1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 #include <sys/brand.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 65 /* 66 * Create a thread that appears to be stopped at sys_rtt. 67 */ 68 klwp_t * 69 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 70 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 71 { 72 klwp_t *lwp = NULL; 73 kthread_t *t; 74 kthread_t *tx; 75 cpupart_t *oldpart = NULL; 76 size_t stksize; 77 caddr_t lwpdata = NULL; 78 processorid_t binding; 79 int err = 0; 80 kproject_t *oldkpj, *newkpj; 81 void *bufp = NULL; 82 klwp_t *curlwp = ttolwp(curthread); 83 lwpent_t *lep; 84 lwpdir_t *old_dir = NULL; 85 uint_t old_dirsz = 0; 86 lwpdir_t **old_hash = NULL; 87 uint_t old_hashsz = 0; 88 int i; 89 int rctlfail = 0; 90 boolean_t branded = 0; 91 92 mutex_enter(&p->p_lock); 93 mutex_enter(&p->p_zone->zone_nlwps_lock); 94 /* 95 * don't enforce rctl limits on system processes 96 */ 97 if (cid != syscid) { 98 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 99 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 100 1, 0) & RCT_DENY) 101 rctlfail = 1; 102 if (p->p_task->tk_proj->kpj_nlwps >= 103 p->p_task->tk_proj->kpj_nlwps_ctl) 104 if (rctl_test(rc_project_nlwps, 105 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 106 & RCT_DENY) 107 rctlfail = 1; 108 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 109 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 110 1, 0) & RCT_DENY) 111 rctlfail = 1; 112 } 113 if (rctlfail) { 114 mutex_exit(&p->p_zone->zone_nlwps_lock); 115 mutex_exit(&p->p_lock); 116 return (NULL); 117 } 118 p->p_task->tk_nlwps++; 119 p->p_task->tk_proj->kpj_nlwps++; 120 p->p_zone->zone_nlwps++; 121 mutex_exit(&p->p_zone->zone_nlwps_lock); 122 mutex_exit(&p->p_lock); 123 124 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 125 stksize = lwp_default_stksize; 126 127 /* 128 * Try to reclaim a <lwp,stack> from 'deathrow' 129 */ 130 if (stksize == lwp_default_stksize) { 131 if (lwp_reapcnt > 0) { 132 mutex_enter(&reaplock); 133 if ((t = lwp_deathrow) != NULL) { 134 ASSERT(t->t_swap); 135 lwp_deathrow = t->t_forw; 136 lwp_reapcnt--; 137 lwpdata = t->t_swap; 138 lwp = t->t_lwp; 139 } 140 mutex_exit(&reaplock); 141 if (t) { 142 t->t_swap = NULL; 143 lwp_stk_fini(t->t_lwp); 144 t->t_lwp = NULL; 145 t->t_forw = NULL; 146 thread_free(t); 147 } 148 } 149 if (lwpdata == NULL && 150 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 151 mutex_enter(&p->p_lock); 152 mutex_enter(&p->p_zone->zone_nlwps_lock); 153 p->p_task->tk_nlwps--; 154 p->p_task->tk_proj->kpj_nlwps--; 155 p->p_zone->zone_nlwps--; 156 mutex_exit(&p->p_zone->zone_nlwps_lock); 157 mutex_exit(&p->p_lock); 158 return (NULL); 159 } 160 } else { 161 stksize = roundup(stksize, PAGESIZE); 162 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 163 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 164 mutex_enter(&p->p_lock); 165 mutex_enter(&p->p_zone->zone_nlwps_lock); 166 p->p_task->tk_nlwps--; 167 p->p_task->tk_proj->kpj_nlwps--; 168 p->p_zone->zone_nlwps--; 169 mutex_exit(&p->p_zone->zone_nlwps_lock); 170 mutex_exit(&p->p_lock); 171 return (NULL); 172 } 173 } 174 175 /* 176 * Create a thread, initializing the stack pointer 177 */ 178 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 179 180 t->t_swap = lwpdata; /* Start of page-able data */ 181 if (lwp == NULL) 182 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 183 bzero(lwp, sizeof (*lwp)); 184 t->t_lwp = lwp; 185 186 t->t_hold = *smask; 187 lwp->lwp_thread = t; 188 lwp->lwp_procp = p; 189 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 190 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 191 lwp->lwp_childstksz = curlwp->lwp_childstksz; 192 193 t->t_stk = lwp_stk_init(lwp, t->t_stk); 194 thread_load(t, proc, arg, len); 195 196 /* 197 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 198 */ 199 if (timerisset(&p->p_rprof_timer.it_value)) 200 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 201 202 if (cid != NOCLASS) 203 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 204 205 /* 206 * Allocate an lwp directory entry for the new lwp. 207 */ 208 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 209 210 mutex_enter(&p->p_lock); 211 grow: 212 /* 213 * Grow the lwp (thread) directory and lwpid hash table if necessary. 214 * A note on the growth algorithm: 215 * The new lwp directory size is computed as: 216 * new = 2 * old + 2 217 * Starting with an initial size of 2 (see exec_common()), 218 * this yields numbers that are a power of two minus 2: 219 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 220 * The size of the lwpid hash table must be a power of two 221 * and must be commensurate in size with the lwp directory 222 * so that hash bucket chains remain short. Therefore, 223 * the lwpid hash table size is computed as: 224 * hashsz = (dirsz + 2) / 2 225 * which leads to these hash table sizes corresponding to 226 * the above directory sizes: 227 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 228 */ 229 while (p->p_lwpfree == NULL) { 230 uint_t dirsz = p->p_lwpdir_sz; 231 uint_t new_dirsz; 232 uint_t new_hashsz; 233 lwpdir_t *new_dir; 234 lwpdir_t *ldp; 235 lwpdir_t **new_hash; 236 237 mutex_exit(&p->p_lock); 238 239 if (old_dir != NULL) { 240 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 241 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 242 old_dir = NULL; 243 old_dirsz = 0; 244 old_hash = NULL; 245 old_hashsz = 0; 246 } 247 new_dirsz = 2 * dirsz + 2; 248 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 249 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 250 ldp->ld_next = ldp + 1; 251 new_hashsz = (new_dirsz + 2) / 2; 252 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 253 KM_SLEEP); 254 255 mutex_enter(&p->p_lock); 256 if (p == curproc) 257 prbarrier(p); 258 259 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 260 /* 261 * Someone else beat us to it or some lwp exited. 