1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/systm.h> 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/task.h> 34 #include <sys/project.h> 35 #include <sys/signal.h> 36 #include <sys/errno.h> 37 #include <sys/vmparam.h> 38 #include <sys/stack.h> 39 #include <sys/procfs.h> 40 #include <sys/prsystm.h> 41 #include <sys/cpuvar.h> 42 #include <sys/kmem.h> 43 #include <sys/vtrace.h> 44 #include <sys/door.h> 45 #include <vm/seg_kp.h> 46 #include <sys/debug.h> 47 #include <sys/tnf.h> 48 #include <sys/schedctl.h> 49 #include <sys/poll.h> 50 #include <sys/copyops.h> 51 #include <sys/lwp_upimutex_impl.h> 52 #include <sys/cpupart.h> 53 #include <sys/lgrp.h> 54 #include <sys/rctl.h> 55 #include <sys/contract_impl.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/sdt.h> 58 #include <sys/cmn_err.h> 59 #include <sys/brand.h> 60 61 /* hash function for the lwpid hash table, p->p_tidhash[] */ 62 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 63 64 void *segkp_lwp; /* cookie for pool of segkp resources */ 65 extern void reapq_move_lq_to_tq(kthread_t *); 66 extern void freectx_ctx(struct ctxop *); 67 68 /* 69 * Create a thread that appears to be stopped at sys_rtt. 70 */ 71 klwp_t * 72 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 73 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 74 { 75 klwp_t *lwp = NULL; 76 kthread_t *t; 77 kthread_t *tx; 78 cpupart_t *oldpart = NULL; 79 size_t stksize; 80 caddr_t lwpdata = NULL; 81 processorid_t binding; 82 int err = 0; 83 kproject_t *oldkpj, *newkpj; 84 void *bufp = NULL; 85 klwp_t *curlwp = ttolwp(curthread); 86 lwpent_t *lep; 87 lwpdir_t *old_dir = NULL; 88 uint_t old_dirsz = 0; 89 tidhash_t *old_hash = NULL; 90 uint_t old_hashsz = 0; 91 ret_tidhash_t *ret_tidhash = NULL; 92 int i; 93 int rctlfail = 0; 94 boolean_t branded = 0; 95 struct ctxop *ctx = NULL; 96 97 mutex_enter(&p->p_lock); 98 mutex_enter(&p->p_zone->zone_nlwps_lock); 99 /* 100 * don't enforce rctl limits on system processes 101 */ 102 if (cid != syscid) { 103 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 104 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 105 1, 0) & RCT_DENY) 106 rctlfail = 1; 107 if (p->p_task->tk_proj->kpj_nlwps >= 108 p->p_task->tk_proj->kpj_nlwps_ctl) 109 if (rctl_test(rc_project_nlwps, 110 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 111 & RCT_DENY) 112 rctlfail = 1; 113 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 114 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 115 1, 0) & RCT_DENY) 116 rctlfail = 1; 117 } 118 if (rctlfail) { 119 mutex_exit(&p->p_zone->zone_nlwps_lock); 120 mutex_exit(&p->p_lock); 121 return (NULL); 122 } 123 p->p_task->tk_nlwps++; 124 p->p_task->tk_proj->kpj_nlwps++; 125 p->p_zone->zone_nlwps++; 126 mutex_exit(&p->p_zone->zone_nlwps_lock); 127 mutex_exit(&p->p_lock); 128 129 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 130 stksize = lwp_default_stksize; 131 132 /* 133 * Try to reclaim a <lwp,stack> from 'deathrow' 134 */ 135 if (stksize == lwp_default_stksize) { 136 if (lwp_reapcnt > 0) { 137 mutex_enter(&reaplock); 138 if ((t = lwp_deathrow) != NULL) { 139 ASSERT(t->t_swap); 140 lwp_deathrow = t->t_forw; 141 lwp_reapcnt--; 142 lwpdata = t->t_swap; 143 lwp = t->t_lwp; 144 ctx = t->t_ctx; 145 t->t_swap = NULL; 146 t->t_lwp = NULL; 147 t->t_ctx = NULL; 148 reapq_move_lq_to_tq(t); 149 } 150 mutex_exit(&reaplock); 151 if (lwp != NULL) { 152 lwp_stk_fini(lwp); 153 } 154 if (ctx != NULL) { 155 freectx_ctx(ctx); 156 } 157 } 158 if (lwpdata == NULL && 159 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 160 mutex_enter(&p->p_lock); 161 mutex_enter(&p->p_zone->zone_nlwps_lock); 162 p->p_task->tk_nlwps--; 163 p->p_task->tk_proj->kpj_nlwps--; 164 p->p_zone->zone_nlwps--; 165 mutex_exit(&p->p_zone->zone_nlwps_lock); 166 mutex_exit(&p->p_lock); 167 return (NULL); 168 } 169 } else { 170 stksize = roundup(stksize, PAGESIZE); 171 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 172 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 173 mutex_enter(&p->p_lock); 174 mutex_enter(&p->p_zone->zone_nlwps_lock); 175 p->p_task->tk_nlwps--; 176 p->p_task->tk_proj->kpj_nlwps--; 177 p->p_zone->zone_nlwps--; 178 mutex_exit(&p->p_zone->zone_nlwps_lock); 179 mutex_exit(&p->p_lock); 180 return (NULL); 181 } 182 } 183 184 /* 185 * Create a thread, initializing the stack pointer 186 */ 187 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 188 189 t->t_swap = lwpdata; /* Start of page-able data */ 190 if (lwp == NULL) 191 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 192 bzero(lwp, sizeof (*lwp)); 193 t->t_lwp = lwp; 194 195 t->t_hold = *smask; 196 lwp->lwp_thread = t; 197 lwp->lwp_procp = p; 198 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 199 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 200 lwp->lwp_childstksz = curlwp->lwp_childstksz; 201 202 t->t_stk = lwp_stk_init(lwp, t->t_stk); 203 thread_load(t, proc, arg, len); 204 205 /* 206 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 207 */ 208 if (timerisset(&p->p_rprof_timer.it_value)) 209 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 210 211 if (cid != NOCLASS) 212 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 213 214 /* 215 * Allocate an lwp directory entry for the new lwp. 216 */ 217 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 218 219 mutex_enter(&p->p_lock); 220 grow: 221 /* 222 * Grow the lwp (thread) directory and lwpid hash table if necessary. 223 * A note on the growth algorithm: 224 * The new lwp directory size is computed as: 225 * new = 2 * old + 2 226 * Starting with an initial size of 2 (see exec_common()), 227 * this yields numbers that are a power of two minus 2: 228 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 229 * The size of the lwpid hash table must be a power of two 230 * and must be commensurate in size with the lwp directory 231 * so that hash bucket chains remain short. Therefore, 232 * the lwpid hash table size is computed as: 233 * hashsz = (dirsz + 2) / 2 234 * which leads to these hash table sizes corresponding to 235 * the above directory sizes: 236 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 237 * A note on growing the hash table: 238 * For performance reasons, code in lwp_unpark() does not 239 * acquire curproc->p_lock when searching the hash table. 240 * Rather, it calls lwp_hash_lookup_and_lock() which 241 * acquires only the individual hash bucket lock, taking 242 * care to deal with reallocation of the hash table 243 * during the time it takes to acquire the lock. 244 * 245 * This is sufficient to protect the integrity of the 246 * hash table, but it requires us to acquire all of the 247 * old hash bucket locks before growing the hash table 248 * and to release them afterwards. It also requires us 249 * not to free the old hash table because some thread 250 * in lwp_hash_lookup_and_lock() might still be trying 251 * to acquire the old bucket lock. 252 * 253 * So we adopt the tactic of keeping all of the retired 254 * hash tables on a linked list, so they can be safely 255 * freed when the process exits or execs. 