1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/systm.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/task.h> 38 #include <sys/project.h> 39 #include <sys/signal.h> 40 #include <sys/errno.h> 41 #include <sys/vmparam.h> 42 #include <sys/stack.h> 43 #include <sys/procfs.h> 44 #include <sys/prsystm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/kmem.h> 47 #include <sys/vtrace.h> 48 #include <sys/door.h> 49 #include <vm/seg_kp.h> 50 #include <sys/debug.h> 51 #include <sys/tnf.h> 52 #include <sys/schedctl.h> 53 #include <sys/poll.h> 54 #include <sys/copyops.h> 55 #include <sys/lwp_upimutex_impl.h> 56 #include <sys/cpupart.h> 57 #include <sys/lgrp.h> 58 #include <sys/rctl.h> 59 #include <sys/contract_impl.h> 60 #include <sys/cpc_impl.h> 61 #include <sys/sdt.h> 62 #include <sys/cmn_err.h> 63 #include <sys/brand.h> 64 #include <sys/cyclic.h> 65 #include <sys/pool.h> 66 67 /* hash function for the lwpid hash table, p->p_tidhash[] */ 68 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 69 70 void *segkp_lwp; /* cookie for pool of segkp resources */ 71 extern void reapq_move_lq_to_tq(kthread_t *); 72 extern void freectx_ctx(struct ctxop *); 73 74 /* 75 * Create a kernel thread associated with a particular system process. Give 76 * it an LWP so that microstate accounting will be available for it. 77 */ 78 kthread_t * 79 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 80 { 81 klwp_t *lwp; 82 83 VERIFY((p->p_flag & SSYS) != 0); 84 85 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 86 87 VERIFY(lwp != NULL); 88 89 return (lwptot(lwp)); 90 } 91 92 /* 93 * Create a thread that appears to be stopped at sys_rtt. 94 */ 95 klwp_t * 96 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 97 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 98 { 99 klwp_t *lwp = NULL; 100 kthread_t *t; 101 kthread_t *tx; 102 cpupart_t *oldpart = NULL; 103 size_t stksize; 104 caddr_t lwpdata = NULL; 105 processorid_t binding; 106 int err = 0; 107 kproject_t *oldkpj, *newkpj; 108 void *bufp = NULL; 109 klwp_t *curlwp; 110 lwpent_t *lep; 111 lwpdir_t *old_dir = NULL; 112 uint_t old_dirsz = 0; 113 tidhash_t *old_hash = NULL; 114 uint_t old_hashsz = 0; 115 ret_tidhash_t *ret_tidhash = NULL; 116 int i; 117 int rctlfail = 0; 118 boolean_t branded = 0; 119 struct ctxop *ctx = NULL; 120 121 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 122 123 ASSERT(p != &p0); /* No new LWPs in p0. */ 124 125 mutex_enter(&p->p_lock); 126 mutex_enter(&p->p_zone->zone_nlwps_lock); 127 /* 128 * don't enforce rctl limits on system processes 129 */ 130 if (!CLASS_KERNEL(cid)) { 131 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 132 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 133 1, 0) & RCT_DENY) 134 rctlfail = 1; 135 if (p->p_task->tk_proj->kpj_nlwps >= 136 p->p_task->tk_proj->kpj_nlwps_ctl) 137 if (rctl_test(rc_project_nlwps, 138 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 139 & RCT_DENY) 140 rctlfail = 1; 141 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 142 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 143 1, 0) & RCT_DENY) 144 rctlfail = 1; 145 } 146 if (rctlfail) { 147 mutex_exit(&p->p_zone->zone_nlwps_lock); 148 mutex_exit(&p->p_lock); 149 atomic_inc_32(&p->p_zone->zone_ffcap); 150 return (NULL); 151 } 152 p->p_task->tk_nlwps++; 153 p->p_task->tk_proj->kpj_nlwps++; 154 p->p_zone->zone_nlwps++; 155 mutex_exit(&p->p_zone->zone_nlwps_lock); 156 mutex_exit(&p->p_lock); 157 158 curlwp = ttolwp(curthread); 159 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 160 stksize = lwp_default_stksize; 161 162 if (CLASS_KERNEL(cid)) { 163 /* 164 * Since we are creating an LWP in an SSYS process, we do not 165 * inherit anything from the current thread's LWP. We set 166 * stksize and lwpdata to 0 in order to let thread_create() 167 * allocate a regular kernel thread stack for this thread. 168 */ 169 curlwp = NULL; 170 stksize = 0; 171 lwpdata = NULL; 172 173 } else if (stksize == lwp_default_stksize) { 174 /* 175 * Try to reuse an <lwp,stack> from the LWP deathrow. 176 */ 177 if (lwp_reapcnt > 0) { 178 mutex_enter(&reaplock); 179 if ((t = lwp_deathrow) != NULL) { 180 ASSERT(t->t_swap); 181 lwp_deathrow = t->t_forw; 182 lwp_reapcnt--; 183 lwpdata = t->t_swap; 184 lwp = t->t_lwp; 185 ctx = t->t_ctx; 186 t->t_swap = NULL; 187 t->t_lwp = NULL; 188 t->t_ctx = NULL; 189 reapq_move_lq_to_tq(t); 190 } 191 mutex_exit(&reaplock); 192 if (lwp != NULL) { 193 lwp_stk_fini(lwp); 194 } 195 if (ctx != NULL) { 196 freectx_ctx(ctx); 197 } 198 } 199 if (lwpdata == NULL && 200 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 201 mutex_enter(&p->p_lock); 202 mutex_enter(&p->p_zone->zone_nlwps_lock); 203 p->p_task->tk_nlwps--; 204 p->p_task->tk_proj->kpj_nlwps--; 205 p->p_zone->zone_nlwps--; 206 mutex_exit(&p->p_zone->zone_nlwps_lock); 207 mutex_exit(&p->p_lock); 208 atomic_inc_32(&p->p_zone->zone_ffnomem); 209 return (NULL); 210 } 211 } else { 212 stksize = roundup(stksize, PAGESIZE); 213 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 214 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 215 mutex_enter(&p->p_lock); 216 mutex_enter(&p->p_zone->zone_nlwps_lock); 217 p->p_task->tk_nlwps--; 218 p->p_task->tk_proj->kpj_nlwps--; 219 p->p_zone->zone_nlwps--; 220 mutex_exit(&p->p_zone->zone_nlwps_lock); 221 mutex_exit(&p->p_lock); 222 atomic_inc_32(&p->p_zone->zone_ffnomem); 223 return (NULL); 224 } 225 } 226 227 /* 228 * Create a thread, initializing the stack pointer 229 */ 230 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 231 232 /* 233 * If a non-NULL stack base is passed in, thread_create() assumes 234 * that the stack might be statically allocated (as opposed to being 235 * allocated from segkp), and so it does not set t_swap. Since 236 * the lwpdata was allocated from segkp, we must set t_swap to point 237 * to it ourselves. 238 * 239 * This would be less confusing if t_swap had a better name; it really 240 * indicates that the stack is allocated from segkp, regardless of 241 * whether or not it is swappable. 242 */ 243 if (lwpdata != NULL) { 244 ASSERT(!CLASS_KERNEL(cid)); 245 ASSERT(t->t_swap == NULL); 246 t->t_swap = lwpdata; /* Start of page-able data */ 247 } 248 249 /* 250 * If the stack and lwp can be reused, mark the thread as such. 251 * When we get to reapq_add() from resume_from_zombie(), these 252 * threads will go onto lwp_deathrow instead of thread_deathrow. 253 */ 254 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 255 t->t_flag |= T_LWPREUSE; 256 257 if (lwp == NULL) 258 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 259 bzero(lwp, sizeof (*lwp)); 260 t->t_lwp = lwp; 261 262 t->t_hold = *smask; 263 lwp->lwp_thread = t; 264 lwp->lwp_procp = p; 265 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 266 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 267 lwp->lwp_childstksz = curlwp->lwp_childstksz; 268 269 t->t_stk = lwp_stk_init(lwp, t->t_stk); 270 thread_load(t, proc, arg, len); 271 272 /* 273 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 274 */ 275 if (p->p_rprof_cyclic != CYCLIC_NONE) 276 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 277 278 if (cid != NOCLASS) 279 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 280 281 /* 282 * Allocate an lwp directory entry for the new lwp. 283 */ 284 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 285 286 mutex_enter(&p->p_lock); 287 grow: 288 /* 289 * Grow the lwp (thread) directory and lwpid hash table if necessary. 