1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 #include <sys/brand.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 65 /* 66 * Create a thread that appears to be stopped at sys_rtt. 67 */ 68 klwp_t * 69 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 70 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 71 { 72 klwp_t *lwp = NULL; 73 kthread_t *t; 74 kthread_t *tx; 75 cpupart_t *oldpart = NULL; 76 size_t stksize; 77 caddr_t lwpdata = NULL; 78 processorid_t binding; 79 int err = 0; 80 kproject_t *oldkpj, *newkpj; 81 void *bufp = NULL; 82 klwp_t *curlwp = ttolwp(curthread); 83 lwpent_t *lep; 84 lwpdir_t *old_dir = NULL; 85 uint_t old_dirsz = 0; 86 lwpdir_t **old_hash = NULL; 87 uint_t old_hashsz = 0; 88 int i; 89 int rctlfail = 0; 90 boolean_t branded = 0; 91 92 mutex_enter(&p->p_lock); 93 mutex_enter(&p->p_zone->zone_nlwps_lock); 94 /* 95 * don't enforce rctl limits on system processes 96 */ 97 if (cid != syscid) { 98 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 99 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 100 1, 0) & RCT_DENY) 101 rctlfail = 1; 102 if (p->p_task->tk_proj->kpj_nlwps >= 103 p->p_task->tk_proj->kpj_nlwps_ctl) 104 if (rctl_test(rc_project_nlwps, 105 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 106 & RCT_DENY) 107 rctlfail = 1; 108 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 109 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 110 1, 0) & RCT_DENY) 111 rctlfail = 1; 112 } 113 if (rctlfail) { 114 mutex_exit(&p->p_zone->zone_nlwps_lock); 115 mutex_exit(&p->p_lock); 116 return (NULL); 117 } 118 p->p_task->tk_nlwps++; 119 p->p_task->tk_proj->kpj_nlwps++; 120 p->p_zone->zone_nlwps++; 121 mutex_exit(&p->p_zone->zone_nlwps_lock); 122 mutex_exit(&p->p_lock); 123 124 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 125 stksize = lwp_default_stksize; 126 127 /* 128 * Try to reclaim a <lwp,stack> from 'deathrow' 129 */ 130 if (stksize == lwp_default_stksize) { 131 if (lwp_reapcnt > 0) { 132 mutex_enter(&reaplock); 133 if ((t = lwp_deathrow) != NULL) { 134 ASSERT(t->t_swap); 135 lwp_deathrow = t->t_forw; 136 lwp_reapcnt--; 137 lwpdata = t->t_swap; 138 lwp = t->t_lwp; 139 } 140 mutex_exit(&reaplock); 141 if (t) { 142 t->t_swap = NULL; 143 lwp_stk_fini(t->t_lwp); 144 t->t_lwp = NULL; 145 t->t_forw = NULL; 146 thread_free(t); 147 } 148 } 149 if (lwpdata == NULL && 150 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 151 mutex_enter(&p->p_lock); 152 mutex_enter(&p->p_zone->zone_nlwps_lock); 153 p->p_task->tk_nlwps--; 154 p->p_task->tk_proj->kpj_nlwps--; 155 p->p_zone->zone_nlwps--; 156 mutex_exit(&p->p_zone->zone_nlwps_lock); 157 mutex_exit(&p->p_lock); 158 return (NULL); 159 } 160 } else { 161 stksize = roundup(stksize, PAGESIZE); 162 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 163 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 164 mutex_enter(&p->p_lock); 165 mutex_enter(&p->p_zone->zone_nlwps_lock); 166 p->p_task->tk_nlwps--; 167 p->p_task->tk_proj->kpj_nlwps--; 168 p->p_zone->zone_nlwps--; 169 mutex_exit(&p->p_zone->zone_nlwps_lock); 170 mutex_exit(&p->p_lock); 171 return (NULL); 172 } 173 } 174 175 /* 176 * Create a thread, initializing the stack pointer 177 */ 178 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 179 180 t->t_swap = lwpdata; /* Start of page-able data */ 181 if (lwp == NULL) 182 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 183 bzero(lwp, sizeof (*lwp)); 184 t->t_lwp = lwp; 185 186 t->t_hold = *smask; 187 lwp->lwp_thread = t; 188 lwp->lwp_procp = p; 189 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 190 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 191 lwp->lwp_childstksz = curlwp->lwp_childstksz; 192 193 t->t_stk = lwp_stk_init(lwp, t->t_stk); 194 thread_load(t, proc, arg, len); 195 196 /* 197 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 198 */ 199 if (timerisset(&p->p_rprof_timer.it_value)) 200 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 201 202 if (cid != NOCLASS) 203 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 204 205 /* 206 * Allocate an lwp directory entry for the new lwp. 207 */ 208 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 209 210 mutex_enter(&p->p_lock); 211 grow: 212 /* 213 * Grow the lwp (thread) directory and lwpid hash table if necessary. 214 * A note on the growth algorithm: 215 * The new lwp directory size is computed as: 216 * new = 2 * old + 2 217 * Starting with an initial size of 2 (see exec_common()), 218 * this yields numbers that are a power of two minus 2: 219 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 220 * The size of the lwpid hash table must be a power of two 221 * and must be commensurate in size with the lwp directory 222 * so that hash bucket chains remain short. Therefore, 223 * the lwpid hash table size is computed as: 224 * hashsz = (dirsz + 2) / 2 225 * which leads to these hash table sizes corresponding to 226 * the above directory sizes: 227 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 228 */ 229 while (p->p_lwpfree == NULL) { 230 uint_t dirsz = p->p_lwpdir_sz; 231 uint_t new_dirsz; 232 uint_t new_hashsz; 233 lwpdir_t *new_dir; 234 lwpdir_t *ldp; 235 lwpdir_t **new_hash; 236 237 mutex_exit(&p->p_lock); 238 239 if (old_dir != NULL) { 240 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 241 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 242 old_dir = NULL; 243 old_dirsz = 0; 244 old_hash = NULL; 245 old_hashsz = 0; 246 } 247 new_dirsz = 2 * dirsz + 2; 248 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 249 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 250 ldp->ld_next = ldp + 1; 251 new_hashsz = (new_dirsz + 2) / 2; 252 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 253 KM_SLEEP); 254 255 mutex_enter(&p->p_lock); 256 if (p == curproc) 257 prbarrier(p); 258 259 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 260 /* 261 * Someone else beat us to it or some lwp exited. 