256 * 257 * Because the hash table grows in powers of two, the 258 * total size of all of the hash tables will be slightly 259 * less than twice the size of the largest hash table. 260 */ 261 while (p->p_lwpfree == NULL) { 262 uint_t dirsz = p->p_lwpdir_sz; 263 lwpdir_t *new_dir; 264 uint_t new_dirsz; 265 lwpdir_t *ldp; 266 tidhash_t *new_hash; 267 uint_t new_hashsz; 268 269 mutex_exit(&p->p_lock); 270 271 /* 272 * Prepare to remember the old p_tidhash for later 273 * kmem_free()ing when the process exits or execs. 274 */ 275 if (ret_tidhash == NULL) 276 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 277 KM_SLEEP); 278 if (old_dir != NULL) 279 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 280 if (old_hash != NULL) 281 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 282 283 new_dirsz = 2 * dirsz + 2; 284 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 285 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 286 ldp->ld_next = ldp + 1; 287 new_hashsz = (new_dirsz + 2) / 2; 288 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 289 KM_SLEEP); 290 291 mutex_enter(&p->p_lock); 292 if (p == curproc) 293 prbarrier(p); 294 295 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 296 /* 297 * Someone else beat us to it or some lwp exited. 298 * Set up to free our memory and take a lap. 299 */ 300 old_dir = new_dir; 301 old_dirsz = new_dirsz; 302 old_hash = new_hash; 303 old_hashsz = new_hashsz; 304 } else { 305 /* 306 * For the benefit of lwp_hash_lookup_and_lock(), 307 * called from lwp_unpark(), which searches the 308 * tid hash table without acquiring p->p_lock, 309 * we must acquire all of the tid hash table 310 * locks before replacing p->p_tidhash. 311 */ 312 old_hash = p->p_tidhash; 313 old_hashsz = p->p_tidhash_sz; 314 for (i = 0; i < old_hashsz; i++) { 315 mutex_enter(&old_hash[i].th_lock); 316 mutex_enter(&new_hash[i].th_lock); 317 } 318 319 /* 320 * We simply hash in all of the old directory entries. 321 * This works because the old directory has no empty 322 * slots and the new hash table starts out empty. 323 * This reproduces the original directory ordering 324 * (required for /proc directory semantics). 325 */ 326 old_dir = p->p_lwpdir; 327 old_dirsz = p->p_lwpdir_sz; 328 p->p_lwpdir = new_dir; 329 p->p_lwpfree = new_dir; 330 p->p_lwpdir_sz = new_dirsz; 331 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 332 lwp_hash_in(p, ldp->ld_entry, 333 new_hash, new_hashsz, 0); 334 335 /* 336 * Remember the old hash table along with all 337 * of the previously-remembered hash tables. 338 * We will free them at process exit or exec. 339 */ 340 ret_tidhash->rth_tidhash = old_hash; 341 ret_tidhash->rth_tidhash_sz = old_hashsz; 342 ret_tidhash->rth_next = p->p_ret_tidhash; 343 p->p_ret_tidhash = ret_tidhash; 344 345 /* 346 * Now establish the new tid hash table. 347 * As soon as we assign p->p_tidhash, 348 * code in lwp_unpark() can start using it. 349 */ 350 membar_producer(); 351 p->p_tidhash = new_hash; 352 353 /* 354 * It is necessary that p_tidhash reach global 355 * visibility before p_tidhash_sz. Otherwise, 356 * code in lwp_hash_lookup_and_lock() could 357 * index into the old p_tidhash using the new 358 * p_tidhash_sz and thereby access invalid data. 359 */ 360 membar_producer(); 361 p->p_tidhash_sz = new_hashsz; 362 363 /* 364 * Release the locks; allow lwp_unpark() to carry on. 365 */ 366 for (i = 0; i < old_hashsz; i++) { 367 mutex_exit(&old_hash[i].th_lock); 368 mutex_exit(&new_hash[i].th_lock); 369 } 370 371 /* 372 * Avoid freeing these objects below. 373 */ 374 ret_tidhash = NULL; 375 old_hash = NULL; 376 old_hashsz = 0; 377 } 378 } 379 380 /* 381 * Block the process against /proc while we manipulate p->p_tlist, 382 * unless lwp_create() was called by /proc for the PCAGENT operation. 383 * We want to do this early enough so that we don't drop p->p_lock 384 * until the thread is put on the p->p_tlist. 385 */ 386 if (p == curproc) { 387 prbarrier(p); 388 /* 389 * If the current lwp has been requested to stop, do so now. 390 * Otherwise we have a race condition between /proc attempting 391 * to stop the process and this thread creating a new lwp 392 * that was not seen when the /proc PCSTOP request was issued. 393 * We rely on stop() to call prbarrier(p) before returning. 394 */ 395 while ((curthread->t_proc_flag & TP_PRSTOP) && 396 !ttolwp(curthread)->lwp_nostop) 397 stop(PR_REQUESTED, 0); 398 399 /* 400 * If process is exiting, there could be a race between 401 * the agent lwp creation and the new lwp currently being 402 * created. So to prevent this race lwp creation is failed 403 * if the process is exiting. 404 */ 405 if (p->p_flag & (SEXITLWPS|SKILLED)) { 406 err = 1; 407 goto error; 408 } 409 410 /* 411 * Since we might have dropped p->p_lock, the 412 * lwp directory free list might have changed. 413 */ 414 if (p->p_lwpfree == NULL) 415 goto grow; 416 } 417 418 kpreempt_disable(); /* can't grab cpu_lock here */ 419 420 /* 421 * Inherit processor and processor set bindings from curthread, 422 * unless we're creating a new kernel process, in which case 423 * clear all bindings. 424 */ 425 if (cid == syscid) { 426 t->t_bind_cpu = binding = PBIND_NONE; 427 t->t_cpupart = oldpart = &cp_default; 428 t->t_bind_pset = PS_NONE; 429 t->t_bindflag = (uchar_t)default_binding_mode; 430 } else { 431 binding = curthread->t_bind_cpu; 432 t->t_bind_cpu = binding; 433 oldpart = t->t_cpupart; 434 t->t_cpupart = curthread->t_cpupart; 435 t->t_bind_pset = curthread->t_bind_pset; 436 t->t_bindflag = curthread->t_bindflag | 437 (uchar_t)default_binding_mode; 438 } 439 440 /* 441 * thread_create() initializes this thread's home lgroup to the root. 442 * Choose a more suitable lgroup, since this thread is associated 443 * with an lwp. 444 */ 445 ASSERT(oldpart != NULL); 446 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 447 t->t_bound_cpu = cpu[binding]; 448 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 449 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 450 } else { 451 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 452 } 453 454 kpreempt_enable(); 455 456 /* 457 * make sure lpl points to our own partition 458 */ 459 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 460 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 461 t->t_cpupart->cp_nlgrploads); 462 463 /* 464 * If we're creating a new process, then inherit the project from our 465 * parent. If we're only creating an additional lwp then use the 466 * project pointer of the target process. 467 */ 468 if (p->p_task == NULL) 469 newkpj = ttoproj(curthread); 470 else 471 newkpj = p->p_task->tk_proj; 472 473 /* 474 * It is safe to point the thread to the new project without holding it 475 * since we're holding the target process' p_lock here and therefore 476 * we're guaranteed that it will not move to another project. 