290 * A note on the growth algorithm: 291 * The new lwp directory size is computed as: 292 * new = 2 * old + 2 293 * Starting with an initial size of 2 (see exec_common()), 294 * this yields numbers that are a power of two minus 2: 295 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 296 * The size of the lwpid hash table must be a power of two 297 * and must be commensurate in size with the lwp directory 298 * so that hash bucket chains remain short. Therefore, 299 * the lwpid hash table size is computed as: 300 * hashsz = (dirsz + 2) / 2 301 * which leads to these hash table sizes corresponding to 302 * the above directory sizes: 303 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 304 * A note on growing the hash table: 305 * For performance reasons, code in lwp_unpark() does not 306 * acquire curproc->p_lock when searching the hash table. 307 * Rather, it calls lwp_hash_lookup_and_lock() which 308 * acquires only the individual hash bucket lock, taking 309 * care to deal with reallocation of the hash table 310 * during the time it takes to acquire the lock. 311 * 312 * This is sufficient to protect the integrity of the 313 * hash table, but it requires us to acquire all of the 314 * old hash bucket locks before growing the hash table 315 * and to release them afterwards. It also requires us 316 * not to free the old hash table because some thread 317 * in lwp_hash_lookup_and_lock() might still be trying 318 * to acquire the old bucket lock. 319 * 320 * So we adopt the tactic of keeping all of the retired 321 * hash tables on a linked list, so they can be safely 322 * freed when the process exits or execs. 323 * 324 * Because the hash table grows in powers of two, the 325 * total size of all of the hash tables will be slightly 326 * less than twice the size of the largest hash table. 327 */ 328 while (p->p_lwpfree == NULL) { 329 uint_t dirsz = p->p_lwpdir_sz; 330 lwpdir_t *new_dir; 331 uint_t new_dirsz; 332 lwpdir_t *ldp; 333 tidhash_t *new_hash; 334 uint_t new_hashsz; 335 336 mutex_exit(&p->p_lock); 337 338 /* 339 * Prepare to remember the old p_tidhash for later 340 * kmem_free()ing when the process exits or execs. 341 */ 342 if (ret_tidhash == NULL) 343 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 344 KM_SLEEP); 345 if (old_dir != NULL) 346 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 347 if (old_hash != NULL) 348 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 349 350 new_dirsz = 2 * dirsz + 2; 351 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 352 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 353 ldp->ld_next = ldp + 1; 354 new_hashsz = (new_dirsz + 2) / 2; 355 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 356 KM_SLEEP); 357 358 mutex_enter(&p->p_lock); 359 if (p == curproc) 360 prbarrier(p); 361 362 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 363 /* 364 * Someone else beat us to it or some lwp exited. 365 * Set up to free our memory and take a lap. 366 */ 367 old_dir = new_dir; 368 old_dirsz = new_dirsz; 369 old_hash = new_hash; 370 old_hashsz = new_hashsz; 371 } else { 372 /* 373 * For the benefit of lwp_hash_lookup_and_lock(), 374 * called from lwp_unpark(), which searches the 375 * tid hash table without acquiring p->p_lock, 376 * we must acquire all of the tid hash table 377 * locks before replacing p->p_tidhash. 378 */ 379 old_hash = p->p_tidhash; 380 old_hashsz = p->p_tidhash_sz; 381 for (i = 0; i < old_hashsz; i++) { 382 mutex_enter(&old_hash[i].th_lock); 383 mutex_enter(&new_hash[i].th_lock); 384 } 385 386 /* 387 * We simply hash in all of the old directory entries. 388 * This works because the old directory has no empty 389 * slots and the new hash table starts out empty. 390 * This reproduces the original directory ordering 391 * (required for /proc directory semantics). 392 */ 393 old_dir = p->p_lwpdir; 394 old_dirsz = p->p_lwpdir_sz; 395 p->p_lwpdir = new_dir; 396 p->p_lwpfree = new_dir; 397 p->p_lwpdir_sz = new_dirsz; 398 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 399 lwp_hash_in(p, ldp->ld_entry, 400 new_hash, new_hashsz, 0); 401 402 /* 403 * Remember the old hash table along with all 404 * of the previously-remembered hash tables. 405 * We will free them at process exit or exec. 406 */ 407 ret_tidhash->rth_tidhash = old_hash; 408 ret_tidhash->rth_tidhash_sz = old_hashsz; 409 ret_tidhash->rth_next = p->p_ret_tidhash; 410 p->p_ret_tidhash = ret_tidhash; 411 412 /* 413 * Now establish the new tid hash table. 414 * As soon as we assign p->p_tidhash, 415 * code in lwp_unpark() can start using it. 416 */ 417 membar_producer(); 418 p->p_tidhash = new_hash; 419 420 /* 421 * It is necessary that p_tidhash reach global 422 * visibility before p_tidhash_sz. Otherwise, 423 * code in lwp_hash_lookup_and_lock() could 424 * index into the old p_tidhash using the new 425 * p_tidhash_sz and thereby access invalid data. 426 */ 427 membar_producer(); 428 p->p_tidhash_sz = new_hashsz; 429 430 /* 431 * Release the locks; allow lwp_unpark() to carry on. 432 */ 433 for (i = 0; i < old_hashsz; i++) { 434 mutex_exit(&old_hash[i].th_lock); 435 mutex_exit(&new_hash[i].th_lock); 436 } 437 438 /* 439 * Avoid freeing these objects below. 440 */ 441 ret_tidhash = NULL; 442 old_hash = NULL; 443 old_hashsz = 0; 444 } 445 } 446 447 /* 448 * Block the process against /proc while we manipulate p->p_tlist, 449 * unless lwp_create() was called by /proc for the PCAGENT operation. 450 * We want to do this early enough so that we don't drop p->p_lock 451 * until the thread is put on the p->p_tlist. 452 */ 453 if (p == curproc) { 454 prbarrier(p); 455 /* 456 * If the current lwp has been requested to stop, do so now. 457 * Otherwise we have a race condition between /proc attempting 458 * to stop the process and this thread creating a new lwp 459 * that was not seen when the /proc PCSTOP request was issued. 460 * We rely on stop() to call prbarrier(p) before returning. 461 */ 462 while ((curthread->t_proc_flag & TP_PRSTOP) && 463 !ttolwp(curthread)->lwp_nostop) { 464 /* 465 * We called pool_barrier_enter() before calling 466 * here to lwp_create(). We have to call 467 * pool_barrier_exit() before stopping. 468 */ 469 pool_barrier_exit(); 470 prbarrier(p); 471 stop(PR_REQUESTED, 0); 472 /* 473 * And we have to repeat the call to 474 * pool_barrier_enter after stopping. 475 */ 476 pool_barrier_enter(); 477 prbarrier(p); 478 } 479 480 /* 481 * If process is exiting, there could be a race between 482 * the agent lwp creation and the new lwp currently being 483 * created. So to prevent this race lwp creation is failed 484 * if the process is exiting. 485 */ 486 if (p->p_flag & (SEXITLWPS|SKILLED)) { 487 err = 1; 488 goto error; 489 } 490 491 /* 492 * Since we might have dropped p->p_lock, the 493 * lwp directory free list might have changed. 494 */ 495 if (p->p_lwpfree == NULL) 496 goto grow; 497 } 498 499 kpreempt_disable(); /* can't grab cpu_lock here */ 500 501 /* 502 * Inherit processor and processor set bindings from curthread. 