262 * Set up to free our memory and take a lap. 263 */ 264 old_dir = new_dir; 265 old_dirsz = new_dirsz; 266 old_hash = new_hash; 267 old_hashsz = new_hashsz; 268 } else { 269 old_dir = p->p_lwpdir; 270 old_dirsz = p->p_lwpdir_sz; 271 old_hash = p->p_tidhash; 272 old_hashsz = p->p_tidhash_sz; 273 p->p_lwpdir = new_dir; 274 p->p_lwpfree = new_dir; 275 p->p_lwpdir_sz = new_dirsz; 276 p->p_tidhash = new_hash; 277 p->p_tidhash_sz = new_hashsz; 278 /* 279 * We simply hash in all of the old directory entries. 280 * This works because the old directory has no empty 281 * slots and the new hash table starts out empty. 282 * This reproduces the original directory ordering 283 * (required for /proc directory semantics). 284 */ 285 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 286 lwp_hash_in(p, ldp->ld_entry); 287 /* 288 * Defer freeing memory until we drop p->p_lock, 289 */ 290 } 291 } 292 293 /* 294 * Block the process against /proc while we manipulate p->p_tlist, 295 * unless lwp_create() was called by /proc for the PCAGENT operation. 296 * We want to do this early enough so that we don't drop p->p_lock 297 * until the thread is put on the p->p_tlist. 298 */ 299 if (p == curproc) { 300 prbarrier(p); 301 /* 302 * If the current lwp has been requested to stop, do so now. 303 * Otherwise we have a race condition between /proc attempting 304 * to stop the process and this thread creating a new lwp 305 * that was not seen when the /proc PCSTOP request was issued. 306 * We rely on stop() to call prbarrier(p) before returning. 307 */ 308 while ((curthread->t_proc_flag & TP_PRSTOP) && 309 !ttolwp(curthread)->lwp_nostop) 310 stop(PR_REQUESTED, 0); 311 312 /* 313 * If process is exiting, there could be a race between 314 * the agent lwp creation and the new lwp currently being 315 * created. So to prevent this race lwp creation is failed 316 * if the process is exiting. 317 */ 318 if (p->p_flag & (SEXITLWPS|SKILLED)) { 319 err = 1; 320 goto error; 321 } 322 323 /* 324 * Since we might have dropped p->p_lock, the 325 * lwp directory free list might have changed. 326 */ 327 if (p->p_lwpfree == NULL) 328 goto grow; 329 } 330 331 kpreempt_disable(); /* can't grab cpu_lock here */ 332 333 /* 334 * Inherit processor and processor set bindings from curthread, 335 * unless we're creating a new kernel process, in which case 336 * clear all bindings. 337 */ 338 if (cid == syscid) { 339 t->t_bind_cpu = binding = PBIND_NONE; 340 t->t_cpupart = oldpart = &cp_default; 341 t->t_bind_pset = PS_NONE; 342 } else { 343 binding = curthread->t_bind_cpu; 344 t->t_bind_cpu = binding; 345 oldpart = t->t_cpupart; 346 t->t_cpupart = curthread->t_cpupart; 347 t->t_bind_pset = curthread->t_bind_pset; 348 } 349 350 /* 351 * thread_create() initializes this thread's home lgroup to the root. 352 * Choose a more suitable lgroup, since this thread is associated 353 * with an lwp. 354 */ 355 ASSERT(oldpart != NULL); 356 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 357 t->t_bound_cpu = cpu[binding]; 358 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 359 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 360 } else { 361 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 362 } 363 364 kpreempt_enable(); 365 366 /* 367 * make sure lpl points to our own partition 368 */ 369 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 370 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 371 t->t_cpupart->cp_nlgrploads); 372 373 /* 374 * If we're creating a new process, then inherit the project from our 375 * parent. If we're only creating an additional lwp then use the 376 * project pointer of the target process. 377 */ 378 if (p->p_task == NULL) 379 newkpj = ttoproj(curthread); 380 else 381 newkpj = p->p_task->tk_proj; 382 383 /* 384 * It is safe to point the thread to the new project without holding it 385 * since we're holding the target process' p_lock here and therefore 386 * we're guaranteed that it will not move to another project. 387 */ 388 oldkpj = ttoproj(t); 389 if (newkpj != oldkpj) { 390 t->t_proj = newkpj; 391 (void) project_hold(newkpj); 392 project_rele(oldkpj); 393 } 394 395 if (cid != NOCLASS) { 396 /* 397 * If the lwp is being created in the current process 398 * and matches the current thread's scheduling class, 399 * we should propagate the current thread's scheduling 400 * parameters by calling CL_FORK. Otherwise just use 401 * the defaults by calling CL_ENTERCLASS. 402 */ 403 if (p != curproc || curthread->t_cid != cid) { 404 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 405 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 406 } else { 407 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 408 err = CL_FORK(curthread, t, bufp); 409 t->t_cid = cid; 410 } 411 if (err) 412 goto error; 413 else 414 bufp = NULL; 415 } 416 417 /* 418 * If we were given an lwpid then use it, else allocate one. 419 */ 420 if (lwpid != 0) 421 t->t_tid = lwpid; 422 else { 423 /* 424 * lwp/thread id 0 is never valid; reserved for special checks. 425 * lwp/thread id 1 is reserved for the main thread. 426 * Start again at 2 when INT_MAX has been reached 427 * (id_t is a signed 32-bit integer). 428 */ 429 id_t prev_id = p->p_lwpid; /* last allocated tid */ 430 431 do { /* avoid lwpid duplication */ 432 if (p->p_lwpid == INT_MAX) { 433 p->p_flag |= SLWPWRAP; 434 p->p_lwpid = 1; 435 } 436 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 437 /* 438 * All lwpids are allocated; fail the request. 439 */ 440 err = 1; 441 goto error; 442 } 443 /* 444 * We only need to worry about colliding with an id 445 * that's already in use if this process has 446 * cycled through all available lwp ids. 447 */ 448 if ((p->p_flag & SLWPWRAP) == 0) 449 break; 450 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 451 } 452 453 /* 454 * If this is a branded process, let the brand do any necessary lwp 455 * initialization. 456 */ 457 if (PROC_IS_BRANDED(p)) { 458 if (BROP(p)->b_initlwp(lwp)) { 459 err = 1; 460 goto error; 461 } 462 branded = 1; 463 } 464 465 p->p_lwpcnt++; 466 t->t_waitfor = -1; 467 468 /* 469 * Turn microstate accounting on for thread if on for process. 470 */ 471 if (p->p_flag & SMSACCT) 472 t->t_proc_flag |= TP_MSACCT; 473 474 /* 475 * If the process has watchpoints, mark the new thread as such. 476 */ 477 if (pr_watch_active(p)) 478 watch_enable(t); 479 480 /* 481 * The lwp is being created in the stopped state. 