (void) mod_sysctl(SYS_SET_MVAR, (void *)mp); 3217 retval = install_stubs_by_name(mp, mp->mod_modname); 3218 3219 /* 3220 * Now that the module is loaded, we need to give DTrace 3221 * a chance to notify its providers. This is done via 3222 * the dtrace_modload function pointer. 3223 */ 3224 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3225 struct modctl *dmp = mod_hold_by_name("dtrace"); 3226 3227 if (dmp != NULL && dtrace_modload != NULL) 3228 (*dtrace_modload)(mp); 3229 3230 mod_release_mod(dmp); 3231 } 3232 3233 } else { 3234 /* 3235 * If load failed then we need to release any requisites 3236 * that we had established. 3237 */ 3238 ASSERT(retval); 3239 mod_release_requisites(mp); 3240 3241 if (moddebug & MODDEBUG_ERRMSG) 3242 printf("error loading '%s', error %d\n", 3243 mp->mod_filename, retval); 3244 } 3245 return (retval); 3246 } 3247 3248 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n"; 3249 3250 static void 3251 mod_unload(struct modctl *mp) 3252 { 3253 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3254 ASSERT(mp->mod_busy); 3255 ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) && 3256 ((mp->mod_prim == 0) && (mp->mod_ref >= 0))); 3257 3258 if (moddebug & MODDEBUG_LOADMSG) 3259 printf(unload_msg, mp->mod_modname, 3260 mp->mod_id, mp->mod_loadcnt); 3261 3262 /* 3263 * If mod_ref is not zero, it means some modules might still refer 3264 * to this module. Then you can't unload this module right now. 3265 * Instead, set 1 to mod_delay_unload to notify the system of 3266 * unloading this module later when it's not required any more. 3267 */ 3268 if (mp->mod_ref > 0) { 3269 mp->mod_delay_unload = 1; 3270 if (moddebug & MODDEBUG_LOADMSG2) { 3271 printf("module %s not unloaded," 3272 " non-zero reference count (%d)", 3273 mp->mod_modname, mp->mod_ref); 3274 } 3275 return; 3276 } 3277 3278 if (((mp->mod_loaded == 0) || mp->mod_installed) || 3279 (mp->mod_ref || mp->mod_prim)) { 3280 /* 3281 * A DEBUG kernel would ASSERT panic above, the code is broken 3282 * if we get this warning. 3283 */ 3284 cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d", 3285 mp->mod_filename, mp->mod_installed, mp->mod_loaded, 3286 mp->mod_ref); 3287 return; 3288 } 3289 3290 /* reset stub functions to call the binder again */ 3291 reset_stubs(mp); 3292 3293 /* 3294 * mark module as unloaded before the modctl structure is freed. 3295 * This is required not to reuse the modctl structure before 3296 * the module is marked as unloaded. 3297 */ 3298 mp->mod_loaded = 0; 3299 mp->mod_linkage = NULL; 3300 3301 /* free the memory */ 3302 kobj_unload_module(mp); 3303 3304 if (mp->mod_delay_unload) { 3305 mp->mod_delay_unload = 0; 3306 if (moddebug & MODDEBUG_LOADMSG2) { 3307 printf("deferred unload of module %s" 3308 " (id %d) successful", 3309 mp->mod_modname, mp->mod_id); 3310 } 3311 } 3312 3313 /* release hold on requisites */ 3314 mod_release_requisites(mp); 3315 3316 /* 3317 * Now that the module is gone, we need to give DTrace a chance to 3318 * remove any probes that it may have had in the module. This is 3319 * done via the dtrace_modunload function pointer. 3320 */ 3321 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3322 struct modctl *dmp = mod_hold_by_name("dtrace"); 3323 3324 if (dmp != NULL && dtrace_modunload != NULL) 3325 (*dtrace_modunload)(mp); 3326 3327 mod_release_mod(dmp); 3328 } 3329 } 3330 3331 static int 3332 modinstall(struct modctl *mp) 3333 { 3334 int val; 3335 int (*func)(void); 3336 3337 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3338 ASSERT(mp->mod_busy && mp->mod_loaded); 3339 3340 if (mp->mod_installed) 3341 return (0); 3342 /* 3343 * If mod_delay_unload is on, it means the system chose the deferred 3344 * unload for this module. Then you can't install this module until 3345 * it's unloaded from the system. 3346 */ 3347 if (mp->mod_delay_unload) 3348 return (ENXIO); 3349 3350 if (moddebug & MODDEBUG_LOADMSG) 3351 printf("installing %s, module id %d.\n", 3352 mp->mod_modname, mp->mod_id); 3353 3354 ASSERT(mp->mod_mp != NULL); 3355 if (mod_install_requisites(mp) != 0) { 3356 /* 3357 * Note that we can't call mod_unload(mp) here since 3358 * if modinstall() was called by mod_install_requisites(), 3359 * we won't be able to hold the dependent modules 3360 * (otherwise there would be a deadlock). 