503 * 504 * For kernel LWPs, we do not inherit processor set bindings at 505 * process creation time (i.e. when p != curproc). After the 506 * kernel process is created, any subsequent LWPs must be created 507 * by threads in the kernel process, at which point we *will* 508 * inherit processor set bindings. 509 */ 510 if (CLASS_KERNEL(cid) && p != curproc) { 511 t->t_bind_cpu = binding = PBIND_NONE; 512 t->t_cpupart = oldpart = &cp_default; 513 t->t_bind_pset = PS_NONE; 514 t->t_bindflag = (uchar_t)default_binding_mode; 515 } else { 516 binding = curthread->t_bind_cpu; 517 t->t_bind_cpu = binding; 518 oldpart = t->t_cpupart; 519 t->t_cpupart = curthread->t_cpupart; 520 t->t_bind_pset = curthread->t_bind_pset; 521 t->t_bindflag = curthread->t_bindflag | 522 (uchar_t)default_binding_mode; 523 } 524 525 /* 526 * thread_create() initializes this thread's home lgroup to the root. 527 * Choose a more suitable lgroup, since this thread is associated 528 * with an lwp. 529 */ 530 ASSERT(oldpart != NULL); 531 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 532 t->t_bound_cpu = cpu[binding]; 533 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 534 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 535 } else if (CLASS_KERNEL(cid)) { 536 /* 537 * Kernel threads are always in the root lgrp. 538 */ 539 lgrp_move_thread(t, 540 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 541 } else { 542 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 543 } 544 545 kpreempt_enable(); 546 547 /* 548 * make sure lpl points to our own partition 549 */ 550 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 551 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 552 t->t_cpupart->cp_nlgrploads); 553 554 /* 555 * It is safe to point the thread to the new project without holding it 556 * since we're holding the target process' p_lock here and therefore 557 * we're guaranteed that it will not move to another project. 558 */ 559 newkpj = p->p_task->tk_proj; 560 oldkpj = ttoproj(t); 561 if (newkpj != oldkpj) { 562 t->t_proj = newkpj; 563 (void) project_hold(newkpj); 564 project_rele(oldkpj); 565 } 566 567 if (cid != NOCLASS) { 568 /* 569 * If the lwp is being created in the current process 570 * and matches the current thread's scheduling class, 571 * we should propagate the current thread's scheduling 572 * parameters by calling CL_FORK. Otherwise just use 573 * the defaults by calling CL_ENTERCLASS. 574 */ 575 if (p != curproc || curthread->t_cid != cid) { 576 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 577 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 578 /* 579 * We don't call schedctl_set_cidpri(t) here 580 * because the schedctl data is not yet set 581 * up for the newly-created lwp. 582 */ 583 } else { 584 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 585 err = CL_FORK(curthread, t, bufp); 586 t->t_cid = cid; 587 } 588 if (err) { 589 atomic_inc_32(&p->p_zone->zone_ffmisc); 590 goto error; 591 } else { 592 bufp = NULL; 593 } 594 } 595 596 /* 597 * If we were given an lwpid then use it, else allocate one. 598 */ 599 if (lwpid != 0) 600 t->t_tid = lwpid; 601 else { 602 /* 603 * lwp/thread id 0 is never valid; reserved for special checks. 604 * lwp/thread id 1 is reserved for the main thread. 605 * Start again at 2 when INT_MAX has been reached 606 * (id_t is a signed 32-bit integer). 607 */ 608 id_t prev_id = p->p_lwpid; /* last allocated tid */ 609 610 do { /* avoid lwpid duplication */ 611 if (p->p_lwpid == INT_MAX) { 612 p->p_flag |= SLWPWRAP; 613 p->p_lwpid = 1; 614 } 615 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 616 /* 617 * All lwpids are allocated; fail the request. 618 */ 619 err = 1; 620 atomic_inc_32(&p->p_zone->zone_ffnoproc); 621 goto error; 622 } 623 /* 624 * We only need to worry about colliding with an id 625 * that's already in use if this process has 626 * cycled through all available lwp ids. 627 */ 628 if ((p->p_flag & SLWPWRAP) == 0) 629 break; 630 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 631 } 632 633 /* 634 * If this is a branded process, let the brand do any necessary lwp 635 * initialization. 636 */ 637 if (PROC_IS_BRANDED(p)) { 638 if (BROP(p)->b_initlwp(lwp)) { 639 err = 1; 640 atomic_inc_32(&p->p_zone->zone_ffmisc); 641 goto error; 642 } 643 branded = 1; 644 } 645 646 if (t->t_tid == 1) { 647 kpreempt_disable(); 648 ASSERT(t->t_lpl != NULL); 649 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 650 kpreempt_enable(); 651 if (p->p_tr_lgrpid != LGRP_NONE && 652 p->p_tr_lgrpid != p->p_t1_lgrpid) { 653 lgrp_update_trthr_migrations(1); 654 } 655 } 656 657 p->p_lwpcnt++; 658 t->t_waitfor = -1; 659 660 /* 661 * Turn microstate accounting on for thread if on for process. 662 */ 663 if (p->p_flag & SMSACCT) 664 t->t_proc_flag |= TP_MSACCT; 665 666 /* 667 * If the process has watchpoints, mark the new thread as such. 668 */ 669 if (pr_watch_active(p)) 670 watch_enable(t); 671 672 /* 673 * The lwp is being created in the stopped state. 674 * We set all the necessary flags to indicate that fact here. 675 * We omit the TS_CREATE flag from t_schedflag so that the lwp 676 * cannot be set running until the caller is finished with it, 677 * even if lwp_continue() is called on it after we drop p->p_lock. 678 * When the caller is finished with the newly-created lwp, 679 * the caller must call lwp_create_done() to allow the lwp 680 * to be set running. If the TP_HOLDLWP is left set, the 681 * lwp will suspend itself after reaching system call exit. 682 */ 683 init_mstate(t, LMS_STOPPED); 684 t->t_proc_flag |= TP_HOLDLWP; 685 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 686 t->t_whystop = PR_SUSPENDED; 687 t->t_whatstop = SUSPEND_NORMAL; 688 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 689 690 /* 691 * Set system call processing flags in case tracing or profiling 692 * is set. The first system call will evaluate these and turn 693 * them off if they aren't needed. 694 */ 695 t->t_pre_sys = 1; 696 t->t_post_sys = 1; 697 698 /* 699 * Insert the new thread into the list of all threads. 700 */ 701 if ((tx = p->p_tlist) == NULL) { 702 t->t_back = t; 703 t->t_forw = t; 704 p->p_tlist = t; 705 } else { 706 t->t_forw = tx; 707 t->t_back = tx->t_back; 708 tx->t_back->t_forw = t; 709 tx->t_back = t; 710 } 711 712 /* 713 * Insert the new lwp into an lwp directory slot position 714 * and into the lwpid hash table. 715 */ 716 lep->le_thread = t; 717 lep->le_lwpid = t->t_tid; 718 lep->le_start = t->t_start; 719 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 720 721 if (state == TS_RUN) { 722 /* 723 * We set the new lwp running immediately. 724 */ 725 t->t_proc_flag &= ~TP_HOLDLWP; 726 lwp_create_done(t); 727 } 728 729 error: 730 if (err) { 731 if (CLASS_KERNEL(cid)) { 732 /* 733 * This should only happen if a system process runs 734 * out of lwpids, which shouldn't occur. 