262 * Set up to free our memory and take a lap. 263 */ 264 old_dir = new_dir; 265 old_dirsz = new_dirsz; 266 old_hash = new_hash; 267 old_hashsz = new_hashsz; 268 } else { 269 old_dir = p->p_lwpdir; 270 old_dirsz = p->p_lwpdir_sz; 271 old_hash = p->p_tidhash; 272 old_hashsz = p->p_tidhash_sz; 273 p->p_lwpdir = new_dir; 274 p->p_lwpfree = new_dir; 275 p->p_lwpdir_sz = new_dirsz; 276 p->p_tidhash = new_hash; 277 p->p_tidhash_sz = new_hashsz; 278 /* 279 * We simply hash in all of the old directory entries. 280 * This works because the old directory has no empty 281 * slots and the new hash table starts out empty. 282 * This reproduces the original directory ordering 283 * (required for /proc directory semantics). 284 */ 285 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 286 lwp_hash_in(p, ldp->ld_entry); 287 /* 288 * Defer freeing memory until we drop p->p_lock, 289 */ 290 } 291 } 292 293 /* 294 * Block the process against /proc while we manipulate p->p_tlist, 295 * unless lwp_create() was called by /proc for the PCAGENT operation. 296 * We want to do this early enough so that we don't drop p->p_lock 297 * until the thread is put on the p->p_tlist. 298 */ 299 if (p == curproc) { 300 prbarrier(p); 301 /* 302 * If the current lwp has been requested to stop, do so now. 303 * Otherwise we have a race condition between /proc attempting 304 * to stop the process and this thread creating a new lwp 305 * that was not seen when the /proc PCSTOP request was issued. 306 * We rely on stop() to call prbarrier(p) before returning. 307 */ 308 while ((curthread->t_proc_flag & TP_PRSTOP) && 309 !ttolwp(curthread)->lwp_nostop) 310 stop(PR_REQUESTED, 0); 311 312 /* 313 * If process is exiting, there could be a race between 314 * the agent lwp creation and the new lwp currently being 315 * created. So to prevent this race lwp creation is failed 316 * if the process is exiting. 317 */ 318 if (p->p_flag & (SEXITLWPS|SKILLED)) { 319 err = 1; 320 goto error; 321 } 322 323 /* 324 * Since we might have dropped p->p_lock, the 325 * lwp directory free list might have changed. 326 */ 327 if (p->p_lwpfree == NULL) 328 goto grow; 329 } 330 331 kpreempt_disable(); /* can't grab cpu_lock here */ 332 333 /* 334 * Inherit processor and processor set bindings from curthread, 335 * unless we're creating a new kernel process, in which case 336 * clear all bindings. 337 */ 338 if (cid == syscid) { 339 t->t_bind_cpu = binding = PBIND_NONE; 340 t->t_cpupart = oldpart = &cp_default; 341 t->t_bind_pset = PS_NONE; 342 } else { 343 binding = curthread->t_bind_cpu; 344 t->t_bind_cpu = binding; 345 oldpart = t->t_cpupart; 346 t->t_cpupart = curthread->t_cpupart; 347 t->t_bind_pset = curthread->t_bind_pset; 348 } 349 350 /* 351 * thread_create() initializes this thread's home lgroup to the root. 352 * Choose a more suitable lgroup, since this thread is associated 353 * with an lwp. 354 */ 355 ASSERT(oldpart != NULL); 356 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 357 t->t_bound_cpu = cpu[binding]; 358 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 359 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 360 } else { 361 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 362 } 363 364 kpreempt_enable(); 365 366 /* 367 * make sure lpl points to our own partition 368 */ 369 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 370 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 371 t->t_cpupart->cp_nlgrploads); 372 373 /* 374 * If we're creating a new process, then inherit the project from our 375 * parent. If we're only creating an additional lwp then use the 376 * project pointer of the target process. 377 */ 378 if (p->p_task == NULL) 379 newkpj = ttoproj(curthread); 380 else 381 newkpj = p->p_task->tk_proj; 382 383 /* 384 * It is safe to point the thread to the new project without holding it 385 * since we're holding the target process' p_lock here and therefore 386 * we're guaranteed that it will not move to another project. 387 */ 388 oldkpj = ttoproj(t); 389 if (newkpj != oldkpj) { 390 t->t_proj = newkpj; 391 (void) project_hold(newkpj); 392 project_rele(oldkpj); 393 } 394 395 if (cid != NOCLASS) { 396 /* 397 * If the lwp is being created in the current process 398 * and matches the current thread's scheduling class, 399 * we should propagate the current thread's scheduling 400 * parameters by calling CL_FORK. Otherwise just use 401 * the defaults by calling CL_ENTERCLASS. 402 */ 403 if (p != curproc || curthread->t_cid != cid) { 404 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 405 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 406 } else { 407 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 408 err = CL_FORK(curthread, t, bufp); 409 t->t_cid = cid; 410 } 411 if (err) 412 goto error; 413 else 414 bufp = NULL; 415 } 416 417 /* 418 * If we were given an lwpid then use it, else allocate one. 419 */ 420 if (lwpid != 0) 421 t->t_tid = lwpid; 422 else { 423 /* 424 * lwp/thread id 0 is never valid; reserved for special checks. 425 * lwp/thread id 1 is reserved for the main thread. 426 * Start again at 2 when INT_MAX has been reached 427 * (id_t is a signed 32-bit integer). 428 */ 429 id_t prev_id = p->p_lwpid; /* last allocated tid */ 430 431 do { /* avoid lwpid duplication */ 432 if (p->p_lwpid == INT_MAX) { 433 p->p_flag |= SLWPWRAP; 434 p->p_lwpid = 1; 435 } 436 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 437 /* 438 * All lwpids are allocated; fail the request. 439 */ 440 err = 1; 441 goto error; 442 } 443 /* 444 * We only need to worry about colliding with an id 445 * that's already in use if this process has 446 * cycled through all available lwp ids. 447 */ 448 if ((p->p_flag & SLWPWRAP) == 0) 449 break; 450 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 451 } 452 453 /* 454 * If this is a branded process, let the brand do any necessary lwp 455 * initialization. 