477 */ 478 oldkpj = ttoproj(t); 479 if (newkpj != oldkpj) { 480 t->t_proj = newkpj; 481 (void) project_hold(newkpj); 482 project_rele(oldkpj); 483 } 484 485 if (cid != NOCLASS) { 486 /* 487 * If the lwp is being created in the current process 488 * and matches the current thread's scheduling class, 489 * we should propagate the current thread's scheduling 490 * parameters by calling CL_FORK. Otherwise just use 491 * the defaults by calling CL_ENTERCLASS. 492 */ 493 if (p != curproc || curthread->t_cid != cid) { 494 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 495 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 496 /* 497 * We don't call schedctl_set_cidpri(t) here 498 * because the schedctl data is not yet set 499 * up for the newly-created lwp. 500 */ 501 } else { 502 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 503 err = CL_FORK(curthread, t, bufp); 504 t->t_cid = cid; 505 } 506 if (err) 507 goto error; 508 else 509 bufp = NULL; 510 } 511 512 /* 513 * If we were given an lwpid then use it, else allocate one. 514 */ 515 if (lwpid != 0) 516 t->t_tid = lwpid; 517 else { 518 /* 519 * lwp/thread id 0 is never valid; reserved for special checks. 520 * lwp/thread id 1 is reserved for the main thread. 521 * Start again at 2 when INT_MAX has been reached 522 * (id_t is a signed 32-bit integer). 523 */ 524 id_t prev_id = p->p_lwpid; /* last allocated tid */ 525 526 do { /* avoid lwpid duplication */ 527 if (p->p_lwpid == INT_MAX) { 528 p->p_flag |= SLWPWRAP; 529 p->p_lwpid = 1; 530 } 531 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 532 /* 533 * All lwpids are allocated; fail the request. 534 */ 535 err = 1; 536 goto error; 537 } 538 /* 539 * We only need to worry about colliding with an id 540 * that's already in use if this process has 541 * cycled through all available lwp ids. 542 */ 543 if ((p->p_flag & SLWPWRAP) == 0) 544 break; 545 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 546 } 547 548 /* 549 * If this is a branded process, let the brand do any necessary lwp 550 * initialization. 551 */ 552 if (PROC_IS_BRANDED(p)) { 553 if (BROP(p)->b_initlwp(lwp)) { 554 err = 1; 555 goto error; 556 } 557 branded = 1; 558 } 559 560 if (t->t_tid == 1) { 561 kpreempt_disable(); 562 ASSERT(t->t_lpl != NULL); 563 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 564 kpreempt_enable(); 565 if (p->p_tr_lgrpid != LGRP_NONE && 566 p->p_tr_lgrpid != p->p_t1_lgrpid) { 567 lgrp_update_trthr_migrations(1); 568 } 569 } 570 571 p->p_lwpcnt++; 572 t->t_waitfor = -1; 573 574 /* 575 * Turn microstate accounting on for thread if on for process. 576 */ 577 if (p->p_flag & SMSACCT) 578 t->t_proc_flag |= TP_MSACCT; 579 580 /* 581 * If the process has watchpoints, mark the new thread as such. 582 */ 583 if (pr_watch_active(p)) 584 watch_enable(t); 585 586 /* 587 * The lwp is being created in the stopped state. 588 * We set all the necessary flags to indicate that fact here. 589 * We omit the TS_CREATE flag from t_schedflag so that the lwp 590 * cannot be set running until the caller is finished with it, 591 * even if lwp_continue() is called on it after we drop p->p_lock. 592 * When the caller is finished with the newly-created lwp, 593 * the caller must call lwp_create_done() to allow the lwp 594 * to be set running. If the TP_HOLDLWP is left set, the 595 * lwp will suspend itself after reaching system call exit. 596 */ 597 init_mstate(t, LMS_STOPPED); 598 t->t_proc_flag |= TP_HOLDLWP; 599 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 600 t->t_whystop = PR_SUSPENDED; 601 t->t_whatstop = SUSPEND_NORMAL; 602 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 603 604 /* 605 * Set system call processing flags in case tracing or profiling 606 * is set. The first system call will evaluate these and turn 607 * them off if they aren't needed. 608 */ 609 t->t_pre_sys = 1; 610 t->t_post_sys = 1; 611 612 /* 613 * Insert the new thread into the list of all threads. 614 */ 615 if ((tx = p->p_tlist) == NULL) { 616 t->t_back = t; 617 t->t_forw = t; 618 p->p_tlist = t; 619 } else { 620 t->t_forw = tx; 621 t->t_back = tx->t_back; 622 tx->t_back->t_forw = t; 623 tx->t_back = t; 624 } 625 626 /* 627 * Insert the new lwp into an lwp directory slot position 628 * and into the lwpid hash table. 629 */ 630 lep->le_thread = t; 631 lep->le_lwpid = t->t_tid; 632 lep->le_start = t->t_start; 633 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 634 635 if (state == TS_RUN) { 636 /* 637 * We set the new lwp running immediately. 638 */ 639 t->t_proc_flag &= ~TP_HOLDLWP; 640 lwp_create_done(t); 641 } 642 643 error: 644 if (err) { 645 /* 646 * We have failed to create an lwp, so decrement the number 647 * of lwps in the task and let the lgroup load averages know 648 * that this thread isn't going to show up. 649 */ 650 kpreempt_disable(); 651 lgrp_move_thread(t, NULL, 1); 652 kpreempt_enable(); 653 654 ASSERT(MUTEX_HELD(&p->p_lock)); 655 mutex_enter(&p->p_zone->zone_nlwps_lock); 656 p->p_task->tk_nlwps--; 657 p->p_task->tk_proj->kpj_nlwps--; 658 p->p_zone->zone_nlwps--; 659 mutex_exit(&p->p_zone->zone_nlwps_lock); 660 if (cid != NOCLASS && bufp != NULL) 661 CL_FREE(cid, bufp); 662 663 if (branded) 664 BROP(p)->b_freelwp(lwp); 665 666 mutex_exit(&p->p_lock); 667 t->t_state = TS_FREE; 668 thread_rele(t); 669 670 /* 671 * We need to remove t from the list of all threads 672 * because thread_exit()/lwp_exit() isn't called on t. 673 */ 674 mutex_enter(&pidlock); 675 ASSERT(t != t->t_next); /* t0 never exits */ 676 t->t_next->t_prev = t->t_prev; 677 t->t_prev->t_next = t->t_next; 678 mutex_exit(&pidlock); 679 680 thread_free(t); 681 kmem_free(lep, sizeof (*lep)); 682 lwp = NULL; 683 } else { 684 mutex_exit(&p->p_lock); 685 } 686 687 if (old_dir != NULL) 688 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 689 if (old_hash != NULL) 690 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 691 if (ret_tidhash != NULL) 692 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 693 694 DTRACE_PROC1(lwp__create, kthread_t *, t); 695 return (lwp); 696 } 697 698 /* 699 * lwp_create_done() is called by the caller of lwp_create() to set the 700 * newly-created lwp running after the caller has finished manipulating it. 701 */ 702 void 703 lwp_create_done(kthread_t *t) 704 { 705 proc_t *p = ttoproc(t); 706 707 ASSERT(MUTEX_HELD(&p->p_lock)); 708 709 /* 710 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 711 * (The absence of the TS_CREATE flag prevents the lwp from running 712 * until we are finished with it, even if lwp_continue() is called on 713 * it by some other lwp in the process or elsewhere in the kernel.) 714 */ 715 thread_lock(t); 716 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 717 /* 718 * If TS_CSTART is set, lwp_continue(t) has been called and 719 * has already incremented p_lwprcnt; avoid doing this twice. 