1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/errno.h> 32 #include <sys/mman.h> 33 #include <sys/cmn_err.h> 34 #include <sys/cred.h> 35 #include <sys/vmsystm.h> 36 #include <sys/debug.h> 37 #include <vm/as.h> 38 #include <vm/seg.h> 39 #include <sys/vmparam.h> 40 #include <sys/vfs.h> 41 #include <sys/elf.h> 42 #include <sys/machelf.h> 43 #include <sys/corectl.h> 44 #include <sys/exec.h> 45 #include <sys/exechdr.h> 46 #include <sys/autoconf.h> 47 #include <sys/mem.h> 48 #include <vm/seg_dev.h> 49 #include <sys/vmparam.h> 50 #include <sys/mmapobj.h> 51 #include <sys/atomic.h> 52 53 /* 54 * Theory statement: 55 * 56 * The main driving force behind mmapobj is to interpret and map ELF files 57 * inside of the kernel instead of having the linker be responsible for this. 58 * 59 * mmapobj also supports the AOUT 4.x binary format as well as flat files in 60 * a read only manner. 61 * 62 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD 63 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker 64 * and Libraries Guide" for more information about the standard and mapping 65 * rules. 66 * 67 * Having mmapobj interpret and map objects will allow the kernel to make the 68 * best decision for where to place the mappings for said objects. Thus, we 69 * can make optimizations inside of the kernel for specific platforms or 70 * cache mapping information to make mapping objects faster. 71 * 72 * The lib_va_hash will be one such optimization. For each ELF object that 73 * mmapobj is asked to interpret, we will attempt to cache the information 74 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of 75 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program 76 * headers which should cover a majority of the libraries out there without 77 * wasting space. In order to make sure that the cached information is valid, 78 * we check the passed in vnode's mtime and ctime to make sure the vnode 79 * has not been modified since the last time we used it. 80 * 81 * In addition, the lib_va_hash may contain a preferred starting VA for the 82 * object which can be useful for platforms which support a shared context. 83 * This will increase the likelyhood that library text can be shared among 84 * many different processes. We limit the reserved VA space for 32 bit objects 85 * in order to minimize fragmenting the processes address space. 86 * 87 * In addition to the above, the mmapobj interface allows for padding to be 88 * requested before the first mapping and after the last mapping created. 89 * When padding is requested, no additional optimizations will be made for 90 * that request. 91 */ 92 93 /* 94 * Threshold to prevent allocating too much kernel memory to read in the 95 * program headers for an object. If it requires more than below, 96 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the 97 * program headers which could possibly fail. If less memory than below is 98 * needed, then we use a KM_SLEEP allocation and are willing to wait for the 99 * memory if we need to. 100 */ 101 size_t mmapobj_alloc_threshold = 65536; 102 103 /* Debug stats for test coverage */ 104 #ifdef DEBUG 105 struct mobj_stats { 106 uint_t mobjs_unmap_called; 107 uint_t mobjs_remap_devnull; 108 uint_t mobjs_lookup_start; 109 uint_t mobjs_alloc_start; 110 uint_t mobjs_alloc_vmem; 111 uint_t mobjs_add_collision; 112 uint_t mobjs_get_addr; 113 uint_t mobjs_map_flat_no_padding; 114 uint_t mobjs_map_flat_padding; 115 uint_t mobjs_map_ptload_text; 116 uint_t mobjs_map_ptload_initdata; 117 uint_t mobjs_map_ptload_preread; 118 uint_t mobjs_map_ptload_unaligned_text; 119 uint_t mobjs_map_ptload_unaligned_map_fail; 120 uint_t mobjs_map_ptload_unaligned_read_fail; 121 uint_t mobjs_zfoddiff; 122 uint_t mobjs_zfoddiff_nowrite; 123 uint_t mobjs_zfodextra; 124 uint_t mobjs_ptload_failed; 125 uint_t mobjs_map_elf_no_holes; 126 uint_t mobjs_unmap_hole; 127 uint_t mobjs_nomem_header; 128 uint_t mobjs_overlap_header; 129 uint_t mobjs_np2_align; 130 uint_t mobjs_np2_align_overflow; 131 uint_t mobjs_exec_padding; 132 uint_t mobjs_exec_addr_mapped; 133 uint_t mobjs_exec_addr_devnull; 134 uint_t mobjs_exec_addr_in_use; 135 uint_t mobjs_lvp_found; 136 uint_t mobjs_no_loadable_yet; 137 uint_t mobjs_nothing_to_map; 138 uint_t mobjs_e2big; 139 uint_t mobjs_dyn_pad_align; 140 uint_t mobjs_dyn_pad_noalign; 141 uint_t mobjs_alloc_start_fail; 142 uint_t mobjs_lvp_nocache; 143 uint_t mobjs_extra_padding; 144 uint_t mobjs_lvp_not_needed; 145 uint_t mobjs_no_mem_map_sz; 146 uint_t mobjs_check_exec_failed; 147 uint_t mobjs_lvp_used; 148 uint_t mobjs_wrong_model; 149 uint_t mobjs_noexec_fs; 150 uint_t mobjs_e2big_et_rel; 151 uint_t mobjs_et_rel_mapped; 152 uint_t mobjs_unknown_elf_type; 153 uint_t mobjs_phent32_too_small; 154 uint_t mobjs_phent64_too_small; 155 uint_t mobjs_inval_elf_class; 156 uint_t mobjs_too_many_phdrs; 157 uint_t mobjs_no_phsize; 158 uint_t mobjs_phsize_large; 159 uint_t mobjs_phsize_xtralarge; 160 uint_t mobjs_fast_wrong_model; 161 uint_t mobjs_fast_e2big; 162 uint_t mobjs_fast; 163 uint_t mobjs_fast_success; 164 uint_t mobjs_fast_not_now; 165 uint_t mobjs_small_file; 166 uint_t mobjs_read_error; 167 uint_t mobjs_unsupported; 168 uint_t mobjs_flat_e2big; 169 uint_t mobjs_phent_align32; 170 uint_t mobjs_phent_align64; 171 uint_t mobjs_lib_va_find_hit; 172 uint_t mobjs_lib_va_find_delay_delete; 173 uint_t mobjs_lib_va_find_delete; 174 uint_t mobjs_lib_va_add_delay_delete; 175 uint_t mobjs_lib_va_add_delete; 176 uint_t mobjs_min_align; 177 #if defined(__sparc) 178 uint_t mobjs_aout_uzero_fault; 179 uint_t mobjs_aout_64bit_try; 180 uint_t mobjs_aout_noexec; 181 uint_t mobjs_aout_e2big; 182 uint_t mobjs_aout_lib; 183 uint_t mobjs_aout_fixed; 184 uint_t mobjs_aout_zfoddiff; 185 uint_t mobjs_aout_map_bss; 186 uint_t mobjs_aout_bss_fail; 187 uint_t mobjs_aout_nlist; 188 uint_t mobjs_aout_addr_in_use; 189 #endif 190 } mobj_stats; 191 192 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++) 193 #else 194 #define MOBJ_STAT_ADD(stat) 195 #endif 196 197 /* lv_flags values - bitmap */ 198 #define LV_ELF32 0x1 /* 32 bit ELF file */ 199 #define LV_ELF64 0x2 /* 64 bit ELF file */ 200 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */ 201 202 /* 203 * Note: lv_num_segs will denote how many segments this file has and will 204 * only be set after the lv_mps array has been filled out. 205 * lv_mps can only be valid if lv_num_segs is non-zero. 206 */ 207 struct lib_va { 208 struct lib_va *lv_next; 209 caddr_t lv_base_va; /* start va for library */ 210 ssize_t lv_len; /* total va span of library */ 211 size_t lv_align; /* minimum alignment */ 212 uint64_t lv_nodeid; /* filesystem node id */ 213 uint64_t lv_fsid; /* filesystem id */ 214 timestruc_t lv_ctime; /* last time file was changed */ 215 timestruc_t lv_mtime; /* or modified */ 216 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */ 217 int lv_num_segs; /* # segs for this file */ 218 int lv_flags; 219 uint_t lv_refcnt; /* number of holds on struct */ 220 }; 221 222 #define LIB_VA_SIZE 1024 223 #define LIB_VA_MASK (LIB_VA_SIZE - 1) 224 #define LIB_VA_MUTEX_SHIFT 3 225 226 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1)) 227 #error "LIB_VA_SIZE is not a power of 2" 228 #endif 229 230 static struct lib_va *lib_va_hash[LIB_VA_SIZE]; 231 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT]; 232 233 #define LIB_VA_HASH_MUTEX(index) \ 234 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT]) 235 236 #define LIB_VA_HASH(nodeid) \ 237 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK) 238 239 #define LIB_VA_MATCH_ID(arg1, arg2) \ 240 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \ 241 (arg1)->lv_fsid == (arg2)->va_fsid) 242 243 #define LIB_VA_MATCH_TIME(arg1, arg2) \ 244 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \ 245 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \ 246 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \ 247 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec) 248 249 #define LIB_VA_MATCH(arg1, arg2) \ 250 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2)) 251 252 /* 253 * In order to map libraries at the same VA in many processes, we need to carve 254 * out our own address space for them which is unique across many processes. 255 * We use different arenas for 32 bit and 64 bit libraries. 256 * 257 * Since the 32 bit address space is relatively small, we limit the number of 258 * libraries which try to use consistent virtual addresses to lib_threshold. 259 * For 64 bit libraries there is no such limit since the address space is large. 260 */ 261 static vmem_t *lib_va_32_arena; 262 static vmem_t *lib_va_64_arena; 263 uint_t lib_threshold = 20; /* modifiable via /etc/system */ 264 265 /* 266 * Number of 32 bit and 64 bit libraries in lib_va hash. 267 */ 268 static uint_t libs_mapped_32 = 0; 269 static uint_t libs_mapped_64 = 0; 270 271 /* 272 * Initialize the VA span of the lib_va arenas to about half of the VA space 273 * of a user process. These VAs will be used for optimized allocation of 274 * libraries, such that subsequent mappings of the same library will attempt 275 * to use the same VA as previous mappings of that library. 