456 */ 457 if (PROC_IS_BRANDED(p)) { 458 if (BROP(p)->b_initlwp(lwp)) { 459 err = 1; 460 goto error; 461 } 462 branded = 1; 463 } 464 465 if (t->t_tid == 1) { 466 kpreempt_disable(); 467 ASSERT(t->t_lpl != NULL); 468 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 469 kpreempt_enable(); 470 if (p->p_tr_lgrpid != LGRP_NONE && 471 p->p_tr_lgrpid != p->p_t1_lgrpid) { 472 lgrp_update_trthr_migrations(1); 473 } 474 } 475 476 p->p_lwpcnt++; 477 t->t_waitfor = -1; 478 479 /* 480 * Turn microstate accounting on for thread if on for process. 481 */ 482 if (p->p_flag & SMSACCT) 483 t->t_proc_flag |= TP_MSACCT; 484 485 /* 486 * If the process has watchpoints, mark the new thread as such. 487 */ 488 if (pr_watch_active(p)) 489 watch_enable(t); 490 491 /* 492 * The lwp is being created in the stopped state. 493 * We set all the necessary flags to indicate that fact here. 494 * We omit the TS_CREATE flag from t_schedflag so that the lwp 495 * cannot be set running until the caller is finished with it, 496 * even if lwp_continue() is called on it after we drop p->p_lock. 497 * When the caller is finished with the newly-created lwp, 498 * the caller must call lwp_create_done() to allow the lwp 499 * to be set running. If the TP_HOLDLWP is left set, the 500 * lwp will suspend itself after reaching system call exit. 501 */ 502 init_mstate(t, LMS_STOPPED); 503 t->t_proc_flag |= TP_HOLDLWP; 504 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 505 t->t_whystop = PR_SUSPENDED; 506 t->t_whatstop = SUSPEND_NORMAL; 507 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 508 509 /* 510 * Set system call processing flags in case tracing or profiling 511 * is set. The first system call will evaluate these and turn 512 * them off if they aren't needed. 513 */ 514 t->t_pre_sys = 1; 515 t->t_post_sys = 1; 516 517 /* 518 * Insert the new thread into the list of all threads. 519 */ 520 if ((tx = p->p_tlist) == NULL) { 521 t->t_back = t; 522 t->t_forw = t; 523 p->p_tlist = t; 524 } else { 525 t->t_forw = tx; 526 t->t_back = tx->t_back; 527 tx->t_back->t_forw = t; 528 tx->t_back = t; 529 } 530 531 /* 532 * Insert the new lwp into an lwp directory slot position 533 * and into the lwpid hash table. 534 */ 535 lep->le_thread = t; 536 lep->le_lwpid = t->t_tid; 537 lep->le_start = t->t_start; 538 lwp_hash_in(p, lep); 539 540 if (state == TS_RUN) { 541 /* 542 * We set the new lwp running immediately. 543 */ 544 t->t_proc_flag &= ~TP_HOLDLWP; 545 lwp_create_done(t); 546 } 547 548 error: 549 if (err) { 550 /* 551 * We have failed to create an lwp, so decrement the number 552 * of lwps in the task and let the lgroup load averages know 553 * that this thread isn't going to show up. 554 */ 555 kpreempt_disable(); 556 lgrp_move_thread(t, NULL, 1); 557 kpreempt_enable(); 558 559 ASSERT(MUTEX_HELD(&p->p_lock)); 560 mutex_enter(&p->p_zone->zone_nlwps_lock); 561 p->p_task->tk_nlwps--; 562 p->p_task->tk_proj->kpj_nlwps--; 563 p->p_zone->zone_nlwps--; 564 mutex_exit(&p->p_zone->zone_nlwps_lock); 565 if (cid != NOCLASS && bufp != NULL) 566 CL_FREE(cid, bufp); 567 568 if (branded) 569 BROP(p)->b_freelwp(lwp); 570 571 mutex_exit(&p->p_lock); 572 t->t_state = TS_FREE; 573 thread_rele(t); 574 575 /* 576 * We need to remove t from the list of all threads 577 * because thread_exit()/lwp_exit() isn't called on t. 578 */ 579 mutex_enter(&pidlock); 580 ASSERT(t != t->t_next); /* t0 never exits */ 581 t->t_next->t_prev = t->t_prev; 582 t->t_prev->t_next = t->t_next; 583 mutex_exit(&pidlock); 584 585 thread_free(t); 586 kmem_free(lep, sizeof (*lep)); 587 lwp = NULL; 588 } else { 589 mutex_exit(&p->p_lock); 590 } 591 592 if (old_dir != NULL) { 593 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 594 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 595 } 596 597 DTRACE_PROC1(lwp__create, kthread_t *, t); 598 return (lwp); 599 } 600 601 /* 602 * lwp_create_done() is called by the caller of lwp_create() to set the 603 * newly-created lwp running after the caller has finished manipulating it. 604 */ 605 void 606 lwp_create_done(kthread_t *t) 607 { 608 proc_t *p = ttoproc(t); 609 610 ASSERT(MUTEX_HELD(&p->p_lock)); 611 612 /* 613 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 614 * (The absence of the TS_CREATE flag prevents the lwp from running 615 * until we are finished with it, even if lwp_continue() is called on 616 * it by some other lwp in the process or elsewhere in the kernel.) 617 */ 618 thread_lock(t); 619 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 620 /* 621 * If TS_CSTART is set, lwp_continue(t) has been called and 622 * has already incremented p_lwprcnt; avoid doing this twice. 623 */ 624 if (!(t->t_schedflag & TS_CSTART)) 625 p->p_lwprcnt++; 626 t->t_schedflag |= (TS_CSTART | TS_CREATE); 627 setrun_locked(t); 628 thread_unlock(t); 629 } 630 631 /* 632 * Copy an LWP's active templates, and clear the latest contracts. 633 */ 634 void 635 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 636 { 637 int i; 638 639 for (i = 0; i < ct_ntypes; i++) { 640 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 641 dst->lwp_ct_latest[i] = NULL; 642 } 643 } 644 645 /* 646 * Clear an LWP's contract template state. 647 */ 648 void 649 lwp_ctmpl_clear(klwp_t *lwp) 650 { 651 ct_template_t *tmpl; 652 int i; 653 654 for (i = 0; i < ct_ntypes; i++) { 655 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 656 ctmpl_free(tmpl); 657 lwp->lwp_ct_active[i] = NULL; 658 } 659 660 if (lwp->lwp_ct_latest[i] != NULL) { 661 contract_rele(lwp->lwp_ct_latest[i]); 662 lwp->lwp_ct_latest[i] = NULL; 663 } 664 } 665 } 666 667 /* 668 * Individual lwp exit. 669 * If this is the last lwp, exit the whole process. 670 */ 671 void 672 lwp_exit(void) 673 { 674 kthread_t *t = curthread; 675 klwp_t *lwp = ttolwp(t); 676 proc_t *p = ttoproc(t); 677 678 ASSERT(MUTEX_HELD(&p->p_lock)); 679 680 mutex_exit(&p->p_lock); 681 682 #if defined(__sparc) 683 /* 684 * Ensure that the user stack is fully abandoned.. 