720 */ 721 if (!(t->t_schedflag & TS_CSTART)) 722 p->p_lwprcnt++; 723 t->t_schedflag |= (TS_CSTART | TS_CREATE); 724 setrun_locked(t); 725 thread_unlock(t); 726 } 727 728 /* 729 * Copy an LWP's active templates, and clear the latest contracts. 730 */ 731 void 732 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 733 { 734 int i; 735 736 for (i = 0; i < ct_ntypes; i++) { 737 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 738 dst->lwp_ct_latest[i] = NULL; 739 } 740 } 741 742 /* 743 * Clear an LWP's contract template state. 744 */ 745 void 746 lwp_ctmpl_clear(klwp_t *lwp) 747 { 748 ct_template_t *tmpl; 749 int i; 750 751 for (i = 0; i < ct_ntypes; i++) { 752 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 753 ctmpl_free(tmpl); 754 lwp->lwp_ct_active[i] = NULL; 755 } 756 757 if (lwp->lwp_ct_latest[i] != NULL) { 758 contract_rele(lwp->lwp_ct_latest[i]); 759 lwp->lwp_ct_latest[i] = NULL; 760 } 761 } 762 } 763 764 /* 765 * Individual lwp exit. 766 * If this is the last lwp, exit the whole process. 767 */ 768 void 769 lwp_exit(void) 770 { 771 kthread_t *t = curthread; 772 klwp_t *lwp = ttolwp(t); 773 proc_t *p = ttoproc(t); 774 775 ASSERT(MUTEX_HELD(&p->p_lock)); 776 777 mutex_exit(&p->p_lock); 778 779 #if defined(__sparc) 780 /* 781 * Ensure that the user stack is fully abandoned.. 782 */ 783 trash_user_windows(); 784 #endif 785 786 tsd_exit(); /* free thread specific data */ 787 788 kcpc_passivate(); /* Clean up performance counter state */ 789 790 pollcleanup(); 791 792 if (t->t_door) 793 door_slam(); 794 795 if (t->t_schedctl != NULL) 796 schedctl_lwp_cleanup(t); 797 798 if (t->t_upimutex != NULL) 799 upimutex_cleanup(); 800 801 /* 802 * Perform any brand specific exit processing, then release any 803 * brand data associated with the lwp 804 */ 805 if (PROC_IS_BRANDED(p)) 806 BROP(p)->b_lwpexit(lwp); 807 808 mutex_enter(&p->p_lock); 809 lwp_cleanup(); 810 811 /* 812 * When this process is dumping core, its lwps are held here 813 * until the core dump is finished. Then exitlwps() is called 814 * again to release these lwps so that they can finish exiting. 815 */ 816 if (p->p_flag & SCOREDUMP) 817 stop(PR_SUSPENDED, SUSPEND_NORMAL); 818 819 /* 820 * Block the process against /proc now that we have really acquired 821 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 822 */ 823 prbarrier(p); 824 825 /* 826 * Call proc_exit() if this is the last non-daemon lwp in the process. 827 */ 828 if (!(t->t_proc_flag & TP_DAEMON) && 829 p->p_lwpcnt == p->p_lwpdaemon + 1) { 830 mutex_exit(&p->p_lock); 831 if (proc_exit(CLD_EXITED, 0) == 0) { 832 /* Restarting init. */ 833 return; 834 } 835 836 /* 837 * proc_exit() returns a non-zero value when some other 838 * lwp got there first. We just have to continue in 839 * lwp_exit(). 840 */ 841 mutex_enter(&p->p_lock); 842 ASSERT(curproc->p_flag & SEXITLWPS); 843 prbarrier(p); 844 } 845 846 DTRACE_PROC(lwp__exit); 847 848 /* 849 * If the lwp is a detached lwp or if the process is exiting, 850 * remove (lwp_hash_out()) the lwp from the lwp directory. 851 * Otherwise null out the lwp's le_thread pointer in the lwp 852 * directory so that other threads will see it as a zombie lwp. 853 */ 854 prlwpexit(t); /* notify /proc */ 855 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 856 lwp_hash_out(p, t->t_tid); 857 else { 858 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 859 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 860 p->p_zombcnt++; 861 cv_broadcast(&p->p_lwpexit); 862 } 863 if (t->t_proc_flag & TP_DAEMON) { 864 p->p_lwpdaemon--; 865 t->t_proc_flag &= ~TP_DAEMON; 866 } 867 t->t_proc_flag &= ~TP_TWAIT; 868 869 /* 870 * Maintain accurate lwp count for task.max-lwps resource control. 871 */ 872 mutex_enter(&p->p_zone->zone_nlwps_lock); 873 p->p_task->tk_nlwps--; 874 p->p_task->tk_proj->kpj_nlwps--; 875 p->p_zone->zone_nlwps--; 876 mutex_exit(&p->p_zone->zone_nlwps_lock); 877 878 CL_EXIT(t); /* tell the scheduler that t is exiting */ 879 ASSERT(p->p_lwpcnt != 0); 880 p->p_lwpcnt--; 881 882 /* 883 * If all remaining non-daemon lwps are waiting in lwp_wait(), 884 * wake them up so someone can return EDEADLK. 885 * (See the block comment preceeding lwp_wait().) 886 */ 887 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 888 cv_broadcast(&p->p_lwpexit); 889 890 t->t_proc_flag |= TP_LWPEXIT; 891 term_mstate(t); 892 893 #ifndef NPROBE 894 /* Kernel probe */ 895 if (t->t_tnf_tpdp) 896 tnf_thread_exit(); 897 #endif /* NPROBE */ 898 899 t->t_forw->t_back = t->t_back; 900 t->t_back->t_forw = t->t_forw; 901 if (t == p->p_tlist) 902 p->p_tlist = t->t_forw; 903 904 /* 905 * Clean up the signal state. 906 */ 907 if (t->t_sigqueue != NULL) 908 sigdelq(p, t, 0); 909 if (lwp->lwp_curinfo != NULL) { 910 siginfofree(lwp->lwp_curinfo); 911 lwp->lwp_curinfo = NULL; 912 } 913 914 thread_rele(t); 915 916 /* 917 * Terminated lwps are associated with process zero and are put onto 918 * death-row by resume(). Avoid preemption after resetting t->t_procp. 919 */ 920 t->t_preempt++; 921 922 if (t->t_ctx != NULL) 923 exitctx(t); 924 if (p->p_pctx != NULL) 925 exitpctx(p); 926 927 t->t_procp = &p0; 928 929 /* 930 * Notify the HAT about the change of address space 931 */ 932 hat_thread_exit(t); 933 /* 934 * When this is the last running lwp in this process and some lwp is 935 * waiting for this condition to become true, or this thread was being 936 * suspended, then the waiting lwp is awakened. 937 * 938 * Also, if the process is exiting, we may have a thread waiting in 939 * exitlwps() that needs to be notified. 940 */ 941 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 942 (p->p_flag & SEXITLWPS)) 943 cv_broadcast(&p->p_holdlwps); 944 945 /* 946 * Need to drop p_lock so we can reacquire pidlock. 947 */ 948 mutex_exit(&p->p_lock); 949 mutex_enter(&pidlock); 950 951 ASSERT(t != t->t_next); /* t0 never exits */ 952 t->t_next->t_prev = t->t_prev; 953 t->t_prev->t_next = t->t_next; 954 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 955 mutex_exit(&pidlock); 956 957 lwp_pcb_exit(); 958 959 t->t_state = TS_ZOMB; 960 swtch_from_zombie(); 961 /* never returns */ 962 } 963 964 965 /* 966 * Cleanup function for an exiting lwp. 967 * Called both from lwp_exit() and from proc_exit(). 968 * p->p_lock is repeatedly released and grabbed in this function. 969 */ 970 void 971 lwp_cleanup(void) 972 { 973 kthread_t *t = curthread; 974 proc_t *p = ttoproc(t); 975 976 ASSERT(MUTEX_HELD(&p->p_lock)); 977 978 /* untimeout any lwp-bound realtime timers */ 979 if (p->p_itimer != NULL) 980 timer_lwpexit(); 981 982 /* 983 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 984 * so it appears that the agent never existed, and clear p_agenttp. 985 */ 986 if (t == p->p_agenttp) { 987 ASSERT(t->t_tid == p->p_lwpid); 988 p->p_lwpid--; 989 p->p_agenttp = NULL; 990 } 991 992 /* 993 * Do lgroup bookkeeping to account for thread exiting. 