276 */ 277 void 278 lib_va_init(void) 279 { 280 size_t start; 281 size_t end; 282 size_t len; 283 /* 284 * On 32 bit sparc, the user stack and /lib/ld.so.1 will both live 285 * above the end address that we choose. On 32bit x86 only 286 * /lib/ld.so.1 will live above the end address that we choose 287 * because the user stack is at the bottom of the address space. 288 * 289 * We estimate the size of ld.so.1 to be 512K which leaves significant 290 * room for growth without needing to change this value. Thus it is 291 * safe for libraries to be mapped up to that address. 292 * 293 * If the length of ld.so.1 were to grow beyond 512K then 294 * a library who has a reserved address in that range would always 295 * fail to get that address and would have to call map_addr 296 * to get an unused address range. On DEBUG kernels, we will check 297 * on the first use of lib_va that our address does not overlap 298 * ld.so.1, and if it does, then we'll print a cmn_err message. 299 */ 300 #if defined(__sparc) 301 end = _userlimit32 - DFLSSIZ - (512 * 1024); 302 #elif defined(__i386) || defined(__amd64) 303 end = _userlimit32 - (512 * 1024); 304 #else 305 #error "no recognized machine type is defined" 306 #endif 307 len = end >> 1; 308 len = P2ROUNDUP(len, PAGESIZE); 309 start = end - len; 310 lib_va_32_arena = vmem_create("lib_va_32", (void *)start, len, 311 PAGESIZE, NULL, NULL, NULL, 0, VM_NOSLEEP | VMC_IDENTIFIER); 312 313 #if defined(_LP64) 314 /* 315 * The user stack and /lib/ld.so.1 will both live above the end address 316 * that we choose. We estimate the size of a mapped ld.so.1 to be 2M 317 * which leaves significant room for growth without needing to change 318 * this value. Thus it is safe for libraries to be mapped up to 319 * that address. The same considerations for the size of ld.so.1 that 320 * were mentioned above also apply here. 321 */ 322 end = _userlimit - DFLSSIZ - (2 * 1024 * 1024); 323 len = end >> 1; 324 len = P2ROUNDUP(len, PAGESIZE); 325 start = end - len; 326 lib_va_64_arena = vmem_create("lib_va_64", (void *)start, len, 327 PAGESIZE, NULL, NULL, NULL, 0, VM_NOSLEEP | VMC_IDENTIFIER); 328 #endif 329 } 330 331 /* 332 * Free up the resources associated with lvp as well as lvp itself. 333 * We also decrement the number of libraries mapped via a lib_va 334 * cached virtual address. 335 */ 336 void 337 lib_va_free(struct lib_va *lvp) 338 { 339 int is_64bit = lvp->lv_flags & LV_ELF64; 340 ASSERT(lvp->lv_refcnt == 0); 341 342 if (lvp->lv_base_va != NULL) { 343 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena, 344 lvp->lv_base_va, lvp->lv_len); 345 if (is_64bit) { 346 atomic_add_32(&libs_mapped_64, -1); 347 } else { 348 atomic_add_32(&libs_mapped_32, -1); 349 } 350 } 351 kmem_free(lvp, sizeof (struct lib_va)); 352 } 353 354 /* 355 * See if the file associated with the vap passed in is in the lib_va hash. 356 * If it is and the file has not been modified since last use, then 357 * return a pointer to that data. Otherwise, return NULL if the file has 358 * changed or the file was not found in the hash. 359 */ 360 static struct lib_va * 361 lib_va_find(vattr_t *vap) 362 { 363 struct lib_va *lvp; 364 struct lib_va *del = NULL; 365 struct lib_va **tmp; 366 uint_t index; 367 index = LIB_VA_HASH(vap->va_nodeid); 368 369 mutex_enter(LIB_VA_HASH_MUTEX(index)); 370 tmp = &lib_va_hash[index]; 371 while (*tmp != NULL) { 372 lvp = *tmp; 373 if (LIB_VA_MATCH_ID(lvp, vap)) { 374 if (LIB_VA_MATCH_TIME(lvp, vap)) { 375 ASSERT((lvp->lv_flags & LV_DEL) == 0); 376 lvp->lv_refcnt++; 377 MOBJ_STAT_ADD(lib_va_find_hit); 378 } else { 379 /* 380 * file was updated since last use. 381 * need to remove it from list. 382 */ 383 del = lvp; 384 *tmp = del->lv_next; 385 del->lv_next = NULL; 386 /* 387 * If we can't delete it now, mark it for later 388 */ 389 if (del->lv_refcnt) { 390 MOBJ_STAT_ADD(lib_va_find_delay_delete); 391 del->lv_flags |= LV_DEL; 392 del = NULL; 393 } 394 lvp = NULL; 395 } 396 mutex_exit(LIB_VA_HASH_MUTEX(index)); 397 if (del) { 398 ASSERT(del->lv_refcnt == 0); 399 MOBJ_STAT_ADD(lib_va_find_delete); 400 lib_va_free(del); 401 } 402 return (lvp); 403 } 404 tmp = &lvp->lv_next; 405 } 406 mutex_exit(LIB_VA_HASH_MUTEX(index)); 407 return (NULL); 408 } 409 410 /* 411 * Add a new entry to the lib_va hash. 412 * Search the hash while holding the appropriate mutex to make sure that the 413 * data is not already in the cache. If we find data that is in the cache 414 * already and has not been modified since last use, we return NULL. If it 415 * has been modified since last use, we will remove that entry from 416 * the hash and it will be deleted once it's reference count reaches zero. 417 * If there is no current entry in the hash we will add the new entry and 418 * return it to the caller who is responsible for calling lib_va_release to 419 * drop their reference count on it. 420 * 421 * lv_num_segs will be set to zero since the caller needs to add that 422 * information to the data structure. 423 */ 424 static struct lib_va * 425 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap) 426 { 427 struct lib_va *lvp; 428 uint_t index; 429 model_t model; 430 struct lib_va **tmp; 431 struct lib_va *del = NULL; 432 433 model = get_udatamodel(); 434 index = LIB_VA_HASH(vap->va_nodeid); 435 436 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP); 437 438 mutex_enter(LIB_VA_HASH_MUTEX(index)); 439 440 /* 441 * Make sure not adding same data a second time. 442 * The hash chains should be relatively short and adding 443 * is a relatively rare event, so it's worth the check. 444 */ 445 tmp = &lib_va_hash[index]; 446 while (*tmp != NULL) { 447 if (LIB_VA_MATCH_ID(*tmp, vap)) { 448 if (LIB_VA_MATCH_TIME(*tmp, vap)) { 449 mutex_exit(LIB_VA_HASH_MUTEX(index)); 450 kmem_free(lvp, sizeof (struct lib_va)); 451 return (NULL); 452 } 453 454 /* 455 * We have the same nodeid and fsid but the file has 456 * been modified since we last saw it. 457 * Need to remove the old node and add this new 458 * one. 459 * Could probably use a callback mechanism to make 460 * this cleaner. 461 */ 462 ASSERT(del == NULL); 463 del = *tmp; 464 *tmp = del->lv_next; 465 del->lv_next = NULL; 466 467 /* 468 * Check to see if we can free it. If lv_refcnt 469 * is greater than zero, than some other thread 470 * has a reference to the one we want to delete 471 * and we can not delete it. All of this is done 472 * under the lib_va_hash_mutex lock so it is atomic. 473 */ 474 if (del->lv_refcnt) { 475 MOBJ_STAT_ADD(lib_va_add_delay_delete); 476 del->lv_flags |= LV_DEL; 477 del = NULL; 478 } 479 /* tmp is already advanced */ 480 continue; 481 } 482 tmp = &((*tmp)->lv_next); 483 } 484 485 lvp->lv_base_va = base_va; 486 lvp->lv_len = len; 487 lvp->lv_align = align; 488 lvp->lv_nodeid = vap->va_nodeid; 489 lvp->lv_fsid = vap->va_fsid; 490 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec; 491 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec; 492 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec; 493 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec; 494 lvp->lv_next = NULL; 495 lvp->lv_refcnt = 1; 496 497 /* Caller responsible for filling this and lv_mps out */ 498 lvp->lv_num_segs = 0; 499 500 if (model == DATAMODEL_LP64) { 501 lvp->lv_flags = LV_ELF64; 502 } else { 503 ASSERT(model == DATAMODEL_ILP32); 504 lvp->lv_flags = LV_ELF32; 505 } 506 507 if (base_va != NULL) { 508 if (model == DATAMODEL_LP64) { 509 atomic_add_32(&libs_mapped_64, 1); 510 } else { 511 ASSERT(model == DATAMODEL_ILP32); 512 atomic_add_32(&libs_mapped_32, 1); 513 } 514 } 515 ASSERT(*tmp == NULL); 516 *tmp = lvp; 517 mutex_exit(LIB_VA_HASH_MUTEX(index)); 518 if (del) { 519 ASSERT(del->lv_refcnt == 0); 520 MOBJ_STAT_ADD(lib_va_add_delete); 521 lib_va_free(del); 522 } 523 return (lvp); 524 } 525 526 /* 527 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash. 528 * In addition, if this is the last hold and lvp is marked for deletion, 529 * free up it's reserved address space and free the structure. 530 */ 531 static void 532 lib_va_release(struct lib_va *lvp) 533 { 534 uint_t index; 535 int to_del = 0; 536 537 ASSERT(lvp->lv_refcnt > 0); 538 539 index = LIB_VA_HASH(lvp->lv_nodeid); 540 mutex_enter(LIB_VA_HASH_MUTEX(index)); 541 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) { 542 to_del = 1; 543 } 544 mutex_exit(LIB_VA_HASH_MUTEX(index)); 545 if (to_del) { 546 ASSERT(lvp->lv_next == 0); 547 lib_va_free(lvp); 548 } 549 } 550 551 /* 552 * Dummy function for mapping through /dev/null 553 * Normally I would have used mmmmap in common/io/mem.c 554 * but that is a static function, and for /dev/null, it 555 * just returns -1. 556 */ 557 /* ARGSUSED */ 558 static int 559 mmapobj_dummy(dev_t dev, off_t off, int prot) 560 { 561 return (-1); 562 } 563 564 /* 565 * Called when an error occurred which requires mmapobj to return failure. 