xref: /titanic_41/usr/src/uts/common/os/lwp.c (revision 2f172c55ef76964744bc62b4500ece87f3089b4d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/proc.h>
33 #include <sys/task.h>
34 #include <sys/project.h>
35 #include <sys/signal.h>
36 #include <sys/errno.h>
37 #include <sys/vmparam.h>
38 #include <sys/stack.h>
39 #include <sys/procfs.h>
40 #include <sys/prsystm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/kmem.h>
43 #include <sys/vtrace.h>
44 #include <sys/door.h>
45 #include <vm/seg_kp.h>
46 #include <sys/debug.h>
47 #include <sys/tnf.h>
48 #include <sys/schedctl.h>
49 #include <sys/poll.h>
50 #include <sys/copyops.h>
51 #include <sys/lwp_upimutex_impl.h>
52 #include <sys/cpupart.h>
53 #include <sys/lgrp.h>
54 #include <sys/rctl.h>
55 #include <sys/contract_impl.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/sdt.h>
58 #include <sys/cmn_err.h>
59 #include <sys/brand.h>
60 #include <sys/cyclic.h>
61 #include <sys/pool.h>
62 
63 /* hash function for the lwpid hash table, p->p_tidhash[] */
64 #define	TIDHASH(tid, hash_sz)	((tid) & ((hash_sz) - 1))
65 
66 void *segkp_lwp;		/* cookie for pool of segkp resources */
67 extern void reapq_move_lq_to_tq(kthread_t *);
68 extern void freectx_ctx(struct ctxop *);
69 
70 /*
71  * Create a kernel thread associated with a particular system process.  Give
72  * it an LWP so that microstate accounting will be available for it.
73  */
74 kthread_t *
75 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri)
76 {
77 	klwp_t *lwp;
78 
79 	VERIFY((p->p_flag & SSYS) != 0);
80 
81 	lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0);
82 
83 	VERIFY(lwp != NULL);
84 
85 	return (lwptot(lwp));
86 }
87 
88 /*
89  * Create a thread that appears to be stopped at sys_rtt.
90  */
91 klwp_t *
92 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
93     int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
94 {
95 	klwp_t *lwp = NULL;
96 	kthread_t *t;
97 	kthread_t *tx;
98 	cpupart_t *oldpart = NULL;
99 	size_t	stksize;
100 	caddr_t lwpdata = NULL;
101 	processorid_t	binding;
102 	int err = 0;
103 	kproject_t *oldkpj, *newkpj;
104 	void *bufp = NULL;
105 	klwp_t *curlwp;
106 	lwpent_t *lep;
107 	lwpdir_t *old_dir = NULL;
108 	uint_t old_dirsz = 0;
109 	tidhash_t *old_hash = NULL;
110 	uint_t old_hashsz = 0;
111 	ret_tidhash_t *ret_tidhash = NULL;
112 	int i;
113 	int rctlfail = 0;
114 	boolean_t branded = 0;
115 	struct ctxop *ctx = NULL;
116 
117 	ASSERT(cid != sysdccid);	/* system threads must start in SYS */
118 
119 	ASSERT(p != &p0);		/* No new LWPs in p0. */
120 
121 	mutex_enter(&p->p_lock);
122 	mutex_enter(&p->p_zone->zone_nlwps_lock);
123 	/*
124 	 * don't enforce rctl limits on system processes
125 	 */
126 	if (!CLASS_KERNEL(cid)) {
127 		if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
128 			if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
129 			    1, 0) & RCT_DENY)
130 				rctlfail = 1;
131 		if (p->p_task->tk_proj->kpj_nlwps >=
132 		    p->p_task->tk_proj->kpj_nlwps_ctl)
133 			if (rctl_test(rc_project_nlwps,
134 			    p->p_task->tk_proj->kpj_rctls, p, 1, 0)
135 			    & RCT_DENY)
136 				rctlfail = 1;
137 		if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
138 			if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
139 			    1, 0) & RCT_DENY)
140 				rctlfail = 1;
141 	}
142 	if (rctlfail) {
143 		mutex_exit(&p->p_zone->zone_nlwps_lock);
144 		mutex_exit(&p->p_lock);
145 		return (NULL);
146 	}
147 	p->p_task->tk_nlwps++;
148 	p->p_task->tk_proj->kpj_nlwps++;
149 	p->p_zone->zone_nlwps++;
150 	mutex_exit(&p->p_zone->zone_nlwps_lock);
151 	mutex_exit(&p->p_lock);
152 
153 	if (CLASS_KERNEL(cid)) {
154 		curlwp = NULL;		/* don't inherit from curlwp */
155 		stksize = lwp_default_stksize;
156 	} else {
157 		curlwp = ttolwp(curthread);
158 		if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
159 			stksize = lwp_default_stksize;
160 	}
161 
162 	/*
163 	 * For system threads, we sleep for our swap reservation, and the
164 	 * thread stack can't be swapped.
165 	 *
166 	 * Otherwise, try to reclaim a <lwp,stack> from 'deathrow'
167 	 */
168 	if (CLASS_KERNEL(cid)) {
169 		lwpdata = (caddr_t)segkp_get(segkp, stksize,
170 		    (KPD_NO_ANON | KPD_HASREDZONE | KPD_LOCKED));
171 
172 	} else if (stksize == lwp_default_stksize) {
173 		if (lwp_reapcnt > 0) {
174 			mutex_enter(&reaplock);
175 			if ((t = lwp_deathrow) != NULL) {
176 				ASSERT(t->t_swap);
177 				lwp_deathrow = t->t_forw;
178 				lwp_reapcnt--;
179 				lwpdata = t->t_swap;
180 				lwp = t->t_lwp;
181 				ctx = t->t_ctx;
182 				t->t_swap = NULL;
183 				t->t_lwp = NULL;
184 				t->t_ctx = NULL;
185 				reapq_move_lq_to_tq(t);
186 			}
187 			mutex_exit(&reaplock);
188 			if (lwp != NULL) {
189 				lwp_stk_fini(lwp);
190 			}
191 			if (ctx != NULL) {
192 				freectx_ctx(ctx);
193 			}
194 		}
195 		if (lwpdata == NULL &&
196 		    (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
197 			mutex_enter(&p->p_lock);
198 			mutex_enter(&p->p_zone->zone_nlwps_lock);
199 			p->p_task->tk_nlwps--;
200 			p->p_task->tk_proj->kpj_nlwps--;
201 			p->p_zone->zone_nlwps--;
202 			mutex_exit(&p->p_zone->zone_nlwps_lock);
203 			mutex_exit(&p->p_lock);
204 			return (NULL);
205 		}
206 	} else {
207 		stksize = roundup(stksize, PAGESIZE);
208 		if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
209 		    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
210 			mutex_enter(&p->p_lock);
211 			mutex_enter(&p->p_zone->zone_nlwps_lock);
212 			p->p_task->tk_nlwps--;
213 			p->p_task->tk_proj->kpj_nlwps--;
214 			p->p_zone->zone_nlwps--;
215 			mutex_exit(&p->p_zone->zone_nlwps_lock);
216 			mutex_exit(&p->p_lock);
217 			return (NULL);
218 		}
219 	}
220 
221 	/*
222 	 * Create a thread, initializing the stack pointer
223 	 */
224 	t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
225 
226 	t->t_swap = lwpdata;	/* Start of page-able data */
227 	if (lwp == NULL)
228 		lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
229 	bzero(lwp, sizeof (*lwp));
230 	t->t_lwp = lwp;
231 
232 	t->t_hold = *smask;
233 	lwp->lwp_thread = t;
234 	lwp->lwp_procp = p;
235 	lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
236 	if (curlwp != NULL && curlwp->lwp_childstksz != 0)
237 		lwp->lwp_childstksz = curlwp->lwp_childstksz;
238 
239 	t->t_stk = lwp_stk_init(lwp, t->t_stk);
240 	thread_load(t, proc, arg, len);
241 
242 	/*
243 	 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
244 	 */
245 	if (p->p_rprof_cyclic != CYCLIC_NONE)
246 		t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
247 
248 	if (cid != NOCLASS)
249 		(void) CL_ALLOC(&bufp, cid, KM_SLEEP);
250 
251 	/*
252 	 * Allocate an lwp directory entry for the new lwp.
253 	 */
254 	lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
255 
256 	mutex_enter(&p->p_lock);
257 grow:
258 	/*
259 	 * Grow the lwp (thread) directory and lwpid hash table if necessary.
260 	 * A note on the growth algorithm:
261 	 *	The new lwp directory size is computed as:
262 	 *		new = 2 * old + 2
263 	 *	Starting with an initial size of 2 (see exec_common()),
264 	 *	this yields numbers that are a power of two minus 2:
265 	 *		2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
266 	 *	The size of the lwpid hash table must be a power of two
267 	 *	and must be commensurate in size with the lwp directory
268 	 *	so that hash bucket chains remain short.  Therefore,
269 	 *	the lwpid hash table size is computed as:
270 	 *		hashsz = (dirsz + 2) / 2
271 	 *	which leads to these hash table sizes corresponding to
272 	 *	the above directory sizes:
273 	 *		2, 4, 8, 16, 32, 64, 128, 256, 512, ...