994 */ 995 kpreempt_disable(); 996 lgrp_move_thread(t, NULL, 1); 997 if (t->t_tid == 1) { 998 p->p_t1_lgrpid = LGRP_NONE; 999 } 1000 kpreempt_enable(); 1001 1002 lwp_ctmpl_clear(ttolwp(t)); 1003 } 1004 1005 int 1006 lwp_suspend(kthread_t *t) 1007 { 1008 int tid; 1009 proc_t *p = ttoproc(t); 1010 1011 ASSERT(MUTEX_HELD(&p->p_lock)); 1012 1013 /* 1014 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1015 * If an lwp is stopping itself, there is no need to wait. 1016 */ 1017 top: 1018 t->t_proc_flag |= TP_HOLDLWP; 1019 if (t == curthread) { 1020 t->t_sig_check = 1; 1021 } else { 1022 /* 1023 * Make sure the lwp stops promptly. 1024 */ 1025 thread_lock(t); 1026 t->t_sig_check = 1; 1027 /* 1028 * XXX Should use virtual stop like /proc does instead of 1029 * XXX waking the thread to get it to stop. 1030 */ 1031 if (ISWAKEABLE(t) || ISWAITING(t)) { 1032 setrun_locked(t); 1033 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1034 poke_cpu(t->t_cpu->cpu_id); 1035 } 1036 1037 tid = t->t_tid; /* remember thread ID */ 1038 /* 1039 * Wait for lwp to stop 1040 */ 1041 while (!SUSPENDED(t)) { 1042 /* 1043 * Drop the thread lock before waiting and reacquire it 1044 * afterwards, so the thread can change its t_state 1045 * field. 1046 */ 1047 thread_unlock(t); 1048 1049 /* 1050 * Check if aborted by exitlwps(). 1051 */ 1052 if (p->p_flag & SEXITLWPS) 1053 lwp_exit(); 1054 1055 /* 1056 * Cooperate with jobcontrol signals and /proc stopping 1057 * by calling cv_wait_sig() to wait for the target 1058 * lwp to stop. Just using cv_wait() can lead to 1059 * deadlock because, if some other lwp has stopped 1060 * by either of these mechanisms, then p_lwprcnt will 1061 * never become zero if we do a cv_wait(). 1062 */ 1063 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1064 return (EINTR); 1065 1066 /* 1067 * Check to see if thread died while we were 1068 * waiting for it to suspend. 1069 */ 1070 if (idtot(p, tid) == NULL) 1071 return (ESRCH); 1072 1073 thread_lock(t); 1074 /* 1075 * If the TP_HOLDLWP flag went away, lwp_continue() 1076 * or vfork() must have been called while we were 1077 * waiting, so start over again. 1078 */ 1079 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1080 thread_unlock(t); 1081 goto top; 1082 } 1083 } 1084 thread_unlock(t); 1085 } 1086 return (0); 1087 } 1088 1089 /* 1090 * continue a lwp that's been stopped by lwp_suspend(). 1091 */ 1092 void 1093 lwp_continue(kthread_t *t) 1094 { 1095 proc_t *p = ttoproc(t); 1096 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1097 1098 ASSERT(MUTEX_HELD(&p->p_lock)); 1099 1100 t->t_proc_flag &= ~TP_HOLDLWP; 1101 thread_lock(t); 1102 if (SUSPENDED(t) && 1103 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1104 p->p_lwprcnt++; 1105 t->t_schedflag |= TS_CSTART; 1106 setrun_locked(t); 1107 } 1108 thread_unlock(t); 1109 /* 1110 * Wakeup anyone waiting for this thread to be suspended 1111 */ 1112 if (was_suspended) 1113 cv_broadcast(&p->p_holdlwps); 1114 } 1115 1116 /* 1117 * ******************************** 1118 * Miscellaneous lwp routines * 1119 * ******************************** 1120 */ 1121 /* 1122 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1123 * This will cause the process's lwps to stop at a hold point. A hold 1124 * point is where a kernel thread has a flat stack. This is at the 1125 * return from a system call and at the return from a user level trap. 1126 * 1127 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1128 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1129 * hold point. The lwps in the process are not being cloned, so they 1130 * are held at the usual hold points and also within issig_forreal(). 1131 * This has the side-effect that their system calls do not return 1132 * showing EINTR. 1133 * 1134 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1135 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1136 * lwp is waiting for the target lwp to be stopped. 1137 */ 1138 void 1139 holdlwp(void) 1140 { 1141 proc_t *p = curproc; 1142 kthread_t *t = curthread; 1143 1144 mutex_enter(&p->p_lock); 1145 /* 1146 * Don't terminate immediately if the process is dumping core. 1147 * Once the process has dumped core, all lwps are terminated. 1148 */ 1149 if (!(p->p_flag & SCOREDUMP)) { 1150 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1151 lwp_exit(); 1152 } 1153 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1154 mutex_exit(&p->p_lock); 1155 return; 1156 } 1157 /* 1158 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1159 * when p->p_lwprcnt becomes zero. 1160 */ 1161 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1162 if (p->p_flag & SEXITLWPS) 1163 lwp_exit(); 1164 mutex_exit(&p->p_lock); 1165 } 1166 1167 /* 1168 * Have all lwps within the process hold at a point where they are 1169 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1170 */ 1171 int 1172 holdlwps(int holdflag) 1173 { 1174 proc_t *p = curproc; 1175 1176 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1177 mutex_enter(&p->p_lock); 1178 schedctl_finish_sigblock(curthread); 1179 again: 1180 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1181 /* 1182 * If another lwp is doing a forkall() or proc_exit(), bail out. 1183 */ 1184 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1185 mutex_exit(&p->p_lock); 1186 return (0); 1187 } 1188 /* 1189 * Another lwp is doing a fork1() or is undergoing 1190 * watchpoint activity. We hold here for it to complete. 1191 */ 1192 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1193 } 1194 p->p_flag |= holdflag; 1195 pokelwps(p); 1196 --p->p_lwprcnt; 1197 /* 1198 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1199 */ 1200 while (p->p_lwprcnt > 0) { 1201 /* 1202 * Check if aborted by exitlwps(). 1203 * Also check if SHOLDWATCH is set; it takes precedence. 1204 */ 1205 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1206 p->p_lwprcnt++; 1207 p->p_flag &= ~holdflag; 1208 cv_broadcast(&p->p_holdlwps); 1209 goto again; 1210 } 1211 /* 1212 * Cooperate with jobcontrol signals and /proc stopping. 1213 * If some other lwp has stopped by either of these 1214 * mechanisms, then p_lwprcnt will never become zero 1215 * and the process will appear deadlocked unless we 1216 * stop here in sympathy with the other lwp before 1217 * doing the cv_wait() below. 1218 * 1219 * If the other lwp stops after we do the cv_wait(), it 1220 * will wake us up to loop around and do the sympathy stop. 1221 * 1222 * Since stop() drops p->p_lock, we must start from 1223 * the top again on returning from stop(). 1224 */ 1225 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1226 int whystop = p->p_stopsig? PR_JOBCONTROL : 1227 PR_REQUESTED; 1228 p->p_lwprcnt++; 1229 p->p_flag &= ~holdflag; 1230 stop(whystop, p->p_stopsig); 1231 goto again; 1232 } 1233 cv_wait(&p->p_holdlwps, &p->p_lock); 1234 } 1235 p->p_lwprcnt++; 1236 p->p_flag &= ~holdflag; 1237 mutex_exit(&p->p_lock); 1238 return (1); 1239 } 1240 1241 /* 1242 * See comments for holdwatch(), below. 