566 * All mapped objects will be unmapped and /dev/null mappings will be 567 * reclaimed if necessary. 568 * num_mapped is the number of elements of mrp which have been mapped, and 569 * num_segs is the total number of elements in mrp. 570 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since 571 * we had already made reservations for them. 572 * If num_mapped equals num_segs, then we know that we had fully mapped 573 * the file and only need to clean up the segments described. 574 * If they are not equal, then for ET_DYN we will unmap the range from the 575 * end of the last mapped segment to the end of the last segment in mrp 576 * since we would have made a reservation for that memory earlier. 577 * If e_type is passed in as zero, num_mapped must equal num_segs. 578 */ 579 void 580 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs, 581 ushort_t e_type) 582 { 583 int i; 584 struct as *as = curproc->p_as; 585 caddr_t addr; 586 size_t size; 587 588 if (e_type == ET_EXEC) { 589 num_mapped = num_segs; 590 } 591 #ifdef DEBUG 592 if (e_type == 0) { 593 ASSERT(num_mapped == num_segs); 594 } 595 #endif 596 597 MOBJ_STAT_ADD(unmap_called); 598 for (i = 0; i < num_mapped; i++) { 599 600 /* 601 * If we are going to have to create a mapping we need to 602 * make sure that no one else will use the address we 603 * need to remap between the time it is unmapped and 604 * mapped below. 605 */ 606 if (mrp[i].mr_flags & MR_RESV) { 607 as_rangelock(as); 608 } 609 /* Always need to unmap what we mapped */ 610 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize); 611 612 /* Need to reclaim /dev/null reservation from earlier */ 613 if (mrp[i].mr_flags & MR_RESV) { 614 struct segdev_crargs dev_a; 615 616 ASSERT(e_type != ET_DYN); 617 /* 618 * Use seg_dev segment driver for /dev/null mapping. 619 */ 620 dev_a.mapfunc = mmapobj_dummy; 621 dev_a.dev = makedevice(mm_major, M_NULL); 622 dev_a.offset = 0; 623 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 624 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 625 dev_a.hat_attr = 0; 626 dev_a.hat_flags = 0; 627 628 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize, 629 segdev_create, &dev_a); 630 MOBJ_STAT_ADD(remap_devnull); 631 as_rangeunlock(as); 632 } 633 } 634 635 if (num_mapped != num_segs) { 636 ASSERT(e_type == ET_DYN); 637 /* Need to unmap any reservation made after last mapped seg */ 638 if (num_mapped == 0) { 639 addr = mrp[0].mr_addr; 640 } else { 641 addr = mrp[num_mapped - 1].mr_addr + 642 mrp[num_mapped - 1].mr_msize; 643 } 644 size = (size_t)mrp[num_segs - 1].mr_addr + 645 mrp[num_segs - 1].mr_msize - (size_t)addr; 646 (void) as_unmap(as, addr, size); 647 648 /* 649 * Now we need to unmap the holes between mapped segs. 650 * Note that we have not mapped all of the segments and thus 651 * the holes between segments would not have been unmapped 652 * yet. If num_mapped == num_segs, then all of the holes 653 * between segments would have already been unmapped. 654 */ 655 656 for (i = 1; i < num_mapped; i++) { 657 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize; 658 size = mrp[i].mr_addr - addr; 659 (void) as_unmap(as, addr, size); 660 } 661 } 662 } 663 664 /* 665 * We need to add the start address into mrp so that the unmap function 666 * has absolute addresses to use. 667 */ 668 static void 669 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr) 670 { 671 int i; 672 673 for (i = 0; i < num_mapped; i++) { 674 mrp[i].mr_addr += (size_t)start_addr; 675 } 676 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC); 677 } 678 679 static caddr_t 680 mmapobj_lookup_start_addr(struct lib_va *lvp) 681 { 682 struct as *as = curproc->p_as; 683 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 684 int error; 685 uint_t ma_flags = _MAP_LOW32; 686 caddr_t base = NULL; 687 size_t len; 688 size_t align; 689 690 ASSERT(lvp != NULL); 691 MOBJ_STAT_ADD(lookup_start); 692 693 as_rangelock(as); 694 695 base = lvp->lv_base_va; 696 len = lvp->lv_len; 697 698 /* 699 * If we don't have an expected base address, or the one that we want 700 * to use is not available, go get an acceptable address range. 701 */ 702 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL)) { 703 704 if (lvp->lv_flags & LV_ELF64) { 705 ma_flags = 0; 706 } 707 708 align = lvp->lv_align; 709 if (align > 1) { 710 ma_flags |= MAP_ALIGN; 711 } 712 713 base = (caddr_t)align; 714 map_addr(&base, len, 0, 1, ma_flags); 715 } 716 717 /* 718 * Need to reserve the address space we're going to use. 719 * Don't reserve swap space since we'll be mapping over this. 720 */ 721 if (base != NULL) { 722 crargs.flags |= MAP_NORESERVE; 723 error = as_map(as, base, len, segvn_create, &crargs); 724 if (error) { 725 base = NULL; 726 } 727 } 728 729 as_rangeunlock(as); 730 return (base); 731 } 732 733 /* 734 * Get the starting address for a given file to be mapped and return it 735 * to the caller. If we're using lib_va and we need to allocate an address, 736 * we will attempt to allocate it from the global reserved pool such that the 737 * same address can be used in the future for this file. If we can't use the 738 * reserved address then we just get one that will fit in our address space. 739 * 740 * Returns the starting virtual address for the range to be mapped or NULL 741 * if an error is encountered. If we successfully insert the requested info 742 * into the lib_va hash, then *lvpp will be set to point to this lib_va 743 * structure. The structure will have a hold on it and thus lib_va_release 744 * needs to be called on it by the caller. This function will not fill out 745 * lv_mps or lv_num_segs since it does not have enough information to do so. 746 * The caller is responsible for doing this making sure that any modifications 747 * to lv_mps are visible before setting lv_num_segs. 748 */ 749 static caddr_t 750 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va, 751 size_t align, vattr_t *vap) 752 { 753 struct as *as = curproc->p_as; 754 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 755 int error; 756 model_t model; 757 uint_t ma_flags = _MAP_LOW32; 758 caddr_t base = NULL; 759 vmem_t *model_vmem; 760 761 ASSERT(lvpp != NULL); 762 763 MOBJ_STAT_ADD(alloc_start); 764 model = get_udatamodel(); 765 766 if (model == DATAMODEL_LP64) { 767 ma_flags = 0; 768 model_vmem = lib_va_64_arena; 769 } else { 770 ASSERT(model == DATAMODEL_ILP32); 771 model_vmem = lib_va_32_arena; 772 } 773 774 if (align > 1) { 775 ma_flags |= MAP_ALIGN; 776 } 777 if (use_lib_va) { 778 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) { 779 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL, 780 NULL, VM_NOSLEEP | VM_ENDALLOC); 781 MOBJ_STAT_ADD(alloc_vmem); 782 } 783 #ifdef DEBUG 784 /* 785 * Check to see if we've run into ld.so.1. 786 * If this is the first library we've mapped and we can not 787 * use our reserved address space, then it's likely that 788 * ld.so.1 is occupying some of this space and the 789 * model_vmem arena bounds need to be changed. If we've run 790 * into something else besides ld.so.1 we'll see this message 791 * on the first use of mmapobj and should ignore the message. 792 */ 793 if (base != NULL && libs_mapped_32 == 0 && 794 model == DATAMODEL_ILP32 && 795 as_gap(as, len, &base, &len, 0, NULL)) { 796 cmn_err(CE_NOTE, 797 "lib_va_32_arena may not be optimized"); 798 } else if (base != NULL && libs_mapped_64 == 0 && 799 model == DATAMODEL_LP64 && 800 as_gap(as, len, &base, &len, 0, NULL)) { 801 cmn_err(CE_NOTE, 802 "lib_va_64_arena may not be optimized"); 803 } 804 #endif 805 /* 806 * Even if the address fails to fit in our address space, 807 * or we can't use a reserved address, 808 * we should still save it off in lib_va_hash. 809 */ 810 *lvpp = lib_va_add_hash(base, len, align, vap); 811 812 /* 813 * Check for collision on insertion and free up our VA space. 814 * This is expected to be rare, so we'll just reset base to 815 * NULL instead of looking it up in the lib_va hash. 816 */ 817 if (*lvpp == NULL) { 818 if (base != NULL) { 819 vmem_xfree(model_vmem, base, len); 820 base = NULL; 821 MOBJ_STAT_ADD(add_collision); 822 } 823 } 824 } 825 826 as_rangelock(as); 827 828 /* 829 * If we don't have an expected base address, or the one that we want 830 * to use is not available, go get an acceptable address range. 831 */ 832 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL)) { 833 MOBJ_STAT_ADD(get_addr); 834 base = (caddr_t)align; 835 map_addr(&base, len, 0, 1, ma_flags); 836 } 837 838 /* 839 * Need to reserve the address space we're going to use. 840 * Don't reserve swap space since we'll be mapping over this. 841 */ 842 if (base != NULL) { 843 /* Don't reserve swap space since we'll be mapping over this */ 844 crargs.flags |= MAP_NORESERVE; 845 error = as_map(as, base, len, segvn_create, &crargs); 846 if (error) { 847 base = NULL; 848 } 849 } 850 851 as_rangeunlock(as); 852 return (base); 853 } 854 855 /* 856 * Map the file associated with vp into the address space as a single 857 * read only private mapping. 