3361 */ 3362 return (ENXIO); 3363 } 3364 3365 if (moddebug & MODDEBUG_ERRMSG) { 3366 printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n", 3367 mp->mod_filename, mp->mod_id, 3368 (void *)((struct module *)mp->mod_mp)->text, 3369 (void *)((struct module *)mp->mod_mp)->data, 3370 ((struct module *)mp->mod_mp)->text_size, 3371 ((struct module *)mp->mod_mp)->data_size); 3372 } 3373 3374 func = (int (*)())kobj_lookup(mp->mod_mp, "_init"); 3375 3376 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3377 cmn_err(CE_WARN, "_init() not defined properly in %s", 3378 mp->mod_filename); 3379 return (EFAULT); 3380 } 3381 3382 if (moddebug & MODDEBUG_USERDEBUG) { 3383 printf("breakpoint before calling %s:_init()\n", 3384 mp->mod_modname); 3385 if (DEBUGGER_PRESENT) 3386 debug_enter("_init"); 3387 } 3388 3389 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3390 ASSERT(mp->mod_busy && mp->mod_loaded); 3391 val = (*func)(); /* call _init */ 3392 3393 if (moddebug & MODDEBUG_USERDEBUG) 3394 printf("Returned from _init, val = %x\n", val); 3395 3396 if (val == 0) { 3397 /* 3398 * Set the MODS_INSTALLED flag to enable this module 3399 * being called now. 3400 */ 3401 install_stubs(mp); 3402 mp->mod_installed = 1; 3403 } else if (moddebug & MODDEBUG_ERRMSG) 3404 printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val); 3405 3406 return (val); 3407 } 3408 3409 int detach_driver_unconfig = 0; 3410 3411 static int 3412 detach_driver(char *name) 3413 { 3414 major_t major; 3415 int error; 3416 3417 /* 3418 * If being called from mod_uninstall_all() then the appropriate 3419 * driver detaches (leaf only) have already been done. 3420 */ 3421 if (mod_in_autounload()) 3422 return (0); 3423 3424 major = ddi_name_to_major(name); 3425 if (major == (major_t)-1) 3426 return (0); 3427 3428 error = ndi_devi_unconfig_driver(ddi_root_node(), 3429 NDI_DETACH_DRIVER | detach_driver_unconfig, major); 3430 return (error == NDI_SUCCESS ? 0 : -1); 3431 } 3432 3433 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n"; 3434 3435 static int 3436 moduninstall(struct modctl *mp) 3437 { 3438 int status = 0; 3439 int (*func)(void); 3440 3441 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3442 ASSERT(mp->mod_busy); 3443 3444 /* 3445 * Verify that we need to do something and can uninstall the module. 3446 * 3447 * If we should not uninstall the module or if the module is not in 3448 * the correct state to start an uninstall we return EBUSY to prevent 3449 * us from progressing to mod_unload. If the module has already been 3450 * uninstalled and unloaded we return EALREADY. 3451 */ 3452 if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0) 3453 return (EBUSY); 3454 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) 3455 return (EALREADY); 3456 3457 /* 3458 * To avoid devinfo / module deadlock we must release this module 3459 * prior to initiating the detach_driver, otherwise the detach_driver 3460 * might deadlock on a devinfo node held by another thread 3461 * coming top down and involving the module we have locked. 3462 * 3463 * When we regrab the module we must reverify that it is OK 3464 * to proceed with the uninstall operation. 3465 */ 3466 mod_release_mod(mp); 3467 status = detach_driver(mp->mod_modname); 3468 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 3469 3470 /* check detach status and reverify state with lock */ 3471 mutex_enter(&mod_lock); 3472 if ((status != 0) || mp->mod_prim || mp->mod_ref) { 3473 mutex_exit(&mod_lock); 3474 return (EBUSY); 3475 } 3476 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) { 3477 mutex_exit(&mod_lock); 3478 return (EALREADY); 3479 } 3480 mutex_exit(&mod_lock); 3481 3482 if (moddebug & MODDEBUG_LOADMSG2) 3483 printf("uninstalling %s\n", mp->mod_modname); 3484 3485 /* 3486 * lookup _fini, return EBUSY if not defined. 3487 * 3488 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in 3489 * detach(9E) - it allows bufctl addresses to be resolved. 3490 */ 3491 func = (int (*)())kobj_lookup(mp->mod_mp, "_fini"); 3492 if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) || 3493 (moddebug & MODDEBUG_FINI_EBUSY)) 3494 return (EBUSY); 3495 3496 /* verify that _fini is in this module */ 3497 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3498 cmn_err(CE_WARN, "_fini() not defined properly in %s", 3499 mp->mod_filename); 3500 return (EFAULT); 3501 } 3502 3503 /* call _fini() */ 3504 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3505 ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed); 3506 3507 status = (*func)(); 3508 3509 if (status == 0) { 3510 /* _fini returned success, the module is no longer installed */ 3511 if (moddebug & MODDEBUG_LOADMSG) 3512 printf("uninstalled %s\n", mp->mod_modname); 3513 3514 /* 3515 * Even though we only set mod_installed to zero here, a zero 3516 * return value means we are committed to a code path were 3517 * mod_loaded will also end up as zero - we have no other 3518 * way to get the module data and bss back to the pre _init 3519 * state except a reload. To ensure this, after return, 3520 * mod_busy must stay set until mod_loaded is cleared. 