482 * We set all the necessary flags to indicate that fact here. 483 * We omit the TS_CREATE flag from t_schedflag so that the lwp 484 * cannot be set running until the caller is finished with it, 485 * even if lwp_continue() is called on it after we drop p->p_lock. 486 * When the caller is finished with the newly-created lwp, 487 * the caller must call lwp_create_done() to allow the lwp 488 * to be set running. If the TP_HOLDLWP is left set, the 489 * lwp will suspend itself after reaching system call exit. 490 */ 491 init_mstate(t, LMS_STOPPED); 492 t->t_proc_flag |= TP_HOLDLWP; 493 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 494 t->t_whystop = PR_SUSPENDED; 495 t->t_whatstop = SUSPEND_NORMAL; 496 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 497 498 /* 499 * Set system call processing flags in case tracing or profiling 500 * is set. The first system call will evaluate these and turn 501 * them off if they aren't needed. 502 */ 503 t->t_pre_sys = 1; 504 t->t_post_sys = 1; 505 506 /* 507 * Insert the new thread into the list of all threads. 508 */ 509 if ((tx = p->p_tlist) == NULL) { 510 t->t_back = t; 511 t->t_forw = t; 512 p->p_tlist = t; 513 } else { 514 t->t_forw = tx; 515 t->t_back = tx->t_back; 516 tx->t_back->t_forw = t; 517 tx->t_back = t; 518 } 519 520 /* 521 * Insert the new lwp into an lwp directory slot position 522 * and into the lwpid hash table. 523 */ 524 lep->le_thread = t; 525 lep->le_lwpid = t->t_tid; 526 lep->le_start = t->t_start; 527 lwp_hash_in(p, lep); 528 529 if (state == TS_RUN) { 530 /* 531 * We set the new lwp running immediately. 532 */ 533 t->t_proc_flag &= ~TP_HOLDLWP; 534 lwp_create_done(t); 535 } 536 537 error: 538 if (err) { 539 /* 540 * We have failed to create an lwp, so decrement the number 541 * of lwps in the task and let the lgroup load averages know 542 * that this thread isn't going to show up. 543 */ 544 kpreempt_disable(); 545 lgrp_move_thread(t, NULL, 1); 546 kpreempt_enable(); 547 548 ASSERT(MUTEX_HELD(&p->p_lock)); 549 mutex_enter(&p->p_zone->zone_nlwps_lock); 550 p->p_task->tk_nlwps--; 551 p->p_task->tk_proj->kpj_nlwps--; 552 p->p_zone->zone_nlwps--; 553 mutex_exit(&p->p_zone->zone_nlwps_lock); 554 if (cid != NOCLASS && bufp != NULL) 555 CL_FREE(cid, bufp); 556 557 if (branded) 558 BROP(p)->b_freelwp(lwp); 559 560 mutex_exit(&p->p_lock); 561 t->t_state = TS_FREE; 562 thread_rele(t); 563 564 /* 565 * We need to remove t from the list of all threads 566 * because thread_exit()/lwp_exit() isn't called on t. 567 */ 568 mutex_enter(&pidlock); 569 ASSERT(t != t->t_next); /* t0 never exits */ 570 t->t_next->t_prev = t->t_prev; 571 t->t_prev->t_next = t->t_next; 572 mutex_exit(&pidlock); 573 574 thread_free(t); 575 kmem_free(lep, sizeof (*lep)); 576 lwp = NULL; 577 } else { 578 mutex_exit(&p->p_lock); 579 } 580 581 if (old_dir != NULL) { 582 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 583 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 584 } 585 586 DTRACE_PROC1(lwp__create, kthread_t *, t); 587 return (lwp); 588 } 589 590 /* 591 * lwp_create_done() is called by the caller of lwp_create() to set the 592 * newly-created lwp running after the caller has finished manipulating it. 593 */ 594 void 595 lwp_create_done(kthread_t *t) 596 { 597 proc_t *p = ttoproc(t); 598 599 ASSERT(MUTEX_HELD(&p->p_lock)); 600 601 /* 602 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 603 * (The absence of the TS_CREATE flag prevents the lwp from running 604 * until we are finished with it, even if lwp_continue() is called on 605 * it by some other lwp in the process or elsewhere in the kernel.) 606 */ 607 thread_lock(t); 608 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 609 /* 610 * If TS_CSTART is set, lwp_continue(t) has been called and 611 * has already incremented p_lwprcnt; avoid doing this twice. 612 */ 613 if (!(t->t_schedflag & TS_CSTART)) 614 p->p_lwprcnt++; 615 t->t_schedflag |= (TS_CSTART | TS_CREATE); 616 setrun_locked(t); 617 thread_unlock(t); 618 } 619 620 /* 621 * Copy an LWP's active templates, and clear the latest contracts. 622 */ 623 void 624 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 625 { 626 int i; 627 628 for (i = 0; i < ct_ntypes; i++) { 629 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 630 dst->lwp_ct_latest[i] = NULL; 631 } 632 } 633 634 /* 635 * Clear an LWP's contract template state. 636 */ 637 void 638 lwp_ctmpl_clear(klwp_t *lwp) 639 { 640 ct_template_t *tmpl; 641 int i; 642 643 for (i = 0; i < ct_ntypes; i++) { 644 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 645 ctmpl_free(tmpl); 646 lwp->lwp_ct_active[i] = NULL; 647 } 648 649 if (lwp->lwp_ct_latest[i] != NULL) { 650 contract_rele(lwp->lwp_ct_latest[i]); 651 lwp->lwp_ct_latest[i] = NULL; 652 } 653 } 654 } 655 656 /* 657 * Individual lwp exit. 658 * If this is the last lwp, exit the whole process. 659 */ 660 void 661 lwp_exit(void) 662 { 663 kthread_t *t = curthread; 664 klwp_t *lwp = ttolwp(t); 665 proc_t *p = ttoproc(t); 666 667 ASSERT(MUTEX_HELD(&p->p_lock)); 668 669 mutex_exit(&p->p_lock); 670 671 #if defined(__sparc) 672 /* 673 * Ensure that the user stack is fully abandoned.. 674 */ 675 trash_user_windows(); 676 #endif 677 678 tsd_exit(); /* free thread specific data */ 679 680 kcpc_passivate(); /* Clean up performance counter state */ 681 682 pollcleanup(); 683 684 if (t->t_door) 685 door_slam(); 686 687 if (t->t_schedctl != NULL) 688 schedctl_lwp_cleanup(t); 689 690 if (t->t_upimutex != NULL) 691 upimutex_cleanup(); 692 693 /* 694 * Perform any brand specific exit processing, then release any 695 * brand data associated with the lwp 696 */ 697 if (PROC_IS_BRANDED(p)) 698 BROP(p)->b_lwpexit(lwp); 699 700 mutex_enter(&p->p_lock); 701 lwp_cleanup(); 702 703 /* 704 * When this process is dumping core, its lwps are held here 705 * until the core dump is finished. Then exitlwps() is called 706 * again to release these lwps so that they can finish exiting. 