274 	 * A note on growing the hash table:
275 	 *	For performance reasons, code in lwp_unpark() does not
276 	 *	acquire curproc->p_lock when searching the hash table.
277 	 *	Rather, it calls lwp_hash_lookup_and_lock() which
278 	 *	acquires only the individual hash bucket lock, taking
279 	 *	care to deal with reallocation of the hash table
280 	 *	during the time it takes to acquire the lock.
281 	 *
282 	 *	This is sufficient to protect the integrity of the
283 	 *	hash table, but it requires us to acquire all of the
284 	 *	old hash bucket locks before growing the hash table
285 	 *	and to release them afterwards.  It also requires us
286 	 *	not to free the old hash table because some thread
287 	 *	in lwp_hash_lookup_and_lock() might still be trying
288 	 *	to acquire the old bucket lock.
289 	 *
290 	 *	So we adopt the tactic of keeping all of the retired
291 	 *	hash tables on a linked list, so they can be safely
292 	 *	freed when the process exits or execs.
293 	 *
294 	 *	Because the hash table grows in powers of two, the
295 	 *	total size of all of the hash tables will be slightly
296 	 *	less than twice the size of the largest hash table.
297 	 */
298 	while (p->p_lwpfree == NULL) {
299 		uint_t dirsz = p->p_lwpdir_sz;
300 		lwpdir_t *new_dir;
301 		uint_t new_dirsz;
302 		lwpdir_t *ldp;
303 		tidhash_t *new_hash;
304 		uint_t new_hashsz;
305 
306 		mutex_exit(&p->p_lock);
307 
308 		/*
309 		 * Prepare to remember the old p_tidhash for later
310 		 * kmem_free()ing when the process exits or execs.
311 		 */
312 		if (ret_tidhash == NULL)
313 			ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
314 			    KM_SLEEP);
315 		if (old_dir != NULL)
316 			kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
317 		if (old_hash != NULL)
318 			kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
319 
320 		new_dirsz = 2 * dirsz + 2;
321 		new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
322 		for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
323 			ldp->ld_next = ldp + 1;
324 		new_hashsz = (new_dirsz + 2) / 2;
325 		new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
326 		    KM_SLEEP);
327 
328 		mutex_enter(&p->p_lock);
329 		if (p == curproc)
330 			prbarrier(p);
331 
332 		if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
333 			/*
334 			 * Someone else beat us to it or some lwp exited.
335 			 * Set up to free our memory and take a lap.
336 			 */
337 			old_dir = new_dir;
338 			old_dirsz = new_dirsz;
339 			old_hash = new_hash;
340 			old_hashsz = new_hashsz;
341 		} else {
342 			/*
343 			 * For the benefit of lwp_hash_lookup_and_lock(),
344 			 * called from lwp_unpark(), which searches the
345 			 * tid hash table without acquiring p->p_lock,
346 			 * we must acquire all of the tid hash table
347 			 * locks before replacing p->p_tidhash.
348 			 */
349 			old_hash = p->p_tidhash;
350 			old_hashsz = p->p_tidhash_sz;
351 			for (i = 0; i < old_hashsz; i++) {
352 				mutex_enter(&old_hash[i].th_lock);
353 				mutex_enter(&new_hash[i].th_lock);
354 			}
355 
356 			/*
357 			 * We simply hash in all of the old directory entries.
358 			 * This works because the old directory has no empty
359 			 * slots and the new hash table starts out empty.
360 			 * This reproduces the original directory ordering
361 			 * (required for /proc directory semantics).
362 			 */
363 			old_dir = p->p_lwpdir;
364 			old_dirsz = p->p_lwpdir_sz;
365 			p->p_lwpdir = new_dir;
366 			p->p_lwpfree = new_dir;
367 			p->p_lwpdir_sz = new_dirsz;
368 			for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
369 				lwp_hash_in(p, ldp->ld_entry,
370 				    new_hash, new_hashsz, 0);
371 
372 			/*
373 			 * Remember the old hash table along with all
374 			 * of the previously-remembered hash tables.
375 			 * We will free them at process exit or exec.
376 			 */
377 			ret_tidhash->rth_tidhash = old_hash;
378 			ret_tidhash->rth_tidhash_sz = old_hashsz;
379 			ret_tidhash->rth_next = p->p_ret_tidhash;
380 			p->p_ret_tidhash = ret_tidhash;
381 
382 			/*
383 			 * Now establish the new tid hash table.
384 			 * As soon as we assign p->p_tidhash,
385 			 * code in lwp_unpark() can start using it.
386 			 */
387 			membar_producer();
388 			p->p_tidhash = new_hash;
389 
390 			/*
391 			 * It is necessary that p_tidhash reach global
392 			 * visibility before p_tidhash_sz.  Otherwise,
393 			 * code in lwp_hash_lookup_and_lock() could
394 			 * index into the old p_tidhash using the new
395 			 * p_tidhash_sz and thereby access invalid data.
396 			 */
397 			membar_producer();
398 			p->p_tidhash_sz = new_hashsz;
399 
400 			/*
401 			 * Release the locks; allow lwp_unpark() to carry on.
402 			 */
403 			for (i = 0; i < old_hashsz; i++) {
404 				mutex_exit(&old_hash[i].th_lock);
405 				mutex_exit(&new_hash[i].th_lock);
406 			}
407 
408 			/*
409 			 * Avoid freeing these objects below.
410 			 */
411 			ret_tidhash = NULL;
412 			old_hash = NULL;
413 			old_hashsz = 0;
414 		}
415 	}
416 
417 	/*
418 	 * Block the process against /proc while we manipulate p->p_tlist,
419 	 * unless lwp_create() was called by /proc for the PCAGENT operation.
420 	 * We want to do this early enough so that we don't drop p->p_lock
421 	 * until the thread is put on the p->p_tlist.
422 	 */
423 	if (p == curproc) {
424 		prbarrier(p);
425 		/*
426 		 * If the current lwp has been requested to stop, do so now.
427 		 * Otherwise we have a race condition between /proc attempting
428 		 * to stop the process and this thread creating a new lwp
429 		 * that was not seen when the /proc PCSTOP request was issued.
430 		 * We rely on stop() to call prbarrier(p) before returning.
431 		 */
432 		while ((curthread->t_proc_flag & TP_PRSTOP) &&
433 		    !ttolwp(curthread)->lwp_nostop) {
434 			/*
435 			 * We called pool_barrier_enter() before calling
436 			 * here to lwp_create(). We have to call
437 			 * pool_barrier_exit() before stopping.
438 			 */
439 			pool_barrier_exit();
440 			prbarrier(p);
441 			stop(PR_REQUESTED, 0);
442 			/*
443 			 * And we have to repeat the call to
444 			 * pool_barrier_enter after stopping.
445 			 */
446 			pool_barrier_enter();
447 			prbarrier(p);
448 		}
449 
450 		/*
451 		 * If process is exiting, there could be a race between
452 		 * the agent lwp creation and the new lwp currently being
453 		 * created. So to prevent this race lwp creation is failed
454 		 * if the process is exiting.
455 		 */
456 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
457 			err = 1;
458 			goto error;
459 		}
460 
461 		/*
462 		 * Since we might have dropped p->p_lock, the
463 		 * lwp directory free list might have changed.
464 		 */
465 		if (p->p_lwpfree == NULL)
466 			goto grow;
467 	}
468 
469 	kpreempt_disable();	/* can't grab cpu_lock here */
470 
471 	/*
472 	 * Inherit processor and processor set bindings from curthread.
473 	 *
474 	 * For kernel LWPs, we do not inherit processor set bindings at
475 	 * process creation time (i.e. when p != curproc).  After the
476 	 * kernel process is created, any subsequent LWPs must be created
477 	 * by threads in the kernel process, at which point we *will*
478 	 * inherit processor set bindings.
479 	 */
480 	if (CLASS_KERNEL(cid) && p != curproc) {
481 		t->t_bind_cpu = binding = PBIND_NONE;
482 		t->t_cpupart = oldpart = &cp_default;
483 		t->t_bind_pset = PS_NONE;
484 		t->t_bindflag = (uchar_t)default_binding_mode;
485 	} else {
486 		binding = curthread->t_bind_cpu;
487 		t->t_bind_cpu = binding;
488 		oldpart = t->t_cpupart;
489 		t->t_cpupart = curthread->t_cpupart;
490 		t->t_bind_pset = curthread->t_bind_pset;
491 		t->t_bindflag = curthread->t_bindflag |
492 		    (uchar_t)default_binding_mode;
493 	}
494 
495 	/*
496 	 * thread_create() initializes this thread's home lgroup to the root.
497 	 * Choose a more suitable lgroup, since this thread is associated
498 	 * with an lwp.