858 * Returns 0 for success, and non-zero for failure to map the file. 859 */ 860 static int 861 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding, 862 cred_t *fcred) 863 { 864 int error = 0; 865 struct as *as = curproc->p_as; 866 caddr_t addr = NULL; 867 caddr_t start_addr; 868 size_t len; 869 size_t pad_len; 870 int prot = PROT_USER | PROT_READ; 871 uint_t ma_flags = _MAP_LOW32; 872 vattr_t vattr; 873 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 874 875 if (get_udatamodel() == DATAMODEL_LP64) { 876 ma_flags = 0; 877 } 878 879 vattr.va_mask = AT_SIZE; 880 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 881 if (error) { 882 return (error); 883 } 884 885 len = vattr.va_size; 886 887 ma_flags |= MAP_PRIVATE; 888 if (padding == 0) { 889 MOBJ_STAT_ADD(map_flat_no_padding); 890 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, 891 ma_flags, fcred, NULL); 892 if (error == 0) { 893 mrp[0].mr_addr = addr; 894 mrp[0].mr_msize = len; 895 mrp[0].mr_fsize = len; 896 mrp[0].mr_offset = 0; 897 mrp[0].mr_prot = prot; 898 mrp[0].mr_flags = 0; 899 } 900 return (error); 901 } 902 903 /* padding was requested so there's more work to be done */ 904 MOBJ_STAT_ADD(map_flat_padding); 905 906 /* No need to reserve swap space now since it will be reserved later */ 907 crargs.flags |= MAP_NORESERVE; 908 909 /* Need to setup padding which can only be in PAGESIZE increments. */ 910 ASSERT((padding & PAGEOFFSET) == 0); 911 pad_len = len + (2 * padding); 912 913 as_rangelock(as); 914 map_addr(&addr, pad_len, 0, 1, ma_flags); 915 error = as_map(as, addr, pad_len, segvn_create, &crargs); 916 as_rangeunlock(as); 917 if (error) { 918 return (error); 919 } 920 start_addr = addr; 921 addr += padding; 922 ma_flags |= MAP_FIXED; 923 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags, 924 fcred, NULL); 925 if (error == 0) { 926 mrp[0].mr_addr = start_addr; 927 mrp[0].mr_msize = padding; 928 mrp[0].mr_fsize = 0; 929 mrp[0].mr_offset = 0; 930 mrp[0].mr_prot = 0; 931 mrp[0].mr_flags = MR_PADDING; 932 933 mrp[1].mr_addr = addr; 934 mrp[1].mr_msize = len; 935 mrp[1].mr_fsize = len; 936 mrp[1].mr_offset = 0; 937 mrp[1].mr_prot = prot; 938 mrp[1].mr_flags = 0; 939 940 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE); 941 mrp[2].mr_msize = padding; 942 mrp[2].mr_fsize = 0; 943 mrp[2].mr_offset = 0; 944 mrp[2].mr_prot = 0; 945 mrp[2].mr_flags = MR_PADDING; 946 } else { 947 /* Need to cleanup the as_map from earlier */ 948 (void) as_unmap(as, start_addr, pad_len); 949 } 950 return (error); 951 } 952 953 /* 954 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's 955 * address space. 956 * vp - vnode to be mapped in 957 * addr - start address 958 * len - length of vp to be mapped 959 * zfodlen - length of zero filled memory after len above 960 * offset - offset into file where mapping should start 961 * prot - protections for this mapping 962 * fcred - credentials for the file associated with vp at open time. 963 */ 964 static int 965 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 966 off_t offset, int prot, cred_t *fcred) 967 { 968 int error = 0; 969 caddr_t zfodbase, oldaddr; 970 size_t oldlen; 971 size_t end; 972 size_t zfoddiff; 973 label_t ljb; 974 struct as *as = curproc->p_as; 975 model_t model; 976 int full_page; 977 978 /* 979 * See if addr and offset are aligned such that we can map in 980 * full pages instead of partial pages. 981 */ 982 full_page = (((uintptr_t)addr & PAGEOFFSET) == 983 ((uintptr_t)offset & PAGEOFFSET)); 984 985 model = get_udatamodel(); 986 987 oldaddr = addr; 988 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 989 if (len) { 990 spgcnt_t availm, npages; 991 int preread; 992 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 993 994 if (model == DATAMODEL_ILP32) { 995 mflag |= _MAP_LOW32; 996 } 997 /* We may need to map in extra bytes */ 998 oldlen = len; 999 len += ((size_t)oldaddr & PAGEOFFSET); 1000 1001 if (full_page) { 1002 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1003 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1004 mflag |= MAP_TEXT; 1005 MOBJ_STAT_ADD(map_ptload_text); 1006 } else { 1007 mflag |= MAP_INITDATA; 1008 MOBJ_STAT_ADD(map_ptload_initdata); 1009 } 1010 1011 /* 1012 * maxprot is passed as PROT_ALL so that mdb can 1013 * write to this segment. 1014 */ 1015 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr, 1016 len, prot, PROT_ALL, mflag, fcred, NULL)) { 1017 return (error); 1018 } 1019 1020 /* 1021 * If the segment can fit and is relatively small, then 1022 * we prefault the entire segment in. This is based 1023 * on the model that says the best working set of a 1024 * small program is all of its pages. 1025 * We only do this if freemem will not drop below 1026 * lotsfree since we don't want to induce paging. 1027 */ 1028 npages = (spgcnt_t)btopr(len); 1029 availm = freemem - lotsfree; 1030 preread = (npages < availm && len < PGTHRESH) ? 1 : 0; 1031 1032 /* 1033 * If we aren't prefaulting the segment, 1034 * increment "deficit", if necessary to ensure 1035 * that pages will become available when this 1036 * process starts executing. 1037 */ 1038 if (preread == 0 && npages > availm && 1039 deficit < lotsfree) { 1040 deficit += MIN((pgcnt_t)(npages - availm), 1041 lotsfree - deficit); 1042 } 1043 1044 if (preread) { 1045 (void) as_faulta(as, addr, len); 1046 MOBJ_STAT_ADD(map_ptload_preread); 1047 } 1048 } else { 1049 /* 1050 * addr and offset were not aligned such that we could 1051 * use VOP_MAP, thus we need to as_map the memory we 1052 * need and then read the data in from disk. 1053 * This code path is a corner case which should never 1054 * be taken, but hand crafted binaries could trigger 1055 * this logic and it needs to work correctly. 1056 */ 1057 MOBJ_STAT_ADD(map_ptload_unaligned_text); 1058 as_rangelock(as); 1059 (void) as_unmap(as, addr, len); 1060 1061 /* 1062 * We use zfod_argsp because we need to be able to 1063 * write to the mapping and then we'll change the 1064 * protections later if they are incorrect. 1065 */ 1066 error = as_map(as, addr, len, segvn_create, zfod_argsp); 1067 as_rangeunlock(as); 1068 if (error) { 1069 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail); 1070 return (error); 1071 } 1072 1073 /* Now read in the data from disk */ 1074 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset, 1075 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL); 1076 if (error) { 1077 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail); 1078 return (error); 1079 } 1080 1081 /* 1082 * Now set protections. 1083 */ 1084 if (prot != PROT_ZFOD) { 1085 (void) as_setprot(as, addr, len, prot); 1086 } 1087 } 1088 } 1089 1090 if (zfodlen) { 1091 end = (size_t)addr + len; 1092 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE); 1093 zfoddiff = (uintptr_t)zfodbase - end; 1094 if (zfoddiff) { 1095 MOBJ_STAT_ADD(zfoddiff); 1096 if ((prot & PROT_WRITE) == 0) { 1097 (void) as_setprot(as, (caddr_t)end, 1098 zfoddiff, prot | PROT_WRITE); 1099 MOBJ_STAT_ADD(zfoddiff_nowrite); 1100 } 1101 if (on_fault(&ljb)) { 1102 no_fault(); 1103 if ((prot & PROT_WRITE) == 0) { 1104 (void) as_setprot(as, (caddr_t)end, 1105 zfoddiff, prot); 1106 } 1107 return (EFAULT); 1108 } 1109 uzero((void *)end, zfoddiff); 1110 no_fault(); 1111 1112 /* 1113 * Remove write protection to return to original state 1114 */ 1115 if ((prot & PROT_WRITE) == 0) { 1116 (void) as_setprot(as, (caddr_t)end, 1117 zfoddiff, prot); 1118 } 1119 } 1120 if (zfodlen > zfoddiff) { 1121 struct segvn_crargs crargs = 1122 SEGVN_ZFOD_ARGS(prot, PROT_ALL); 1123 1124 MOBJ_STAT_ADD(zfodextra); 1125 zfodlen -= zfoddiff; 1126 crargs.szc = AS_MAP_NO_LPOOB; 1127 1128 1129 as_rangelock(as); 1130 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen); 1131 error = as_map(as, (caddr_t)zfodbase, 1132 zfodlen, segvn_create, &crargs); 1133 as_rangeunlock(as); 1134 if (error) { 1135 return (error); 1136 } 1137 } 1138 } 1139 return (0); 1140 } 1141 1142 /* 1143 * Map the ELF file represented by vp into the users address space. The 1144 * first mapping will start at start_addr and there will be num_elements 1145 * mappings. The mappings are described by the data in mrp which may be 1146 * modified upon returning from this function. 1147 * Returns 0 for success or errno for failure. 