1243 */ 1244 static int 1245 holdcheck(int clearflags) 1246 { 1247 proc_t *p = curproc; 1248 1249 /* 1250 * If we are trying to exit, that takes precedence over anything else. 1251 */ 1252 if (p->p_flag & SEXITLWPS) { 1253 p->p_lwprcnt++; 1254 p->p_flag &= ~clearflags; 1255 lwp_exit(); 1256 } 1257 1258 /* 1259 * If another thread is calling fork1(), stop the current thread so the 1260 * other can complete. 1261 */ 1262 if (p->p_flag & SHOLDFORK1) { 1263 p->p_lwprcnt++; 1264 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1265 if (p->p_flag & SEXITLWPS) { 1266 p->p_flag &= ~clearflags; 1267 lwp_exit(); 1268 } 1269 return (-1); 1270 } 1271 1272 /* 1273 * If another thread is calling fork(), then indicate we are doing 1274 * watchpoint activity. This will cause holdlwps() above to stop the 1275 * forking thread, at which point we can continue with watchpoint 1276 * activity. 1277 */ 1278 if (p->p_flag & SHOLDFORK) { 1279 p->p_lwprcnt++; 1280 while (p->p_flag & SHOLDFORK) { 1281 p->p_flag |= SHOLDWATCH; 1282 cv_broadcast(&p->p_holdlwps); 1283 cv_wait(&p->p_holdlwps, &p->p_lock); 1284 p->p_flag &= ~SHOLDWATCH; 1285 } 1286 return (-1); 1287 } 1288 1289 return (0); 1290 } 1291 1292 /* 1293 * Stop all lwps within the process, holding themselves in the kernel while the 1294 * active lwp undergoes watchpoint activity. This is more complicated than 1295 * expected because stop() relies on calling holdwatch() in order to copyin data 1296 * from the user's address space. A double barrier is used to prevent an 1297 * infinite loop. 1298 * 1299 * o The first thread into holdwatch() is the 'master' thread and does 1300 * the following: 1301 * 1302 * - Sets SHOLDWATCH on the current process 1303 * - Sets TP_WATCHSTOP on the current thread 1304 * - Waits for all threads to be either stopped or have 1305 * TP_WATCHSTOP set. 1306 * - Sets the SWATCHOK flag on the process 1307 * - Unsets TP_WATCHSTOP 1308 * - Waits for the other threads to completely stop 1309 * - Unsets SWATCHOK 1310 * 1311 * o If SHOLDWATCH is already set when we enter this function, then another 1312 * thread is already trying to stop this thread. This 'slave' thread 1313 * does the following: 1314 * 1315 * - Sets TP_WATCHSTOP on the current thread 1316 * - Waits for SWATCHOK flag to be set 1317 * - Calls stop() 1318 * 1319 * o If SWATCHOK is set on the process, then this function immediately 1320 * returns, as we must have been called via stop(). 1321 * 1322 * In addition, there are other flags that take precedence over SHOLDWATCH: 1323 * 1324 * o If SEXITLWPS is set, exit immediately. 1325 * 1326 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1327 * 1328 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1329 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1330 * 1331 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1332 * stop the current thread. 1333 * 1334 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1335 * threads were stopped, or the list of watched pages has changed. 1336 */ 1337 int 1338 holdwatch(void) 1339 { 1340 proc_t *p = curproc; 1341 kthread_t *t = curthread; 1342 int ret = 0; 1343 1344 mutex_enter(&p->p_lock); 1345 1346 p->p_lwprcnt--; 1347 1348 /* 1349 * Check for bail-out conditions as outlined above. 1350 */ 1351 if (holdcheck(0) != 0) { 1352 mutex_exit(&p->p_lock); 1353 return (-1); 1354 } 1355 1356 if (!(p->p_flag & SHOLDWATCH)) { 1357 /* 1358 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1359 * the other threads. 1360 */ 1361 p->p_flag |= SHOLDWATCH; 1362 pokelwps(p); 1363 1364 /* 1365 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1366 */ 1367 while (pr_allstopped(p, 1) > 0) { 1368 if (holdcheck(SHOLDWATCH) != 0) { 1369 p->p_flag &= ~SHOLDWATCH; 1370 mutex_exit(&p->p_lock); 1371 return (-1); 1372 } 1373 1374 cv_wait(&p->p_holdlwps, &p->p_lock); 1375 } 1376 1377 /* 1378 * All threads are now stopped or in the process of stopping. 1379 * Set SWATCHOK and let them stop completely. 1380 */ 1381 p->p_flag |= SWATCHOK; 1382 t->t_proc_flag &= ~TP_WATCHSTOP; 1383 cv_broadcast(&p->p_holdlwps); 1384 1385 while (pr_allstopped(p, 0) > 0) { 1386 /* 1387 * At first glance, it may appear that we don't need a 1388 * call to holdcheck() here. But if the process gets a 1389 * SIGKILL signal, one of our stopped threads may have 1390 * been awakened and is waiting in exitlwps(), which 1391 * takes precedence over watchpoints. 1392 */ 1393 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1394 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1395 mutex_exit(&p->p_lock); 1396 return (-1); 1397 } 1398 1399 cv_wait(&p->p_holdlwps, &p->p_lock); 1400 } 1401 1402 /* 1403 * All threads are now completely stopped. 1404 */ 1405 p->p_flag &= ~SWATCHOK; 1406 p->p_flag &= ~SHOLDWATCH; 1407 p->p_lwprcnt++; 1408 1409 } else if (!(p->p_flag & SWATCHOK)) { 1410 1411 /* 1412 * SHOLDWATCH is set, so another thread is trying to do 1413 * watchpoint activity. Indicate this thread is stopping, and 1414 * wait for the OK from the master thread. 1415 */ 1416 t->t_proc_flag |= TP_WATCHSTOP; 1417 cv_broadcast(&p->p_holdlwps); 1418 1419 while (!(p->p_flag & SWATCHOK)) { 1420 if (holdcheck(0) != 0) { 1421 t->t_proc_flag &= ~TP_WATCHSTOP; 1422 mutex_exit(&p->p_lock); 1423 return (-1); 1424 } 1425 1426 cv_wait(&p->p_holdlwps, &p->p_lock); 1427 } 1428 1429 /* 1430 * Once the master thread has given the OK, this thread can 1431 * actually call stop(). 1432 */ 1433 t->t_proc_flag &= ~TP_WATCHSTOP; 1434 p->p_lwprcnt++; 1435 1436 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1437 1438 /* 1439 * It's not OK to do watchpoint activity, notify caller to 1440 * retry. 1441 */ 1442 ret = -1; 1443 1444 } else { 1445 1446 /* 1447 * The only way we can hit the case where SHOLDWATCH is set and 1448 * SWATCHOK is set is if we are triggering this from within a 1449 * stop() call. Assert that this is the case. 1450 */ 1451 1452 ASSERT(t->t_proc_flag & TP_STOPPING); 1453 p->p_lwprcnt++; 1454 } 1455 1456 mutex_exit(&p->p_lock); 1457 1458 return (ret); 1459 } 1460 1461 /* 1462 * force all interruptible lwps to trap into the kernel. 1463 */ 1464 void 1465 pokelwps(proc_t *p) 1466 { 1467 kthread_t *t; 1468 1469 ASSERT(MUTEX_HELD(&p->p_lock)); 1470 1471 t = p->p_tlist; 1472 do { 1473 if (t == curthread) 1474 continue; 1475 thread_lock(t); 1476 aston(t); /* make thread trap or do post_syscall */ 1477 if (ISWAKEABLE(t) || ISWAITING(t)) { 1478 setrun_locked(t); 1479 } else if (t->t_state == TS_STOPPED) { 1480 /* 1481 * Ensure that proc_exit() is not blocked by lwps 1482 * that were stopped via jobcontrol or /proc. 1483 */ 1484 if (p->p_flag & SEXITLWPS) { 1485 p->p_stopsig = 0; 1486 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1487 setrun_locked(t); 1488 } 1489 /* 1490 * If we are holding lwps for a forkall(), 1491 * force lwps that have been suspended via 1492 * lwp_suspend() and are suspended inside 1493 * of a system call to proceed to their 1494 * holdlwp() points where they are clonable. 