707 */ 708 if (p->p_flag & SCOREDUMP) 709 stop(PR_SUSPENDED, SUSPEND_NORMAL); 710 711 /* 712 * Block the process against /proc now that we have really acquired 713 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 714 */ 715 prbarrier(p); 716 717 /* 718 * Call proc_exit() if this is the last non-daemon lwp in the process. 719 */ 720 if (!(t->t_proc_flag & TP_DAEMON) && 721 p->p_lwpcnt == p->p_lwpdaemon + 1) { 722 mutex_exit(&p->p_lock); 723 if (proc_exit(CLD_EXITED, 0) == 0) { 724 /* Restarting init. */ 725 return; 726 } 727 728 /* 729 * proc_exit() returns a non-zero value when some other 730 * lwp got there first. We just have to continue in 731 * lwp_exit(). 732 */ 733 mutex_enter(&p->p_lock); 734 ASSERT(curproc->p_flag & SEXITLWPS); 735 prbarrier(p); 736 } 737 738 DTRACE_PROC(lwp__exit); 739 740 /* 741 * If the lwp is a detached lwp or if the process is exiting, 742 * remove (lwp_hash_out()) the lwp from the lwp directory. 743 * Otherwise null out the lwp's le_thread pointer in the lwp 744 * directory so that other threads will see it as a zombie lwp. 745 */ 746 prlwpexit(t); /* notify /proc */ 747 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 748 lwp_hash_out(p, t->t_tid); 749 else { 750 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 751 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 752 p->p_zombcnt++; 753 cv_broadcast(&p->p_lwpexit); 754 } 755 if (t->t_proc_flag & TP_DAEMON) { 756 p->p_lwpdaemon--; 757 t->t_proc_flag &= ~TP_DAEMON; 758 } 759 t->t_proc_flag &= ~TP_TWAIT; 760 761 /* 762 * Maintain accurate lwp count for task.max-lwps resource control. 763 */ 764 mutex_enter(&p->p_zone->zone_nlwps_lock); 765 p->p_task->tk_nlwps--; 766 p->p_task->tk_proj->kpj_nlwps--; 767 p->p_zone->zone_nlwps--; 768 mutex_exit(&p->p_zone->zone_nlwps_lock); 769 770 CL_EXIT(t); /* tell the scheduler that t is exiting */ 771 ASSERT(p->p_lwpcnt != 0); 772 p->p_lwpcnt--; 773 774 /* 775 * If all remaining non-daemon lwps are waiting in lwp_wait(), 776 * wake them up so someone can return EDEADLK. 777 * (See the block comment preceeding lwp_wait().) 778 */ 779 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 780 cv_broadcast(&p->p_lwpexit); 781 782 t->t_proc_flag |= TP_LWPEXIT; 783 term_mstate(t); 784 #ifndef NPROBE 785 /* Kernel probe */ 786 if (t->t_tnf_tpdp) 787 tnf_thread_exit(); 788 #endif /* NPROBE */ 789 790 t->t_forw->t_back = t->t_back; 791 t->t_back->t_forw = t->t_forw; 792 if (t == p->p_tlist) 793 p->p_tlist = t->t_forw; 794 795 /* 796 * Clean up the signal state. 797 */ 798 if (t->t_sigqueue != NULL) 799 sigdelq(p, t, 0); 800 if (lwp->lwp_curinfo != NULL) { 801 siginfofree(lwp->lwp_curinfo); 802 lwp->lwp_curinfo = NULL; 803 } 804 805 thread_rele(t); 806 807 /* 808 * Terminated lwps are associated with process zero and are put onto 809 * death-row by resume(). Avoid preemption after resetting t->t_procp. 810 */ 811 t->t_preempt++; 812 813 if (t->t_ctx != NULL) 814 exitctx(t); 815 if (p->p_pctx != NULL) 816 exitpctx(p); 817 818 t->t_procp = &p0; 819 820 /* 821 * Notify the HAT about the change of address space 822 */ 823 hat_thread_exit(t); 824 /* 825 * When this is the last running lwp in this process and some lwp is 826 * waiting for this condition to become true, or this thread was being 827 * suspended, then the waiting lwp is awakened. 828 * 829 * Also, if the process is exiting, we may have a thread waiting in 830 * exitlwps() that needs to be notified. 831 */ 832 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 833 (p->p_flag & SEXITLWPS)) 834 cv_broadcast(&p->p_holdlwps); 835 836 /* 837 * Need to drop p_lock so we can reacquire pidlock. 838 */ 839 mutex_exit(&p->p_lock); 840 mutex_enter(&pidlock); 841 842 ASSERT(t != t->t_next); /* t0 never exits */ 843 t->t_next->t_prev = t->t_prev; 844 t->t_prev->t_next = t->t_next; 845 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 846 mutex_exit(&pidlock); 847 848 lwp_pcb_exit(); 849 850 t->t_state = TS_ZOMB; 851 swtch_from_zombie(); 852 /* never returns */ 853 } 854 855 856 /* 857 * Cleanup function for an exiting lwp. 858 * Called both from lwp_exit() and from proc_exit(). 859 * p->p_lock is repeatedly released and grabbed in this function. 860 */ 861 void 862 lwp_cleanup(void) 863 { 864 kthread_t *t = curthread; 865 proc_t *p = ttoproc(t); 866 867 ASSERT(MUTEX_HELD(&p->p_lock)); 868 869 /* untimeout any lwp-bound realtime timers */ 870 if (p->p_itimer != NULL) 871 timer_lwpexit(); 872 873 /* 874 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 875 * so it appears that the agent never existed, and clear p_agenttp. 876 */ 877 if (t == p->p_agenttp) { 878 ASSERT(t->t_tid == p->p_lwpid); 879 p->p_lwpid--; 880 p->p_agenttp = NULL; 881 } 882 883 /* 884 * Do lgroup bookkeeping to account for thread exiting. 885 */ 886 kpreempt_disable(); 887 lgrp_move_thread(t, NULL, 1); 888 kpreempt_enable(); 889 890 lwp_ctmpl_clear(ttolwp(t)); 891 } 892 893 int 894 lwp_suspend(kthread_t *t) 895 { 896 int tid; 897 proc_t *p = ttoproc(t); 898 899 ASSERT(MUTEX_HELD(&p->p_lock)); 900 901 /* 902 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 903 * If an lwp is stopping itself, there is no need to wait. 904 */ 905 top: 906 t->t_proc_flag |= TP_HOLDLWP; 907 if (t == curthread) { 908 t->t_sig_check = 1; 909 } else { 910 /* 911 * Make sure the lwp stops promptly. 912 */ 913 thread_lock(t); 914 t->t_sig_check = 1; 915 /* 916 * XXX Should use virtual stop like /proc does instead of 917 * XXX waking the thread to get it to stop. 918 */ 919 if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) 920 setrun_locked(t); 921 else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 922 poke_cpu(t->t_cpu->cpu_id); 923 tid = t->t_tid; /* remember thread ID */ 924 /* 925 * Wait for lwp to stop 926 */ 927 while (!SUSPENDED(t)) { 928 /* 929 * Drop the thread lock before waiting and reacquire it 930 * afterwards, so the thread can change its t_state 931 * field. 932 */ 933 thread_unlock(t); 934 935 /* 936 * Check if aborted by exitlwps(). 