735 */ 736 panic("Failed to create a system LWP"); 737 } 738 /* 739 * We have failed to create an lwp, so decrement the number 740 * of lwps in the task and let the lgroup load averages know 741 * that this thread isn't going to show up. 742 */ 743 kpreempt_disable(); 744 lgrp_move_thread(t, NULL, 1); 745 kpreempt_enable(); 746 747 ASSERT(MUTEX_HELD(&p->p_lock)); 748 mutex_enter(&p->p_zone->zone_nlwps_lock); 749 p->p_task->tk_nlwps--; 750 p->p_task->tk_proj->kpj_nlwps--; 751 p->p_zone->zone_nlwps--; 752 mutex_exit(&p->p_zone->zone_nlwps_lock); 753 if (cid != NOCLASS && bufp != NULL) 754 CL_FREE(cid, bufp); 755 756 if (branded) 757 BROP(p)->b_freelwp(lwp); 758 759 mutex_exit(&p->p_lock); 760 t->t_state = TS_FREE; 761 thread_rele(t); 762 763 /* 764 * We need to remove t from the list of all threads 765 * because thread_exit()/lwp_exit() isn't called on t. 766 */ 767 mutex_enter(&pidlock); 768 ASSERT(t != t->t_next); /* t0 never exits */ 769 t->t_next->t_prev = t->t_prev; 770 t->t_prev->t_next = t->t_next; 771 mutex_exit(&pidlock); 772 773 thread_free(t); 774 kmem_free(lep, sizeof (*lep)); 775 lwp = NULL; 776 } else { 777 mutex_exit(&p->p_lock); 778 } 779 780 if (old_dir != NULL) 781 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 782 if (old_hash != NULL) 783 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 784 if (ret_tidhash != NULL) 785 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 786 787 DTRACE_PROC1(lwp__create, kthread_t *, t); 788 return (lwp); 789 } 790 791 /* 792 * lwp_create_done() is called by the caller of lwp_create() to set the 793 * newly-created lwp running after the caller has finished manipulating it. 794 */ 795 void 796 lwp_create_done(kthread_t *t) 797 { 798 proc_t *p = ttoproc(t); 799 800 ASSERT(MUTEX_HELD(&p->p_lock)); 801 802 /* 803 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 804 * (The absence of the TS_CREATE flag prevents the lwp from running 805 * until we are finished with it, even if lwp_continue() is called on 806 * it by some other lwp in the process or elsewhere in the kernel.) 807 */ 808 thread_lock(t); 809 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 810 /* 811 * If TS_CSTART is set, lwp_continue(t) has been called and 812 * has already incremented p_lwprcnt; avoid doing this twice. 813 */ 814 if (!(t->t_schedflag & TS_CSTART)) 815 p->p_lwprcnt++; 816 t->t_schedflag |= (TS_CSTART | TS_CREATE); 817 setrun_locked(t); 818 thread_unlock(t); 819 } 820 821 /* 822 * Copy an LWP's active templates, and clear the latest contracts. 823 */ 824 void 825 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 826 { 827 int i; 828 829 for (i = 0; i < ct_ntypes; i++) { 830 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 831 dst->lwp_ct_latest[i] = NULL; 832 } 833 } 834 835 /* 836 * Clear an LWP's contract template state. 837 */ 838 void 839 lwp_ctmpl_clear(klwp_t *lwp) 840 { 841 ct_template_t *tmpl; 842 int i; 843 844 for (i = 0; i < ct_ntypes; i++) { 845 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 846 ctmpl_free(tmpl); 847 lwp->lwp_ct_active[i] = NULL; 848 } 849 850 if (lwp->lwp_ct_latest[i] != NULL) { 851 contract_rele(lwp->lwp_ct_latest[i]); 852 lwp->lwp_ct_latest[i] = NULL; 853 } 854 } 855 } 856 857 /* 858 * Individual lwp exit. 859 * If this is the last lwp, exit the whole process. 860 */ 861 void 862 lwp_exit(void) 863 { 864 kthread_t *t = curthread; 865 klwp_t *lwp = ttolwp(t); 866 proc_t *p = ttoproc(t); 867 868 ASSERT(MUTEX_HELD(&p->p_lock)); 869 870 mutex_exit(&p->p_lock); 871 872 #if defined(__sparc) 873 /* 874 * Ensure that the user stack is fully abandoned.. 875 */ 876 trash_user_windows(); 877 #endif 878 879 tsd_exit(); /* free thread specific data */ 880 881 kcpc_passivate(); /* Clean up performance counter state */ 882 883 pollcleanup(); 884 885 if (t->t_door) 886 door_slam(); 887 888 if (t->t_schedctl != NULL) 889 schedctl_lwp_cleanup(t); 890 891 if (t->t_upimutex != NULL) 892 upimutex_cleanup(); 893 894 /* 895 * Perform any brand specific exit processing, then release any 896 * brand data associated with the lwp 897 */ 898 if (PROC_IS_BRANDED(p)) 899 BROP(p)->b_lwpexit(lwp); 900 901 lwp_pcb_exit(); 902 903 mutex_enter(&p->p_lock); 904 lwp_cleanup(); 905 906 /* 907 * When this process is dumping core, its lwps are held here 908 * until the core dump is finished. Then exitlwps() is called 909 * again to release these lwps so that they can finish exiting. 910 */ 911 if (p->p_flag & SCOREDUMP) 912 stop(PR_SUSPENDED, SUSPEND_NORMAL); 913 914 /* 915 * Block the process against /proc now that we have really acquired 916 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 917 */ 918 prbarrier(p); 919 920 /* 921 * Call proc_exit() if this is the last non-daemon lwp in the process. 922 */ 923 if (!(t->t_proc_flag & TP_DAEMON) && 924 p->p_lwpcnt == p->p_lwpdaemon + 1) { 925 mutex_exit(&p->p_lock); 926 if (proc_exit(CLD_EXITED, 0) == 0) { 927 /* Restarting init. */ 928 return; 929 } 930 931 /* 932 * proc_exit() returns a non-zero value when some other 933 * lwp got there first. We just have to continue in 934 * lwp_exit(). 935 */ 936 mutex_enter(&p->p_lock); 937 ASSERT(curproc->p_flag & SEXITLWPS); 938 prbarrier(p); 939 } 940 941 DTRACE_PROC(lwp__exit); 942 943 /* 944 * If the lwp is a detached lwp or if the process is exiting, 945 * remove (lwp_hash_out()) the lwp from the lwp directory. 946 * Otherwise null out the lwp's le_thread pointer in the lwp 947 * directory so that other threads will see it as a zombie lwp. 948 */ 949 prlwpexit(t); /* notify /proc */ 950 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 951 lwp_hash_out(p, t->t_tid); 952 else { 953 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 954 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 955 p->p_zombcnt++; 956 cv_broadcast(&p->p_lwpexit); 957 } 958 if (t->t_proc_flag & TP_DAEMON) { 959 p->p_lwpdaemon--; 960 t->t_proc_flag &= ~TP_DAEMON; 961 } 962 t->t_proc_flag &= ~TP_TWAIT; 963 964 /* 965 * Maintain accurate lwp count for task.max-lwps resource control. 966 */ 967 mutex_enter(&p->p_zone->zone_nlwps_lock); 968 p->p_task->tk_nlwps--; 969 p->p_task->tk_proj->kpj_nlwps--; 970 p->p_zone->zone_nlwps--; 971 mutex_exit(&p->p_zone->zone_nlwps_lock); 972 973 CL_EXIT(t); /* tell the scheduler that t is exiting */ 974 ASSERT(p->p_lwpcnt != 0); 975 p->p_lwpcnt--; 976 977 /* 978 * If all remaining non-daemon lwps are waiting in lwp_wait(), 979 * wake them up so someone can return EDEADLK. 980 * (See the block comment preceeding lwp_wait().) 981 */ 982 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 983 cv_broadcast(&p->p_lwpexit); 984 985 t->t_proc_flag |= TP_LWPEXIT; 986 term_mstate(t); 987 988 #ifndef NPROBE 989 /* Kernel probe */ 990 if (t->t_tnf_tpdp) 991 tnf_thread_exit(); 992 #endif /* NPROBE */ 993 994 t->t_forw->t_back = t->t_back; 995 t->t_back->t_forw = t->t_forw; 996 if (t == p->p_tlist) 997 p->p_tlist = t->t_forw; 998 999 /* 1000 * Clean up the signal state. 1001 */ 1002 if (t->t_sigqueue != NULL) 1003 sigdelq(p, t, 0); 1004 if (lwp->lwp_curinfo != NULL) { 1005 siginfofree(lwp->lwp_curinfo); 1006 lwp->lwp_curinfo = NULL; 1007 } 1008 1009 /* 1010 * If we have spymaster information (that is, if we're an agent LWP), 1011 * free that now. 1012 */ 1013 if (lwp->lwp_spymaster != NULL) { 1014 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t)); 1015 lwp->lwp_spymaster = NULL; 1016 } 1017 1018 thread_rele(t); 1019 1020 /* 1021 * Terminated lwps are associated with process zero and are put onto 1022 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1023 */ 1024 t->t_preempt++; 1025 1026 if (t->t_ctx != NULL) 1027 exitctx(t); 1028 if (p->p_pctx != NULL) 1029 exitpctx(p); 1030 1031 t->t_procp = &p0; 1032 1033 /* 1034 * Notify the HAT about the change of address space 1035 */ 1036 hat_thread_exit(t); 1037 /* 1038 * When this is the last running lwp in this process and some lwp is 1039 * waiting for this condition to become true, or this thread was being 1040 * suspended, then the waiting lwp is awakened. 