1495 */ 1496 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1497 if ((t->t_schedflag & TS_CSTART) == 0) { 1498 p->p_lwprcnt++; 1499 t->t_schedflag |= TS_CSTART; 1500 setrun_locked(t); 1501 } 1502 } 1503 } else if (t->t_state == TS_ONPROC) { 1504 if (t->t_cpu != CPU) 1505 poke_cpu(t->t_cpu->cpu_id); 1506 } 1507 thread_unlock(t); 1508 } while ((t = t->t_forw) != p->p_tlist); 1509 } 1510 1511 /* 1512 * undo the effects of holdlwps() or holdwatch(). 1513 */ 1514 void 1515 continuelwps(proc_t *p) 1516 { 1517 kthread_t *t; 1518 1519 /* 1520 * If this flag is set, then the original holdwatch() didn't actually 1521 * stop the process. See comments for holdwatch(). 1522 */ 1523 if (p->p_flag & SWATCHOK) { 1524 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1525 return; 1526 } 1527 1528 ASSERT(MUTEX_HELD(&p->p_lock)); 1529 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1530 1531 t = p->p_tlist; 1532 do { 1533 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1534 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1535 p->p_lwprcnt++; 1536 t->t_schedflag |= TS_CSTART; 1537 setrun_locked(t); 1538 } 1539 thread_unlock(t); 1540 } while ((t = t->t_forw) != p->p_tlist); 1541 } 1542 1543 /* 1544 * Force all other LWPs in the current process other than the caller to exit, 1545 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1546 * is typically used in these situations: 1547 * 1548 * (a) prior to an exec() system call 1549 * (b) prior to dumping a core file 1550 * (c) prior to a uadmin() shutdown 1551 * 1552 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1553 * Multiple threads in the process can call this function at one time by 1554 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1555 * to declare one particular thread the winner who gets to kill the others. 1556 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1557 * appropriate errno value is returned to caller for its system call to return. 1558 */ 1559 int 1560 exitlwps(int coredump) 1561 { 1562 proc_t *p = curproc; 1563 int heldcnt; 1564 1565 if (curthread->t_door) 1566 door_slam(); 1567 if (p->p_door_list) 1568 door_revoke_all(); 1569 if (curthread->t_schedctl != NULL) 1570 schedctl_lwp_cleanup(curthread); 1571 1572 /* 1573 * Ensure that before starting to wait for other lwps to exit, 1574 * cleanup all upimutexes held by curthread. Otherwise, some other 1575 * lwp could be waiting (uninterruptibly) for a upimutex held by 1576 * curthread, and the call to pokelwps() below would deadlock. 1577 * Even if a blocked upimutex_lock is made interruptible, 1578 * curthread's upimutexes need to be unlocked: do it here. 1579 */ 1580 if (curthread->t_upimutex != NULL) 1581 upimutex_cleanup(); 1582 1583 /* 1584 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1585 * We must also block any further /proc access from this point forward. 1586 */ 1587 mutex_enter(&p->p_lock); 1588 prbarrier(p); 1589 1590 if (p->p_flag & SEXITLWPS) { 1591 mutex_exit(&p->p_lock); 1592 aston(curthread); /* force a trip through post_syscall */ 1593 return (set_errno(EINTR)); 1594 } 1595 1596 p->p_flag |= SEXITLWPS; 1597 if (coredump) /* tell other lwps to stop, not exit */ 1598 p->p_flag |= SCOREDUMP; 1599 1600 /* 1601 * Give precedence to exitlwps() if a holdlwps() is 1602 * in progress. The lwp doing the holdlwps() operation 1603 * is aborted when it is awakened. 1604 */ 1605 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1606 cv_broadcast(&p->p_holdlwps); 1607 cv_wait(&p->p_holdlwps, &p->p_lock); 1608 prbarrier(p); 1609 } 1610 p->p_flag |= SHOLDFORK; 1611 pokelwps(p); 1612 1613 /* 1614 * Wait for process to become quiescent. 1615 */ 1616 --p->p_lwprcnt; 1617 while (p->p_lwprcnt > 0) { 1618 cv_wait(&p->p_holdlwps, &p->p_lock); 1619 prbarrier(p); 1620 } 1621 p->p_lwprcnt++; 1622 ASSERT(p->p_lwprcnt == 1); 1623 1624 /* 1625 * The SCOREDUMP flag puts the process into a quiescent 1626 * state. The process's lwps remain attached to this 1627 * process until exitlwps() is called again without the 1628 * 'coredump' flag set, then the lwps are terminated 1629 * and the process can exit. 1630 */ 1631 if (coredump) { 1632 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1633 goto out; 1634 } 1635 1636 /* 1637 * Determine if there are any lwps left dangling in 1638 * the stopped state. This happens when exitlwps() 1639 * aborts a holdlwps() operation. 1640 */ 1641 p->p_flag &= ~SHOLDFORK; 1642 if ((heldcnt = p->p_lwpcnt) > 1) { 1643 kthread_t *t; 1644 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1645 t->t_proc_flag &= ~TP_TWAIT; 1646 lwp_continue(t); 1647 } 1648 } 1649 1650 /* 1651 * Wait for all other lwps to exit. 1652 */ 1653 --p->p_lwprcnt; 1654 while (p->p_lwpcnt > 1) { 1655 cv_wait(&p->p_holdlwps, &p->p_lock); 1656 prbarrier(p); 1657 } 1658 ++p->p_lwprcnt; 1659 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1660 1661 p->p_flag &= ~SEXITLWPS; 1662 curthread->t_proc_flag &= ~TP_TWAIT; 1663 1664 out: 1665 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1666 lwpdir_t *ldp; 1667 lwpent_t *lep; 1668 int i; 1669 1670 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1671 lep = ldp->ld_entry; 1672 if (lep != NULL && lep->le_thread != curthread) { 1673 ASSERT(lep->le_thread == NULL); 1674 p->p_zombcnt--; 1675 lwp_hash_out(p, lep->le_lwpid); 1676 } 1677 } 1678 ASSERT(p->p_zombcnt == 0); 1679 } 1680 1681 /* 1682 * If some other LWP in the process wanted us to suspend ourself, 1683 * then we will not do it. The other LWP is now terminated and 1684 * no one will ever continue us again if we suspend ourself. 1685 */ 1686 curthread->t_proc_flag &= ~TP_HOLDLWP; 1687 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1688 mutex_exit(&p->p_lock); 1689 return (0); 1690 } 1691 1692 /* 1693 * duplicate a lwp. 1694 */ 1695 klwp_t * 1696 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1697 { 1698 klwp_t *clwp; 1699 void *tregs, *tfpu; 1700 kthread_t *t = lwptot(lwp); 1701 kthread_t *ct; 1702 proc_t *p = lwptoproc(lwp); 1703 int cid; 1704 void *bufp; 1705 void *brand_data; 1706 int val; 1707 1708 ASSERT(p == curproc); 1709 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1710 1711 #if defined(__sparc) 1712 if (t == curthread) 1713 (void) flush_user_windows_to_stack(NULL); 1714 #endif 1715 1716 if (t == curthread) 1717 /* copy args out of registers first */ 1718 (void) save_syscall_args(); 1719 1720 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1721 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1722 if (clwp == NULL) 1723 return (NULL); 1724 1725 /* 1726 * most of the parent's lwp can be copied to its duplicate, 1727 * except for the fields that