685 */ 686 trash_user_windows(); 687 #endif 688 689 tsd_exit(); /* free thread specific data */ 690 691 kcpc_passivate(); /* Clean up performance counter state */ 692 693 pollcleanup(); 694 695 if (t->t_door) 696 door_slam(); 697 698 if (t->t_schedctl != NULL) 699 schedctl_lwp_cleanup(t); 700 701 if (t->t_upimutex != NULL) 702 upimutex_cleanup(); 703 704 /* 705 * Perform any brand specific exit processing, then release any 706 * brand data associated with the lwp 707 */ 708 if (PROC_IS_BRANDED(p)) 709 BROP(p)->b_lwpexit(lwp); 710 711 mutex_enter(&p->p_lock); 712 lwp_cleanup(); 713 714 /* 715 * When this process is dumping core, its lwps are held here 716 * until the core dump is finished. Then exitlwps() is called 717 * again to release these lwps so that they can finish exiting. 718 */ 719 if (p->p_flag & SCOREDUMP) 720 stop(PR_SUSPENDED, SUSPEND_NORMAL); 721 722 /* 723 * Block the process against /proc now that we have really acquired 724 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 725 */ 726 prbarrier(p); 727 728 /* 729 * Call proc_exit() if this is the last non-daemon lwp in the process. 730 */ 731 if (!(t->t_proc_flag & TP_DAEMON) && 732 p->p_lwpcnt == p->p_lwpdaemon + 1) { 733 mutex_exit(&p->p_lock); 734 if (proc_exit(CLD_EXITED, 0) == 0) { 735 /* Restarting init. */ 736 return; 737 } 738 739 /* 740 * proc_exit() returns a non-zero value when some other 741 * lwp got there first. We just have to continue in 742 * lwp_exit(). 743 */ 744 mutex_enter(&p->p_lock); 745 ASSERT(curproc->p_flag & SEXITLWPS); 746 prbarrier(p); 747 } 748 749 DTRACE_PROC(lwp__exit); 750 751 /* 752 * If the lwp is a detached lwp or if the process is exiting, 753 * remove (lwp_hash_out()) the lwp from the lwp directory. 754 * Otherwise null out the lwp's le_thread pointer in the lwp 755 * directory so that other threads will see it as a zombie lwp. 756 */ 757 prlwpexit(t); /* notify /proc */ 758 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 759 lwp_hash_out(p, t->t_tid); 760 else { 761 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 762 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 763 p->p_zombcnt++; 764 cv_broadcast(&p->p_lwpexit); 765 } 766 if (t->t_proc_flag & TP_DAEMON) { 767 p->p_lwpdaemon--; 768 t->t_proc_flag &= ~TP_DAEMON; 769 } 770 t->t_proc_flag &= ~TP_TWAIT; 771 772 /* 773 * Maintain accurate lwp count for task.max-lwps resource control. 774 */ 775 mutex_enter(&p->p_zone->zone_nlwps_lock); 776 p->p_task->tk_nlwps--; 777 p->p_task->tk_proj->kpj_nlwps--; 778 p->p_zone->zone_nlwps--; 779 mutex_exit(&p->p_zone->zone_nlwps_lock); 780 781 CL_EXIT(t); /* tell the scheduler that t is exiting */ 782 ASSERT(p->p_lwpcnt != 0); 783 p->p_lwpcnt--; 784 785 /* 786 * If all remaining non-daemon lwps are waiting in lwp_wait(), 787 * wake them up so someone can return EDEADLK. 788 * (See the block comment preceeding lwp_wait().) 789 */ 790 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 791 cv_broadcast(&p->p_lwpexit); 792 793 t->t_proc_flag |= TP_LWPEXIT; 794 term_mstate(t); 795 796 #ifndef NPROBE 797 /* Kernel probe */ 798 if (t->t_tnf_tpdp) 799 tnf_thread_exit(); 800 #endif /* NPROBE */ 801 802 t->t_forw->t_back = t->t_back; 803 t->t_back->t_forw = t->t_forw; 804 if (t == p->p_tlist) 805 p->p_tlist = t->t_forw; 806 807 /* 808 * Clean up the signal state. 809 */ 810 if (t->t_sigqueue != NULL) 811 sigdelq(p, t, 0); 812 if (lwp->lwp_curinfo != NULL) { 813 siginfofree(lwp->lwp_curinfo); 814 lwp->lwp_curinfo = NULL; 815 } 816 817 thread_rele(t); 818 819 /* 820 * Terminated lwps are associated with process zero and are put onto 821 * death-row by resume(). Avoid preemption after resetting t->t_procp. 822 */ 823 t->t_preempt++; 824 825 if (t->t_ctx != NULL) 826 exitctx(t); 827 if (p->p_pctx != NULL) 828 exitpctx(p); 829 830 t->t_procp = &p0; 831 832 /* 833 * Notify the HAT about the change of address space 834 */ 835 hat_thread_exit(t); 836 /* 837 * When this is the last running lwp in this process and some lwp is 838 * waiting for this condition to become true, or this thread was being 839 * suspended, then the waiting lwp is awakened. 840 * 841 * Also, if the process is exiting, we may have a thread waiting in 842 * exitlwps() that needs to be notified. 843 */ 844 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 845 (p->p_flag & SEXITLWPS)) 846 cv_broadcast(&p->p_holdlwps); 847 848 /* 849 * Need to drop p_lock so we can reacquire pidlock. 850 */ 851 mutex_exit(&p->p_lock); 852 mutex_enter(&pidlock); 853 854 ASSERT(t != t->t_next); /* t0 never exits */ 855 t->t_next->t_prev = t->t_prev; 856 t->t_prev->t_next = t->t_next; 857 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 858 mutex_exit(&pidlock); 859 860 lwp_pcb_exit(); 861 862 t->t_state = TS_ZOMB; 863 swtch_from_zombie(); 864 /* never returns */ 865 } 866 867 868 /* 869 * Cleanup function for an exiting lwp. 870 * Called both from lwp_exit() and from proc_exit(). 871 * p->p_lock is repeatedly released and grabbed in this function. 872 */ 873 void 874 lwp_cleanup(void) 875 { 876 kthread_t *t = curthread; 877 proc_t *p = ttoproc(t); 878 879 ASSERT(MUTEX_HELD(&p->p_lock)); 880 881 /* untimeout any lwp-bound realtime timers */ 882 if (p->p_itimer != NULL) 883 timer_lwpexit(); 884 885 /* 886 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 887 * so it appears that the agent never existed, and clear p_agenttp. 888 */ 889 if (t == p->p_agenttp) { 890 ASSERT(t->t_tid == p->p_lwpid); 891 p->p_lwpid--; 892 p->p_agenttp = NULL; 893 } 894 895 /* 896 * Do lgroup bookkeeping to account for thread exiting. 897 */ 898 kpreempt_disable(); 899 lgrp_move_thread(t, NULL, 1); 900 if (t->t_tid == 1) { 901 p->p_t1_lgrpid = LGRP_NONE; 902 } 903 kpreempt_enable(); 904 905 lwp_ctmpl_clear(ttolwp(t)); 906 } 907 908 int 909 lwp_suspend(kthread_t *t) 910 { 911 int tid; 912 proc_t *p = ttoproc(t); 913 914 ASSERT(MUTEX_HELD(&p->p_lock)); 915 916 /* 917 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 918 * If an lwp is stopping itself, there is no need to wait. 919 */ 920 top: 921 t->t_proc_flag |= TP_HOLDLWP; 922 if (t == curthread) { 923 t->t_sig_check = 1; 924 } else { 925 /* 926 * Make sure the lwp stops promptly. 