1041 * 1042 * Also, if the process is exiting, we may have a thread waiting in 1043 * exitlwps() that needs to be notified. 1044 */ 1045 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1046 (p->p_flag & SEXITLWPS)) 1047 cv_broadcast(&p->p_holdlwps); 1048 1049 /* 1050 * Need to drop p_lock so we can reacquire pidlock. 1051 */ 1052 mutex_exit(&p->p_lock); 1053 mutex_enter(&pidlock); 1054 1055 ASSERT(t != t->t_next); /* t0 never exits */ 1056 t->t_next->t_prev = t->t_prev; 1057 t->t_prev->t_next = t->t_next; 1058 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1059 mutex_exit(&pidlock); 1060 1061 t->t_state = TS_ZOMB; 1062 swtch_from_zombie(); 1063 /* never returns */ 1064 } 1065 1066 1067 /* 1068 * Cleanup function for an exiting lwp. 1069 * Called both from lwp_exit() and from proc_exit(). 1070 * p->p_lock is repeatedly released and grabbed in this function. 1071 */ 1072 void 1073 lwp_cleanup(void) 1074 { 1075 kthread_t *t = curthread; 1076 proc_t *p = ttoproc(t); 1077 1078 ASSERT(MUTEX_HELD(&p->p_lock)); 1079 1080 /* untimeout any lwp-bound realtime timers */ 1081 if (p->p_itimer != NULL) 1082 timer_lwpexit(); 1083 1084 /* 1085 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1086 * so it appears that the agent never existed, and clear p_agenttp. 1087 */ 1088 if (t == p->p_agenttp) { 1089 ASSERT(t->t_tid == p->p_lwpid); 1090 p->p_lwpid--; 1091 p->p_agenttp = NULL; 1092 } 1093 1094 /* 1095 * Do lgroup bookkeeping to account for thread exiting. 1096 */ 1097 kpreempt_disable(); 1098 lgrp_move_thread(t, NULL, 1); 1099 if (t->t_tid == 1) { 1100 p->p_t1_lgrpid = LGRP_NONE; 1101 } 1102 kpreempt_enable(); 1103 1104 lwp_ctmpl_clear(ttolwp(t)); 1105 } 1106 1107 int 1108 lwp_suspend(kthread_t *t) 1109 { 1110 int tid; 1111 proc_t *p = ttoproc(t); 1112 1113 ASSERT(MUTEX_HELD(&p->p_lock)); 1114 1115 /* 1116 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1117 * If an lwp is stopping itself, there is no need to wait. 1118 */ 1119 top: 1120 t->t_proc_flag |= TP_HOLDLWP; 1121 if (t == curthread) { 1122 t->t_sig_check = 1; 1123 } else { 1124 /* 1125 * Make sure the lwp stops promptly. 1126 */ 1127 thread_lock(t); 1128 t->t_sig_check = 1; 1129 /* 1130 * XXX Should use virtual stop like /proc does instead of 1131 * XXX waking the thread to get it to stop. 1132 */ 1133 if (ISWAKEABLE(t) || ISWAITING(t)) { 1134 setrun_locked(t); 1135 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1136 poke_cpu(t->t_cpu->cpu_id); 1137 } 1138 1139 tid = t->t_tid; /* remember thread ID */ 1140 /* 1141 * Wait for lwp to stop 1142 */ 1143 while (!SUSPENDED(t)) { 1144 /* 1145 * Drop the thread lock before waiting and reacquire it 1146 * afterwards, so the thread can change its t_state 1147 * field. 1148 */ 1149 thread_unlock(t); 1150 1151 /* 1152 * Check if aborted by exitlwps(). 1153 */ 1154 if (p->p_flag & SEXITLWPS) 1155 lwp_exit(); 1156 1157 /* 1158 * Cooperate with jobcontrol signals and /proc stopping 1159 * by calling cv_wait_sig() to wait for the target 1160 * lwp to stop. Just using cv_wait() can lead to 1161 * deadlock because, if some other lwp has stopped 1162 * by either of these mechanisms, then p_lwprcnt will 1163 * never become zero if we do a cv_wait(). 1164 */ 1165 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1166 return (EINTR); 1167 1168 /* 1169 * Check to see if thread died while we were 1170 * waiting for it to suspend. 1171 */ 1172 if (idtot(p, tid) == NULL) 1173 return (ESRCH); 1174 1175 thread_lock(t); 1176 /* 1177 * If the TP_HOLDLWP flag went away, lwp_continue() 1178 * or vfork() must have been called while we were 1179 * waiting, so start over again. 1180 */ 1181 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1182 thread_unlock(t); 1183 goto top; 1184 } 1185 } 1186 thread_unlock(t); 1187 } 1188 return (0); 1189 } 1190 1191 /* 1192 * continue a lwp that's been stopped by lwp_suspend(). 1193 */ 1194 void 1195 lwp_continue(kthread_t *t) 1196 { 1197 proc_t *p = ttoproc(t); 1198 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1199 1200 ASSERT(MUTEX_HELD(&p->p_lock)); 1201 1202 t->t_proc_flag &= ~TP_HOLDLWP; 1203 thread_lock(t); 1204 if (SUSPENDED(t) && 1205 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1206 p->p_lwprcnt++; 1207 t->t_schedflag |= TS_CSTART; 1208 setrun_locked(t); 1209 } 1210 thread_unlock(t); 1211 /* 1212 * Wakeup anyone waiting for this thread to be suspended 1213 */ 1214 if (was_suspended) 1215 cv_broadcast(&p->p_holdlwps); 1216 } 1217 1218 /* 1219 * ******************************** 1220 * Miscellaneous lwp routines * 1221 * ******************************** 1222 */ 1223 /* 1224 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1225 * This will cause the process's lwps to stop at a hold point. A hold 1226 * point is where a kernel thread has a flat stack. This is at the 1227 * return from a system call and at the return from a user level trap. 1228 * 1229 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1230 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1231 * hold point. The lwps in the process are not being cloned, so they 1232 * are held at the usual hold points and also within issig_forreal(). 1233 * This has the side-effect that their system calls do not return 1234 * showing EINTR. 1235 * 1236 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1237 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1238 * lwp is waiting for the target lwp to be stopped. 1239 */ 1240 void 1241 holdlwp(void) 1242 { 1243 proc_t *p = curproc; 1244 kthread_t *t = curthread; 1245 1246 mutex_enter(&p->p_lock); 1247 /* 1248 * Don't terminate immediately if the process is dumping core. 1249 * Once the process has dumped core, all lwps are terminated. 1250 */ 1251 if (!(p->p_flag & SCOREDUMP)) { 1252 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1253 lwp_exit(); 1254 } 1255 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1256 mutex_exit(&p->p_lock); 1257 return; 1258 } 1259 /* 1260 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1261 * when p->p_lwprcnt becomes zero. 1262 */ 1263 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1264 if (p->p_flag & SEXITLWPS) 1265 lwp_exit(); 1266 mutex_exit(&p->p_lock); 1267 } 1268 1269 /* 1270 * Have all lwps within the process hold at a point where they are 1271 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1272 */ 1273 int 1274 holdlwps(int holdflag) 1275 { 1276 proc_t *p = curproc; 1277 1278 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1279 mutex_enter(&p->p_lock); 1280 schedctl_finish_sigblock(curthread); 1281 again: 1282 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1283 /* 1284 * If another lwp is doing a forkall() or proc_exit(), bail out. 1285 */ 1286 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1287 mutex_exit(&p->p_lock); 1288 return (0); 1289 } 1290 /* 1291 * Another lwp is doing a fork1() or is undergoing 1292 * watchpoint activity. We hold here for it to complete. 1293 */ 1294 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1295 } 1296 p->p_flag |= holdflag; 1297 pokelwps(p); 1298 --p->p_lwprcnt; 1299 /* 1300 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1301 */ 1302 while (p->p_lwprcnt > 0) { 1303 /* 1304 * Check if aborted by exitlwps(). 