937 */ 938 if (p->p_flag & SEXITLWPS) 939 lwp_exit(); 940 941 /* 942 * Cooperate with jobcontrol signals and /proc stopping 943 * by calling cv_wait_sig() to wait for the target 944 * lwp to stop. Just using cv_wait() can lead to 945 * deadlock because, if some other lwp has stopped 946 * by either of these mechanisms, then p_lwprcnt will 947 * never become zero if we do a cv_wait(). 948 */ 949 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 950 return (EINTR); 951 952 /* 953 * Check to see if thread died while we were 954 * waiting for it to suspend. 955 */ 956 if (idtot(p, tid) == NULL) 957 return (ESRCH); 958 959 thread_lock(t); 960 /* 961 * If the TP_HOLDLWP flag went away, lwp_continue() 962 * or vfork() must have been called while we were 963 * waiting, so start over again. 964 */ 965 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 966 thread_unlock(t); 967 goto top; 968 } 969 } 970 thread_unlock(t); 971 } 972 return (0); 973 } 974 975 /* 976 * continue a lwp that's been stopped by lwp_suspend(). 977 */ 978 void 979 lwp_continue(kthread_t *t) 980 { 981 proc_t *p = ttoproc(t); 982 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 983 984 ASSERT(MUTEX_HELD(&p->p_lock)); 985 986 t->t_proc_flag &= ~TP_HOLDLWP; 987 thread_lock(t); 988 if (SUSPENDED(t) && 989 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 990 p->p_lwprcnt++; 991 t->t_schedflag |= TS_CSTART; 992 setrun_locked(t); 993 } 994 thread_unlock(t); 995 /* 996 * Wakeup anyone waiting for this thread to be suspended 997 */ 998 if (was_suspended) 999 cv_broadcast(&p->p_holdlwps); 1000 } 1001 1002 /* 1003 * ******************************** 1004 * Miscellaneous lwp routines * 1005 * ******************************** 1006 */ 1007 /* 1008 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1009 * This will cause the process's lwps to stop at a hold point. A hold 1010 * point is where a kernel thread has a flat stack. This is at the 1011 * return from a system call and at the return from a user level trap. 1012 * 1013 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1014 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1015 * hold point. The lwps in the process are not being cloned, so they 1016 * are held at the usual hold points and also within issig_forreal(). 1017 * This has the side-effect that their system calls do not return 1018 * showing EINTR. 1019 * 1020 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1021 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1022 * lwp is waiting for the target lwp to be stopped. 1023 */ 1024 void 1025 holdlwp(void) 1026 { 1027 proc_t *p = curproc; 1028 kthread_t *t = curthread; 1029 1030 mutex_enter(&p->p_lock); 1031 /* 1032 * Don't terminate immediately if the process is dumping core. 1033 * Once the process has dumped core, all lwps are terminated. 1034 */ 1035 if (!(p->p_flag & SCOREDUMP)) { 1036 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1037 lwp_exit(); 1038 } 1039 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1040 mutex_exit(&p->p_lock); 1041 return; 1042 } 1043 /* 1044 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1045 * when p->p_lwprcnt becomes zero. 1046 */ 1047 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1048 if (p->p_flag & SEXITLWPS) 1049 lwp_exit(); 1050 mutex_exit(&p->p_lock); 1051 } 1052 1053 /* 1054 * Have all lwps within the process hold at a point where they are 1055 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1056 */ 1057 int 1058 holdlwps(int holdflag) 1059 { 1060 proc_t *p = curproc; 1061 1062 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1063 mutex_enter(&p->p_lock); 1064 schedctl_finish_sigblock(curthread); 1065 again: 1066 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1067 /* 1068 * If another lwp is doing a forkall() or proc_exit(), bail out. 1069 */ 1070 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1071 mutex_exit(&p->p_lock); 1072 return (0); 1073 } 1074 /* 1075 * Another lwp is doing a fork1() or is undergoing 1076 * watchpoint activity. We hold here for it to complete. 1077 */ 1078 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1079 } 1080 p->p_flag |= holdflag; 1081 pokelwps(p); 1082 --p->p_lwprcnt; 1083 /* 1084 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1085 */ 1086 while (p->p_lwprcnt > 0) { 1087 /* 1088 * Check if aborted by exitlwps(). 1089 * Also check if SHOLDWATCH is set; it takes precedence. 1090 */ 1091 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1092 p->p_lwprcnt++; 1093 p->p_flag &= ~holdflag; 1094 cv_broadcast(&p->p_holdlwps); 1095 goto again; 1096 } 1097 /* 1098 * Cooperate with jobcontrol signals and /proc stopping. 1099 * If some other lwp has stopped by either of these 1100 * mechanisms, then p_lwprcnt will never become zero 1101 * and the process will appear deadlocked unless we 1102 * stop here in sympathy with the other lwp before 1103 * doing the cv_wait() below. 1104 * 1105 * If the other lwp stops after we do the cv_wait(), it 1106 * will wake us up to loop around and do the sympathy stop. 1107 * 1108 * Since stop() drops p->p_lock, we must start from 1109 * the top again on returning from stop(). 1110 */ 1111 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1112 int whystop = p->p_stopsig? PR_JOBCONTROL : 1113 PR_REQUESTED; 1114 p->p_lwprcnt++; 1115 p->p_flag &= ~holdflag; 1116 stop(whystop, p->p_stopsig); 1117 goto again; 1118 } 1119 cv_wait(&p->p_holdlwps, &p->p_lock); 1120 } 1121 p->p_lwprcnt++; 1122 p->p_flag &= ~holdflag; 1123 mutex_exit(&p->p_lock); 1124 return (1); 1125 } 1126 1127 /* 1128 * See comments for holdwatch(), below. 1129 */ 1130 static int 1131 holdcheck(int clearflags) 1132 { 1133 proc_t *p = curproc; 1134 1135 /* 1136 * If we are trying to exit, that takes precedence over anything else. 1137 */ 1138 if (p->p_flag & SEXITLWPS) { 1139 p->p_lwprcnt++; 1140 p->p_flag &= ~clearflags; 1141 lwp_exit(); 1142 } 1143 1144 /* 1145 * If another thread is calling fork1(), stop the current thread so the 1146 * other can complete. 1147 */ 1148 if (p->p_flag & SHOLDFORK1) { 1149 p->p_lwprcnt++; 1150 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1151 if (p->p_flag & SEXITLWPS) { 1152 p->p_flag &= ~clearflags; 1153 lwp_exit(); 1154 } 1155 return (-1); 1156 } 1157 1158 /* 1159 * If another thread is calling fork(), then indicate we are doing 1160 * watchpoint activity. This will cause holdlwps() above to stop the 1161 * forking thread, at which point we can continue with watchpoint 1162 * activity. 