927 */ 928 thread_lock(t); 929 t->t_sig_check = 1; 930 /* 931 * XXX Should use virtual stop like /proc does instead of 932 * XXX waking the thread to get it to stop. 933 */ 934 if (ISWAKEABLE(t) || ISWAITING(t)) { 935 setrun_locked(t); 936 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 937 poke_cpu(t->t_cpu->cpu_id); 938 } 939 940 tid = t->t_tid; /* remember thread ID */ 941 /* 942 * Wait for lwp to stop 943 */ 944 while (!SUSPENDED(t)) { 945 /* 946 * Drop the thread lock before waiting and reacquire it 947 * afterwards, so the thread can change its t_state 948 * field. 949 */ 950 thread_unlock(t); 951 952 /* 953 * Check if aborted by exitlwps(). 954 */ 955 if (p->p_flag & SEXITLWPS) 956 lwp_exit(); 957 958 /* 959 * Cooperate with jobcontrol signals and /proc stopping 960 * by calling cv_wait_sig() to wait for the target 961 * lwp to stop. Just using cv_wait() can lead to 962 * deadlock because, if some other lwp has stopped 963 * by either of these mechanisms, then p_lwprcnt will 964 * never become zero if we do a cv_wait(). 965 */ 966 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 967 return (EINTR); 968 969 /* 970 * Check to see if thread died while we were 971 * waiting for it to suspend. 972 */ 973 if (idtot(p, tid) == NULL) 974 return (ESRCH); 975 976 thread_lock(t); 977 /* 978 * If the TP_HOLDLWP flag went away, lwp_continue() 979 * or vfork() must have been called while we were 980 * waiting, so start over again. 981 */ 982 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 983 thread_unlock(t); 984 goto top; 985 } 986 } 987 thread_unlock(t); 988 } 989 return (0); 990 } 991 992 /* 993 * continue a lwp that's been stopped by lwp_suspend(). 994 */ 995 void 996 lwp_continue(kthread_t *t) 997 { 998 proc_t *p = ttoproc(t); 999 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1000 1001 ASSERT(MUTEX_HELD(&p->p_lock)); 1002 1003 t->t_proc_flag &= ~TP_HOLDLWP; 1004 thread_lock(t); 1005 if (SUSPENDED(t) && 1006 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1007 p->p_lwprcnt++; 1008 t->t_schedflag |= TS_CSTART; 1009 setrun_locked(t); 1010 } 1011 thread_unlock(t); 1012 /* 1013 * Wakeup anyone waiting for this thread to be suspended 1014 */ 1015 if (was_suspended) 1016 cv_broadcast(&p->p_holdlwps); 1017 } 1018 1019 /* 1020 * ******************************** 1021 * Miscellaneous lwp routines * 1022 * ******************************** 1023 */ 1024 /* 1025 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1026 * This will cause the process's lwps to stop at a hold point. A hold 1027 * point is where a kernel thread has a flat stack. This is at the 1028 * return from a system call and at the return from a user level trap. 1029 * 1030 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1031 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1032 * hold point. The lwps in the process are not being cloned, so they 1033 * are held at the usual hold points and also within issig_forreal(). 1034 * This has the side-effect that their system calls do not return 1035 * showing EINTR. 1036 * 1037 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1038 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1039 * lwp is waiting for the target lwp to be stopped. 1040 */ 1041 void 1042 holdlwp(void) 1043 { 1044 proc_t *p = curproc; 1045 kthread_t *t = curthread; 1046 1047 mutex_enter(&p->p_lock); 1048 /* 1049 * Don't terminate immediately if the process is dumping core. 1050 * Once the process has dumped core, all lwps are terminated. 1051 */ 1052 if (!(p->p_flag & SCOREDUMP)) { 1053 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1054 lwp_exit(); 1055 } 1056 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1057 mutex_exit(&p->p_lock); 1058 return; 1059 } 1060 /* 1061 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1062 * when p->p_lwprcnt becomes zero. 1063 */ 1064 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1065 if (p->p_flag & SEXITLWPS) 1066 lwp_exit(); 1067 mutex_exit(&p->p_lock); 1068 } 1069 1070 /* 1071 * Have all lwps within the process hold at a point where they are 1072 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1073 */ 1074 int 1075 holdlwps(int holdflag) 1076 { 1077 proc_t *p = curproc; 1078 1079 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1080 mutex_enter(&p->p_lock); 1081 schedctl_finish_sigblock(curthread); 1082 again: 1083 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1084 /* 1085 * If another lwp is doing a forkall() or proc_exit(), bail out. 1086 */ 1087 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1088 mutex_exit(&p->p_lock); 1089 return (0); 1090 } 1091 /* 1092 * Another lwp is doing a fork1() or is undergoing 1093 * watchpoint activity. We hold here for it to complete. 1094 */ 1095 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1096 } 1097 p->p_flag |= holdflag; 1098 pokelwps(p); 1099 --p->p_lwprcnt; 1100 /* 1101 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1102 */ 1103 while (p->p_lwprcnt > 0) { 1104 /* 1105 * Check if aborted by exitlwps(). 1106 * Also check if SHOLDWATCH is set; it takes precedence. 1107 */ 1108 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1109 p->p_lwprcnt++; 1110 p->p_flag &= ~holdflag; 1111 cv_broadcast(&p->p_holdlwps); 1112 goto again; 1113 } 1114 /* 1115 * Cooperate with jobcontrol signals and /proc stopping. 1116 * If some other lwp has stopped by either of these 1117 * mechanisms, then p_lwprcnt will never become zero 1118 * and the process will appear deadlocked unless we 1119 * stop here in sympathy with the other lwp before 1120 * doing the cv_wait() below. 1121 * 1122 * If the other lwp stops after we do the cv_wait(), it 1123 * will wake us up to loop around and do the sympathy stop. 1124 * 1125 * Since stop() drops p->p_lock, we must start from 1126 * the top again on returning from stop(). 1127 */ 1128 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1129 int whystop = p->p_stopsig? PR_JOBCONTROL : 1130 PR_REQUESTED; 1131 p->p_lwprcnt++; 1132 p->p_flag &= ~holdflag; 1133 stop(whystop, p->p_stopsig); 1134 goto again; 1135 } 1136 cv_wait(&p->p_holdlwps, &p->p_lock); 1137 } 1138 p->p_lwprcnt++; 1139 p->p_flag &= ~holdflag; 1140 mutex_exit(&p->p_lock); 1141 return (1); 1142 } 1143 1144 /* 1145 * See comments for holdwatch(), below. 