1305 * Also check if SHOLDWATCH is set; it takes precedence. 1306 */ 1307 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1308 p->p_lwprcnt++; 1309 p->p_flag &= ~holdflag; 1310 cv_broadcast(&p->p_holdlwps); 1311 goto again; 1312 } 1313 /* 1314 * Cooperate with jobcontrol signals and /proc stopping. 1315 * If some other lwp has stopped by either of these 1316 * mechanisms, then p_lwprcnt will never become zero 1317 * and the process will appear deadlocked unless we 1318 * stop here in sympathy with the other lwp before 1319 * doing the cv_wait() below. 1320 * 1321 * If the other lwp stops after we do the cv_wait(), it 1322 * will wake us up to loop around and do the sympathy stop. 1323 * 1324 * Since stop() drops p->p_lock, we must start from 1325 * the top again on returning from stop(). 1326 */ 1327 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1328 int whystop = p->p_stopsig? PR_JOBCONTROL : 1329 PR_REQUESTED; 1330 p->p_lwprcnt++; 1331 p->p_flag &= ~holdflag; 1332 stop(whystop, p->p_stopsig); 1333 goto again; 1334 } 1335 cv_wait(&p->p_holdlwps, &p->p_lock); 1336 } 1337 p->p_lwprcnt++; 1338 p->p_flag &= ~holdflag; 1339 mutex_exit(&p->p_lock); 1340 return (1); 1341 } 1342 1343 /* 1344 * See comments for holdwatch(), below. 1345 */ 1346 static int 1347 holdcheck(int clearflags) 1348 { 1349 proc_t *p = curproc; 1350 1351 /* 1352 * If we are trying to exit, that takes precedence over anything else. 1353 */ 1354 if (p->p_flag & SEXITLWPS) { 1355 p->p_lwprcnt++; 1356 p->p_flag &= ~clearflags; 1357 lwp_exit(); 1358 } 1359 1360 /* 1361 * If another thread is calling fork1(), stop the current thread so the 1362 * other can complete. 1363 */ 1364 if (p->p_flag & SHOLDFORK1) { 1365 p->p_lwprcnt++; 1366 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1367 if (p->p_flag & SEXITLWPS) { 1368 p->p_flag &= ~clearflags; 1369 lwp_exit(); 1370 } 1371 return (-1); 1372 } 1373 1374 /* 1375 * If another thread is calling fork(), then indicate we are doing 1376 * watchpoint activity. This will cause holdlwps() above to stop the 1377 * forking thread, at which point we can continue with watchpoint 1378 * activity. 1379 */ 1380 if (p->p_flag & SHOLDFORK) { 1381 p->p_lwprcnt++; 1382 while (p->p_flag & SHOLDFORK) { 1383 p->p_flag |= SHOLDWATCH; 1384 cv_broadcast(&p->p_holdlwps); 1385 cv_wait(&p->p_holdlwps, &p->p_lock); 1386 p->p_flag &= ~SHOLDWATCH; 1387 } 1388 return (-1); 1389 } 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * Stop all lwps within the process, holding themselves in the kernel while the 1396 * active lwp undergoes watchpoint activity. This is more complicated than 1397 * expected because stop() relies on calling holdwatch() in order to copyin data 1398 * from the user's address space. A double barrier is used to prevent an 1399 * infinite loop. 1400 * 1401 * o The first thread into holdwatch() is the 'master' thread and does 1402 * the following: 1403 * 1404 * - Sets SHOLDWATCH on the current process 1405 * - Sets TP_WATCHSTOP on the current thread 1406 * - Waits for all threads to be either stopped or have 1407 * TP_WATCHSTOP set. 1408 * - Sets the SWATCHOK flag on the process 1409 * - Unsets TP_WATCHSTOP 1410 * - Waits for the other threads to completely stop 1411 * - Unsets SWATCHOK 1412 * 1413 * o If SHOLDWATCH is already set when we enter this function, then another 1414 * thread is already trying to stop this thread. This 'slave' thread 1415 * does the following: 1416 * 1417 * - Sets TP_WATCHSTOP on the current thread 1418 * - Waits for SWATCHOK flag to be set 1419 * - Calls stop() 1420 * 1421 * o If SWATCHOK is set on the process, then this function immediately 1422 * returns, as we must have been called via stop(). 1423 * 1424 * In addition, there are other flags that take precedence over SHOLDWATCH: 1425 * 1426 * o If SEXITLWPS is set, exit immediately. 1427 * 1428 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1429 * 1430 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1431 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1432 * 1433 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1434 * stop the current thread. 1435 * 1436 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1437 * threads were stopped, or the list of watched pages has changed. 1438 */ 1439 int 1440 holdwatch(void) 1441 { 1442 proc_t *p = curproc; 1443 kthread_t *t = curthread; 1444 int ret = 0; 1445 1446 mutex_enter(&p->p_lock); 1447 1448 p->p_lwprcnt--; 1449 1450 /* 1451 * Check for bail-out conditions as outlined above. 1452 */ 1453 if (holdcheck(0) != 0) { 1454 mutex_exit(&p->p_lock); 1455 return (-1); 1456 } 1457 1458 if (!(p->p_flag & SHOLDWATCH)) { 1459 /* 1460 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1461 * the other threads. 1462 */ 1463 p->p_flag |= SHOLDWATCH; 1464 pokelwps(p); 1465 1466 /* 1467 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1468 */ 1469 while (pr_allstopped(p, 1) > 0) { 1470 if (holdcheck(SHOLDWATCH) != 0) { 1471 p->p_flag &= ~SHOLDWATCH; 1472 mutex_exit(&p->p_lock); 1473 return (-1); 1474 } 1475 1476 cv_wait(&p->p_holdlwps, &p->p_lock); 1477 } 1478 1479 /* 1480 * All threads are now stopped or in the process of stopping. 1481 * Set SWATCHOK and let them stop completely. 1482 */ 1483 p->p_flag |= SWATCHOK; 1484 t->t_proc_flag &= ~TP_WATCHSTOP; 1485 cv_broadcast(&p->p_holdlwps); 1486 1487 while (pr_allstopped(p, 0) > 0) { 1488 /* 1489 * At first glance, it may appear that we don't need a 1490 * call to holdcheck() here. But if the process gets a 1491 * SIGKILL signal, one of our stopped threads may have 1492 * been awakened and is waiting in exitlwps(), which 1493 * takes precedence over watchpoints. 1494 */ 1495 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1496 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1497 mutex_exit(&p->p_lock); 1498 return (-1); 1499 } 1500 1501 cv_wait(&p->p_holdlwps, &p->p_lock); 1502 } 1503 1504 /* 1505 * All threads are now completely stopped. 1506 */ 1507 p->p_flag &= ~SWATCHOK; 1508 p->p_flag &= ~SHOLDWATCH; 1509 p->p_lwprcnt++; 1510 1511 } else if (!(p->p_flag & SWATCHOK)) { 1512 1513 /* 1514 * SHOLDWATCH is set, so another thread is trying to do 1515 * watchpoint activity. Indicate this thread is stopping, and 1516 * wait for the OK from the master thread. 1517 */ 1518 t->t_proc_flag |= TP_WATCHSTOP; 1519 cv_broadcast(&p->p_holdlwps); 1520 1521 while (!(p->p_flag & SWATCHOK)) { 1522 if (holdcheck(0) != 0) { 1523 t->t_proc_flag &= ~TP_WATCHSTOP; 1524 mutex_exit(&p->p_lock); 1525 return (-1); 1526 } 1527 1528 cv_wait(&p->p_holdlwps, &p->p_lock); 1529 } 1530 1531 /* 1532 * Once the master thread has given the OK, this thread can 1533 * actually call stop(). 1534 */ 1535 t->t_proc_flag &= ~TP_WATCHSTOP; 1536 p->p_lwprcnt++; 1537 1538 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1539 1540 /* 1541 * It's not OK to do watchpoint activity, notify caller to 1542 * retry. 1543 */ 1544 ret = -1; 1545 1546 } else { 1547 1548 /* 1549 * The only way we can hit the case where SHOLDWATCH is set and 1550 * SWATCHOK is set is if we are triggering this from within a 1551 * stop() call. Assert that this is the case. 1552 */ 1553 1554 ASSERT(t->t_proc_flag & TP_STOPPING); 1555 p->p_lwprcnt++; 1556 } 1557 1558 mutex_exit(&p->p_lock); 1559 1560 return (ret); 1561 } 1562 1563 /* 1564 * force all interruptible lwps to trap into the kernel. 