3521 */ 3522 mp->mod_installed = 0; 3523 3524 /* 3525 * Clear the MODS_INSTALLED flag not to call functions 3526 * in the module directly from now on. 3527 */ 3528 uninstall_stubs(mp); 3529 } else { 3530 if (moddebug & MODDEBUG_USERDEBUG) 3531 printf(finiret_msg, mp->mod_filename, status); 3532 /* 3533 * By definition _fini is only allowed to return EBUSY or the 3534 * result of mod_remove (EBUSY or EINVAL). In the off chance 3535 * that a driver returns EALREADY we convert this to EINVAL 3536 * since to our caller EALREADY means module was already 3537 * removed. 3538 */ 3539 if (status == EALREADY) 3540 status = EINVAL; 3541 } 3542 3543 return (status); 3544 } 3545 3546 /* 3547 * Uninstall all modules. 3548 */ 3549 static void 3550 mod_uninstall_all(void) 3551 { 3552 struct modctl *mp; 3553 modid_t modid = 0; 3554 3555 /* synchronize with any active modunload_disable() */ 3556 modunload_begin(); 3557 3558 /* mark this thread as doing autounloading */ 3559 (void) tsd_set(mod_autounload_key, (void *)1); 3560 3561 (void) devfs_clean(ddi_root_node(), NULL, 0); 3562 (void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH); 3563 3564 while ((mp = mod_hold_next_by_id(modid)) != NULL) { 3565 modid = mp->mod_id; 3566 /* 3567 * Skip modules with the MOD_NOAUTOUNLOAD flag set 3568 */ 3569 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3570 mod_release_mod(mp); 3571 continue; 3572 } 3573 3574 if (moduninstall(mp) == 0) { 3575 mod_unload(mp); 3576 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3577 } 3578 mod_release_mod(mp); 3579 } 3580 3581 (void) tsd_set(mod_autounload_key, NULL); 3582 modunload_end(); 3583 } 3584 3585 /* wait for unloads that have begun before registering disable */ 3586 void 3587 modunload_disable(void) 3588 { 3589 mutex_enter(&modunload_wait_mutex); 3590 while (modunload_active_count) { 3591 modunload_wait++; 3592 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3593 modunload_wait--; 3594 } 3595 modunload_disable_count++; 3596 mutex_exit(&modunload_wait_mutex); 3597 } 3598 3599 /* mark end of disable and signal waiters */ 3600 void 3601 modunload_enable(void) 3602 { 3603 mutex_enter(&modunload_wait_mutex); 3604 modunload_disable_count--; 3605 if ((modunload_disable_count == 0) && modunload_wait) 3606 cv_broadcast(&modunload_wait_cv); 3607 mutex_exit(&modunload_wait_mutex); 3608 } 3609 3610 /* wait for disables to complete before begining unload */ 3611 void 3612 modunload_begin() 3613 { 3614 mutex_enter(&modunload_wait_mutex); 3615 while (modunload_disable_count) { 3616 modunload_wait++; 3617 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3618 modunload_wait--; 3619 } 3620 modunload_active_count++; 3621 mutex_exit(&modunload_wait_mutex); 3622 } 3623 3624 /* mark end of unload and signal waiters */ 3625 void 3626 modunload_end() 3627 { 3628 mutex_enter(&modunload_wait_mutex); 3629 modunload_active_count--; 3630 if ((modunload_active_count == 0) && modunload_wait) 3631 cv_broadcast(&modunload_wait_cv); 3632 mutex_exit(&modunload_wait_mutex); 3633 } 3634 3635 void 3636 mod_uninstall_daemon(void) 3637 { 3638 callb_cpr_t cprinfo; 3639 clock_t ticks = 0; 3640 3641 mod_aul_thread = curthread; 3642 3643 CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud"); 3644 for (;;) { 3645 mutex_enter(&mod_uninstall_lock); 3646 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3647 /* 3648 * In DEBUG kernels, unheld drivers are uninstalled periodically 3649 * every mod_uninstall_interval seconds. Periodic uninstall can 3650 * be disabled by setting mod_uninstall_interval to 0 which is 3651 * the default for a non-DEBUG kernel. 3652 */ 3653 if (mod_uninstall_interval) { 3654 ticks = ddi_get_lbolt() + 3655 drv_usectohz(mod_uninstall_interval * 1000000); 3656 (void) cv_timedwait(&mod_uninstall_cv, 3657 &mod_uninstall_lock, ticks); 3658 } else { 3659 cv_wait(&mod_uninstall_cv, &mod_uninstall_lock); 3660 } 3661 /* 3662 * The whole daemon is safe for CPR except we don't want 3663 * the daemon to run if FREEZE is issued and this daemon 3664 * wakes up from the cv_wait above. In this case, it'll be 3665 * blocked in CALLB_CPR_SAFE_END until THAW is issued. 3666 * 3667 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that 3668 * mod_uninstall_lock is used to protect cprinfo and 3669 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when 3670 * called. 3671 */ 3672 CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock); 3673 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3674 mutex_exit(&mod_uninstall_lock); 3675 if ((modunload_disable_count == 0) && 3676 ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) { 3677 mod_uninstall_all(); 3678 } 3679 } 3680 } 3681 3682 /* 3683 * Unload all uninstalled modules. 