1148 */ 1149 static int 1150 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp, 1151 int num_elements, cred_t *fcred, ushort_t e_type) 1152 { 1153 int i; 1154 int ret; 1155 caddr_t lo; 1156 caddr_t hi; 1157 struct as *as = curproc->p_as; 1158 1159 for (i = 0; i < num_elements; i++) { 1160 caddr_t addr; 1161 size_t p_memsz; 1162 size_t p_filesz; 1163 size_t zfodlen; 1164 offset_t p_offset; 1165 size_t dif; 1166 int prot; 1167 1168 /* Always need to adjust mr_addr */ 1169 addr = start_addr + (size_t)(mrp[i].mr_addr); 1170 mrp[i].mr_addr = 1171 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1172 1173 /* Padding has already been mapped */ 1174 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1175 continue; 1176 } 1177 p_memsz = mrp[i].mr_msize; 1178 p_filesz = mrp[i].mr_fsize; 1179 zfodlen = p_memsz - p_filesz; 1180 p_offset = mrp[i].mr_offset; 1181 dif = (uintptr_t)(addr) & PAGEOFFSET; 1182 prot = mrp[i].mr_prot | PROT_USER; 1183 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen, 1184 p_offset, prot, fcred); 1185 if (ret != 0) { 1186 MOBJ_STAT_ADD(ptload_failed); 1187 mmapobj_unmap(mrp, i, num_elements, e_type); 1188 return (ret); 1189 } 1190 1191 /* Need to cleanup mrp to reflect the actual values used */ 1192 mrp[i].mr_msize += dif; 1193 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET; 1194 } 1195 1196 /* Also need to unmap any holes created above */ 1197 if (num_elements == 1) { 1198 MOBJ_STAT_ADD(map_elf_no_holes); 1199 return (0); 1200 } 1201 if (e_type == ET_EXEC) { 1202 return (0); 1203 } 1204 1205 as_rangelock(as); 1206 lo = start_addr; 1207 hi = mrp[0].mr_addr; 1208 1209 /* Remove holes made by the rest of the segments */ 1210 for (i = 0; i < num_elements - 1; i++) { 1211 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) + 1212 mrp[i].mr_msize, PAGESIZE); 1213 hi = mrp[i + 1].mr_addr; 1214 if (lo < hi) { 1215 /* 1216 * If as_unmap fails we just use up a bit of extra 1217 * space 1218 */ 1219 (void) as_unmap(as, (caddr_t)lo, 1220 (size_t)hi - (size_t)lo); 1221 MOBJ_STAT_ADD(unmap_hole); 1222 } 1223 } 1224 as_rangeunlock(as); 1225 1226 return (0); 1227 } 1228 1229 /* Ugly hack to get STRUCT_* macros to work below */ 1230 struct myphdr { 1231 Phdr x; /* native version */ 1232 }; 1233 1234 struct myphdr32 { 1235 Elf32_Phdr x; 1236 }; 1237 1238 /* 1239 * Calculate and return the number of loadable segments in the ELF Phdr 1240 * represented by phdrbase as well as the len of the total mapping and 1241 * the max alignment that is needed for a given segment. On success, 1242 * 0 is returned, and *len, *loadable and *align have been filled out. 1243 * On failure, errno will be returned, which in this case is ENOTSUP 1244 * if we were passed an ELF file with overlapping segments. 1245 */ 1246 static int 1247 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len, 1248 int *loadable, size_t *align) 1249 { 1250 int i; 1251 int hsize; 1252 model_t model; 1253 uint_t p_type; 1254 offset_t p_offset; 1255 size_t p_memsz; 1256 size_t p_align; 1257 caddr_t vaddr; 1258 int num_segs = 0; 1259 caddr_t start_addr = NULL; 1260 caddr_t p_end = NULL; 1261 size_t max_align = 0; 1262 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */ 1263 STRUCT_HANDLE(myphdr, mph); 1264 #if defined(__sparc) 1265 extern int vac_size; 1266 1267 /* 1268 * Want to prevent aliasing by making the start address at least be 1269 * aligned to vac_size. 1270 */ 1271 min_align = MAX(PAGESIZE, vac_size); 1272 #endif 1273 1274 model = get_udatamodel(); 1275 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1276 1277 /* hsize alignment should have been checked before calling this func */ 1278 if (model == DATAMODEL_LP64) { 1279 hsize = ehdrp->e_phentsize; 1280 if (hsize & 7) { 1281 return (ENOTSUP); 1282 } 1283 } else { 1284 ASSERT(model == DATAMODEL_ILP32); 1285 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1286 if (hsize & 3) { 1287 return (ENOTSUP); 1288 } 1289 } 1290 1291 /* 1292 * Determine the span of all loadable segments and calculate the 1293 * number of loadable segments. 1294 */ 1295 for (i = 0; i < nphdrs; i++) { 1296 p_type = STRUCT_FGET(mph, x.p_type); 1297 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1298 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1299 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1300 1301 /* 1302 * Skip this header if it requests no memory to be 1303 * mapped. 1304 */ 1305 if (p_memsz == 0) { 1306 STRUCT_SET_HANDLE(mph, model, 1307 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1308 hsize)); 1309 MOBJ_STAT_ADD(nomem_header); 1310 continue; 1311 } 1312 if (num_segs++ == 0) { 1313 start_addr = vaddr; 1314 /* 1315 * For the first segment, we need to map from 1316 * the beginning of the file, so we will 1317 * adjust the size of the mapping to include 1318 * this memory. 1319 */ 1320 p_offset = STRUCT_FGET(mph, x.p_offset); 1321 } else { 1322 p_offset = 0; 1323 } 1324 /* 1325 * Check to make sure that this mapping wouldn't 1326 * overlap a previous mapping. 1327 */ 1328 if (vaddr < p_end) { 1329 MOBJ_STAT_ADD(overlap_header); 1330 return (ENOTSUP); 1331 } 1332 1333 p_end = vaddr + p_memsz + p_offset; 1334 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE); 1335 1336 p_align = STRUCT_FGET(mph, x.p_align); 1337 if (p_align > 1 && p_align > max_align) { 1338 max_align = p_align; 1339 if (max_align < min_align) { 1340 max_align = min_align; 1341 MOBJ_STAT_ADD(min_align); 1342 } 1343 } 1344 } 1345 STRUCT_SET_HANDLE(mph, model, 1346 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize)); 1347 } 1348 1349 /* 1350 * The alignment should be a power of 2, if it isn't we forgive it 1351 * and round up. On overflow, we'll set the alignment to max_align 1352 * rounded down to the nearest power of 2. 1353 */ 1354 if (max_align > 0 && !ISP2(max_align)) { 1355 MOBJ_STAT_ADD(np2_align); 1356 *align = 2 * (1L << (highbit(max_align) - 1)); 1357 if (*align < max_align || 1358 (*align > UINT_MAX && model == DATAMODEL_ILP32)) { 1359 MOBJ_STAT_ADD(np2_align_overflow); 1360 *align = 1L << (highbit(max_align) - 1); 1361 } 1362 } else { 1363 *align = max_align; 1364 } 1365 1366 ASSERT(*align >= PAGESIZE || *align == 0); 1367 1368 *loadable = num_segs; 1369 *len = p_end - start_addr; 1370 return (0); 1371 } 1372 1373 /* 1374 * Check the address space to see if the virtual addresses to be used are 1375 * available. If they are not, return errno for failure. On success, 0 1376 * will be returned, and the virtual addresses for each mmapobj_result_t 1377 * will be reserved. Note that a reservation could have earlier been made 1378 * for a given segment via a /dev/null mapping. If that is the case, then 1379 * we can use that VA space for our mappings. 1380 * Note: this function will only be used for ET_EXEC binaries. 1381 */ 1382 int 1383 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr) 1384 { 1385 int i; 1386 struct as *as = curproc->p_as; 1387 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1388 int ret; 1389 caddr_t myaddr; 1390 size_t mylen; 1391 struct seg *seg; 1392 1393 /* No need to reserve swap space now since it will be reserved later */ 1394 crargs.flags |= MAP_NORESERVE; 1395 as_rangelock(as); 1396 for (i = 0; i < loadable; i++) { 1397 1398 myaddr = start_addr + (size_t)mrp[i].mr_addr; 1399 mylen = mrp[i].mr_msize; 1400 1401 /* See if there is a hole in the as for this range */ 1402 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) { 1403 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr); 1404 ASSERT(mylen == mrp[i].mr_msize); 1405 1406 #ifdef DEBUG 1407 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1408 MOBJ_STAT_ADD(exec_padding); 1409 } 1410 #endif 1411 ret = as_map(as, myaddr, mylen, segvn_create, &crargs); 1412 if (ret) { 1413 as_rangeunlock(as); 1414 mmapobj_unmap_exec(mrp, i, start_addr); 1415 return (ret); 1416 } 1417 } else { 1418 /* 1419 * There is a mapping that exists in the range 1420 * so check to see if it was a "reservation" 1421 * from /dev/null. The mapping is from 1422 * /dev/null if the mapping comes from 1423 * segdev and the type is neither MAP_SHARED 1424 * nor MAP_PRIVATE. 1425 */ 1426 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1427 seg = as_findseg(as, myaddr, 0); 1428 MOBJ_STAT_ADD(exec_addr_mapped); 1429 if (seg && seg->s_ops == &segdev_ops && 1430 ((SEGOP_GETTYPE(seg, myaddr) & 1431 (MAP_SHARED | MAP_PRIVATE)) == 0) && 1432 myaddr >= seg->s_base && 1433 myaddr + mylen <= 1434 seg->s_base + seg->s_size) { 1435 MOBJ_STAT_ADD(exec_addr_devnull); 1436 AS_LOCK_EXIT(as, &as->a_lock); 1437 (void) as_unmap(as, myaddr, mylen); 1438 ret = as_map(as, myaddr, mylen, segvn_create, 1439 &crargs); 1440 mrp[i].mr_flags |= MR_RESV; 1441 if (ret) { 1442 as_rangeunlock(as); 1443 /* Need to remap what we unmapped */ 1444 mmapobj_unmap_exec(mrp, i + 1, 1445 start_addr); 1446 return (ret); 1447 } 1448 } else { 1449 AS_LOCK_EXIT(as, &as->a_lock); 1450 as_rangeunlock(as); 1451 mmapobj_unmap_exec(mrp, i, start_addr); 1452 MOBJ_STAT_ADD(exec_addr_in_use); 1453 return (EADDRINUSE); 1454 } 1455 } 1456 } 1457 as_rangeunlock(as); 1458 return (0); 1459 } 1460 1461 /* 1462 * Walk through the ELF program headers and extract all useful information 1463 * for PT_LOAD and PT_SUNWBSS segments into mrp. 1464 * Return 0 on success or error on failure. 1465 */ 1466 static int 1467 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp, 1468 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred) 1469 { 1470 int i; 1471 caddr_t start_addr = NULL; 1472 caddr_t vaddr; 1473 size_t len = 0; 1474 size_t lib_len = 0; 1475 int ret; 1476 int prot; 1477 struct lib_va *lvp = NULL; 1478 vattr_t vattr; 1479 struct as *as = curproc->p_as; 1480 int error; 1481 int loadable = 0; 1482 int current = 0; 1483 int use_lib_va = 1; 1484 size_t align = 0; 1485 size_t add_pad = 0; 1486 int hdr_seen = 0; 1487 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1488 uint_t p_type; 1489 offset_t p_offset; 1490 size_t p_memsz; 1491 size_t p_filesz; 1492 uint_t p_flags; 1493 int hsize; 1494 model_t model; 1495 STRUCT_HANDLE(myphdr, mph); 1496 1497 model = get_udatamodel(); 1498 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1499 1500 /* 1501 * Need to make sure that hsize is aligned properly. 