1163 */ 1164 if (p->p_flag & SHOLDFORK) { 1165 p->p_lwprcnt++; 1166 while (p->p_flag & SHOLDFORK) { 1167 p->p_flag |= SHOLDWATCH; 1168 cv_broadcast(&p->p_holdlwps); 1169 cv_wait(&p->p_holdlwps, &p->p_lock); 1170 p->p_flag &= ~SHOLDWATCH; 1171 } 1172 return (-1); 1173 } 1174 1175 return (0); 1176 } 1177 1178 /* 1179 * Stop all lwps within the process, holding themselves in the kernel while the 1180 * active lwp undergoes watchpoint activity. This is more complicated than 1181 * expected because stop() relies on calling holdwatch() in order to copyin data 1182 * from the user's address space. A double barrier is used to prevent an 1183 * infinite loop. 1184 * 1185 * o The first thread into holdwatch() is the 'master' thread and does 1186 * the following: 1187 * 1188 * - Sets SHOLDWATCH on the current process 1189 * - Sets TP_WATCHSTOP on the current thread 1190 * - Waits for all threads to be either stopped or have 1191 * TP_WATCHSTOP set. 1192 * - Sets the SWATCHOK flag on the process 1193 * - Unsets TP_WATCHSTOP 1194 * - Waits for the other threads to completely stop 1195 * - Unsets SWATCHOK 1196 * 1197 * o If SHOLDWATCH is already set when we enter this function, then another 1198 * thread is already trying to stop this thread. This 'slave' thread 1199 * does the following: 1200 * 1201 * - Sets TP_WATCHSTOP on the current thread 1202 * - Waits for SWATCHOK flag to be set 1203 * - Calls stop() 1204 * 1205 * o If SWATCHOK is set on the process, then this function immediately 1206 * returns, as we must have been called via stop(). 1207 * 1208 * In addition, there are other flags that take precedence over SHOLDWATCH: 1209 * 1210 * o If SEXITLWPS is set, exit immediately. 1211 * 1212 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1213 * 1214 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1215 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1216 * 1217 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1218 * stop the current thread. 1219 * 1220 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1221 * threads were stopped, or the list of watched pages has changed. 1222 */ 1223 int 1224 holdwatch(void) 1225 { 1226 proc_t *p = curproc; 1227 kthread_t *t = curthread; 1228 int ret = 0; 1229 1230 mutex_enter(&p->p_lock); 1231 1232 p->p_lwprcnt--; 1233 1234 /* 1235 * Check for bail-out conditions as outlined above. 1236 */ 1237 if (holdcheck(0) != 0) { 1238 mutex_exit(&p->p_lock); 1239 return (-1); 1240 } 1241 1242 if (!(p->p_flag & SHOLDWATCH)) { 1243 /* 1244 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1245 * the other threads. 1246 */ 1247 p->p_flag |= SHOLDWATCH; 1248 pokelwps(p); 1249 1250 /* 1251 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1252 */ 1253 while (pr_allstopped(p, 1) > 0) { 1254 if (holdcheck(SHOLDWATCH) != 0) { 1255 p->p_flag &= ~SHOLDWATCH; 1256 mutex_exit(&p->p_lock); 1257 return (-1); 1258 } 1259 1260 cv_wait(&p->p_holdlwps, &p->p_lock); 1261 } 1262 1263 /* 1264 * All threads are now stopped or in the process of stopping. 1265 * Set SWATCHOK and let them stop completely. 1266 */ 1267 p->p_flag |= SWATCHOK; 1268 t->t_proc_flag &= ~TP_WATCHSTOP; 1269 cv_broadcast(&p->p_holdlwps); 1270 1271 while (pr_allstopped(p, 0) > 0) { 1272 /* 1273 * At first glance, it may appear that we don't need a 1274 * call to holdcheck() here. But if the process gets a 1275 * SIGKILL signal, one of our stopped threads may have 1276 * been awakened and is waiting in exitlwps(), which 1277 * takes precedence over watchpoints. 1278 */ 1279 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1280 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1281 mutex_exit(&p->p_lock); 1282 return (-1); 1283 } 1284 1285 cv_wait(&p->p_holdlwps, &p->p_lock); 1286 } 1287 1288 /* 1289 * All threads are now completely stopped. 1290 */ 1291 p->p_flag &= ~SWATCHOK; 1292 p->p_flag &= ~SHOLDWATCH; 1293 p->p_lwprcnt++; 1294 1295 } else if (!(p->p_flag & SWATCHOK)) { 1296 1297 /* 1298 * SHOLDWATCH is set, so another thread is trying to do 1299 * watchpoint activity. Indicate this thread is stopping, and 1300 * wait for the OK from the master thread. 1301 */ 1302 t->t_proc_flag |= TP_WATCHSTOP; 1303 cv_broadcast(&p->p_holdlwps); 1304 1305 while (!(p->p_flag & SWATCHOK)) { 1306 if (holdcheck(0) != 0) { 1307 t->t_proc_flag &= ~TP_WATCHSTOP; 1308 mutex_exit(&p->p_lock); 1309 return (-1); 1310 } 1311 1312 cv_wait(&p->p_holdlwps, &p->p_lock); 1313 } 1314 1315 /* 1316 * Once the master thread has given the OK, this thread can 1317 * actually call stop(). 1318 */ 1319 t->t_proc_flag &= ~TP_WATCHSTOP; 1320 p->p_lwprcnt++; 1321 1322 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1323 1324 /* 1325 * It's not OK to do watchpoint activity, notify caller to 1326 * retry. 1327 */ 1328 ret = -1; 1329 1330 } else { 1331 1332 /* 1333 * The only way we can hit the case where SHOLDWATCH is set and 1334 * SWATCHOK is set is if we are triggering this from within a 1335 * stop() call. Assert that this is the case. 1336 */ 1337 1338 ASSERT(t->t_proc_flag & TP_STOPPING); 1339 p->p_lwprcnt++; 1340 } 1341 1342 mutex_exit(&p->p_lock); 1343 1344 return (ret); 1345 } 1346 1347 /* 1348 * force all interruptible lwps to trap into the kernel. 1349 */ 1350 void 1351 pokelwps(proc_t *p) 1352 { 1353 kthread_t *t; 1354 1355 ASSERT(MUTEX_HELD(&p->p_lock)); 1356 1357 t = p->p_tlist; 1358 do { 1359 if (t == curthread) 1360 continue; 1361 thread_lock(t); 1362 aston(t); /* make thread trap or do post_syscall */ 1363 if (t->t_state == TS_SLEEP) { 1364 if (t->t_flag & T_WAKEABLE) 1365 setrun_locked(t); 1366 } else if (t->t_state == TS_STOPPED) { 1367 /* 1368 * Ensure that proc_exit() is not blocked by lwps 1369 * that were stopped via jobcontrol or /proc. 1370 */ 1371 if (p->p_flag & SEXITLWPS) { 1372 p->p_stopsig = 0; 1373 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1374 setrun_locked(t); 1375 } 1376 /* 1377 * If we are holding lwps for a forkall(), 1378 * force lwps that have been suspended via 1379 * lwp_suspend() and are suspended inside 1380 * of a system call to proceed to their 1381 * holdlwp() points where they are clonable. 