3684 */ 3685 void 3686 modreap(void) 3687 { 3688 mutex_enter(&mod_uninstall_lock); 3689 cv_broadcast(&mod_uninstall_cv); 3690 mutex_exit(&mod_uninstall_lock); 3691 } 3692 3693 /* 3694 * Hold the specified module. This is the module holding primitive. 3695 * 3696 * If MOD_LOCK_HELD then the caller already holds the mod_lock. 3697 * 3698 * Return values: 3699 * 0 ==> the module is held 3700 * 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs 3701 * to determine how to retry. 3702 */ 3703 int 3704 mod_hold_by_modctl(struct modctl *mp, int f) 3705 { 3706 ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) && 3707 ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) != 3708 (MOD_WAIT_ONCE | MOD_WAIT_FOREVER))); 3709 ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) && 3710 ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) != 3711 (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD))); 3712 ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock)); 3713 3714 if (f & MOD_LOCK_NOT_HELD) 3715 mutex_enter(&mod_lock); 3716 3717 while (mp->mod_busy) { 3718 mp->mod_want = 1; 3719 cv_wait(&mod_cv, &mod_lock); 3720 /* 3721 * Module may be unloaded by daemon. 3722 * Nevertheless, modctl structure is still in linked list 3723 * (i.e., off &modules), not freed! 3724 * Caller is not supposed to assume "mp" is valid, but there 3725 * is no reasonable way to detect this but using 3726 * mp->mod_modinfo->mp == NULL check (follow the back pointer) 3727 * (or similar check depending on calling context) 3728 * DON'T free modctl structure, it will be very very 3729 * problematic. 3730 */ 3731 if (f & MOD_WAIT_ONCE) { 3732 if (f & MOD_LOCK_NOT_HELD) 3733 mutex_exit(&mod_lock); 3734 return (1); /* caller decides how to retry */ 3735 } 3736 } 3737 3738 mp->mod_busy = 1; 3739 mp->mod_inprogress_thread = 3740 (curthread == NULL ? (kthread_id_t)-1 : curthread); 3741 3742 if (f & MOD_LOCK_NOT_HELD) 3743 mutex_exit(&mod_lock); 3744 return (0); 3745 } 3746 3747 static struct modctl * 3748 mod_hold_by_name_common(struct modctl *dep, const char *filename) 3749 { 3750 const char *modname; 3751 struct modctl *mp; 3752 char *curname, *newname; 3753 int found = 0; 3754 3755 mutex_enter(&mod_lock); 3756 3757 if ((modname = strrchr(filename, '/')) == NULL) 3758 modname = filename; 3759 else 3760 modname++; 3761 3762 mp = &modules; 3763 do { 3764 if (strcmp(modname, mp->mod_modname) == 0) { 3765 found = 1; 3766 break; 3767 } 3768 } while ((mp = mp->mod_next) != &modules); 3769 3770 if (found == 0) { 3771 mp = allocate_modp(filename, modname); 3772 modadd(mp); 3773 } 3774 3775 /* 3776 * if dep is not NULL, set the mp in mod_requisite_loading for 3777 * the module circular dependency check. This field is used in 3778 * mod_circdep(), but it's cleard in mod_hold_loaded_mod(). 3779 */ 3780 if (dep != NULL) { 3781 ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL); 3782 dep->mod_requisite_loading = mp; 3783 } 3784 3785 /* 3786 * If the module was held, then it must be us who has it held. 3787 */ 3788 if (mod_circdep(mp)) 3789 mp = NULL; 3790 else { 3791 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3792 3793 /* 3794 * If the name hadn't been set or has changed, allocate 3795 * space and set it. Free space used by previous name. 3796 * 3797 * Do not change the name of primary modules, for primary 3798 * modules the mod_filename was allocated in standalone mode: 3799 * it is illegal to kobj_alloc in standalone mode and kobj_free 3800 * in non-standalone mode. 3801 */ 3802 curname = mp->mod_filename; 3803 if (curname == NULL || 3804 ((mp->mod_prim == 0) && 3805 (curname != filename) && 3806 (modname != filename) && 3807 (strcmp(curname, filename) != 0))) { 3808 newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP); 3809 (void) strcpy(newname, filename); 3810 mp->mod_filename = newname; 3811 if (curname != NULL) 3812 kobj_free(curname, strlen(curname) + 1); 3813 } 3814 } 3815 3816 mutex_exit(&mod_lock); 3817 if (mp && moddebug & MODDEBUG_LOADMSG2) 3818 printf("Holding %s\n", mp->mod_filename); 3819 if (mp == NULL && moddebug & MODDEBUG_LOADMSG2) 3820 printf("circular dependency loading %s\n", filename); 3821 return (mp); 3822 } 3823 3824 static struct modctl * 3825 mod_hold_by_name_requisite(struct modctl *dep, char *filename) 3826 { 3827 return (mod_hold_by_name_common(dep, filename)); 3828 } 3829 3830 struct modctl * 3831 mod_hold_by_name(const char *filename) 3832 { 3833 return (mod_hold_by_name_common(NULL, filename)); 3834 } 3835 3836 