1502 * For 32bit processes, 4 byte alignment is required. 1503 * For 64bit processes, 8 byte alignment is required. 1504 * If the alignment isn't correct, we need to return failure 1505 * since it could cause an alignment error panic while walking 1506 * the phdr array. 1507 */ 1508 if (model == DATAMODEL_LP64) { 1509 hsize = ehdrp->e_phentsize; 1510 if (hsize & 7) { 1511 MOBJ_STAT_ADD(phent_align64); 1512 return (ENOTSUP); 1513 } 1514 } else { 1515 ASSERT(model == DATAMODEL_ILP32); 1516 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1517 if (hsize & 3) { 1518 MOBJ_STAT_ADD(phent_align32); 1519 return (ENOTSUP); 1520 } 1521 } 1522 1523 if (padding != 0) { 1524 use_lib_va = 0; 1525 } 1526 if (e_type == ET_DYN) { 1527 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME; 1528 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 1529 if (error) { 1530 return (error); 1531 } 1532 /* Check to see if we already have a description for this lib */ 1533 lvp = lib_va_find(&vattr); 1534 1535 if (lvp != NULL) { 1536 MOBJ_STAT_ADD(lvp_found); 1537 if (use_lib_va) { 1538 start_addr = mmapobj_lookup_start_addr(lvp); 1539 if (start_addr == NULL) { 1540 lib_va_release(lvp); 1541 return (ENOMEM); 1542 } 1543 } 1544 1545 /* 1546 * loadable may be zero if the original allocator 1547 * of lvp hasn't finished setting it up but the rest 1548 * of the fields will be accurate. 1549 */ 1550 loadable = lvp->lv_num_segs; 1551 len = lvp->lv_len; 1552 align = lvp->lv_align; 1553 } 1554 } 1555 1556 /* 1557 * Determine the span of all loadable segments and calculate the 1558 * number of loadable segments, the total len spanned by the mappings 1559 * and the max alignment, if we didn't get them above. 1560 */ 1561 if (loadable == 0) { 1562 MOBJ_STAT_ADD(no_loadable_yet); 1563 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len, 1564 &loadable, &align); 1565 if (ret != 0) { 1566 /* 1567 * Since it'd be an invalid file, we shouldn't have 1568 * cached it previously. 1569 */ 1570 ASSERT(lvp == NULL); 1571 return (ret); 1572 } 1573 #ifdef DEBUG 1574 if (lvp) { 1575 ASSERT(len == lvp->lv_len); 1576 ASSERT(align == lvp->lv_align); 1577 } 1578 #endif 1579 } 1580 1581 /* Make sure there's something to map. */ 1582 if (len == 0 || loadable == 0) { 1583 /* 1584 * Since it'd be an invalid file, we shouldn't have 1585 * cached it previously. 1586 */ 1587 ASSERT(lvp == NULL); 1588 MOBJ_STAT_ADD(nothing_to_map); 1589 return (ENOTSUP); 1590 } 1591 1592 lib_len = len; 1593 if (padding != 0) { 1594 loadable += 2; 1595 } 1596 if (loadable > *num_mapped) { 1597 *num_mapped = loadable; 1598 /* cleanup previous reservation */ 1599 if (start_addr) { 1600 (void) as_unmap(as, start_addr, lib_len); 1601 } 1602 MOBJ_STAT_ADD(e2big); 1603 if (lvp) { 1604 lib_va_release(lvp); 1605 } 1606 return (E2BIG); 1607 } 1608 1609 /* 1610 * We now know the size of the object to map and now we need to 1611 * get the start address to map it at. It's possible we already 1612 * have it if we found all the info we need in the lib_va cache. 1613 */ 1614 if (e_type == ET_DYN && start_addr == NULL) { 1615 /* 1616 * Need to make sure padding does not throw off 1617 * required alignment. We can only specify an 1618 * alignment for the starting address to be mapped, 1619 * so we round padding up to the alignment and map 1620 * from there and then throw out the extra later. 1621 */ 1622 if (padding != 0) { 1623 if (align > 1) { 1624 add_pad = P2ROUNDUP(padding, align); 1625 len += add_pad; 1626 MOBJ_STAT_ADD(dyn_pad_align); 1627 } else { 1628 MOBJ_STAT_ADD(dyn_pad_noalign); 1629 len += padding; /* at beginning */ 1630 } 1631 len += padding; /* at end of mapping */ 1632 } 1633 /* 1634 * At this point, if lvp is non-NULL, then above we 1635 * already found it in the cache but did not get 1636 * the start address since we were not going to use lib_va. 1637 * Since we know that lib_va will not be used, it's safe 1638 * to call mmapobj_alloc_start_addr and know that lvp 1639 * will not be modified. 1640 */ 1641 ASSERT(lvp ? use_lib_va == 0 : 1); 1642 start_addr = mmapobj_alloc_start_addr(&lvp, len, 1643 use_lib_va, align, &vattr); 1644 if (start_addr == NULL) { 1645 if (lvp) { 1646 lib_va_release(lvp); 1647 } 1648 MOBJ_STAT_ADD(alloc_start_fail); 1649 return (ENOMEM); 1650 } 1651 /* 1652 * If we can't cache it, no need to hang on to it. 1653 * Setting lv_num_segs to non-zero will make that 1654 * field active and since there are too many segments 1655 * to cache, all future users will not try to use lv_mps. 1656 */ 1657 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) { 1658 lvp->lv_num_segs = loadable; 1659 lib_va_release(lvp); 1660 lvp = NULL; 1661 MOBJ_STAT_ADD(lvp_nocache); 1662 } 1663 /* 1664 * Free the beginning of the mapping if the padding 1665 * was not aligned correctly. 1666 */ 1667 if (padding != 0 && add_pad != padding) { 1668 (void) as_unmap(as, start_addr, 1669 add_pad - padding); 1670 start_addr += (add_pad - padding); 1671 MOBJ_STAT_ADD(extra_padding); 1672 } 1673 } 1674 1675 /* 1676 * At this point, we have reserved the virtual address space 1677 * for our mappings. Now we need to start filling out the mrp 1678 * array to describe all of the individual mappings we are going 1679 * to return. 1680 * For ET_EXEC there has been no memory reservation since we are 1681 * using fixed addresses. While filling in the mrp array below, 1682 * we will have the first segment biased to start at addr 0 1683 * and the rest will be biased by this same amount. Thus if there 1684 * is padding, the first padding will start at addr 0, and the next 1685 * segment will start at the value of padding. 1686 */ 1687 1688 /* We'll fill out padding later, so start filling in mrp at index 1 */ 1689 if (padding != 0) { 1690 current = 1; 1691 } 1692 1693 /* If we have no more need for lvp let it go now */ 1694 if (lvp != NULL && use_lib_va == 0) { 1695 lib_va_release(lvp); 1696 MOBJ_STAT_ADD(lvp_not_needed); 1697 lvp = NULL; 1698 } 1699 1700 /* Now fill out the mrp structs from the program headers */ 1701 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1702 for (i = 0; i < nphdrs; i++) { 1703 p_type = STRUCT_FGET(mph, x.p_type); 1704 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1705 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1706 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1707 p_filesz = STRUCT_FGET(mph, x.p_filesz); 1708 p_offset = STRUCT_FGET(mph, x.p_offset); 1709 p_flags = STRUCT_FGET(mph, x.p_flags); 1710 1711 /* 1712 * Skip this header if it requests no memory to be 1713 * mapped. 1714 */ 1715 if (p_memsz == 0) { 1716 STRUCT_SET_HANDLE(mph, model, 1717 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1718 hsize)); 1719 MOBJ_STAT_ADD(no_mem_map_sz); 1720 continue; 1721 } 1722 1723 prot = 0; 1724 if (p_flags & PF_R) 1725 prot |= PROT_READ; 1726 if (p_flags & PF_W) 1727 prot |= PROT_WRITE; 1728 if (p_flags & PF_X) 1729 prot |= PROT_EXEC; 1730 1731 ASSERT(current < loadable); 1732 mrp[current].mr_msize = p_memsz; 1733 mrp[current].mr_fsize = p_filesz; 1734 mrp[current].mr_offset = p_offset; 1735 mrp[current].mr_prot = prot; 1736 1737 if (hdr_seen == 0 && p_filesz != 0) { 1738 mrp[current].mr_flags = MR_HDR_ELF; 1739 /* 1740 * We modify mr_addr and mr_offset because we 1741 * need to map the ELF header as well, and if 1742 * we didn't then the header could be left out 1743 * of the mapping that we will create later. 1744 * Since we're removing the offset, we need to 1745 * account for that in the other fields as well 1746 * since we will be mapping the memory from 0 1747 * to p_offset. 1748 */ 1749 if (e_type == ET_DYN) { 1750 mrp[current].mr_offset = 0; 1751 mrp[current].mr_msize += p_offset; 1752 mrp[current].mr_fsize += p_offset; 1753 } else { 1754 ASSERT(e_type == ET_EXEC); 1755 /* 1756 * Save off the start addr which will be 1757 * our bias for the rest of the 1758 * ET_EXEC mappings. 