are unique to each lwp, like 1728 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1729 */ 1730 ct = clwp->lwp_thread; 1731 tregs = clwp->lwp_regs; 1732 tfpu = clwp->lwp_fpu; 1733 brand_data = clwp->lwp_brand; 1734 1735 /* 1736 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1737 * mstate_aggr_state() from reading stale mstate entries copied 1738 * from lwp to clwp. 1739 */ 1740 mutex_enter(&cp->p_lock); 1741 *clwp = *lwp; 1742 1743 /* clear microstate and resource usage data in new lwp */ 1744 init_mstate(ct, LMS_STOPPED); 1745 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1746 mutex_exit(&cp->p_lock); 1747 1748 /* fix up child's lwp */ 1749 1750 clwp->lwp_pcb.pcb_flags = 0; 1751 #if defined(__sparc) 1752 clwp->lwp_pcb.pcb_step = STEP_NONE; 1753 #endif 1754 clwp->lwp_cursig = 0; 1755 clwp->lwp_extsig = 0; 1756 clwp->lwp_curinfo = (struct sigqueue *)0; 1757 clwp->lwp_thread = ct; 1758 ct->t_sysnum = t->t_sysnum; 1759 clwp->lwp_regs = tregs; 1760 clwp->lwp_fpu = tfpu; 1761 clwp->lwp_brand = brand_data; 1762 clwp->lwp_ap = clwp->lwp_arg; 1763 clwp->lwp_procp = cp; 1764 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1765 clwp->lwp_lastfault = 0; 1766 clwp->lwp_lastfaddr = 0; 1767 1768 /* copy parent's struct regs to child. */ 1769 lwp_forkregs(lwp, clwp); 1770 1771 /* 1772 * Fork thread context ops, if any. 1773 */ 1774 if (t->t_ctx) 1775 forkctx(t, ct); 1776 1777 /* fix door state in the child */ 1778 if (t->t_door) 1779 door_fork(t, ct); 1780 1781 /* copy current contract templates, clear latest contracts */ 1782 lwp_ctmpl_copy(clwp, lwp); 1783 1784 mutex_enter(&cp->p_lock); 1785 /* lwp_create() set the TP_HOLDLWP flag */ 1786 if (!(t->t_proc_flag & TP_HOLDLWP)) 1787 ct->t_proc_flag &= ~TP_HOLDLWP; 1788 if (cp->p_flag & SMSACCT) 1789 ct->t_proc_flag |= TP_MSACCT; 1790 mutex_exit(&cp->p_lock); 1791 1792 /* Allow brand to propagate brand-specific state */ 1793 if (PROC_IS_BRANDED(p)) 1794 BROP(p)->b_forklwp(lwp, clwp); 1795 1796 retry: 1797 cid = t->t_cid; 1798 1799 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1800 ASSERT(val == 0); 1801 1802 mutex_enter(&p->p_lock); 1803 if (cid != t->t_cid) { 1804 /* 1805 * Someone just changed this thread's scheduling class, 1806 * so try pre-allocating the buffer again. Hopefully we 1807 * don't hit this often. 1808 */ 1809 mutex_exit(&p->p_lock); 1810 CL_FREE(cid, bufp); 1811 goto retry; 1812 } 1813 1814 ct->t_unpark = t->t_unpark; 1815 ct->t_clfuncs = t->t_clfuncs; 1816 CL_FORK(t, ct, bufp); 1817 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1818 mutex_exit(&p->p_lock); 1819 1820 return (clwp); 1821 } 1822 1823 /* 1824 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1825 */ 1826 void 1827 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1828 int do_lock) 1829 { 1830 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1831 lwpdir_t **ldpp; 1832 lwpdir_t *ldp; 1833 kthread_t *t; 1834 1835 /* 1836 * Allocate a directory element from the free list. 1837 * Code elsewhere guarantees a free slot. 1838 */ 1839 ldp = p->p_lwpfree; 1840 p->p_lwpfree = ldp->ld_next; 1841 ASSERT(ldp->ld_entry == NULL); 1842 ldp->ld_entry = lep; 1843 1844 if (do_lock) 1845 mutex_enter(&thp->th_lock); 1846 1847 /* 1848 * Insert it into the lwpid hash table. 1849 */ 1850 ldpp = &thp->th_list; 1851 ldp->ld_next = *ldpp; 1852 *ldpp = ldp; 1853 1854 /* 1855 * Set the active thread's directory slot entry. 1856 */ 1857 if ((t = lep->le_thread) != NULL) { 1858 ASSERT(lep->le_lwpid == t->t_tid); 1859 t->t_dslot = (int)(ldp - p->p_lwpdir); 1860 } 1861 1862 if (do_lock) 1863 mutex_exit(&thp->th_lock); 1864 } 1865 1866 /* 1867 * Remove an lwp from the lwpid hash table and free its directory entry. 1868 * This is done when a detached lwp exits in lwp_exit() or 1869 * when a non-detached lwp is waited for in lwp_wait() or 1870 * when a zombie lwp is detached in lwp_detach(). 1871 */ 1872 void 1873 lwp_hash_out(proc_t *p, id_t lwpid) 1874 { 1875 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1876 lwpdir_t **ldpp; 1877 lwpdir_t *ldp; 1878 lwpent_t *lep; 1879 1880 mutex_enter(&thp->th_lock); 1881 for (ldpp = &thp->th_list; 1882 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1883 lep = ldp->ld_entry; 1884 if (lep->le_lwpid == lwpid) { 1885 prlwpfree(p, lep); /* /proc deals with le_trace */ 1886 *ldpp = ldp->ld_next; 1887 ldp->ld_entry = NULL; 1888 ldp->ld_next = p->p_lwpfree; 1889 p->p_lwpfree = ldp; 1890 kmem_free(lep, sizeof (*lep)); 1891 break; 1892 } 1893 } 1894 mutex_exit(&thp->th_lock); 1895 } 1896 1897 /* 1898 * Lookup an lwp in the lwpid hash table by lwpid. 1899 */ 1900 lwpdir_t * 1901 lwp_hash_lookup(proc_t *p, id_t lwpid) 1902 { 1903 tidhash_t *thp; 1904 lwpdir_t *ldp; 1905 1906 /* 1907 * The process may be exiting, after p_tidhash has been set to NULL in 1908 * proc_exit() but before prfee() has been called. Return failure in 1909 * this case. 1910 */ 1911 if (p->p_tidhash == NULL) 1912 return (NULL); 1913 1914 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1915 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 1916 if (ldp->ld_entry->le_lwpid == lwpid) 1917 return (ldp); 1918 } 1919 1920 return (NULL); 1921 } 1922 1923 /* 1924 * Same as lwp_hash_lookup(), but acquire and return 1925 * the tid hash table entry lock on success. 1926 */ 1927 lwpdir_t * 1928 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 1929 { 1930 tidhash_t *tidhash; 1931 uint_t tidhash_sz; 1932 tidhash_t *thp; 1933 lwpdir_t *ldp; 1934 1935 top: 1936 tidhash_sz = p->p_tidhash_sz; 1937 membar_consumer(); 1938 if ((tidhash = p->p_tidhash) == NULL) 1939 return (NULL); 1940 1941 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 1942 mutex_enter(&thp->th_lock); 1943 1944 /* 1945 * Since we are not holding p->p_lock, the tid hash table 1946 * may have changed. If so, start over. If not, then 1947 * it cannot change until after we drop &thp->th_lock; 1948 */ 1949 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 1950 mutex_exit(&thp->th_lock); 1951 goto top; 1952 } 1953 1954 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 1955 if (ldp->ld_entry->le_lwpid == lwpid) { 1956 *mpp = &thp->th_lock; 1957 return (ldp); 1958 } 1959 } 1960 1961 mutex_exit(&thp->th_lock); 1962 return (NULL); 1963 } 1964 1965 /* 1966 * Update the indicated LWP usage statistic for the current LWP. 1967 */ 1968 void 1969 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1970 { 1971 klwp_t *lwp = ttolwp(curthread); 1972 1973 if (lwp == NULL) 1974 return; 1975 1976 switch (lwp_stat_id) { 1977 case LWP_STAT_INBLK: 1978 lwp->lwp_ru.inblock += inc; 1979 break; 1980 case LWP_STAT_OUBLK: 1981 lwp->lwp_ru.oublock += inc; 1982 break; 1983 case LWP_STAT_MSGRCV: 1984 lwp->lwp_ru.msgrcv += inc; 1985 break; 1986 case LWP_STAT_MSGSND: 1987 lwp->lwp_ru.msgsnd += inc; 1988 break; 1989 default: 1990 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1991 } 1992 } 1993