struct modctl * 3837 mod_hold_by_id(modid_t modid) 3838 { 3839 struct modctl *mp; 3840 int found = 0; 3841 3842 mutex_enter(&mod_lock); 3843 mp = &modules; 3844 do { 3845 if (mp->mod_id == modid) { 3846 found = 1; 3847 break; 3848 } 3849 } while ((mp = mp->mod_next) != &modules); 3850 3851 if ((found == 0) || mod_circdep(mp)) 3852 mp = NULL; 3853 else 3854 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3855 3856 mutex_exit(&mod_lock); 3857 return (mp); 3858 } 3859 3860 static struct modctl * 3861 mod_hold_next_by_id(modid_t modid) 3862 { 3863 struct modctl *mp; 3864 int found = 0; 3865 3866 if (modid < -1) 3867 return (NULL); 3868 3869 mutex_enter(&mod_lock); 3870 3871 mp = &modules; 3872 do { 3873 if (mp->mod_id > modid) { 3874 found = 1; 3875 break; 3876 } 3877 } while ((mp = mp->mod_next) != &modules); 3878 3879 if ((found == 0) || mod_circdep(mp)) 3880 mp = NULL; 3881 else 3882 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3883 3884 mutex_exit(&mod_lock); 3885 return (mp); 3886 } 3887 3888 static void 3889 mod_release(struct modctl *mp) 3890 { 3891 ASSERT(MUTEX_HELD(&mod_lock)); 3892 ASSERT(mp->mod_busy); 3893 3894 mp->mod_busy = 0; 3895 mp->mod_inprogress_thread = NULL; 3896 if (mp->mod_want) { 3897 mp->mod_want = 0; 3898 cv_broadcast(&mod_cv); 3899 } 3900 } 3901 3902 void 3903 mod_release_mod(struct modctl *mp) 3904 { 3905 if (moddebug & MODDEBUG_LOADMSG2) 3906 printf("Releasing %s\n", mp->mod_filename); 3907 mutex_enter(&mod_lock); 3908 mod_release(mp); 3909 mutex_exit(&mod_lock); 3910 } 3911 3912 modid_t 3913 mod_name_to_modid(char *filename) 3914 { 3915 char *modname; 3916 struct modctl *mp; 3917 3918 mutex_enter(&mod_lock); 3919 3920 if ((modname = strrchr(filename, '/')) == NULL) 3921 modname = filename; 3922 else 3923 modname++; 3924 3925 mp = &modules; 3926 do { 3927 if (strcmp(modname, mp->mod_modname) == 0) { 3928 mutex_exit(&mod_lock); 3929 return (mp->mod_id); 3930 } 3931 } while ((mp = mp->mod_next) != &modules); 3932 3933 mutex_exit(&mod_lock); 3934 return (-1); 3935 } 3936 3937 3938 int 3939 mod_remove_by_name(char *name) 3940 { 3941 struct modctl *mp; 3942 int retval; 3943 3944 mp = mod_hold_by_name(name); 3945 3946 if (mp == NULL) 3947 return (EINVAL); 3948 3949 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3950 /* 3951 * Do not unload forceloaded modules 3952 */ 3953 mod_release_mod(mp); 3954 return (0); 3955 } 3956 3957 if ((retval = moduninstall(mp)) == 0) { 3958 mod_unload(mp); 3959 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3960 } else if (retval == EALREADY) 3961 retval = 0; /* already unloaded, not an error */ 3962 mod_release_mod(mp); 3963 return (retval); 3964 } 3965 3966 /* 3967 * Record that module "dep" is dependent on module "on_mod." 3968 */ 3969 static void 3970 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod) 3971 { 3972 struct modctl_list **pmlnp; /* previous next pointer */ 3973 struct modctl_list *mlp; 3974 struct modctl_list *new; 3975 3976 ASSERT(dependent->mod_busy && on_mod->mod_busy); 3977 mutex_enter(&mod_lock); 3978 3979 /* 3980 * Search dependent's requisite list to see if on_mod is recorded. 3981 * List is ordered by id. 3982 */ 3983 for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp; 3984 mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp) 3985 if (mlp->modl_modp->mod_id >= on_mod->mod_id) 3986 break; 3987 3988 /* Create and insert if not already recorded */ 3989 if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) { 3990 new = kobj_zalloc(sizeof (*new), KM_SLEEP); 3991 new->modl_modp = on_mod; 3992 new->modl_next = mlp; 3993 *pmlnp = new; 3994 3995 /* 3996 * Increment the mod_ref count in our new requisite module. 3997 * This is what keeps a module that has other modules 3998 * which are dependent on it from being uninstalled and 3999 * unloaded. "on_mod"'s mod_ref count decremented in 4000 * mod_release_requisites when the "dependent" module 4001 * unload is complete. "on_mod" must be loaded, but may not 4002 * yet be installed. 4003 */ 4004 on_mod->mod_ref++; 4005 ASSERT(on_mod->mod_ref && on_mod->mod_loaded); 4006 } 4007 4008 mutex_exit(&mod_lock); 4009 } 4010 4011 /* 4012 * release the hold associated with mod_make_requisite mod_ref++ 4013 * as part of unload. 4014 */ 4015 void 4016 mod_release_requisites(struct modctl *modp) 4017 { 4018 struct modctl_list *modl; 4019 struct modctl_list *next; 4020 struct modctl *req; 4021 struct modctl_list *start = NULL, *mod_garbage; 4022 4023 ASSERT(modp->mod_busy); 4024 ASSERT(!MUTEX_HELD(&mod_lock)); 4025 4026 mutex_enter(&mod_lock); /* needed for manipulation of req */ 4027 for (modl = modp->mod_requisites; modl; modl = next) { 4028 next = modl->modl_next; 4029 req = modl->modl_modp; 4030 ASSERT(req->mod_ref >= 1 && req->mod_loaded); 4031 req->mod_ref--; 4032 4033 /* 4034 * Check if the module has to be unloaded or not. 4035 */ 4036 if (req->mod_ref == 0 && req->mod_delay_unload) { 4037 struct modctl_list *new; 4038 /* 4039 * Allocate the modclt_list holding the garbage 4040 * module which should be unloaded later. 