1382 */ 1383 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1384 if ((t->t_schedflag & TS_CSTART) == 0) { 1385 p->p_lwprcnt++; 1386 t->t_schedflag |= TS_CSTART; 1387 setrun_locked(t); 1388 } 1389 } 1390 } else if (t->t_state == TS_ONPROC) { 1391 if (t->t_cpu != CPU) 1392 poke_cpu(t->t_cpu->cpu_id); 1393 } 1394 thread_unlock(t); 1395 } while ((t = t->t_forw) != p->p_tlist); 1396 } 1397 1398 /* 1399 * undo the effects of holdlwps() or holdwatch(). 1400 */ 1401 void 1402 continuelwps(proc_t *p) 1403 { 1404 kthread_t *t; 1405 1406 /* 1407 * If this flag is set, then the original holdwatch() didn't actually 1408 * stop the process. See comments for holdwatch(). 1409 */ 1410 if (p->p_flag & SWATCHOK) { 1411 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1412 return; 1413 } 1414 1415 ASSERT(MUTEX_HELD(&p->p_lock)); 1416 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1417 1418 t = p->p_tlist; 1419 do { 1420 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1421 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1422 p->p_lwprcnt++; 1423 t->t_schedflag |= TS_CSTART; 1424 setrun_locked(t); 1425 } 1426 thread_unlock(t); 1427 } while ((t = t->t_forw) != p->p_tlist); 1428 } 1429 1430 /* 1431 * Force all other LWPs in the current process other than the caller to exit, 1432 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1433 * is typically used in these situations: 1434 * 1435 * (a) prior to an exec() system call 1436 * (b) prior to dumping a core file 1437 * (c) prior to a uadmin() shutdown 1438 * 1439 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1440 * Multiple threads in the process can call this function at one time by 1441 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1442 * to declare one particular thread the winner who gets to kill the others. 1443 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1444 * appropriate errno value is returned to caller for its system call to return. 1445 */ 1446 int 1447 exitlwps(int coredump) 1448 { 1449 proc_t *p = curproc; 1450 int heldcnt; 1451 1452 if (curthread->t_door) 1453 door_slam(); 1454 if (p->p_door_list) 1455 door_revoke_all(); 1456 if (curthread->t_schedctl != NULL) 1457 schedctl_lwp_cleanup(curthread); 1458 1459 /* 1460 * Ensure that before starting to wait for other lwps to exit, 1461 * cleanup all upimutexes held by curthread. Otherwise, some other 1462 * lwp could be waiting (uninterruptibly) for a upimutex held by 1463 * curthread, and the call to pokelwps() below would deadlock. 1464 * Even if a blocked upimutex_lock is made interruptible, 1465 * curthread's upimutexes need to be unlocked: do it here. 1466 */ 1467 if (curthread->t_upimutex != NULL) 1468 upimutex_cleanup(); 1469 1470 /* 1471 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1472 * We must also block any further /proc access from this point forward. 1473 */ 1474 mutex_enter(&p->p_lock); 1475 prbarrier(p); 1476 1477 if (p->p_flag & SEXITLWPS) { 1478 mutex_exit(&p->p_lock); 1479 aston(curthread); /* force a trip through post_syscall */ 1480 return (set_errno(EINTR)); 1481 } 1482 1483 p->p_flag |= SEXITLWPS; 1484 if (coredump) /* tell other lwps to stop, not exit */ 1485 p->p_flag |= SCOREDUMP; 1486 1487 /* 1488 * Give precedence to exitlwps() if a holdlwps() is 1489 * in progress. The lwp doing the holdlwps() operation 1490 * is aborted when it is awakened. 1491 */ 1492 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1493 cv_broadcast(&p->p_holdlwps); 1494 cv_wait(&p->p_holdlwps, &p->p_lock); 1495 prbarrier(p); 1496 } 1497 p->p_flag |= SHOLDFORK; 1498 pokelwps(p); 1499 1500 /* 1501 * Wait for process to become quiescent. 1502 */ 1503 --p->p_lwprcnt; 1504 while (p->p_lwprcnt > 0) { 1505 cv_wait(&p->p_holdlwps, &p->p_lock); 1506 prbarrier(p); 1507 } 1508 p->p_lwprcnt++; 1509 ASSERT(p->p_lwprcnt == 1); 1510 1511 /* 1512 * The SCOREDUMP flag puts the process into a quiescent 1513 * state. The process's lwps remain attached to this 1514 * process until exitlwps() is called again without the 1515 * 'coredump' flag set, then the lwps are terminated 1516 * and the process can exit. 1517 */ 1518 if (coredump) { 1519 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1520 goto out; 1521 } 1522 1523 /* 1524 * Determine if there are any lwps left dangling in 1525 * the stopped state. This happens when exitlwps() 1526 * aborts a holdlwps() operation. 1527 */ 1528 p->p_flag &= ~SHOLDFORK; 1529 if ((heldcnt = p->p_lwpcnt) > 1) { 1530 kthread_t *t; 1531 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1532 t->t_proc_flag &= ~TP_TWAIT; 1533 lwp_continue(t); 1534 } 1535 } 1536 1537 /* 1538 * Wait for all other lwps to exit. 1539 */ 1540 --p->p_lwprcnt; 1541 while (p->p_lwpcnt > 1) { 1542 cv_wait(&p->p_holdlwps, &p->p_lock); 1543 prbarrier(p); 1544 } 1545 ++p->p_lwprcnt; 1546 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1547 1548 p->p_flag &= ~SEXITLWPS; 1549 curthread->t_proc_flag &= ~TP_TWAIT; 1550 1551 out: 1552 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1553 lwpdir_t *ldp; 1554 lwpent_t *lep; 1555 int i; 1556 1557 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1558 lep = ldp->ld_entry; 1559 if (lep != NULL && lep->le_thread != curthread) { 1560 ASSERT(lep->le_thread == NULL); 1561 p->p_zombcnt--; 1562 lwp_hash_out(p, lep->le_lwpid); 1563 } 1564 } 1565 ASSERT(p->p_zombcnt == 0); 1566 } 1567 1568 /* 1569 * If some other LWP in the process wanted us to suspend ourself, 1570 * then we will not do it. The other LWP is now terminated and 1571 * no one will ever continue us again if we suspend ourself. 