499 	 */
500 	ASSERT(oldpart != NULL);
501 	if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
502 		t->t_bound_cpu = cpu[binding];
503 		if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
504 			lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
505 	} else if (CLASS_KERNEL(cid)) {
506 		/*
507 		 * For kernel threads, assign ourselves to the root lgrp.
508 		 */
509 		lgrp_move_thread(t,
510 		    &curthread->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1);
511 	} else {
512 		lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
513 	}
514 
515 	kpreempt_enable();
516 
517 	/*
518 	 * make sure lpl points to our own partition
519 	 */
520 	ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
521 	ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
522 	    t->t_cpupart->cp_nlgrploads);
523 
524 	/*
525 	 * If we're creating a new process, then inherit the project from our
526 	 * parent. If we're only creating an additional lwp then use the
527 	 * project pointer of the target process.
528 	 */
529 	if (p->p_task == NULL)
530 		newkpj = ttoproj(curthread);
531 	else
532 		newkpj = p->p_task->tk_proj;
533 
534 	/*
535 	 * It is safe to point the thread to the new project without holding it
536 	 * since we're holding the target process' p_lock here and therefore
537 	 * we're guaranteed that it will not move to another project.
538 	 */
539 	oldkpj = ttoproj(t);
540 	if (newkpj != oldkpj) {
541 		t->t_proj = newkpj;
542 		(void) project_hold(newkpj);
543 		project_rele(oldkpj);
544 	}
545 
546 	if (cid != NOCLASS) {
547 		/*
548 		 * If the lwp is being created in the current process
549 		 * and matches the current thread's scheduling class,
550 		 * we should propagate the current thread's scheduling
551 		 * parameters by calling CL_FORK.  Otherwise just use
552 		 * the defaults by calling CL_ENTERCLASS.
553 		 */
554 		if (p != curproc || curthread->t_cid != cid) {
555 			err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
556 			t->t_pri = pri;	/* CL_ENTERCLASS may have changed it */
557 			/*
558 			 * We don't call schedctl_set_cidpri(t) here
559 			 * because the schedctl data is not yet set
560 			 * up for the newly-created lwp.
561 			 */
562 		} else {
563 			t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
564 			err = CL_FORK(curthread, t, bufp);
565 			t->t_cid = cid;
566 		}
567 		if (err)
568 			goto error;
569 		else
570 			bufp = NULL;
571 	}
572 
573 	/*
574 	 * If we were given an lwpid then use it, else allocate one.
575 	 */
576 	if (lwpid != 0)
577 		t->t_tid = lwpid;
578 	else {
579 		/*
580 		 * lwp/thread id 0 is never valid; reserved for special checks.
581 		 * lwp/thread id 1 is reserved for the main thread.
582 		 * Start again at 2 when INT_MAX has been reached
583 		 * (id_t is a signed 32-bit integer).
584 		 */
585 		id_t prev_id = p->p_lwpid;	/* last allocated tid */
586 
587 		do {			/* avoid lwpid duplication */
588 			if (p->p_lwpid == INT_MAX) {
589 				p->p_flag |= SLWPWRAP;
590 				p->p_lwpid = 1;
591 			}
592 			if ((t->t_tid = ++p->p_lwpid) == prev_id) {
593 				/*
594 				 * All lwpids are allocated; fail the request.
595 				 */
596 				err = 1;
597 				goto error;
598 			}
599 			/*
600 			 * We only need to worry about colliding with an id
601 			 * that's already in use if this process has
602 			 * cycled through all available lwp ids.
603 			 */
604 			if ((p->p_flag & SLWPWRAP) == 0)
605 				break;
606 		} while (lwp_hash_lookup(p, t->t_tid) != NULL);
607 	}
608 
609 	/*
610 	 * If this is a branded process, let the brand do any necessary lwp
611 	 * initialization.
612 	 */
613 	if (PROC_IS_BRANDED(p)) {
614 		if (BROP(p)->b_initlwp(lwp)) {
615 			err = 1;
616 			goto error;
617 		}
618 		branded = 1;
619 	}
620 
621 	if (t->t_tid == 1) {
622 		kpreempt_disable();
623 		ASSERT(t->t_lpl != NULL);
624 		p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
625 		kpreempt_enable();
626 		if (p->p_tr_lgrpid != LGRP_NONE &&
627 		    p->p_tr_lgrpid != p->p_t1_lgrpid) {
628 			lgrp_update_trthr_migrations(1);
629 		}
630 	}
631 
632 	p->p_lwpcnt++;
633 	t->t_waitfor = -1;
634 
635 	/*
636 	 * Turn microstate accounting on for thread if on for process.
637 	 */
638 	if (p->p_flag & SMSACCT)
639 		t->t_proc_flag |= TP_MSACCT;
640 
641 	/*
642 	 * If the process has watchpoints, mark the new thread as such.
643 	 */
644 	if (pr_watch_active(p))
645 		watch_enable(t);
646 
647 	/*
648 	 * The lwp is being created in the stopped state.
649 	 * We set all the necessary flags to indicate that fact here.
650 	 * We omit the TS_CREATE flag from t_schedflag so that the lwp
651 	 * cannot be set running until the caller is finished with it,
652 	 * even if lwp_continue() is called on it after we drop p->p_lock.
653 	 * When the caller is finished with the newly-created lwp,
654 	 * the caller must call lwp_create_done() to allow the lwp
655 	 * to be set running.  If the TP_HOLDLWP is left set, the
656 	 * lwp will suspend itself after reaching system call exit.
657 	 */
658 	init_mstate(t, LMS_STOPPED);
659 	t->t_proc_flag |= TP_HOLDLWP;
660 	t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
661 	t->t_whystop = PR_SUSPENDED;
662 	t->t_whatstop = SUSPEND_NORMAL;
663 	t->t_sig_check = 1;	/* ensure that TP_HOLDLWP is honored */
664 
665 	/*
666 	 * Set system call processing flags in case tracing or profiling
667 	 * is set.  The first system call will evaluate these and turn
668 	 * them off if they aren't needed.
669 	 */
670 	t->t_pre_sys = 1;
671 	t->t_post_sys = 1;
672 
673 	/*
674 	 * Insert the new thread into the list of all threads.
675 	 */
676 	if ((tx = p->p_tlist) == NULL) {
677 		t->t_back = t;
678 		t->t_forw = t;
679 		p->p_tlist = t;
680 	} else {
681 		t->t_forw = tx;
682 		t->t_back = tx->t_back;
683 		tx->t_back->t_forw = t;
684 		tx->t_back = t;
685 	}
686 
687 	/*
688 	 * Insert the new lwp into an lwp directory slot position
689 	 * and into the lwpid hash table.
690 	 */
691 	lep->le_thread = t;
692 	lep->le_lwpid = t->t_tid;
693 	lep->le_start = t->t_start;
694 	lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
695 
696 	if (state == TS_RUN) {
697 		/*
698 		 * We set the new lwp running immediately.
699 		 */
700 		t->t_proc_flag &= ~TP_HOLDLWP;
701 		lwp_create_done(t);
702 	}
703 
704 error:
705 	if (err) {
706 		if (CLASS_KERNEL(cid)) {
707 			/*
708 			 * This should only happen if a system process runs
709 			 * out of lwpids, which shouldn't occur.
710 			 */
711 			panic("Failed to create a system LWP");
712 		}
713 		/*
714 		 * We have failed to create an lwp, so decrement the number
715 		 * of lwps in the task and let the lgroup load averages know
716 		 * that this thread isn't going to show up.
717 		 */
718 		kpreempt_disable();
719 		lgrp_move_thread(t, NULL, 1);
720 		kpreempt_enable();
721 
722 		ASSERT(MUTEX_HELD(&p->p_lock));
723 		mutex_enter(&p->p_zone->zone_nlwps_lock);
724 		p->p_task->tk_nlwps--;
725 		p->p_task->tk_proj->kpj_nlwps--;
726 		p->p_zone->zone_nlwps--;
727 		mutex_exit(&p->p_zone->zone_nlwps_lock);
728 		if (cid != NOCLASS && bufp != NULL)
729 			CL_FREE(cid, bufp);
730 
731 		if (branded)
732 			BROP(p)->b_freelwp(lwp);
733 
734 		mutex_exit(&p->p_lock);
735 		t->t_state = TS_FREE;
736 		thread_rele(t);
737 
738 		/*
739 		 * We need to remove t from the list of all threads
740 		 * because thread_exit()/lwp_exit() isn't called on t.
741 		 */
742 		mutex_enter(&pidlock);
743 		ASSERT(t != t->t_next);		/* t0 never exits */
744 		t->t_next->t_prev = t->t_prev;
745 		t->t_prev->t_next = t->t_next;
746 		mutex_exit(&pidlock);
747 
748 		thread_free(t);
749 		kmem_free(lep, sizeof (*lep));
750 		lwp = NULL;
751 	} else {
752 		mutex_exit(&p->p_lock);
753 	}
754 
755 	if (old_dir != NULL)
756 		kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
757 	if (old_hash != NULL)
758 		kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
759 	if (ret_tidhash != NULL)
760 		kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
761 
762 	DTRACE_PROC1(lwp__create, kthread_t *, t);
763 	return (lwp);
764 }
765 
766 /*
767  * lwp_create_done() is called by the caller of lwp_create() to set the
768  * newly-created lwp running after the caller has finished manipulating it.