1565 */ 1566 void 1567 pokelwps(proc_t *p) 1568 { 1569 kthread_t *t; 1570 1571 ASSERT(MUTEX_HELD(&p->p_lock)); 1572 1573 t = p->p_tlist; 1574 do { 1575 if (t == curthread) 1576 continue; 1577 thread_lock(t); 1578 aston(t); /* make thread trap or do post_syscall */ 1579 if (ISWAKEABLE(t) || ISWAITING(t)) { 1580 setrun_locked(t); 1581 } else if (t->t_state == TS_STOPPED) { 1582 /* 1583 * Ensure that proc_exit() is not blocked by lwps 1584 * that were stopped via jobcontrol or /proc. 1585 */ 1586 if (p->p_flag & SEXITLWPS) { 1587 p->p_stopsig = 0; 1588 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1589 setrun_locked(t); 1590 } 1591 /* 1592 * If we are holding lwps for a forkall(), 1593 * force lwps that have been suspended via 1594 * lwp_suspend() and are suspended inside 1595 * of a system call to proceed to their 1596 * holdlwp() points where they are clonable. 1597 */ 1598 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1599 if ((t->t_schedflag & TS_CSTART) == 0) { 1600 p->p_lwprcnt++; 1601 t->t_schedflag |= TS_CSTART; 1602 setrun_locked(t); 1603 } 1604 } 1605 } else if (t->t_state == TS_ONPROC) { 1606 if (t->t_cpu != CPU) 1607 poke_cpu(t->t_cpu->cpu_id); 1608 } 1609 thread_unlock(t); 1610 } while ((t = t->t_forw) != p->p_tlist); 1611 } 1612 1613 /* 1614 * undo the effects of holdlwps() or holdwatch(). 1615 */ 1616 void 1617 continuelwps(proc_t *p) 1618 { 1619 kthread_t *t; 1620 1621 /* 1622 * If this flag is set, then the original holdwatch() didn't actually 1623 * stop the process. See comments for holdwatch(). 1624 */ 1625 if (p->p_flag & SWATCHOK) { 1626 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1627 return; 1628 } 1629 1630 ASSERT(MUTEX_HELD(&p->p_lock)); 1631 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1632 1633 t = p->p_tlist; 1634 do { 1635 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1636 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1637 p->p_lwprcnt++; 1638 t->t_schedflag |= TS_CSTART; 1639 setrun_locked(t); 1640 } 1641 thread_unlock(t); 1642 } while ((t = t->t_forw) != p->p_tlist); 1643 } 1644 1645 /* 1646 * Force all other LWPs in the current process other than the caller to exit, 1647 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1648 * is typically used in these situations: 1649 * 1650 * (a) prior to an exec() system call 1651 * (b) prior to dumping a core file 1652 * (c) prior to a uadmin() shutdown 1653 * 1654 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1655 * Multiple threads in the process can call this function at one time by 1656 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1657 * to declare one particular thread the winner who gets to kill the others. 1658 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1659 * appropriate errno value is returned to caller for its system call to return. 1660 */ 1661 int 1662 exitlwps(int coredump) 1663 { 1664 proc_t *p = curproc; 1665 int heldcnt; 1666 1667 if (curthread->t_door) 1668 door_slam(); 1669 if (p->p_door_list) 1670 door_revoke_all(); 1671 if (curthread->t_schedctl != NULL) 1672 schedctl_lwp_cleanup(curthread); 1673 1674 /* 1675 * Ensure that before starting to wait for other lwps to exit, 1676 * cleanup all upimutexes held by curthread. Otherwise, some other 1677 * lwp could be waiting (uninterruptibly) for a upimutex held by 1678 * curthread, and the call to pokelwps() below would deadlock. 1679 * Even if a blocked upimutex_lock is made interruptible, 1680 * curthread's upimutexes need to be unlocked: do it here. 1681 */ 1682 if (curthread->t_upimutex != NULL) 1683 upimutex_cleanup(); 1684 1685 /* 1686 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1687 * We must also block any further /proc access from this point forward. 1688 */ 1689 mutex_enter(&p->p_lock); 1690 prbarrier(p); 1691 1692 if (p->p_flag & SEXITLWPS) { 1693 mutex_exit(&p->p_lock); 1694 aston(curthread); /* force a trip through post_syscall */ 1695 return (set_errno(EINTR)); 1696 } 1697 1698 p->p_flag |= SEXITLWPS; 1699 if (coredump) /* tell other lwps to stop, not exit */ 1700 p->p_flag |= SCOREDUMP; 1701 1702 /* 1703 * Give precedence to exitlwps() if a holdlwps() is 1704 * in progress. The lwp doing the holdlwps() operation 1705 * is aborted when it is awakened. 1706 */ 1707 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1708 cv_broadcast(&p->p_holdlwps); 1709 cv_wait(&p->p_holdlwps, &p->p_lock); 1710 prbarrier(p); 1711 } 1712 p->p_flag |= SHOLDFORK; 1713 pokelwps(p); 1714 1715 /* 1716 * Wait for process to become quiescent. 1717 */ 1718 --p->p_lwprcnt; 1719 while (p->p_lwprcnt > 0) { 1720 cv_wait(&p->p_holdlwps, &p->p_lock); 1721 prbarrier(p); 1722 } 1723 p->p_lwprcnt++; 1724 ASSERT(p->p_lwprcnt == 1); 1725 1726 /* 1727 * The SCOREDUMP flag puts the process into a quiescent 1728 * state. The process's lwps remain attached to this 1729 * process until exitlwps() is called again without the 1730 * 'coredump' flag set, then the lwps are terminated 1731 * and the process can exit. 1732 */ 1733 if (coredump) { 1734 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1735 goto out; 1736 } 1737 1738 /* 1739 * Determine if there are any lwps left dangling in 1740 * the stopped state. This happens when exitlwps() 1741 * aborts a holdlwps() operation. 1742 */ 1743 p->p_flag &= ~SHOLDFORK; 1744 if ((heldcnt = p->p_lwpcnt) > 1) { 1745 kthread_t *t; 1746 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1747 t->t_proc_flag &= ~TP_TWAIT; 1748 lwp_continue(t); 1749 } 1750 } 1751 1752 /* 1753 * Wait for all other lwps to exit. 1754 */ 1755 --p->p_lwprcnt; 1756 while (p->p_lwpcnt > 1) { 1757 cv_wait(&p->p_holdlwps, &p->p_lock); 1758 prbarrier(p); 1759 } 1760 ++p->p_lwprcnt; 1761 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1762 1763 p->p_flag &= ~SEXITLWPS; 1764 curthread->t_proc_flag &= ~TP_TWAIT; 1765 1766 out: 1767 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1768 lwpdir_t *ldp; 1769 lwpent_t *lep; 1770 int i; 1771 1772 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1773 lep = ldp->ld_entry; 1774 if (lep != NULL && lep->le_thread != curthread) { 1775 ASSERT(lep->le_thread == NULL); 1776 p->p_zombcnt--; 1777 lwp_hash_out(p, lep->le_lwpid); 1778 } 1779 } 1780 ASSERT(p->p_zombcnt == 0); 1781 } 1782 1783 /* 1784 * If some other LWP in the process wanted us to suspend ourself, 1785 * then we will not do it. The other LWP is now terminated and 1786 * no one will ever continue us again if we suspend ourself. 