4041 */ 4042 new = kobj_zalloc(sizeof (struct modctl_list), 4043 KM_SLEEP); 4044 new->modl_modp = req; 4045 4046 if (start == NULL) 4047 mod_garbage = start = new; 4048 else { 4049 mod_garbage->modl_next = new; 4050 mod_garbage = new; 4051 } 4052 } 4053 4054 /* free the list as we go */ 4055 kobj_free(modl, sizeof (*modl)); 4056 } 4057 modp->mod_requisites = NULL; 4058 mutex_exit(&mod_lock); 4059 4060 /* 4061 * Unload the garbage modules. 4062 */ 4063 for (mod_garbage = start; mod_garbage != NULL; /* nothing */) { 4064 struct modctl_list *old = mod_garbage; 4065 struct modctl *mp = mod_garbage->modl_modp; 4066 ASSERT(mp != NULL); 4067 4068 /* 4069 * Hold this module until it's unloaded completely. 4070 */ 4071 (void) mod_hold_by_modctl(mp, 4072 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 4073 /* 4074 * Check if the module is not unloaded yet and nobody requires 4075 * the module. If it's unloaded already or somebody still 4076 * requires the module, don't unload it now. 4077 */ 4078 if (mp->mod_loaded && mp->mod_ref == 0) 4079 mod_unload(mp); 4080 ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) || 4081 (mp->mod_ref > 0)); 4082 mod_release_mod(mp); 4083 4084 mod_garbage = mod_garbage->modl_next; 4085 kobj_free(old, sizeof (struct modctl_list)); 4086 } 4087 } 4088 4089 /* 4090 * Process dependency of the module represented by "dep" on the 4091 * module named by "on." 4092 * 4093 * Called from kobj_do_dependents() to load a module "on" on which 4094 * "dep" depends. 4095 */ 4096 struct modctl * 4097 mod_load_requisite(struct modctl *dep, char *on) 4098 { 4099 struct modctl *on_mod; 4100 int retval; 4101 4102 if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) { 4103 mod_make_requisite(dep, on_mod); 4104 } else if (moddebug & MODDEBUG_ERRMSG) { 4105 printf("error processing %s on which module %s depends\n", 4106 on, dep->mod_modname); 4107 } 4108 return (on_mod); 4109 } 4110 4111 static int 4112 mod_install_requisites(struct modctl *modp) 4113 { 4114 struct modctl_list *modl; 4115 struct modctl *req; 4116 int status = 0; 4117 4118 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 4119 ASSERT(modp->mod_busy); 4120 4121 for (modl = modp->mod_requisites; modl; modl = modl->modl_next) { 4122 req = modl->modl_modp; 4123 (void) mod_hold_by_modctl(req, 4124 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 4125 status = modinstall(req); 4126 mod_release_mod(req); 4127 4128 if (status != 0) 4129 break; 4130 } 4131 return (status); 4132 } 4133 4134 /* 4135 * returns 1 if this thread is doing autounload, 0 otherwise. 4136 * see mod_uninstall_all. 4137 */ 4138 int 4139 mod_in_autounload() 4140 { 4141 return ((int)(uintptr_t)tsd_get(mod_autounload_key)); 4142 } 4143 4144 /* 4145 * gmatch adapted from libc, stripping the wchar stuff 4146 */ 4147 #define popchar(p, c) { \ 4148 c = *p++; \ 4149 if (c == 0) { \ 4150 return (0); \ 4151 } \ 4152 } 4153 4154 int 4155 gmatch(const char *s, const char *p) 4156 { 4157 int c, sc; 4158 int ok, lc, notflag; 4159 4160 sc = *s++; 4161 c = *p++; 4162 if (c == 0) 4163 return (sc == c); /* nothing matches nothing */ 4164 4165 switch (c) { 4166 case '\\': 4167 /* skip to quoted character */ 4168 popchar(p, c); 4169 /*FALLTHRU*/ 4170 4171 default: 4172 /* straight comparison */ 4173 if (c != sc) 4174 return (0); 4175 /*FALLTHRU*/ 4176 4177 case '?': 4178 /* first char matches, move to remainder */ 4179 return (sc != '\0' ? gmatch(s, p) : 0); 4180 4181 4182 case '*': 4183 while (*p == '*') 4184 p++; 4185 4186 /* * matches everything */ 4187 if (*p == 0) 4188 return (1); 4189 4190 /* undo skip at the beginning & iterate over substrings */ 4191 --s; 4192 while (*s) { 4193 if (gmatch(s, p)) 4194 return (1); 4195 s++; 4196 } 4197 return (0); 4198 4199 case '[': 4200 /* match any char within [] */ 4201 if (sc == 0) 4202 return (0); 4203 4204 ok = lc = notflag = 0; 4205 4206 if (*p == '!') { 4207 notflag = 1; 4208 p++; 4209 } 4210 popchar(p, c); 4211 4212 do { 4213 if (c == '-' && lc && *p != ']') { 4214 /* test sc against range [c1-c2] */ 4215 popchar(p, c); 4216 if (c == '\\') { 4217 popchar(p, c); 4218 } 4219 4220 if (notflag) { 4221 /* return 0 on mismatch */ 4222 if (lc <= sc && sc <= c) 4223 return (0); 4224 ok++; 4225 } else if (lc <= sc && sc <= c) { 4226 ok++; 4227 } 4228 /* keep going, may get a match next */ 4229 } else if (c == '\\') { 4230 /* skip to quoted character */ 4231 popchar(p, c); 4232 } 4233 lc = c; 4234 if (notflag) { 4235 if (sc == lc) 4236 return (0); 4237 ok++; 4238 } else if (sc == lc) { 4239 ok++; 4240 } 4241 popchar(p, c); 4242 } while (c != ']'); 4243 4244 /* recurse on remainder of string */ 4245 return (ok ? gmatch(s, p) : 0); 4246 } 4247 /*NOTREACHED*/ 4248 } 4249 4250 4251 /* 4252 * Get default perm for device from /etc/minor_perm. Return 0 if match found. 