769  */
770 void
771 lwp_create_done(kthread_t *t)
772 {
773 	proc_t *p = ttoproc(t);
774 
775 	ASSERT(MUTEX_HELD(&p->p_lock));
776 
777 	/*
778 	 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
779 	 * (The absence of the TS_CREATE flag prevents the lwp from running
780 	 * until we are finished with it, even if lwp_continue() is called on
781 	 * it by some other lwp in the process or elsewhere in the kernel.)
782 	 */
783 	thread_lock(t);
784 	ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
785 	/*
786 	 * If TS_CSTART is set, lwp_continue(t) has been called and
787 	 * has already incremented p_lwprcnt; avoid doing this twice.
788 	 */
789 	if (!(t->t_schedflag & TS_CSTART))
790 		p->p_lwprcnt++;
791 	t->t_schedflag |= (TS_CSTART | TS_CREATE);
792 	setrun_locked(t);
793 	thread_unlock(t);
794 }
795 
796 /*
797  * Copy an LWP's active templates, and clear the latest contracts.
798  */
799 void
800 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
801 {
802 	int i;
803 
804 	for (i = 0; i < ct_ntypes; i++) {
805 		dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
806 		dst->lwp_ct_latest[i] = NULL;
807 	}
808 }
809 
810 /*
811  * Clear an LWP's contract template state.
812  */
813 void
814 lwp_ctmpl_clear(klwp_t *lwp)
815 {
816 	ct_template_t *tmpl;
817 	int i;
818 
819 	for (i = 0; i < ct_ntypes; i++) {
820 		if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
821 			ctmpl_free(tmpl);
822 			lwp->lwp_ct_active[i] = NULL;
823 		}
824 
825 		if (lwp->lwp_ct_latest[i] != NULL) {
826 			contract_rele(lwp->lwp_ct_latest[i]);
827 			lwp->lwp_ct_latest[i] = NULL;
828 		}
829 	}
830 }
831 
832 /*
833  * Individual lwp exit.
834  * If this is the last lwp, exit the whole process.
835  */
836 void
837 lwp_exit(void)
838 {
839 	kthread_t *t = curthread;
840 	klwp_t *lwp = ttolwp(t);
841 	proc_t *p = ttoproc(t);
842 
843 	ASSERT(MUTEX_HELD(&p->p_lock));
844 
845 	mutex_exit(&p->p_lock);
846 
847 #if defined(__sparc)
848 	/*
849 	 * Ensure that the user stack is fully abandoned..
850 	 */
851 	trash_user_windows();
852 #endif
853 
854 	tsd_exit();			/* free thread specific data */
855 
856 	kcpc_passivate();		/* Clean up performance counter state */
857 
858 	pollcleanup();
859 
860 	if (t->t_door)
861 		door_slam();
862 
863 	if (t->t_schedctl != NULL)
864 		schedctl_lwp_cleanup(t);
865 
866 	if (t->t_upimutex != NULL)
867 		upimutex_cleanup();
868 
869 	/*
870 	 * Perform any brand specific exit processing, then release any
871 	 * brand data associated with the lwp
872 	 */
873 	if (PROC_IS_BRANDED(p))
874 		BROP(p)->b_lwpexit(lwp);
875 
876 	mutex_enter(&p->p_lock);
877 	lwp_cleanup();
878 
879 	/*
880 	 * When this process is dumping core, its lwps are held here
881 	 * until the core dump is finished. Then exitlwps() is called
882 	 * again to release these lwps so that they can finish exiting.
883 	 */
884 	if (p->p_flag & SCOREDUMP)
885 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
886 
887 	/*
888 	 * Block the process against /proc now that we have really acquired
889 	 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
890 	 */
891 	prbarrier(p);
892 
893 	/*
894 	 * Call proc_exit() if this is the last non-daemon lwp in the process.
895 	 */
896 	if (!(t->t_proc_flag & TP_DAEMON) &&
897 	    p->p_lwpcnt == p->p_lwpdaemon + 1) {
898 		mutex_exit(&p->p_lock);
899 		if (proc_exit(CLD_EXITED, 0) == 0) {
900 			/* Restarting init. */
901 			return;
902 		}
903 
904 		/*
905 		 * proc_exit() returns a non-zero value when some other
906 		 * lwp got there first.  We just have to continue in
907 		 * lwp_exit().
908 		 */
909 		mutex_enter(&p->p_lock);
910 		ASSERT(curproc->p_flag & SEXITLWPS);
911 		prbarrier(p);
912 	}
913 
914 	DTRACE_PROC(lwp__exit);
915 
916 	/*
917 	 * If the lwp is a detached lwp or if the process is exiting,
918 	 * remove (lwp_hash_out()) the lwp from the lwp directory.
919 	 * Otherwise null out the lwp's le_thread pointer in the lwp
920 	 * directory so that other threads will see it as a zombie lwp.
921 	 */
922 	prlwpexit(t);		/* notify /proc */
923 	if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
924 		lwp_hash_out(p, t->t_tid);
925 	else {
926 		ASSERT(!(t->t_proc_flag & TP_DAEMON));
927 		p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
928 		p->p_zombcnt++;
929 		cv_broadcast(&p->p_lwpexit);
930 	}
931 	if (t->t_proc_flag & TP_DAEMON) {
932 		p->p_lwpdaemon--;
933 		t->t_proc_flag &= ~TP_DAEMON;
934 	}
935 	t->t_proc_flag &= ~TP_TWAIT;
936 
937 	/*
938 	 * Maintain accurate lwp count for task.max-lwps resource control.
939 	 */
940 	mutex_enter(&p->p_zone->zone_nlwps_lock);
941 	p->p_task->tk_nlwps--;
942 	p->p_task->tk_proj->kpj_nlwps--;
943 	p->p_zone->zone_nlwps--;
944 	mutex_exit(&p->p_zone->zone_nlwps_lock);
945 
946 	CL_EXIT(t);		/* tell the scheduler that t is exiting */
947 	ASSERT(p->p_lwpcnt != 0);
948 	p->p_lwpcnt--;
949 
950 	/*
951 	 * If all remaining non-daemon lwps are waiting in lwp_wait(),
952 	 * wake them up so someone can return EDEADLK.
953 	 * (See the block comment preceeding lwp_wait().)
954 	 */
955 	if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
956 		cv_broadcast(&p->p_lwpexit);
957 
958 	t->t_proc_flag |= TP_LWPEXIT;
959 	term_mstate(t);
960 
961 #ifndef NPROBE
962 	/* Kernel probe */
963 	if (t->t_tnf_tpdp)
964 		tnf_thread_exit();
965 #endif /* NPROBE */
966 
967 	t->t_forw->t_back = t->t_back;
968 	t->t_back->t_forw = t->t_forw;
969 	if (t == p->p_tlist)
970 		p->p_tlist = t->t_forw;
971 
972 	/*
973 	 * Clean up the signal state.
974 	 */
975 	if (t->t_sigqueue != NULL)
976 		sigdelq(p, t, 0);
977 	if (lwp->lwp_curinfo != NULL) {
978 		siginfofree(lwp->lwp_curinfo);
979 		lwp->lwp_curinfo = NULL;
980 	}
981 
982 	thread_rele(t);
983 
984 	/*
985 	 * Terminated lwps are associated with process zero and are put onto
986 	 * death-row by resume().  Avoid preemption after resetting t->t_procp.
987 	 */
988 	t->t_preempt++;
989 
990 	if (t->t_ctx != NULL)
991 		exitctx(t);
992 	if (p->p_pctx != NULL)
993 		exitpctx(p);
994 
995 	t->t_procp = &p0;
996 
997 	/*
998 	 * Notify the HAT about the change of address space
999 	 */
1000 	hat_thread_exit(t);
1001 	/*
1002 	 * When this is the last running lwp in this process and some lwp is
1003 	 * waiting for this condition to become true, or this thread was being
1004 	 * suspended, then the waiting lwp is awakened.
1005 	 *
1006 	 * Also, if the process is exiting, we may have a thread waiting in
1007 	 * exitlwps() that needs to be notified.
1008 	 */
1009 	if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
1010 	    (p->p_flag & SEXITLWPS))
1011 		cv_broadcast(&p->p_holdlwps);
1012 
1013 	/*
1014 	 * Need to drop p_lock so we can reacquire pidlock.
1015 	 */
1016 	mutex_exit(&p->p_lock);
1017 	mutex_enter(&pidlock);
1018 
1019 	ASSERT(t != t->t_next);		/* t0 never exits */
1020 	t->t_next->t_prev = t->t_prev;
1021 	t->t_prev->t_next = t->t_next;
1022 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
1023 	mutex_exit(&pidlock);
1024 
1025 	lwp_pcb_exit();
1026 
1027 	t->t_state = TS_ZOMB;
1028 	swtch_from_zombie();
1029 	/* never returns */
1030 }
1031 
1032 
1033 /*
1034  * Cleanup function for an exiting lwp.