1787 */ 1788 curthread->t_proc_flag &= ~TP_HOLDLWP; 1789 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1790 mutex_exit(&p->p_lock); 1791 return (0); 1792 } 1793 1794 /* 1795 * duplicate a lwp. 1796 */ 1797 klwp_t * 1798 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1799 { 1800 klwp_t *clwp; 1801 void *tregs, *tfpu; 1802 kthread_t *t = lwptot(lwp); 1803 kthread_t *ct; 1804 proc_t *p = lwptoproc(lwp); 1805 int cid; 1806 void *bufp; 1807 void *brand_data; 1808 int val; 1809 1810 ASSERT(p == curproc); 1811 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1812 1813 #if defined(__sparc) 1814 if (t == curthread) 1815 (void) flush_user_windows_to_stack(NULL); 1816 #endif 1817 1818 if (t == curthread) 1819 /* copy args out of registers first */ 1820 (void) save_syscall_args(); 1821 1822 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1823 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1824 if (clwp == NULL) 1825 return (NULL); 1826 1827 /* 1828 * most of the parent's lwp can be copied to its duplicate, 1829 * except for the fields that are unique to each lwp, like 1830 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1831 */ 1832 ct = clwp->lwp_thread; 1833 tregs = clwp->lwp_regs; 1834 tfpu = clwp->lwp_fpu; 1835 brand_data = clwp->lwp_brand; 1836 1837 /* 1838 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1839 * mstate_aggr_state() from reading stale mstate entries copied 1840 * from lwp to clwp. 1841 */ 1842 mutex_enter(&cp->p_lock); 1843 *clwp = *lwp; 1844 1845 /* clear microstate and resource usage data in new lwp */ 1846 init_mstate(ct, LMS_STOPPED); 1847 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1848 mutex_exit(&cp->p_lock); 1849 1850 /* fix up child's lwp */ 1851 1852 clwp->lwp_pcb.pcb_flags = 0; 1853 #if defined(__sparc) 1854 clwp->lwp_pcb.pcb_step = STEP_NONE; 1855 #endif 1856 clwp->lwp_cursig = 0; 1857 clwp->lwp_extsig = 0; 1858 clwp->lwp_curinfo = (struct sigqueue *)0; 1859 clwp->lwp_thread = ct; 1860 ct->t_sysnum = t->t_sysnum; 1861 clwp->lwp_regs = tregs; 1862 clwp->lwp_fpu = tfpu; 1863 clwp->lwp_brand = brand_data; 1864 clwp->lwp_ap = clwp->lwp_arg; 1865 clwp->lwp_procp = cp; 1866 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1867 clwp->lwp_lastfault = 0; 1868 clwp->lwp_lastfaddr = 0; 1869 1870 /* copy parent's struct regs to child. */ 1871 lwp_forkregs(lwp, clwp); 1872 1873 /* 1874 * Fork thread context ops, if any. 1875 */ 1876 if (t->t_ctx) 1877 forkctx(t, ct); 1878 1879 /* fix door state in the child */ 1880 if (t->t_door) 1881 door_fork(t, ct); 1882 1883 /* copy current contract templates, clear latest contracts */ 1884 lwp_ctmpl_copy(clwp, lwp); 1885 1886 mutex_enter(&cp->p_lock); 1887 /* lwp_create() set the TP_HOLDLWP flag */ 1888 if (!(t->t_proc_flag & TP_HOLDLWP)) 1889 ct->t_proc_flag &= ~TP_HOLDLWP; 1890 if (cp->p_flag & SMSACCT) 1891 ct->t_proc_flag |= TP_MSACCT; 1892 mutex_exit(&cp->p_lock); 1893 1894 /* Allow brand to propagate brand-specific state */ 1895 if (PROC_IS_BRANDED(p)) 1896 BROP(p)->b_forklwp(lwp, clwp); 1897 1898 retry: 1899 cid = t->t_cid; 1900 1901 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1902 ASSERT(val == 0); 1903 1904 mutex_enter(&p->p_lock); 1905 if (cid != t->t_cid) { 1906 /* 1907 * Someone just changed this thread's scheduling class, 1908 * so try pre-allocating the buffer again. Hopefully we 1909 * don't hit this often. 1910 */ 1911 mutex_exit(&p->p_lock); 1912 CL_FREE(cid, bufp); 1913 goto retry; 1914 } 1915 1916 ct->t_unpark = t->t_unpark; 1917 ct->t_clfuncs = t->t_clfuncs; 1918 CL_FORK(t, ct, bufp); 1919 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1920 mutex_exit(&p->p_lock); 1921 1922 return (clwp); 1923 } 1924 1925 /* 1926 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1927 */ 1928 void 1929 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1930 int do_lock) 1931 { 1932 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1933 lwpdir_t **ldpp; 1934 lwpdir_t *ldp; 1935 kthread_t *t; 1936 1937 /* 1938 * Allocate a directory element from the free list. 1939 * Code elsewhere guarantees a free slot. 1940 */ 1941 ldp = p->p_lwpfree; 1942 p->p_lwpfree = ldp->ld_next; 1943 ASSERT(ldp->ld_entry == NULL); 1944 ldp->ld_entry = lep; 1945 1946 if (do_lock) 1947 mutex_enter(&thp->th_lock); 1948 1949 /* 1950 * Insert it into the lwpid hash table. 1951 */ 1952 ldpp = &thp->th_list; 1953 ldp->ld_next = *ldpp; 1954 *ldpp = ldp; 1955 1956 /* 1957 * Set the active thread's directory slot entry. 1958 */ 1959 if ((t = lep->le_thread) != NULL) { 1960 ASSERT(lep->le_lwpid == t->t_tid); 1961 t->t_dslot = (int)(ldp - p->p_lwpdir); 1962 } 1963 1964 if (do_lock) 1965 mutex_exit(&thp->th_lock); 1966 } 1967 1968 /* 1969 * Remove an lwp from the lwpid hash table and free its directory entry. 1970 * This is done when a detached lwp exits in lwp_exit() or 1971 * when a non-detached lwp is waited for in lwp_wait() or 1972 * when a zombie lwp is detached in lwp_detach(). 1973 */ 1974 void 1975 lwp_hash_out(proc_t *p, id_t lwpid) 1976 { 1977 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1978 lwpdir_t **ldpp; 1979 lwpdir_t *ldp; 1980 lwpent_t *lep; 1981 1982 mutex_enter(&thp->th_lock); 1983 for (ldpp = &thp->th_list; 1984 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1985 lep = ldp->ld_entry; 1986 if (lep->le_lwpid == lwpid) { 1987 prlwpfree(p, lep); /* /proc deals with le_trace */ 1988 *ldpp = ldp->ld_next; 1989 ldp->ld_entry = NULL; 1990 ldp->ld_next = p->p_lwpfree; 1991 p->p_lwpfree = ldp; 1992 kmem_free(lep, sizeof (*lep)); 1993 break; 1994 } 1995 } 1996 mutex_exit(&thp->th_lock); 1997 } 1998 1999 /* 2000 * Lookup an lwp in the lwpid hash table by lwpid. 2001 */ 2002 lwpdir_t * 2003 lwp_hash_lookup(proc_t *p, id_t lwpid) 2004 { 2005 tidhash_t *thp; 2006 lwpdir_t *ldp; 2007 2008 /* 2009 * The process may be exiting, after p_tidhash has been set to NULL in 2010 * proc_exit() but before prfee() has been called. Return failure in 2011 * this case. 2012 */ 2013 if (p->p_tidhash == NULL) 2014 return (NULL); 2015 2016 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2017 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2018 if (ldp->ld_entry->le_lwpid == lwpid) 2019 return (ldp); 2020 } 2021 2022 return (NULL); 2023 } 2024 2025 /* 2026 * Same as lwp_hash_lookup(), but acquire and return 2027 * the tid hash table entry lock on success. 2028 */ 2029 lwpdir_t * 2030 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2031 { 2032 tidhash_t *tidhash; 2033 uint_t tidhash_sz; 2034 tidhash_t *thp; 2035 lwpdir_t *ldp; 2036 2037 top: 2038 tidhash_sz = p->p_tidhash_sz; 2039 membar_consumer(); 2040 if ((tidhash = p->p_tidhash) == NULL) 2041 return (NULL); 2042 2043 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2044 mutex_enter(&thp->th_lock); 2045 2046 /* 2047 * Since we are not holding p->p_lock, the tid hash table 2048 * may have changed. If so, start over. If not, then 2049 * it cannot change until after we drop &thp->th_lock; 2050 */ 2051 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2052 mutex_exit(&thp->th_lock); 2053 goto top; 2054 } 2055 2056 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2057 if (ldp->ld_entry->le_lwpid == lwpid) { 2058 *mpp = &thp->th_lock; 2059 return (ldp); 2060 } 2061 } 2062 2063 mutex_exit(&thp->th_lock); 2064 return (NULL); 2065 } 2066 2067 /* 2068 * Update the indicated LWP usage statistic for the current LWP. 2069 */ 2070 void 2071 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2072 { 2073 klwp_t *lwp = ttolwp(curthread); 2074 2075 if (lwp == NULL) 2076 return; 2077 2078 switch (lwp_stat_id) { 2079 case LWP_STAT_INBLK: 2080 lwp->lwp_ru.inblock += inc; 2081 break; 2082 case LWP_STAT_OUBLK: 2083 lwp->lwp_ru.oublock += inc; 2084 break; 2085 case LWP_STAT_MSGRCV: 2086 lwp->lwp_ru.msgrcv += inc; 2087 break; 2088 case LWP_STAT_MSGSND: 2089 lwp->lwp_ru.msgsnd += inc; 2090 break; 2091 default: 2092 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2093 } 2094 } 2095