1759 */ 1760 start_addr = vaddr - padding; 1761 } 1762 mrp[current].mr_addr = (caddr_t)padding; 1763 hdr_seen = 1; 1764 } else { 1765 if (e_type == ET_EXEC) { 1766 /* bias mr_addr */ 1767 mrp[current].mr_addr = 1768 vaddr - (size_t)start_addr; 1769 } else { 1770 mrp[current].mr_addr = vaddr + padding; 1771 } 1772 mrp[current].mr_flags = 0; 1773 } 1774 current++; 1775 } 1776 1777 /* Move to next phdr */ 1778 STRUCT_SET_HANDLE(mph, model, 1779 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1780 hsize)); 1781 } 1782 1783 /* Now fill out the padding segments */ 1784 if (padding != 0) { 1785 mrp[0].mr_addr = NULL; 1786 mrp[0].mr_msize = padding; 1787 mrp[0].mr_fsize = 0; 1788 mrp[0].mr_offset = 0; 1789 mrp[0].mr_prot = 0; 1790 mrp[0].mr_flags = MR_PADDING; 1791 1792 /* Setup padding for the last segment */ 1793 ASSERT(current == loadable - 1); 1794 mrp[current].mr_addr = (caddr_t)lib_len + padding; 1795 mrp[current].mr_msize = padding; 1796 mrp[current].mr_fsize = 0; 1797 mrp[current].mr_offset = 0; 1798 mrp[current].mr_prot = 0; 1799 mrp[current].mr_flags = MR_PADDING; 1800 } 1801 1802 /* 1803 * Need to make sure address ranges desired are not in use or 1804 * are previously allocated reservations from /dev/null. For 1805 * ET_DYN, we already made sure our address range was free. 1806 */ 1807 if (e_type == ET_EXEC) { 1808 ret = check_exec_addrs(loadable, mrp, start_addr); 1809 if (ret != 0) { 1810 ASSERT(lvp == NULL); 1811 MOBJ_STAT_ADD(check_exec_failed); 1812 return (ret); 1813 } 1814 } 1815 1816 /* Finish up our business with lvp. */ 1817 if (lvp) { 1818 ASSERT(e_type == ET_DYN); 1819 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) { 1820 bcopy(mrp, lvp->lv_mps, 1821 loadable * sizeof (mmapobj_result_t)); 1822 membar_producer(); 1823 } 1824 /* 1825 * Setting lv_num_segs to a non-zero value indicates that 1826 * lv_mps is now valid and can be used by other threads. 1827 * So, the above stores need to finish before lv_num_segs 1828 * is updated. lv_mps is only valid if lv_num_segs is 1829 * greater than LIBVA_CACHED_SEGS. 1830 */ 1831 lvp->lv_num_segs = loadable; 1832 lib_va_release(lvp); 1833 MOBJ_STAT_ADD(lvp_used); 1834 } 1835 1836 /* Now that we have mrp completely filled out go map it */ 1837 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type); 1838 if (ret == 0) { 1839 *num_mapped = loadable; 1840 } 1841 1842 return (ret); 1843 } 1844 1845 /* 1846 * Take the ELF file passed in, and do the work of mapping it. 1847 * num_mapped in - # elements in user buffer 1848 * num_mapped out - # sections mapped and length of mrp array if 1849 * no errors. 1850 */ 1851 static int 1852 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp, 1853 uint_t *num_mapped, size_t padding, cred_t *fcred) 1854 { 1855 int error; 1856 offset_t phoff; 1857 int nphdrs; 1858 unsigned char ei_class; 1859 unsigned short phentsize; 1860 ssize_t phsizep; 1861 caddr_t phbasep; 1862 int to_map; 1863 model_t model; 1864 1865 ei_class = ehdrp->e_ident[EI_CLASS]; 1866 model = get_udatamodel(); 1867 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) || 1868 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) { 1869 MOBJ_STAT_ADD(wrong_model); 1870 return (ENOTSUP); 1871 } 1872 1873 /* Can't execute code from "noexec" mounted filesystem. */ 1874 if (ehdrp->e_type == ET_EXEC && 1875 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) { 1876 MOBJ_STAT_ADD(noexec_fs); 1877 return (EACCES); 1878 } 1879 1880 /* 1881 * Relocatable and core files are mapped as a single flat file 1882 * since no interpretation is done on them by mmapobj. 1883 */ 1884 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) { 1885 to_map = padding ? 3 : 1; 1886 if (*num_mapped < to_map) { 1887 *num_mapped = to_map; 1888 MOBJ_STAT_ADD(e2big_et_rel); 1889 return (E2BIG); 1890 } 1891 error = mmapobj_map_flat(vp, mrp, padding, fcred); 1892 if (error == 0) { 1893 *num_mapped = to_map; 1894 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF; 1895 MOBJ_STAT_ADD(et_rel_mapped); 1896 } 1897 return (error); 1898 } 1899 1900 /* Check for an unknown ELF type */ 1901 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) { 1902 MOBJ_STAT_ADD(unknown_elf_type); 1903 return (ENOTSUP); 1904 } 1905 1906 if (ei_class == ELFCLASS32) { 1907 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp; 1908 ASSERT(model == DATAMODEL_ILP32); 1909 nphdrs = e32hdr->e_phnum; 1910 phentsize = e32hdr->e_phentsize; 1911 if (phentsize < sizeof (Elf32_Phdr)) { 1912 MOBJ_STAT_ADD(phent32_too_small); 1913 return (ENOTSUP); 1914 } 1915 phoff = e32hdr->e_phoff; 1916 } else if (ei_class == ELFCLASS64) { 1917 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp; 1918 ASSERT(model == DATAMODEL_LP64); 1919 nphdrs = e64hdr->e_phnum; 1920 phentsize = e64hdr->e_phentsize; 1921 if (phentsize < sizeof (Elf64_Phdr)) { 1922 MOBJ_STAT_ADD(phent64_too_small); 1923 return (ENOTSUP); 1924 } 1925 phoff = e64hdr->e_phoff; 1926 } else { 1927 /* fallthrough case for an invalid ELF class */ 1928 MOBJ_STAT_ADD(inval_elf_class); 1929 return (ENOTSUP); 1930 } 1931 1932 /* 1933 * nphdrs should only have this value for core files which are handled 1934 * above as a single mapping. If other file types ever use this 1935 * sentinel, then we'll add the support needed to handle this here. 1936 */ 1937 if (nphdrs == PN_XNUM) { 1938 MOBJ_STAT_ADD(too_many_phdrs); 1939 return (ENOTSUP); 1940 } 1941 1942 phsizep = nphdrs * phentsize; 1943 1944 if (phsizep == 0) { 1945 MOBJ_STAT_ADD(no_phsize); 1946 return (ENOTSUP); 1947 } 1948 1949 /* Make sure we only wait for memory if it's a reasonable request */ 1950 if (phsizep > mmapobj_alloc_threshold) { 1951 MOBJ_STAT_ADD(phsize_large); 1952 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) { 1953 MOBJ_STAT_ADD(phsize_xtralarge); 1954 return (ENOMEM); 1955 } 1956 } else { 1957 phbasep = kmem_alloc(phsizep, KM_SLEEP); 1958 } 1959 1960 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep, 1961 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1962 fcred, NULL)) != 0) { 1963 kmem_free(phbasep, phsizep); 1964 return (error); 1965 } 1966 1967 /* Now process the phdr's */ 1968 error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped, 1969 padding, fcred); 1970 kmem_free(phbasep, phsizep); 1971 return (error); 1972 } 1973 1974 #if defined(__sparc) 1975 /* 1976 * Hack to support 64 bit kernels running AOUT 4.x programs. 1977 * This is the sizeof (struct nlist) for a 32 bit kernel. 1978 * Since AOUT programs are 32 bit only, they will never use the 64 bit 1979 * sizeof (struct nlist) and thus creating a #define is the simplest 1980 * way around this since this is a format which is not being updated. 1981 * This will be used in the place of sizeof (struct nlist) below. 1982 */ 1983 #define NLIST_SIZE (0xC) 1984 1985 static int 1986 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp, 1987 uint_t *num_mapped, struct exec *hdr, cred_t *fcred) 1988 { 1989 int error; 1990 size_t size; 1991 size_t osize; 1992 size_t nsize; /* nlist size */ 1993 size_t msize; 1994 size_t zfoddiff; 1995 caddr_t addr; 1996 caddr_t start_addr; 1997 struct as *as = curproc->p_as; 1998 int prot = PROT_USER | PROT_READ | PROT_EXEC; 1999 uint_t mflag = MAP_PRIVATE | _MAP_LOW32; 2000 offset_t off = 0; 2001 int segnum = 0; 2002 uint_t to_map; 2003 int is_library = 0; 2004 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2005 2006 /* Only 32bit apps supported by this file format */ 2007 if (get_udatamodel() != DATAMODEL_ILP32) { 2008 MOBJ_STAT_ADD(aout_64bit_try); 2009 return (ENOTSUP); 2010 } 2011 2012 /* Check to see if this is a library */ 2013 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) { 2014 is_library = 1; 2015 } 2016 2017 /* Can't execute code from "noexec" mounted filesystem. */ 2018 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) { 2019 MOBJ_STAT_ADD(aout_noexec); 2020 return (EACCES); 2021 } 2022 2023 /* 2024 * There are 2 ways to calculate the mapped size of executable: 2025 * 1) rounded text size + data size + bss size. 2026 * 2) starting offset for text + text size + data size + text relocation 2027 * size + data relocation size + room for nlist data structure. 2028 * 2029 * The larger of the two sizes will be used to map this binary. 2030 */ 2031 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss; 2032 2033 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec); 2034 2035 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize + 2036 hdr->a_drsize + NLIST_SIZE; 2037 2038 size = MAX(osize, nsize); 2039 if (size != nsize) { 2040 nsize = 0; 2041 } 2042 2043 /* 2044 * 1 seg for text and 1 seg for initialized data. 2045 * 1 seg for bss (if can't fit in leftover space of init data) 2046 * 1 seg for nlist if needed. 2047 */ 2048 to_map = 2 + (nsize ? 1 : 0) + 2049 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0); 2050 if (*num_mapped < to_map) { 2051 *num_mapped = to_map; 2052 MOBJ_STAT_ADD(aout_e2big); 2053 return (E2BIG); 2054 } 2055 2056 /* Reserve address space for the whole mapping */ 2057 if (is_library) { 2058 /* We'll let VOP_MAP below pick our address for us */ 2059 addr = NULL; 2060 MOBJ_STAT_ADD(aout_lib); 2061 } else { 2062 /* 2063 * default start address for fixed binaries from AOUT 4.x 2064 * standard. 2065 */ 2066 MOBJ_STAT_ADD(aout_fixed); 2067 mflag |= MAP_FIXED; 2068 addr = (caddr_t)0x2000; 2069 as_rangelock(as); 2070 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) { 2071 as_rangeunlock(as); 2072 MOBJ_STAT_ADD(aout_addr_in_use); 2073 return (EADDRINUSE); 2074 } 2075 crargs.flags |= MAP_NORESERVE; 2076 error = as_map(as, addr, size, segvn_create, &crargs); 2077 ASSERT(addr == (caddr_t)0x2000); 2078 as_rangeunlock(as); 2079 } 2080 2081 start_addr = addr; 2082 osize = size; 2083 2084 /* 2085 * Map as large as we need, backed by file, this will be text, and 2086 * possibly the nlist segment. We map over this mapping for bss and 2087 * initialized data segments. 