1035  * Called both from lwp_exit() and from proc_exit().
1036  * p->p_lock is repeatedly released and grabbed in this function.
1037  */
1038 void
1039 lwp_cleanup(void)
1040 {
1041 	kthread_t *t = curthread;
1042 	proc_t *p = ttoproc(t);
1043 
1044 	ASSERT(MUTEX_HELD(&p->p_lock));
1045 
1046 	/* untimeout any lwp-bound realtime timers */
1047 	if (p->p_itimer != NULL)
1048 		timer_lwpexit();
1049 
1050 	/*
1051 	 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
1052 	 * so it appears that the agent never existed, and clear p_agenttp.
1053 	 */
1054 	if (t == p->p_agenttp) {
1055 		ASSERT(t->t_tid == p->p_lwpid);
1056 		p->p_lwpid--;
1057 		p->p_agenttp = NULL;
1058 	}
1059 
1060 	/*
1061 	 * Do lgroup bookkeeping to account for thread exiting.
1062 	 */
1063 	kpreempt_disable();
1064 	lgrp_move_thread(t, NULL, 1);
1065 	if (t->t_tid == 1) {
1066 		p->p_t1_lgrpid = LGRP_NONE;
1067 	}
1068 	kpreempt_enable();
1069 
1070 	lwp_ctmpl_clear(ttolwp(t));
1071 }
1072 
1073 int
1074 lwp_suspend(kthread_t *t)
1075 {
1076 	int tid;
1077 	proc_t *p = ttoproc(t);
1078 
1079 	ASSERT(MUTEX_HELD(&p->p_lock));
1080 
1081 	/*
1082 	 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1083 	 * If an lwp is stopping itself, there is no need to wait.
1084 	 */
1085 top:
1086 	t->t_proc_flag |= TP_HOLDLWP;
1087 	if (t == curthread) {
1088 		t->t_sig_check = 1;
1089 	} else {
1090 		/*
1091 		 * Make sure the lwp stops promptly.
1092 		 */
1093 		thread_lock(t);
1094 		t->t_sig_check = 1;
1095 		/*
1096 		 * XXX Should use virtual stop like /proc does instead of
1097 		 * XXX waking the thread to get it to stop.
1098 		 */
1099 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1100 			setrun_locked(t);
1101 		} else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1102 			poke_cpu(t->t_cpu->cpu_id);
1103 		}
1104 
1105 		tid = t->t_tid;	 /* remember thread ID */
1106 		/*
1107 		 * Wait for lwp to stop
1108 		 */
1109 		while (!SUSPENDED(t)) {
1110 			/*
1111 			 * Drop the thread lock before waiting and reacquire it
1112 			 * afterwards, so the thread can change its t_state
1113 			 * field.
1114 			 */
1115 			thread_unlock(t);
1116 
1117 			/*
1118 			 * Check if aborted by exitlwps().
1119 			 */
1120 			if (p->p_flag & SEXITLWPS)
1121 				lwp_exit();
1122 
1123 			/*
1124 			 * Cooperate with jobcontrol signals and /proc stopping
1125 			 * by calling cv_wait_sig() to wait for the target
1126 			 * lwp to stop.  Just using cv_wait() can lead to
1127 			 * deadlock because, if some other lwp has stopped
1128 			 * by either of these mechanisms, then p_lwprcnt will
1129 			 * never become zero if we do a cv_wait().
1130 			 */
1131 			if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1132 				return (EINTR);
1133 
1134 			/*
1135 			 * Check to see if thread died while we were
1136 			 * waiting for it to suspend.
1137 			 */
1138 			if (idtot(p, tid) == NULL)
1139 				return (ESRCH);
1140 
1141 			thread_lock(t);
1142 			/*
1143 			 * If the TP_HOLDLWP flag went away, lwp_continue()
1144 			 * or vfork() must have been called while we were
1145 			 * waiting, so start over again.
1146 			 */
1147 			if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1148 				thread_unlock(t);
1149 				goto top;
1150 			}
1151 		}
1152 		thread_unlock(t);
1153 	}
1154 	return (0);
1155 }
1156 
1157 /*
1158  * continue a lwp that's been stopped by lwp_suspend().
1159  */
1160 void
1161 lwp_continue(kthread_t *t)
1162 {
1163 	proc_t *p = ttoproc(t);
1164 	int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1165 
1166 	ASSERT(MUTEX_HELD(&p->p_lock));
1167 
1168 	t->t_proc_flag &= ~TP_HOLDLWP;
1169 	thread_lock(t);
1170 	if (SUSPENDED(t) &&
1171 	    !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1172 		p->p_lwprcnt++;
1173 		t->t_schedflag |= TS_CSTART;
1174 		setrun_locked(t);
1175 	}
1176 	thread_unlock(t);
1177 	/*
1178 	 * Wakeup anyone waiting for this thread to be suspended
1179 	 */
1180 	if (was_suspended)
1181 		cv_broadcast(&p->p_holdlwps);
1182 }
1183 
1184 /*
1185  * ********************************
1186  *  Miscellaneous lwp routines	  *
1187  * ********************************
1188  */
1189 /*
1190  * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1191  * This will cause the process's lwps to stop at a hold point.  A hold
1192  * point is where a kernel thread has a flat stack.  This is at the
1193  * return from a system call and at the return from a user level trap.
1194  *
1195  * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1196  * SHOLDFORK1.  This will cause the process's lwps to stop at a modified
1197  * hold point.  The lwps in the process are not being cloned, so they
1198  * are held at the usual hold points and also within issig_forreal().
1199  * This has the side-effect that their system calls do not return
1200  * showing EINTR.
1201  *
1202  * An lwp can also be held.  This is identified by the TP_HOLDLWP flag on
1203  * the thread.  The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1204  * lwp is waiting for the target lwp to be stopped.
1205  */
1206 void
1207 holdlwp(void)
1208 {
1209 	proc_t *p = curproc;
1210 	kthread_t *t = curthread;
1211 
1212 	mutex_enter(&p->p_lock);
1213 	/*
1214 	 * Don't terminate immediately if the process is dumping core.
1215 	 * Once the process has dumped core, all lwps are terminated.
1216 	 */
1217 	if (!(p->p_flag & SCOREDUMP)) {
1218 		if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1219 			lwp_exit();
1220 	}
1221 	if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1222 		mutex_exit(&p->p_lock);
1223 		return;
1224 	}
1225 	/*
1226 	 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1227 	 * when p->p_lwprcnt becomes zero.
1228 	 */
1229 	stop(PR_SUSPENDED, SUSPEND_NORMAL);
1230 	if (p->p_flag & SEXITLWPS)
1231 		lwp_exit();
1232 	mutex_exit(&p->p_lock);
1233 }
1234 
1235 /*
1236  * Have all lwps within the process hold at a point where they are
1237  * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1238  */
1239 int
1240 holdlwps(int holdflag)
1241 {
1242 	proc_t *p = curproc;
1243 
1244 	ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1245 	mutex_enter(&p->p_lock);
1246 	schedctl_finish_sigblock(curthread);
1247 again:
1248 	while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1249 		/*
1250 		 * If another lwp is doing a forkall() or proc_exit(), bail out.
1251 		 */
1252 		if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1253 			mutex_exit(&p->p_lock);
1254 			return (0);
1255 		}
1256 		/*
1257 		 * Another lwp is doing a fork1() or is undergoing
1258 		 * watchpoint activity.  We hold here for it to complete.
1259 		 */
1260 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1261 	}
1262 	p->p_flag |= holdflag;
1263 	pokelwps(p);
1264 	--p->p_lwprcnt;
1265 	/*
1266 	 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1267 	 */
1268 	while (p->p_lwprcnt > 0) {
1269 		/*
1270 		 * Check if aborted by exitlwps().
1271 		 * Also check if SHOLDWATCH is set; it takes precedence.
1272 		 */
1273 		if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1274 			p->p_lwprcnt++;
1275 			p->p_flag &= ~holdflag;
1276 			cv_broadcast(&p->p_holdlwps);
1277 			goto again;
1278 		}
1279 		/*
1280 		 * Cooperate with jobcontrol signals and /proc stopping.
1281 		 * If some other lwp has stopped by either of these
1282 		 * mechanisms, then p_lwprcnt will never become zero
1283 		 * and the process will appear deadlocked unless we
1284 		 * stop here in sympathy with the other lwp before
1285 		 * doing the cv_wait() below.
1286 		 *
1287 		 * If the other lwp stops after we do the cv_wait(), it
1288 		 * will wake us up to loop around and do the sympathy stop.
1289 		 *
1290 		 * Since stop() drops p->p_lock, we must start from
1291 		 * the top again on returning from stop().