4253 * 4254 * Pure wild-carded patterns are handled separately so the ordering of 4255 * these patterns doesn't matter. We're still dependent on ordering 4256 * however as the first matching entry is the one returned. 4257 * Not ideal but all existing examples and usage do imply this 4258 * ordering implicitly. 4259 * 4260 * Drivers using the clone driver are always good for some entertainment. 4261 * Clone nodes under pseudo have the form clone@0:<driver>. Some minor 4262 * perm entries have the form clone:<driver>, others use <driver>:* 4263 * Examples are clone:llc1 vs. llc2:*, for example. 4264 * 4265 * Minor perms in the clone:<driver> form are mapped to the drivers's 4266 * mperm list, not the clone driver, as wildcard entries for clone 4267 * reference only. In other words, a clone wildcard will match 4268 * references for clone@0:<driver> but never <driver>@<minor>. 4269 * 4270 * Additional minor perms in the standard form are also supported, 4271 * for mixed usage, ie a node with an entry clone:<driver> could 4272 * provide further entries <driver>:<minor>. 4273 * 4274 * Finally, some uses of clone use an alias as the minor name rather 4275 * than the driver name, with the alias as the minor perm entry. 4276 * This case is handled by attaching the driver to bring its 4277 * minor list into existence, then discover the alias via DDI_ALIAS. 4278 * The clone device's minor perm list can then be searched for 4279 * that alias. 4280 */ 4281 4282 static int 4283 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp) 4284 { 4285 major_t major; 4286 struct devnames *dnp; 4287 mperm_t *mp; 4288 char *alias = NULL; 4289 dev_info_t *cdevi; 4290 struct ddi_minor_data *dmd; 4291 4292 major = ddi_name_to_major(minor_name); 4293 4294 ASSERT(dip == clone_dip); 4295 ASSERT(major != (major_t)-1); 4296 4297 /* 4298 * Attach the driver named by the minor node, then 4299 * search its first instance's minor list for an 4300 * alias node. 4301 */ 4302 if (ddi_hold_installed_driver(major) == NULL) 4303 return (1); 4304 4305 dnp = &devnamesp[major]; 4306 LOCK_DEV_OPS(&dnp->dn_lock); 4307 4308 if ((cdevi = dnp->dn_head) != NULL) { 4309 mutex_enter(&DEVI(cdevi)->devi_lock); 4310 for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) { 4311 if (dmd->type == DDM_ALIAS) { 4312 alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP); 4313 break; 4314 } 4315 } 4316 mutex_exit(&DEVI(cdevi)->devi_lock); 4317 } 4318 4319 UNLOCK_DEV_OPS(&dnp->dn_lock); 4320 ddi_rele_driver(major); 4321 4322 if (alias == NULL) { 4323 if (moddebug & MODDEBUG_MINORPERM) 4324 cmn_err(CE_CONT, "dev_minorperm: " 4325 "no alias for %s\n", minor_name); 4326 return (1); 4327 } 4328 4329 major = ddi_driver_major(clone_dip); 4330 dnp = &devnamesp[major]; 4331 LOCK_DEV_OPS(&dnp->dn_lock); 4332 4333 /* 4334 * Go through the clone driver's mperm list looking 4335 * for a match for the specified alias. 4336 */ 4337 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4338 if (strcmp(alias, mp->mp_minorname) == 0) { 4339 break; 4340 } 4341 } 4342 4343 if (mp) { 4344 if (moddebug & MODDEBUG_MP_MATCH) { 4345 cmn_err(CE_CONT, 4346 "minor perm defaults: %s %s 0%o %d %d (aliased)\n", 4347 minor_name, alias, mp->mp_mode, 4348 mp->mp_uid, mp->mp_gid); 4349 } 4350 rmp->mp_uid = mp->mp_uid; 4351 rmp->mp_gid = mp->mp_gid; 4352 rmp->mp_mode = mp->mp_mode; 4353 } 4354 UNLOCK_DEV_OPS(&dnp->dn_lock); 4355 4356 kmem_free(alias, strlen(alias)+1); 4357 4358 return (mp == NULL); 4359 } 4360 4361 int 4362 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp) 4363 { 4364 major_t major; 4365 char *minor_name; 4366 struct devnames *dnp; 4367 mperm_t *mp; 4368 int is_clone = 0; 4369 4370 if (!minorperm_loaded) { 4371 if (moddebug & MODDEBUG_MINORPERM) 4372 cmn_err(CE_CONT, 4373 "%s: minor perm not yet loaded\n", name); 4374 return (1); 4375 } 4376 4377 minor_name = strchr(name, ':'); 4378 if (minor_name == NULL) 4379 return (1); 4380 minor_name++; 4381 4382 /* 4383 * If it's the clone driver, search the driver as named 4384 * by the minor. All clone minor perm entries other than 4385 * alias nodes are actually installed on the real driver's