1146 */ 1147 static int 1148 holdcheck(int clearflags) 1149 { 1150 proc_t *p = curproc; 1151 1152 /* 1153 * If we are trying to exit, that takes precedence over anything else. 1154 */ 1155 if (p->p_flag & SEXITLWPS) { 1156 p->p_lwprcnt++; 1157 p->p_flag &= ~clearflags; 1158 lwp_exit(); 1159 } 1160 1161 /* 1162 * If another thread is calling fork1(), stop the current thread so the 1163 * other can complete. 1164 */ 1165 if (p->p_flag & SHOLDFORK1) { 1166 p->p_lwprcnt++; 1167 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1168 if (p->p_flag & SEXITLWPS) { 1169 p->p_flag &= ~clearflags; 1170 lwp_exit(); 1171 } 1172 return (-1); 1173 } 1174 1175 /* 1176 * If another thread is calling fork(), then indicate we are doing 1177 * watchpoint activity. This will cause holdlwps() above to stop the 1178 * forking thread, at which point we can continue with watchpoint 1179 * activity. 1180 */ 1181 if (p->p_flag & SHOLDFORK) { 1182 p->p_lwprcnt++; 1183 while (p->p_flag & SHOLDFORK) { 1184 p->p_flag |= SHOLDWATCH; 1185 cv_broadcast(&p->p_holdlwps); 1186 cv_wait(&p->p_holdlwps, &p->p_lock); 1187 p->p_flag &= ~SHOLDWATCH; 1188 } 1189 return (-1); 1190 } 1191 1192 return (0); 1193 } 1194 1195 /* 1196 * Stop all lwps within the process, holding themselves in the kernel while the 1197 * active lwp undergoes watchpoint activity. This is more complicated than 1198 * expected because stop() relies on calling holdwatch() in order to copyin data 1199 * from the user's address space. A double barrier is used to prevent an 1200 * infinite loop. 1201 * 1202 * o The first thread into holdwatch() is the 'master' thread and does 1203 * the following: 1204 * 1205 * - Sets SHOLDWATCH on the current process 1206 * - Sets TP_WATCHSTOP on the current thread 1207 * - Waits for all threads to be either stopped or have 1208 * TP_WATCHSTOP set. 1209 * - Sets the SWATCHOK flag on the process 1210 * - Unsets TP_WATCHSTOP 1211 * - Waits for the other threads to completely stop 1212 * - Unsets SWATCHOK 1213 * 1214 * o If SHOLDWATCH is already set when we enter this function, then another 1215 * thread is already trying to stop this thread. This 'slave' thread 1216 * does the following: 1217 * 1218 * - Sets TP_WATCHSTOP on the current thread 1219 * - Waits for SWATCHOK flag to be set 1220 * - Calls stop() 1221 * 1222 * o If SWATCHOK is set on the process, then this function immediately 1223 * returns, as we must have been called via stop(). 1224 * 1225 * In addition, there are other flags that take precedence over SHOLDWATCH: 1226 * 1227 * o If SEXITLWPS is set, exit immediately. 1228 * 1229 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1230 * 1231 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1232 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1233 * 1234 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1235 * stop the current thread. 1236 * 1237 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1238 * threads were stopped, or the list of watched pages has changed. 1239 */ 1240 int 1241 holdwatch(void) 1242 { 1243 proc_t *p = curproc; 1244 kthread_t *t = curthread; 1245 int ret = 0; 1246 1247 mutex_enter(&p->p_lock); 1248 1249 p->p_lwprcnt--; 1250 1251 /* 1252 * Check for bail-out conditions as outlined above. 1253 */ 1254 if (holdcheck(0) != 0) { 1255 mutex_exit(&p->p_lock); 1256 return (-1); 1257 } 1258 1259 if (!(p->p_flag & SHOLDWATCH)) { 1260 /* 1261 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1262 * the other threads. 1263 */ 1264 p->p_flag |= SHOLDWATCH; 1265 pokelwps(p); 1266 1267 /* 1268 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1269 */ 1270 while (pr_allstopped(p, 1) > 0) { 1271 if (holdcheck(SHOLDWATCH) != 0) { 1272 p->p_flag &= ~SHOLDWATCH; 1273 mutex_exit(&p->p_lock); 1274 return (-1); 1275 } 1276 1277 cv_wait(&p->p_holdlwps, &p->p_lock); 1278 } 1279 1280 /* 1281 * All threads are now stopped or in the process of stopping. 1282 * Set SWATCHOK and let them stop completely. 1283 */ 1284 p->p_flag |= SWATCHOK; 1285 t->t_proc_flag &= ~TP_WATCHSTOP; 1286 cv_broadcast(&p->p_holdlwps); 1287 1288 while (pr_allstopped(p, 0) > 0) { 1289 /* 1290 * At first glance, it may appear that we don't need a 1291 * call to holdcheck() here. But if the process gets a 1292 * SIGKILL signal, one of our stopped threads may have 1293 * been awakened and is waiting in exitlwps(), which 1294 * takes precedence over watchpoints. 1295 */ 1296 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1297 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1298 mutex_exit(&p->p_lock); 1299 return (-1); 1300 } 1301 1302 cv_wait(&p->p_holdlwps, &p->p_lock); 1303 } 1304 1305 /* 1306 * All threads are now completely stopped. 1307 */ 1308 p->p_flag &= ~SWATCHOK; 1309 p->p_flag &= ~SHOLDWATCH; 1310 p->p_lwprcnt++; 1311 1312 } else if (!(p->p_flag & SWATCHOK)) { 1313 1314 /* 1315 * SHOLDWATCH is set, so another thread is trying to do 1316 * watchpoint activity. Indicate this thread is stopping, and 1317 * wait for the OK from the master thread. 1318 */ 1319 t->t_proc_flag |= TP_WATCHSTOP; 1320 cv_broadcast(&p->p_holdlwps); 1321 1322 while (!(p->p_flag & SWATCHOK)) { 1323 if (holdcheck(0) != 0) { 1324 t->t_proc_flag &= ~TP_WATCHSTOP; 1325 mutex_exit(&p->p_lock); 1326 return (-1); 1327 } 1328 1329 cv_wait(&p->p_holdlwps, &p->p_lock); 1330 } 1331 1332 /* 1333 * Once the master thread has given the OK, this thread can 1334 * actually call stop(). 1335 */ 1336 t->t_proc_flag &= ~TP_WATCHSTOP; 1337 p->p_lwprcnt++; 1338 1339 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1340 1341 /* 1342 * It's not OK to do watchpoint activity, notify caller to 1343 * retry. 