1292 		 */
1293 		if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1294 			int whystop = p->p_stopsig? PR_JOBCONTROL :
1295 			    PR_REQUESTED;
1296 			p->p_lwprcnt++;
1297 			p->p_flag &= ~holdflag;
1298 			stop(whystop, p->p_stopsig);
1299 			goto again;
1300 		}
1301 		cv_wait(&p->p_holdlwps, &p->p_lock);
1302 	}
1303 	p->p_lwprcnt++;
1304 	p->p_flag &= ~holdflag;
1305 	mutex_exit(&p->p_lock);
1306 	return (1);
1307 }
1308 
1309 /*
1310  * See comments for holdwatch(), below.
1311  */
1312 static int
1313 holdcheck(int clearflags)
1314 {
1315 	proc_t *p = curproc;
1316 
1317 	/*
1318 	 * If we are trying to exit, that takes precedence over anything else.
1319 	 */
1320 	if (p->p_flag & SEXITLWPS) {
1321 		p->p_lwprcnt++;
1322 		p->p_flag &= ~clearflags;
1323 		lwp_exit();
1324 	}
1325 
1326 	/*
1327 	 * If another thread is calling fork1(), stop the current thread so the
1328 	 * other can complete.
1329 	 */
1330 	if (p->p_flag & SHOLDFORK1) {
1331 		p->p_lwprcnt++;
1332 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1333 		if (p->p_flag & SEXITLWPS) {
1334 			p->p_flag &= ~clearflags;
1335 			lwp_exit();
1336 		}
1337 		return (-1);
1338 	}
1339 
1340 	/*
1341 	 * If another thread is calling fork(), then indicate we are doing
1342 	 * watchpoint activity.  This will cause holdlwps() above to stop the
1343 	 * forking thread, at which point we can continue with watchpoint
1344 	 * activity.
1345 	 */
1346 	if (p->p_flag & SHOLDFORK) {
1347 		p->p_lwprcnt++;
1348 		while (p->p_flag & SHOLDFORK) {
1349 			p->p_flag |= SHOLDWATCH;
1350 			cv_broadcast(&p->p_holdlwps);
1351 			cv_wait(&p->p_holdlwps, &p->p_lock);
1352 			p->p_flag &= ~SHOLDWATCH;
1353 		}
1354 		return (-1);
1355 	}
1356 
1357 	return (0);
1358 }
1359 
1360 /*
1361  * Stop all lwps within the process, holding themselves in the kernel while the
1362  * active lwp undergoes watchpoint activity.  This is more complicated than
1363  * expected because stop() relies on calling holdwatch() in order to copyin data
1364  * from the user's address space.  A double barrier is used to prevent an
1365  * infinite loop.
1366  *
1367  * 	o The first thread into holdwatch() is the 'master' thread and does
1368  *        the following:
1369  *
1370  *              - Sets SHOLDWATCH on the current process
1371  *              - Sets TP_WATCHSTOP on the current thread
1372  *              - Waits for all threads to be either stopped or have
1373  *                TP_WATCHSTOP set.
1374  *              - Sets the SWATCHOK flag on the process
1375  *              - Unsets TP_WATCHSTOP
1376  *              - Waits for the other threads to completely stop
1377  *              - Unsets SWATCHOK
1378  *
1379  * 	o If SHOLDWATCH is already set when we enter this function, then another
1380  *        thread is already trying to stop this thread.  This 'slave' thread
1381  *        does the following:
1382  *
1383  *              - Sets TP_WATCHSTOP on the current thread
1384  *              - Waits for SWATCHOK flag to be set
1385  *              - Calls stop()
1386  *
1387  * 	o If SWATCHOK is set on the process, then this function immediately
1388  *        returns, as we must have been called via stop().
1389  *
1390  * In addition, there are other flags that take precedence over SHOLDWATCH:
1391  *
1392  * 	o If SEXITLWPS is set, exit immediately.
1393  *
1394  * 	o If SHOLDFORK1 is set, wait for fork1() to complete.
1395  *
1396  * 	o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1397  *        case, set SHOLDWATCH, signalling the forking thread to stop first.
1398  *
1399  * 	o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1400  *        stop the current thread.
1401  *
1402  * Returns 0 if all threads have been quiesced.  Returns non-zero if not all
1403  * threads were stopped, or the list of watched pages has changed.
1404  */
1405 int
1406 holdwatch(void)
1407 {
1408 	proc_t *p = curproc;
1409 	kthread_t *t = curthread;
1410 	int ret = 0;
1411 
1412 	mutex_enter(&p->p_lock);
1413 
1414 	p->p_lwprcnt--;
1415 
1416 	/*
1417 	 * Check for bail-out conditions as outlined above.
1418 	 */
1419 	if (holdcheck(0) != 0) {
1420 		mutex_exit(&p->p_lock);
1421 		return (-1);
1422 	}
1423 
1424 	if (!(p->p_flag & SHOLDWATCH)) {
1425 		/*
1426 		 * We are the master watchpoint thread.  Set SHOLDWATCH and poke
1427 		 * the other threads.
1428 		 */
1429 		p->p_flag |= SHOLDWATCH;
1430 		pokelwps(p);
1431 
1432 		/*
1433 		 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1434 		 */
1435 		while (pr_allstopped(p, 1) > 0) {
1436 			if (holdcheck(SHOLDWATCH) != 0) {
1437 				p->p_flag &= ~SHOLDWATCH;
1438 				mutex_exit(&p->p_lock);
1439 				return (-1);
1440 			}
1441 
1442 			cv_wait(&p->p_holdlwps, &p->p_lock);
1443 		}
1444 
1445 		/*
1446 		 * All threads are now stopped or in the process of stopping.
1447 		 * Set SWATCHOK and let them stop completely.
1448 		 */
1449 		p->p_flag |= SWATCHOK;
1450 		t->t_proc_flag &= ~TP_WATCHSTOP;
1451 		cv_broadcast(&p->p_holdlwps);
1452 
1453 		while (pr_allstopped(p, 0) > 0) {
1454 			/*
1455 			 * At first glance, it may appear that we don't need a
1456 			 * call to holdcheck() here.  But if the process gets a
1457 			 * SIGKILL signal, one of our stopped threads may have
1458 			 * been awakened and is waiting in exitlwps(), which
1459 			 * takes precedence over watchpoints.
1460 			 */
1461 			if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1462 				p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1463 				mutex_exit(&p->p_lock);
1464 				return (-1);
1465 			}
1466 
1467 			cv_wait(&p->p_holdlwps, &p->p_lock);
1468 		}
1469 
1470 		/*
1471 		 * All threads are now completely stopped.
1472 		 */
1473 		p->p_flag &= ~SWATCHOK;
1474 		p->p_flag &= ~SHOLDWATCH;
1475 		p->p_lwprcnt++;
1476 
1477 	} else if (!(p->p_flag & SWATCHOK)) {
1478 
1479 		/*
1480 		 * SHOLDWATCH is set, so another thread is trying to do
1481 		 * watchpoint activity.  Indicate this thread is stopping, and
1482 		 * wait for the OK from the master thread.
1483 		 */
1484 		t->t_proc_flag |= TP_WATCHSTOP;
1485 		cv_broadcast(&p->p_holdlwps);
1486 
1487 		while (!(p->p_flag & SWATCHOK)) {
1488 			if (holdcheck(0) != 0) {
1489 				t->t_proc_flag &= ~TP_WATCHSTOP;
1490 				mutex_exit(&p->p_lock);
1491 				return (-1);
1492 			}
1493 
1494 			cv_wait(&p->p_holdlwps, &p->p_lock);
1495 		}
1496 
1497 		/*
1498 		 * Once the master thread has given the OK, this thread can
1499 		 * actually call stop().
1500 		 */
1501 		t->t_proc_flag &= ~TP_WATCHSTOP;
1502 		p->p_lwprcnt++;
1503 
1504 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1505 
1506 		/*
1507 		 * It's not OK to do watchpoint activity, notify caller to
1508 		 * retry.
1509 		 */
1510 		ret = -1;
1511 
1512 	} else {
1513 
1514 		/*
1515 		 * The only way we can hit the case where SHOLDWATCH is set and
1516 		 * SWATCHOK is set is if we are triggering this from within a
1517 		 * stop() call.  Assert that this is the case.
1518 		 */
1519 
1520 		ASSERT(t->t_proc_flag & TP_STOPPING);
1521 		p->p_lwprcnt++;
1522 	}
1523 
1524 	mutex_exit(&p->p_lock);
1525 
1526 	return (ret);
1527 }
1528 
1529 /*
1530  * force all interruptible lwps to trap into the kernel.
1531  */
1532 void
1533 pokelwps(proc_t *p)
1534 {
1535 	kthread_t *t;
1536 
1537 	ASSERT(MUTEX_HELD(&p->p_lock));
1538 
1539 	t = p->p_tlist;
1540 	do {
1541 		if (t == curthread)
1542 			continue;
1543 		thread_lock(t);
1544 		aston(t);	/* make thread trap or do post_syscall */
1545 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1546 			setrun_locked(t);
1547 		} else if (t->t_state == TS_STOPPED) {
1548 			/*
1549 			 * Ensure that proc_exit() is not blocked by lwps
1550 			 * that were stopped via jobcontrol or /proc.