1572 */ 1573 curthread->t_proc_flag &= ~TP_HOLDLWP; 1574 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1575 mutex_exit(&p->p_lock); 1576 return (0); 1577 } 1578 1579 /* 1580 * duplicate a lwp. 1581 */ 1582 klwp_t * 1583 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1584 { 1585 klwp_t *clwp; 1586 void *tregs, *tfpu; 1587 kthread_t *t = lwptot(lwp); 1588 kthread_t *ct; 1589 proc_t *p = lwptoproc(lwp); 1590 int cid; 1591 void *bufp; 1592 void *brand_data; 1593 int val; 1594 1595 ASSERT(p == curproc); 1596 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1597 1598 #if defined(__sparc) 1599 if (t == curthread) 1600 (void) flush_user_windows_to_stack(NULL); 1601 #endif 1602 1603 if (t == curthread) 1604 /* copy args out of registers first */ 1605 (void) save_syscall_args(); 1606 1607 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1608 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1609 if (clwp == NULL) 1610 return (NULL); 1611 1612 /* 1613 * most of the parent's lwp can be copied to its duplicate, 1614 * except for the fields that are unique to each lwp, like 1615 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1616 */ 1617 ct = clwp->lwp_thread; 1618 tregs = clwp->lwp_regs; 1619 tfpu = clwp->lwp_fpu; 1620 brand_data = clwp->lwp_brand; 1621 1622 /* copy parent lwp to child lwp */ 1623 *clwp = *lwp; 1624 1625 /* fix up child's lwp */ 1626 1627 #if defined(__i386) || defined(__amd64) 1628 clwp->lwp_pcb.pcb_flags = clwp->lwp_pcb.pcb_flags & RUPDATE_PENDING; 1629 #elif defined(__sparc) 1630 clwp->lwp_pcb.pcb_step = STEP_NONE; 1631 #endif 1632 clwp->lwp_cursig = 0; 1633 clwp->lwp_extsig = 0; 1634 clwp->lwp_curinfo = (struct sigqueue *)0; 1635 clwp->lwp_thread = ct; 1636 ct->t_sysnum = t->t_sysnum; 1637 clwp->lwp_regs = tregs; 1638 clwp->lwp_fpu = tfpu; 1639 clwp->lwp_brand = brand_data; 1640 clwp->lwp_ap = clwp->lwp_arg; 1641 clwp->lwp_procp = cp; 1642 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1643 init_mstate(ct, LMS_STOPPED); 1644 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1645 clwp->lwp_lastfault = 0; 1646 clwp->lwp_lastfaddr = 0; 1647 1648 /* copy parent's struct regs to child. */ 1649 lwp_forkregs(lwp, clwp); 1650 1651 /* 1652 * Fork thread context ops, if any. 1653 */ 1654 if (t->t_ctx) 1655 forkctx(t, ct); 1656 1657 /* fix door state in the child */ 1658 if (t->t_door) 1659 door_fork(t, ct); 1660 1661 /* copy current contract templates, clear latest contracts */ 1662 lwp_ctmpl_copy(clwp, lwp); 1663 1664 mutex_enter(&cp->p_lock); 1665 /* lwp_create() set the TP_HOLDLWP flag */ 1666 if (!(t->t_proc_flag & TP_HOLDLWP)) 1667 ct->t_proc_flag &= ~TP_HOLDLWP; 1668 if (cp->p_flag & SMSACCT) 1669 ct->t_proc_flag |= TP_MSACCT; 1670 mutex_exit(&cp->p_lock); 1671 1672 /* Allow brand to propagate brand-specific state */ 1673 if (PROC_IS_BRANDED(p)) 1674 BROP(p)->b_forklwp(lwp, clwp); 1675 1676 retry: 1677 cid = t->t_cid; 1678 1679 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1680 ASSERT(val == 0); 1681 1682 mutex_enter(&p->p_lock); 1683 if (cid != t->t_cid) { 1684 /* 1685 * Someone just changed this thread's scheduling class, 1686 * so try pre-allocating the buffer again. Hopefully we 1687 * don't hit this often. 1688 */ 1689 mutex_exit(&p->p_lock); 1690 CL_FREE(cid, bufp); 1691 goto retry; 1692 } 1693 1694 ct->t_unpark = t->t_unpark; 1695 ct->t_clfuncs = t->t_clfuncs; 1696 CL_FORK(t, ct, bufp); 1697 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1698 mutex_exit(&p->p_lock); 1699 1700 return (clwp); 1701 } 1702 1703 /* 1704 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1705 */ 1706 void 1707 lwp_hash_in(proc_t *p, lwpent_t *lep) 1708 { 1709 lwpdir_t **ldpp; 1710 lwpdir_t *ldp; 1711 kthread_t *t; 1712 1713 /* 1714 * Allocate a directory element from the free list. 1715 * Code elsewhere guarantees a free slot. 1716 */ 1717 ldp = p->p_lwpfree; 1718 p->p_lwpfree = ldp->ld_next; 1719 ASSERT(ldp->ld_entry == NULL); 1720 ldp->ld_entry = lep; 1721 1722 /* 1723 * Insert it into the lwpid hash table. 1724 */ 1725 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1726 ldp->ld_next = *ldpp; 1727 *ldpp = ldp; 1728 1729 /* 1730 * Set the active thread's directory slot entry. 1731 */ 1732 if ((t = lep->le_thread) != NULL) { 1733 ASSERT(lep->le_lwpid == t->t_tid); 1734 t->t_dslot = (int)(ldp - p->p_lwpdir); 1735 } 1736 } 1737 1738 /* 1739 * Remove an lwp from the lwpid hash table and free its directory entry. 1740 * This is done when a detached lwp exits in lwp_exit() or 1741 * when a non-detached lwp is waited for in lwp_wait() or 1742 * when a zombie lwp is detached in lwp_detach(). 1743 */ 1744 void 1745 lwp_hash_out(proc_t *p, id_t lwpid) 1746 { 1747 lwpdir_t **ldpp; 1748 lwpdir_t *ldp; 1749 lwpent_t *lep; 1750 1751 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1752 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1753 lep = ldp->ld_entry; 1754 if (lep->le_lwpid == lwpid) { 1755 prlwpfree(p, lep); /* /proc deals with le_trace */ 1756 *ldpp = ldp->ld_next; 1757 ldp->ld_entry = NULL; 1758 ldp->ld_next = p->p_lwpfree; 1759 p->p_lwpfree = ldp; 1760 kmem_free(lep, sizeof (*lep)); 1761 break; 1762 } 1763 } 1764 } 1765 1766 /* 1767 * Lookup an lwp in the lwpid hash table by lwpid. 1768 */ 1769 lwpdir_t * 1770 lwp_hash_lookup(proc_t *p, id_t lwpid) 1771 { 1772 lwpdir_t *ldp; 1773 1774 /* 1775 * The process may be exiting, after p_tidhash has been set to NULL in 1776 * proc_exit() but before prfee() has been called. Return failure in 1777 * this case. 1778 */ 1779 if (p->p_tidhash == NULL) 1780 return (NULL); 1781 1782 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1783 ldp != NULL; ldp = ldp->ld_next) { 1784 if (ldp->ld_entry->le_lwpid == lwpid) 1785 return (ldp); 1786 } 1787 1788 return (NULL); 1789 } 1790 1791 /* 1792 * Update the indicated LWP usage statistic for the current LWP. 1793 */ 1794 void 1795 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1796 { 1797 klwp_t *lwp = ttolwp(curthread); 1798 1799 if (lwp == NULL) 1800 return; 1801 1802 switch (lwp_stat_id) { 1803 case LWP_STAT_INBLK: 1804 lwp->lwp_ru.inblock += inc; 1805 break; 1806 case LWP_STAT_OUBLK: 1807 lwp->lwp_ru.oublock += inc; 1808 break; 1809 case LWP_STAT_MSGRCV: 1810 lwp->lwp_ru.msgrcv += inc; 1811 break; 1812 case LWP_STAT_MSGSND: 1813 lwp->lwp_ru.msgsnd += inc; 1814 break; 1815 default: 1816 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1817 } 1818 } 1819