list. 4386 */ 4387 if (dip == clone_dip) { 4388 major = ddi_name_to_major(minor_name); 4389 if (major == (major_t)-1) { 4390 if (moddebug & MODDEBUG_MINORPERM) 4391 cmn_err(CE_CONT, "dev_minorperm: " 4392 "%s: no such driver\n", minor_name); 4393 return (1); 4394 } 4395 is_clone = 1; 4396 } else { 4397 major = ddi_driver_major(dip); 4398 ASSERT(major != (major_t)-1); 4399 } 4400 4401 dnp = &devnamesp[major]; 4402 LOCK_DEV_OPS(&dnp->dn_lock); 4403 4404 /* 4405 * Go through the driver's mperm list looking for 4406 * a match for the specified minor. If there's 4407 * no matching pattern, use the wild card. 4408 * Defer to the clone wild for clone if specified, 4409 * otherwise fall back to the normal form. 4410 */ 4411 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4412 if (gmatch(minor_name, mp->mp_minorname) != 0) { 4413 break; 4414 } 4415 } 4416 if (mp == NULL) { 4417 if (is_clone) 4418 mp = dnp->dn_mperm_clone; 4419 if (mp == NULL) 4420 mp = dnp->dn_mperm_wild; 4421 } 4422 4423 if (mp) { 4424 if (moddebug & MODDEBUG_MP_MATCH) { 4425 cmn_err(CE_CONT, 4426 "minor perm defaults: %s %s 0%o %d %d\n", 4427 name, mp->mp_minorname, mp->mp_mode, 4428 mp->mp_uid, mp->mp_gid); 4429 } 4430 rmp->mp_uid = mp->mp_uid; 4431 rmp->mp_gid = mp->mp_gid; 4432 rmp->mp_mode = mp->mp_mode; 4433 } 4434 UNLOCK_DEV_OPS(&dnp->dn_lock); 4435 4436 /* 4437 * If no match can be found for a clone node, 4438 * search for a possible match for an alias. 4439 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm, 4440 * with minor perm entry clone:ptmx. 4441 */ 4442 if (mp == NULL && is_clone) { 4443 return (dev_alias_minorperm(dip, minor_name, rmp)); 4444 } 4445 4446 return (mp == NULL); 4447 } 4448 4449 /* 4450 * dynamicaly reference load a dl module/library, returning handle 4451 */ 4452 /*ARGSUSED*/ 4453 ddi_modhandle_t 4454 ddi_modopen(const char *modname, int mode, int *errnop) 4455 { 4456 char *subdir; 4457 char *mod; 4458 int subdirlen; 4459 struct modctl *hmodp = NULL; 4460 int retval = EINVAL; 4461 4462 ASSERT(modname && (mode == KRTLD_MODE_FIRST)); 4463 if ((modname == NULL) || (mode != KRTLD_MODE_FIRST)) 4464 goto out; 4465 4466 /* find last '/' in modname */ 4467 mod = strrchr(modname, '/'); 4468 4469 if (mod) { 4470 /* for subdir string without modification to argument */ 4471 mod++; 4472 subdirlen = mod - modname; 4473 subdir = kmem_alloc(subdirlen, KM_SLEEP); 4474 (void) strlcpy(subdir, modname, subdirlen); 4475 } else { 4476 subdirlen = 0; 4477 subdir = "misc"; 4478 mod = (char *)modname; 4479 } 4480 4481 /* reference load with errno return value */ 4482 retval = modrload(subdir, mod, &hmodp); 4483 4484 if (subdirlen) 4485 kmem_free(subdir, subdirlen); 4486 4487 out: if (errnop) 4488 *errnop = retval; 4489 4490 if (moddebug & MODDEBUG_DDI_MOD) 4491 printf("ddi_modopen %s mode %x: %s %p %d\n", 4492 modname ? modname : "<unknown>", mode, 4493 hmodp ? hmodp->mod_filename : "<unknown>", 4494 (void *)hmodp, retval); 4495 4496 return ((ddi_modhandle_t)hmodp); 4497 } 4498 4499 /* lookup "name" in open dl module/library */ 4500 void * 4501 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop) 4502 { 4503 struct modctl *hmodp = (struct modctl *)h; 4504 void *f; 4505 int retval; 4506 4507 ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4508 if ((hmodp == NULL) || (name == NULL) || 4509 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4510 f = NULL; 4511 retval = EINVAL; 4512 } else { 4513 f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name); 4514 if (f) 4515 retval = 0; 4516 else 4517 retval = ENOTSUP; 4518 } 4519 4520 if (moddebug & MODDEBUG_DDI_MOD) 4521 printf("ddi_modsym in %s of %s: %d %p\n", 4522 hmodp ? hmodp->mod_modname : "<unknown>", 4523 name ? name : "<unknown>", retval, f); 4524 4525 if (errnop) 4526 *errnop = retval; 4527 return (f); 4528 } 4529 4530 /* dynamic (un)reference unload of an open dl module/library */ 4531 int 4532 ddi_modclose(ddi_modhandle_t h) 4533 { 4534 struct modctl *hmodp = (struct modctl *)h; 4535 struct modctl *modp = NULL; 4536 int retval; 4537 4538 ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4539 if ((hmodp == NULL) || 4540 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4541 retval = EINVAL; 4542 goto out; 4543 } 4544 4545 retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload); 4546 if (retval == EBUSY) 4547 retval = 0; /* EBUSY is not an error */ 4548 4549 if (retval == 0) { 4550 ASSERT(hmodp == modp); 4551 if (hmodp != modp) 4552 retval = EINVAL; 4553 } 4554 4555 out: if (moddebug & MODDEBUG_DDI_MOD) 4556 printf("ddi_modclose %s: %d\n", 4557 hmodp ? hmodp->mod_modname : "<unknown>", retval); 4558 4559 return (retval); 4560 } 4561