1344 */ 1345 ret = -1; 1346 1347 } else { 1348 1349 /* 1350 * The only way we can hit the case where SHOLDWATCH is set and 1351 * SWATCHOK is set is if we are triggering this from within a 1352 * stop() call. Assert that this is the case. 1353 */ 1354 1355 ASSERT(t->t_proc_flag & TP_STOPPING); 1356 p->p_lwprcnt++; 1357 } 1358 1359 mutex_exit(&p->p_lock); 1360 1361 return (ret); 1362 } 1363 1364 /* 1365 * force all interruptible lwps to trap into the kernel. 1366 */ 1367 void 1368 pokelwps(proc_t *p) 1369 { 1370 kthread_t *t; 1371 1372 ASSERT(MUTEX_HELD(&p->p_lock)); 1373 1374 t = p->p_tlist; 1375 do { 1376 if (t == curthread) 1377 continue; 1378 thread_lock(t); 1379 aston(t); /* make thread trap or do post_syscall */ 1380 if (ISWAKEABLE(t) || ISWAITING(t)) { 1381 setrun_locked(t); 1382 } else if (t->t_state == TS_STOPPED) { 1383 /* 1384 * Ensure that proc_exit() is not blocked by lwps 1385 * that were stopped via jobcontrol or /proc. 1386 */ 1387 if (p->p_flag & SEXITLWPS) { 1388 p->p_stopsig = 0; 1389 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1390 setrun_locked(t); 1391 } 1392 /* 1393 * If we are holding lwps for a forkall(), 1394 * force lwps that have been suspended via 1395 * lwp_suspend() and are suspended inside 1396 * of a system call to proceed to their 1397 * holdlwp() points where they are clonable. 1398 */ 1399 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1400 if ((t->t_schedflag & TS_CSTART) == 0) { 1401 p->p_lwprcnt++; 1402 t->t_schedflag |= TS_CSTART; 1403 setrun_locked(t); 1404 } 1405 } 1406 } else if (t->t_state == TS_ONPROC) { 1407 if (t->t_cpu != CPU) 1408 poke_cpu(t->t_cpu->cpu_id); 1409 } 1410 thread_unlock(t); 1411 } while ((t = t->t_forw) != p->p_tlist); 1412 } 1413 1414 /* 1415 * undo the effects of holdlwps() or holdwatch(). 1416 */ 1417 void 1418 continuelwps(proc_t *p) 1419 { 1420 kthread_t *t; 1421 1422 /* 1423 * If this flag is set, then the original holdwatch() didn't actually 1424 * stop the process. See comments for holdwatch(). 1425 */ 1426 if (p->p_flag & SWATCHOK) { 1427 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1428 return; 1429 } 1430 1431 ASSERT(MUTEX_HELD(&p->p_lock)); 1432 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1433 1434 t = p->p_tlist; 1435 do { 1436 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1437 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1438 p->p_lwprcnt++; 1439 t->t_schedflag |= TS_CSTART; 1440 setrun_locked(t); 1441 } 1442 thread_unlock(t); 1443 } while ((t = t->t_forw) != p->p_tlist); 1444 } 1445 1446 /* 1447 * Force all other LWPs in the current process other than the caller to exit, 1448 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1449 * is typically used in these situations: 1450 * 1451 * (a) prior to an exec() system call 1452 * (b) prior to dumping a core file 1453 * (c) prior to a uadmin() shutdown 1454 * 1455 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1456 * Multiple threads in the process can call this function at one time by 1457 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1458 * to declare one particular thread the winner who gets to kill the others. 1459 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1460 * appropriate errno value is returned to caller for its system call to return. 1461 */ 1462 int 1463 exitlwps(int coredump) 1464 { 1465 proc_t *p = curproc; 1466 int heldcnt; 1467 1468 if (curthread->t_door) 1469 door_slam(); 1470 if (p->p_door_list) 1471 door_revoke_all(); 1472 if (curthread->t_schedctl != NULL) 1473 schedctl_lwp_cleanup(curthread); 1474 1475 /* 1476 * Ensure that before starting to wait for other lwps to exit, 1477 * cleanup all upimutexes held by curthread. Otherwise, some other 1478 * lwp could be waiting (uninterruptibly) for a upimutex held by 1479 * curthread, and the call to pokelwps() below would deadlock. 1480 * Even if a blocked upimutex_lock is made interruptible, 1481 * curthread's upimutexes need to be unlocked: do it here. 1482 */ 1483 if (curthread->t_upimutex != NULL) 1484 upimutex_cleanup(); 1485 1486 /* 1487 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1488 * We must also block any further /proc access from this point forward. 1489 */ 1490 mutex_enter(&p->p_lock); 1491 prbarrier(p); 1492 1493 if (p->p_flag & SEXITLWPS) { 1494 mutex_exit(&p->p_lock); 1495 aston(curthread); /* force a trip through post_syscall */ 1496 return (set_errno(EINTR)); 1497 } 1498 1499 p->p_flag |= SEXITLWPS; 1500 if (coredump) /* tell other lwps to stop, not exit */ 1501 p->p_flag |= SCOREDUMP; 1502 1503 /* 1504 * Give precedence to exitlwps() if a holdlwps() is 1505 * in progress. The lwp doing the holdlwps() operation 1506 * is aborted when it is awakened. 1507 */ 1508 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1509 cv_broadcast(&p->p_holdlwps); 1510 cv_wait(&p->p_holdlwps, &p->p_lock); 1511 prbarrier(p); 1512 } 1513 p->p_flag |= SHOLDFORK; 1514 pokelwps(p); 1515 1516 /* 1517 * Wait for process to become quiescent. 1518 */ 1519 --p->p_lwprcnt; 1520 while (p->p_lwprcnt > 0) { 1521 cv_wait(&p->p_holdlwps, &p->p_lock); 1522 prbarrier(p); 1523 } 1524 p->p_lwprcnt++; 1525 ASSERT(p->p_lwprcnt == 1); 1526 1527 /* 1528 * The SCOREDUMP flag puts the process into a quiescent 1529 * state. The process's lwps remain attached to this 1530 * process until exitlwps() is called again without the 1531 * 'coredump' flag set, then the lwps are terminated 1532 * and the process can exit. 1533 */ 1534 if (coredump) { 1535 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1536 goto out; 1537 } 1538 1539 /* 1540 * Determine if there are any lwps left dangling in 1541 * the stopped state. This happens when exitlwps() 1542 * aborts a holdlwps() operation. 