1551 			 */
1552 			if (p->p_flag & SEXITLWPS) {
1553 				p->p_stopsig = 0;
1554 				t->t_schedflag |= (TS_XSTART | TS_PSTART);
1555 				setrun_locked(t);
1556 			}
1557 			/*
1558 			 * If we are holding lwps for a forkall(),
1559 			 * force lwps that have been suspended via
1560 			 * lwp_suspend() and are suspended inside
1561 			 * of a system call to proceed to their
1562 			 * holdlwp() points where they are clonable.
1563 			 */
1564 			if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1565 				if ((t->t_schedflag & TS_CSTART) == 0) {
1566 					p->p_lwprcnt++;
1567 					t->t_schedflag |= TS_CSTART;
1568 					setrun_locked(t);
1569 				}
1570 			}
1571 		} else if (t->t_state == TS_ONPROC) {
1572 			if (t->t_cpu != CPU)
1573 				poke_cpu(t->t_cpu->cpu_id);
1574 		}
1575 		thread_unlock(t);
1576 	} while ((t = t->t_forw) != p->p_tlist);
1577 }
1578 
1579 /*
1580  * undo the effects of holdlwps() or holdwatch().
1581  */
1582 void
1583 continuelwps(proc_t *p)
1584 {
1585 	kthread_t *t;
1586 
1587 	/*
1588 	 * If this flag is set, then the original holdwatch() didn't actually
1589 	 * stop the process.  See comments for holdwatch().
1590 	 */
1591 	if (p->p_flag & SWATCHOK) {
1592 		ASSERT(curthread->t_proc_flag & TP_STOPPING);
1593 		return;
1594 	}
1595 
1596 	ASSERT(MUTEX_HELD(&p->p_lock));
1597 	ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1598 
1599 	t = p->p_tlist;
1600 	do {
1601 		thread_lock(t);		/* SUSPENDED looks at t_schedflag */
1602 		if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1603 			p->p_lwprcnt++;
1604 			t->t_schedflag |= TS_CSTART;
1605 			setrun_locked(t);
1606 		}
1607 		thread_unlock(t);
1608 	} while ((t = t->t_forw) != p->p_tlist);
1609 }
1610 
1611 /*
1612  * Force all other LWPs in the current process other than the caller to exit,
1613  * and then cv_wait() on p_holdlwps for them to exit.  The exitlwps() function
1614  * is typically used in these situations:
1615  *
1616  *   (a) prior to an exec() system call
1617  *   (b) prior to dumping a core file
1618  *   (c) prior to a uadmin() shutdown
1619  *
1620  * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1621  * Multiple threads in the process can call this function at one time by
1622  * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1623  * to declare one particular thread the winner who gets to kill the others.
1624  * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1625  * appropriate errno value is returned to caller for its system call to return.
1626  */
1627 int
1628 exitlwps(int coredump)
1629 {
1630 	proc_t *p = curproc;
1631 	int heldcnt;
1632 
1633 	if (curthread->t_door)
1634 		door_slam();
1635 	if (p->p_door_list)
1636 		door_revoke_all();
1637 	if (curthread->t_schedctl != NULL)
1638 		schedctl_lwp_cleanup(curthread);
1639 
1640 	/*
1641 	 * Ensure that before starting to wait for other lwps to exit,
1642 	 * cleanup all upimutexes held by curthread. Otherwise, some other
1643 	 * lwp could be waiting (uninterruptibly) for a upimutex held by
1644 	 * curthread, and the call to pokelwps() below would deadlock.
1645 	 * Even if a blocked upimutex_lock is made interruptible,
1646 	 * curthread's upimutexes need to be unlocked: do it here.
1647 	 */
1648 	if (curthread->t_upimutex != NULL)
1649 		upimutex_cleanup();
1650 
1651 	/*
1652 	 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1653 	 * We must also block any further /proc access from this point forward.
1654 	 */
1655 	mutex_enter(&p->p_lock);
1656 	prbarrier(p);
1657 
1658 	if (p->p_flag & SEXITLWPS) {
1659 		mutex_exit(&p->p_lock);
1660 		aston(curthread);	/* force a trip through post_syscall */
1661 		return (set_errno(EINTR));
1662 	}
1663 
1664 	p->p_flag |= SEXITLWPS;
1665 	if (coredump)		/* tell other lwps to stop, not exit */
1666 		p->p_flag |= SCOREDUMP;
1667 
1668 	/*
1669 	 * Give precedence to exitlwps() if a holdlwps() is
1670 	 * in progress. The lwp doing the holdlwps() operation
1671 	 * is aborted when it is awakened.
1672 	 */
1673 	while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1674 		cv_broadcast(&p->p_holdlwps);
1675 		cv_wait(&p->p_holdlwps, &p->p_lock);
1676 		prbarrier(p);
1677 	}
1678 	p->p_flag |= SHOLDFORK;
1679 	pokelwps(p);
1680 
1681 	/*
1682 	 * Wait for process to become quiescent.
1683 	 */
1684 	--p->p_lwprcnt;
1685 	while (p->p_lwprcnt > 0) {
1686 		cv_wait(&p->p_holdlwps, &p->p_lock);
1687 		prbarrier(p);
1688 	}
1689 	p->p_lwprcnt++;
1690 	ASSERT(p->p_lwprcnt == 1);
1691 
1692 	/*
1693 	 * The SCOREDUMP flag puts the process into a quiescent
1694 	 * state.  The process's lwps remain attached to this
1695 	 * process until exitlwps() is called again without the
1696 	 * 'coredump' flag set, then the lwps are terminated
1697 	 * and the process can exit.
1698 	 */
1699 	if (coredump) {
1700 		p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1701 		goto out;
1702 	}
1703 
1704 	/*
1705 	 * Determine if there are any lwps left dangling in
1706 	 * the stopped state.  This happens when exitlwps()
1707 	 * aborts a holdlwps() operation.
1708 	 */
1709 	p->p_flag &= ~SHOLDFORK;
1710 	if ((heldcnt = p->p_lwpcnt) > 1) {
1711 		kthread_t *t;
1712 		for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1713 			t->t_proc_flag &= ~TP_TWAIT;
1714 			lwp_continue(t);
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Wait for all other lwps to exit.
1720 	 */
1721 	--p->p_lwprcnt;
1722 	while (p->p_lwpcnt > 1) {
1723 		cv_wait(&p->p_holdlwps, &p->p_lock);
1724 		prbarrier(p);
1725 	}
1726 	++p->p_lwprcnt;
1727 	ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1728 
1729 	p->p_flag &= ~SEXITLWPS;
1730 	curthread->t_proc_flag &= ~TP_TWAIT;
1731 
1732 out:
1733 	if (!coredump && p->p_zombcnt) {	/* cleanup the zombie lwps */
1734 		lwpdir_t *ldp;
1735 		lwpent_t *lep;
1736 		int i;
1737 
1738 		for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1739 			lep = ldp->ld_entry;
1740 			if (lep != NULL && lep->le_thread != curthread) {
1741 				ASSERT(lep->le_thread == NULL);
1742 				p->p_zombcnt--;
1743 				lwp_hash_out(p, lep->le_lwpid);
1744 			}
1745 		}
1746 		ASSERT(p->p_zombcnt == 0);
1747 	}
1748 
1749 	/*
1750 	 * If some other LWP in the process wanted us to suspend ourself,
1751 	 * then we will not do it.  The other LWP is now terminated and
1752 	 * no one will ever continue us again if we suspend ourself.
1753 	 */
1754 	curthread->t_proc_flag &= ~TP_HOLDLWP;
1755 	p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1756 	mutex_exit(&p->p_lock);
1757 	return (0);
1758 }
1759 
1760 /*
1761  * duplicate a lwp.
1762  */
1763 klwp_t *
1764 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1765 {
1766 	klwp_t *clwp;
1767 	void *tregs, *tfpu;
1768 	kthread_t *t = lwptot(lwp);
1769 	kthread_t *ct;
1770 	proc_t *p = lwptoproc(lwp);
1771 	int cid;
1772 	void *bufp;
1773 	void *brand_data;
1774 	int val;
1775 
1776 	ASSERT(p == curproc);
1777 	ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1778 
1779 #if defined(__sparc)
1780 	if (t == curthread)
1781 		(void) flush_user_windows_to_stack(NULL);
1782 #endif
1783 
1784 	if (t == curthread)
1785 		/* copy args out of registers first */
1786 		(void) save_syscall_args();
1787 
1788 	clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1789 	    NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1790 	if (clwp == NULL)
1791 		return (NULL);
1792 
1793 	/*
1794 	 * most of the parent's lwp can be copied to its duplicate,
1795 	 * except for the fields that are unique to each lwp, like
1796 	 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1797 	 */
1798 	ct = clwp->lwp_thread;
1799 	tregs = clwp->lwp_regs;
1800 	tfpu = clwp->lwp_fpu;
1801 	brand_data = clwp->lwp_brand;
1802 
1803 	/*
1804 	 * Copy parent lwp to child lwp.  Hold child's p_lock to prevent
1805 	 * mstate_aggr_state() from reading stale mstate entries copied
1806 	 * from lwp to clwp.