2088 */ 2089 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL, 2090 mflag, fcred, NULL); 2091 if (error) { 2092 if (!is_library) { 2093 (void) as_unmap(as, start_addr, osize); 2094 } 2095 return (error); 2096 } 2097 2098 /* pickup the value of start_addr and osize for libraries */ 2099 start_addr = addr; 2100 osize = size; 2101 2102 /* 2103 * We have our initial reservation/allocation so we need to use fixed 2104 * addresses from now on. 2105 */ 2106 mflag |= MAP_FIXED; 2107 2108 mrp[0].mr_addr = addr; 2109 mrp[0].mr_msize = hdr->a_text; 2110 mrp[0].mr_fsize = hdr->a_text; 2111 mrp[0].mr_offset = 0; 2112 mrp[0].mr_prot = PROT_READ | PROT_EXEC; 2113 mrp[0].mr_flags = MR_HDR_AOUT; 2114 2115 2116 /* 2117 * Map initialized data. We are mapping over a portion of the 2118 * previous mapping which will be unmapped in VOP_MAP below. 2119 */ 2120 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE); 2121 msize = off; 2122 addr += off; 2123 size = hdr->a_data; 2124 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL, 2125 mflag, fcred, NULL); 2126 if (error) { 2127 (void) as_unmap(as, start_addr, osize); 2128 return (error); 2129 } 2130 msize += size; 2131 mrp[1].mr_addr = addr; 2132 mrp[1].mr_msize = size; 2133 mrp[1].mr_fsize = size; 2134 mrp[1].mr_offset = 0; 2135 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2136 mrp[1].mr_flags = 0; 2137 2138 /* Need to zero out remainder of page */ 2139 addr += hdr->a_data; 2140 zfoddiff = P2PHASE((size_t)addr, PAGESIZE); 2141 if (zfoddiff) { 2142 label_t ljb; 2143 2144 MOBJ_STAT_ADD(aout_zfoddiff); 2145 zfoddiff = PAGESIZE - zfoddiff; 2146 if (on_fault(&ljb)) { 2147 no_fault(); 2148 MOBJ_STAT_ADD(aout_uzero_fault); 2149 (void) as_unmap(as, start_addr, osize); 2150 return (EFAULT); 2151 } 2152 uzero(addr, zfoddiff); 2153 no_fault(); 2154 } 2155 msize += zfoddiff; 2156 segnum = 2; 2157 2158 /* Map bss */ 2159 if (hdr->a_bss > zfoddiff) { 2160 struct segvn_crargs crargs = 2161 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2162 MOBJ_STAT_ADD(aout_map_bss); 2163 addr += zfoddiff; 2164 size = hdr->a_bss - zfoddiff; 2165 as_rangelock(as); 2166 (void) as_unmap(as, addr, size); 2167 error = as_map(as, addr, size, segvn_create, &crargs); 2168 as_rangeunlock(as); 2169 msize += size; 2170 2171 if (error) { 2172 MOBJ_STAT_ADD(aout_bss_fail); 2173 (void) as_unmap(as, start_addr, osize); 2174 return (error); 2175 } 2176 mrp[2].mr_addr = addr; 2177 mrp[2].mr_msize = size; 2178 mrp[2].mr_fsize = 0; 2179 mrp[2].mr_offset = 0; 2180 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2181 mrp[2].mr_flags = 0; 2182 2183 addr += size; 2184 segnum = 3; 2185 } 2186 2187 /* 2188 * If we have extra bits left over, we need to include that in how 2189 * much we mapped to make sure the nlist logic is correct 2190 */ 2191 msize = P2ROUNDUP(msize, PAGESIZE); 2192 2193 if (nsize && msize < nsize) { 2194 MOBJ_STAT_ADD(aout_nlist); 2195 mrp[segnum].mr_addr = addr; 2196 mrp[segnum].mr_msize = nsize - msize; 2197 mrp[segnum].mr_fsize = 0; 2198 mrp[segnum].mr_offset = 0; 2199 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC; 2200 mrp[segnum].mr_flags = 0; 2201 } 2202 2203 *num_mapped = to_map; 2204 return (0); 2205 } 2206 #endif 2207 2208 /* 2209 * These are the two types of files that we can interpret and we want to read 2210 * in enough info to cover both types when looking at the initial header. 2211 */ 2212 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec))) 2213 2214 /* 2215 * Map vp passed in in an interpreted manner. ELF and AOUT files will be 2216 * interpreted and mapped appropriately for execution. 2217 * num_mapped in - # elements in mrp 2218 * num_mapped out - # sections mapped and length of mrp array if 2219 * no errors or E2BIG returned. 2220 * 2221 * Returns 0 on success, errno value on failure. 2222 */ 2223 static int 2224 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp, 2225 uint_t *num_mapped, size_t padding, cred_t *fcred) 2226 { 2227 int error = 0; 2228 vattr_t vattr; 2229 struct lib_va *lvp; 2230 caddr_t start_addr; 2231 model_t model; 2232 2233 /* 2234 * header has to be aligned to the native size of ulong_t in order 2235 * to avoid an unaligned access when dereferencing the header as 2236 * a ulong_t. Thus we allocate our array on the stack of type 2237 * ulong_t and then have header, which we dereference later as a char 2238 * array point at lheader. 2239 */ 2240 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1]; 2241 caddr_t header = (caddr_t)&lheader; 2242 2243 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE; 2244 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 2245 if (error) { 2246 return (error); 2247 } 2248 2249 /* 2250 * Check lib_va to see if we already have a full description 2251 * for this library. This is the fast path and only used for 2252 * ET_DYN ELF files (dynamic libraries). 2253 */ 2254 if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) { 2255 int num_segs; 2256 2257 model = get_udatamodel(); 2258 if ((model == DATAMODEL_ILP32 && 2259 lvp->lv_flags & LV_ELF64) || 2260 (model == DATAMODEL_LP64 && 2261 lvp->lv_flags & LV_ELF32)) { 2262 lib_va_release(lvp); 2263 MOBJ_STAT_ADD(fast_wrong_model); 2264 return (ENOTSUP); 2265 } 2266 num_segs = lvp->lv_num_segs; 2267 if (*num_mapped < num_segs) { 2268 *num_mapped = num_segs; 2269 lib_va_release(lvp); 2270 MOBJ_STAT_ADD(fast_e2big); 2271 return (E2BIG); 2272 } 2273 2274 /* 2275 * Check to see if we have all the mappable program headers 2276 * cached. 2277 */ 2278 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) { 2279 MOBJ_STAT_ADD(fast); 2280 start_addr = mmapobj_lookup_start_addr(lvp); 2281 if (start_addr == NULL) { 2282 lib_va_release(lvp); 2283 return (ENOMEM); 2284 } 2285 2286 bcopy(lvp->lv_mps, mrp, 2287 num_segs * sizeof (mmapobj_result_t)); 2288 2289 error = mmapobj_map_elf(vp, start_addr, mrp, 2290 num_segs, fcred, ET_DYN); 2291 2292 lib_va_release(lvp); 2293 if (error == 0) { 2294 *num_mapped = num_segs; 2295 MOBJ_STAT_ADD(fast_success); 2296 } 2297 return (error); 2298 } 2299 MOBJ_STAT_ADD(fast_not_now); 2300 2301 /* Release it for now since we'll look it up below */ 2302 lib_va_release(lvp); 2303 } 2304 2305 /* 2306 * Time to see if this is a file we can interpret. If it's smaller 2307 * than this, then we can't interpret it. 2308 */ 2309 if (vattr.va_size < MAX_HEADER_SIZE) { 2310 MOBJ_STAT_ADD(small_file); 2311 return (ENOTSUP); 2312 } 2313 2314 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0, 2315 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) { 2316 MOBJ_STAT_ADD(read_error); 2317 return (error); 2318 } 2319 2320 /* Verify file type */ 2321 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 && 2322 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) { 2323 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped, 2324 padding, fcred)); 2325 } 2326 2327 #if defined(__sparc) 2328 /* On sparc, check for 4.X AOUT format */ 2329 switch (((struct exec *)header)->a_magic) { 2330 case OMAGIC: 2331 case ZMAGIC: 2332 case NMAGIC: 2333 return (doaoutwork(vp, mrp, num_mapped, 2334 (struct exec *)lheader, fcred)); 2335 } 2336 #endif 2337 2338 /* Unsupported type */ 2339 MOBJ_STAT_ADD(unsupported); 2340 return (ENOTSUP); 2341 } 2342 2343 /* 2344 * Given a vnode, map it as either a flat file or interpret it and map 2345 * it according to the rules of the file type. 2346 * *num_mapped will contain the size of the mmapobj_result_t array passed in. 2347 * If padding is non-zero, the mappings will be padded by that amount 2348 * rounded up to the nearest pagesize. 2349 * If the mapping is successful, *num_mapped will contain the number of 2350 * distinct mappings created, and mrp will point to the array of 2351 * mmapobj_result_t's which describe these mappings. 2352 * 2353 * On error, -1 is returned and errno is set appropriately. 2354 * A special error case will set errno to E2BIG when there are more than 2355 * *num_mapped mappings to be created and *num_mapped will be set to the 2356 * number of mappings needed. 2357 */ 2358 int 2359 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp, 2360 uint_t *num_mapped, size_t padding, cred_t *fcred) 2361 { 2362 int to_map; 2363 int error = 0; 2364 2365 ASSERT((padding & PAGEOFFSET) == 0); 2366 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0); 2367 ASSERT(num_mapped != NULL); 2368 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0); 2369 2370 if ((flags & MMOBJ_INTERPRET) == 0) { 2371 to_map = padding ? 3 : 1; 2372 if (*num_mapped < to_map) { 2373 *num_mapped = to_map; 2374 MOBJ_STAT_ADD(flat_e2big); 2375 return (E2BIG); 2376 } 2377 error = mmapobj_map_flat(vp, mrp, padding, fcred); 2378 2379 if (error) { 2380 return (error); 2381 } 2382 *num_mapped = to_map; 2383 return (0); 2384 } 2385 2386 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred); 2387 return (error); 2388 } 2389