1807 	 */
1808 	mutex_enter(&cp->p_lock);
1809 	*clwp = *lwp;
1810 
1811 	/* clear microstate and resource usage data in new lwp */
1812 	init_mstate(ct, LMS_STOPPED);
1813 	bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1814 	mutex_exit(&cp->p_lock);
1815 
1816 	/* fix up child's lwp */
1817 
1818 	clwp->lwp_pcb.pcb_flags = 0;
1819 #if defined(__sparc)
1820 	clwp->lwp_pcb.pcb_step = STEP_NONE;
1821 #endif
1822 	clwp->lwp_cursig = 0;
1823 	clwp->lwp_extsig = 0;
1824 	clwp->lwp_curinfo = (struct sigqueue *)0;
1825 	clwp->lwp_thread = ct;
1826 	ct->t_sysnum = t->t_sysnum;
1827 	clwp->lwp_regs = tregs;
1828 	clwp->lwp_fpu = tfpu;
1829 	clwp->lwp_brand = brand_data;
1830 	clwp->lwp_ap = clwp->lwp_arg;
1831 	clwp->lwp_procp = cp;
1832 	bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1833 	clwp->lwp_lastfault = 0;
1834 	clwp->lwp_lastfaddr = 0;
1835 
1836 	/* copy parent's struct regs to child. */
1837 	lwp_forkregs(lwp, clwp);
1838 
1839 	/*
1840 	 * Fork thread context ops, if any.
1841 	 */
1842 	if (t->t_ctx)
1843 		forkctx(t, ct);
1844 
1845 	/* fix door state in the child */
1846 	if (t->t_door)
1847 		door_fork(t, ct);
1848 
1849 	/* copy current contract templates, clear latest contracts */
1850 	lwp_ctmpl_copy(clwp, lwp);
1851 
1852 	mutex_enter(&cp->p_lock);
1853 	/* lwp_create() set the TP_HOLDLWP flag */
1854 	if (!(t->t_proc_flag & TP_HOLDLWP))
1855 		ct->t_proc_flag &= ~TP_HOLDLWP;
1856 	if (cp->p_flag & SMSACCT)
1857 		ct->t_proc_flag |= TP_MSACCT;
1858 	mutex_exit(&cp->p_lock);
1859 
1860 	/* Allow brand to propagate brand-specific state */
1861 	if (PROC_IS_BRANDED(p))
1862 		BROP(p)->b_forklwp(lwp, clwp);
1863 
1864 retry:
1865 	cid = t->t_cid;
1866 
1867 	val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1868 	ASSERT(val == 0);
1869 
1870 	mutex_enter(&p->p_lock);
1871 	if (cid != t->t_cid) {
1872 		/*
1873 		 * Someone just changed this thread's scheduling class,
1874 		 * so try pre-allocating the buffer again.  Hopefully we
1875 		 * don't hit this often.
1876 		 */
1877 		mutex_exit(&p->p_lock);
1878 		CL_FREE(cid, bufp);
1879 		goto retry;
1880 	}
1881 
1882 	ct->t_unpark = t->t_unpark;
1883 	ct->t_clfuncs = t->t_clfuncs;
1884 	CL_FORK(t, ct, bufp);
1885 	ct->t_cid = t->t_cid;	/* after data allocated so prgetpsinfo works */
1886 	mutex_exit(&p->p_lock);
1887 
1888 	return (clwp);
1889 }
1890 
1891 /*
1892  * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1893  */
1894 void
1895 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1896     int do_lock)
1897 {
1898 	tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1899 	lwpdir_t **ldpp;
1900 	lwpdir_t *ldp;
1901 	kthread_t *t;
1902 
1903 	/*
1904 	 * Allocate a directory element from the free list.
1905 	 * Code elsewhere guarantees a free slot.
1906 	 */
1907 	ldp = p->p_lwpfree;
1908 	p->p_lwpfree = ldp->ld_next;
1909 	ASSERT(ldp->ld_entry == NULL);
1910 	ldp->ld_entry = lep;
1911 
1912 	if (do_lock)
1913 		mutex_enter(&thp->th_lock);
1914 
1915 	/*
1916 	 * Insert it into the lwpid hash table.
1917 	 */
1918 	ldpp = &thp->th_list;
1919 	ldp->ld_next = *ldpp;
1920 	*ldpp = ldp;
1921 
1922 	/*
1923 	 * Set the active thread's directory slot entry.
1924 	 */
1925 	if ((t = lep->le_thread) != NULL) {
1926 		ASSERT(lep->le_lwpid == t->t_tid);
1927 		t->t_dslot = (int)(ldp - p->p_lwpdir);
1928 	}
1929 
1930 	if (do_lock)
1931 		mutex_exit(&thp->th_lock);
1932 }
1933 
1934 /*
1935  * Remove an lwp from the lwpid hash table and free its directory entry.
1936  * This is done when a detached lwp exits in lwp_exit() or
1937  * when a non-detached lwp is waited for in lwp_wait() or
1938  * when a zombie lwp is detached in lwp_detach().
1939  */
1940 void
1941 lwp_hash_out(proc_t *p, id_t lwpid)
1942 {
1943 	tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1944 	lwpdir_t **ldpp;
1945 	lwpdir_t *ldp;
1946 	lwpent_t *lep;
1947 
1948 	mutex_enter(&thp->th_lock);
1949 	for (ldpp = &thp->th_list;
1950 	    (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
1951 		lep = ldp->ld_entry;
1952 		if (lep->le_lwpid == lwpid) {
1953 			prlwpfree(p, lep);	/* /proc deals with le_trace */
1954 			*ldpp = ldp->ld_next;
1955 			ldp->ld_entry = NULL;
1956 			ldp->ld_next = p->p_lwpfree;
1957 			p->p_lwpfree = ldp;
1958 			kmem_free(lep, sizeof (*lep));
1959 			break;
1960 		}
1961 	}
1962 	mutex_exit(&thp->th_lock);
1963 }
1964 
1965 /*
1966  * Lookup an lwp in the lwpid hash table by lwpid.
1967  */
1968 lwpdir_t *
1969 lwp_hash_lookup(proc_t *p, id_t lwpid)
1970 {
1971 	tidhash_t *thp;
1972 	lwpdir_t *ldp;
1973 
1974 	/*
1975 	 * The process may be exiting, after p_tidhash has been set to NULL in
1976 	 * proc_exit() but before prfee() has been called.  Return failure in
1977 	 * this case.
1978 	 */
1979 	if (p->p_tidhash == NULL)
1980 		return (NULL);
1981 
1982 	thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1983 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1984 		if (ldp->ld_entry->le_lwpid == lwpid)
1985 			return (ldp);
1986 	}
1987 
1988 	return (NULL);
1989 }
1990 
1991 /*
1992  * Same as lwp_hash_lookup(), but acquire and return
1993  * the tid hash table entry lock on success.
1994  */
1995 lwpdir_t *
1996 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
1997 {
1998 	tidhash_t *tidhash;
1999 	uint_t tidhash_sz;
2000 	tidhash_t *thp;
2001 	lwpdir_t *ldp;
2002 
2003 top:
2004 	tidhash_sz = p->p_tidhash_sz;
2005 	membar_consumer();
2006 	if ((tidhash = p->p_tidhash) == NULL)
2007 		return (NULL);
2008 
2009 	thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
2010 	mutex_enter(&thp->th_lock);
2011 
2012 	/*
2013 	 * Since we are not holding p->p_lock, the tid hash table
2014 	 * may have changed.  If so, start over.  If not, then
2015 	 * it cannot change until after we drop &thp->th_lock;
2016 	 */
2017 	if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
2018 		mutex_exit(&thp->th_lock);
2019 		goto top;
2020 	}
2021 
2022 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2023 		if (ldp->ld_entry->le_lwpid == lwpid) {
2024 			*mpp = &thp->th_lock;
2025 			return (ldp);
2026 		}
2027 	}
2028 
2029 	mutex_exit(&thp->th_lock);
2030 	return (NULL);
2031 }
2032 
2033 /*
2034  * Update the indicated LWP usage statistic for the current LWP.
2035  */
2036 void
2037 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
2038 {
2039 	klwp_t *lwp = ttolwp(curthread);
2040 
2041 	if (lwp == NULL)
2042 		return;
2043 
2044 	switch (lwp_stat_id) {
2045 	case LWP_STAT_INBLK:
2046 		lwp->lwp_ru.inblock += inc;
2047 		break;
2048 	case LWP_STAT_OUBLK:
2049 		lwp->lwp_ru.oublock += inc;
2050 		break;
2051 	case LWP_STAT_MSGRCV:
2052 		lwp->lwp_ru.msgrcv += inc;
2053 		break;
2054 	case LWP_STAT_MSGSND:
2055 		lwp->lwp_ru.msgsnd += inc;
2056 		break;
2057 	default:
2058 		panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
2059 	}
2060 }
2061