1543 */ 1544 p->p_flag &= ~SHOLDFORK; 1545 if ((heldcnt = p->p_lwpcnt) > 1) { 1546 kthread_t *t; 1547 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1548 t->t_proc_flag &= ~TP_TWAIT; 1549 lwp_continue(t); 1550 } 1551 } 1552 1553 /* 1554 * Wait for all other lwps to exit. 1555 */ 1556 --p->p_lwprcnt; 1557 while (p->p_lwpcnt > 1) { 1558 cv_wait(&p->p_holdlwps, &p->p_lock); 1559 prbarrier(p); 1560 } 1561 ++p->p_lwprcnt; 1562 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1563 1564 p->p_flag &= ~SEXITLWPS; 1565 curthread->t_proc_flag &= ~TP_TWAIT; 1566 1567 out: 1568 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1569 lwpdir_t *ldp; 1570 lwpent_t *lep; 1571 int i; 1572 1573 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1574 lep = ldp->ld_entry; 1575 if (lep != NULL && lep->le_thread != curthread) { 1576 ASSERT(lep->le_thread == NULL); 1577 p->p_zombcnt--; 1578 lwp_hash_out(p, lep->le_lwpid); 1579 } 1580 } 1581 ASSERT(p->p_zombcnt == 0); 1582 } 1583 1584 /* 1585 * If some other LWP in the process wanted us to suspend ourself, 1586 * then we will not do it. The other LWP is now terminated and 1587 * no one will ever continue us again if we suspend ourself. 1588 */ 1589 curthread->t_proc_flag &= ~TP_HOLDLWP; 1590 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1591 mutex_exit(&p->p_lock); 1592 return (0); 1593 } 1594 1595 /* 1596 * duplicate a lwp. 1597 */ 1598 klwp_t * 1599 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1600 { 1601 klwp_t *clwp; 1602 void *tregs, *tfpu; 1603 kthread_t *t = lwptot(lwp); 1604 kthread_t *ct; 1605 proc_t *p = lwptoproc(lwp); 1606 int cid; 1607 void *bufp; 1608 void *brand_data; 1609 int val; 1610 1611 ASSERT(p == curproc); 1612 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1613 1614 #if defined(__sparc) 1615 if (t == curthread) 1616 (void) flush_user_windows_to_stack(NULL); 1617 #endif 1618 1619 if (t == curthread) 1620 /* copy args out of registers first */ 1621 (void) save_syscall_args(); 1622 1623 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1624 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1625 if (clwp == NULL) 1626 return (NULL); 1627 1628 /* 1629 * most of the parent's lwp can be copied to its duplicate, 1630 * except for the fields that are unique to each lwp, like 1631 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1632 */ 1633 ct = clwp->lwp_thread; 1634 tregs = clwp->lwp_regs; 1635 tfpu = clwp->lwp_fpu; 1636 brand_data = clwp->lwp_brand; 1637 1638 /* 1639 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1640 * mstate_aggr_state() from reading stale mstate entries copied 1641 * from lwp to clwp. 1642 */ 1643 mutex_enter(&cp->p_lock); 1644 *clwp = *lwp; 1645 1646 /* clear microstate and resource usage data in new lwp */ 1647 init_mstate(ct, LMS_STOPPED); 1648 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1649 mutex_exit(&cp->p_lock); 1650 1651 /* fix up child's lwp */ 1652 1653 clwp->lwp_pcb.pcb_flags = 0; 1654 #if defined(__sparc) 1655 clwp->lwp_pcb.pcb_step = STEP_NONE; 1656 #endif 1657 clwp->lwp_cursig = 0; 1658 clwp->lwp_extsig = 0; 1659 clwp->lwp_curinfo = (struct sigqueue *)0; 1660 clwp->lwp_thread = ct; 1661 ct->t_sysnum = t->t_sysnum; 1662 clwp->lwp_regs = tregs; 1663 clwp->lwp_fpu = tfpu; 1664 clwp->lwp_brand = brand_data; 1665 clwp->lwp_ap = clwp->lwp_arg; 1666 clwp->lwp_procp = cp; 1667 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1668 clwp->lwp_lastfault = 0; 1669 clwp->lwp_lastfaddr = 0; 1670 1671 /* copy parent's struct regs to child. */ 1672 lwp_forkregs(lwp, clwp); 1673 1674 /* 1675 * Fork thread context ops, if any. 1676 */ 1677 if (t->t_ctx) 1678 forkctx(t, ct); 1679 1680 /* fix door state in the child */ 1681 if (t->t_door) 1682 door_fork(t, ct); 1683 1684 /* copy current contract templates, clear latest contracts */ 1685 lwp_ctmpl_copy(clwp, lwp); 1686 1687 mutex_enter(&cp->p_lock); 1688 /* lwp_create() set the TP_HOLDLWP flag */ 1689 if (!(t->t_proc_flag & TP_HOLDLWP)) 1690 ct->t_proc_flag &= ~TP_HOLDLWP; 1691 if (cp->p_flag & SMSACCT) 1692 ct->t_proc_flag |= TP_MSACCT; 1693 mutex_exit(&cp->p_lock); 1694 1695 /* Allow brand to propagate brand-specific state */ 1696 if (PROC_IS_BRANDED(p)) 1697 BROP(p)->b_forklwp(lwp, clwp); 1698 1699 retry: 1700 cid = t->t_cid; 1701 1702 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1703 ASSERT(val == 0); 1704 1705 mutex_enter(&p->p_lock); 1706 if (cid != t->t_cid) { 1707 /* 1708 * Someone just changed this thread's scheduling class, 1709 * so try pre-allocating the buffer again. Hopefully we 1710 * don't hit this often. 1711 */ 1712 mutex_exit(&p->p_lock); 1713 CL_FREE(cid, bufp); 1714 goto retry; 1715 } 1716 1717 ct->t_unpark = t->t_unpark; 1718 ct->t_clfuncs = t->t_clfuncs; 1719 CL_FORK(t, ct, bufp); 1720 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1721 mutex_exit(&p->p_lock); 1722 1723 return (clwp); 1724 } 1725 1726 /* 1727 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1728 */ 1729 void 1730 lwp_hash_in(proc_t *p, lwpent_t *lep) 1731 { 1732 lwpdir_t **ldpp; 1733 lwpdir_t *ldp; 1734 kthread_t *t; 1735 1736 /* 1737 * Allocate a directory element from the free list. 1738 * Code elsewhere guarantees a free slot. 1739 */ 1740 ldp = p->p_lwpfree; 1741 p->p_lwpfree = ldp->ld_next; 1742 ASSERT(ldp->ld_entry == NULL); 1743 ldp->ld_entry = lep; 1744 1745 /* 1746 * Insert it into the lwpid hash table. 1747 */ 1748 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1749 ldp->ld_next = *ldpp; 1750 *ldpp = ldp; 1751 1752 /* 1753 * Set the active thread's directory slot entry. 1754 */ 1755 if ((t = lep->le_thread) != NULL) { 1756 ASSERT(lep->le_lwpid == t->t_tid); 1757 t->t_dslot = (int)(ldp - p->p_lwpdir); 1758 } 1759 } 1760 1761 /* 1762 * Remove an lwp from the lwpid hash table and free its directory entry. 1763 * This is done when a detached lwp exits in lwp_exit() or 1764 * when a non-detached lwp is waited for in lwp_wait() or 1765 * when a zombie lwp is detached in lwp_detach(). 1766 */ 1767 void 1768 lwp_hash_out(proc_t *p, id_t lwpid) 1769 { 1770 lwpdir_t **ldpp; 1771 lwpdir_t *ldp; 1772 lwpent_t *lep; 1773 1774 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1775 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1776 lep = ldp->ld_entry; 1777 if (lep->le_lwpid == lwpid) { 1778 prlwpfree(p, lep); /* /proc deals with le_trace */ 1779 *ldpp = ldp->ld_next; 1780 ldp->ld_entry = NULL; 1781 ldp->ld_next = p->p_lwpfree; 1782 p->p_lwpfree = ldp; 1783 kmem_free(lep, sizeof (*lep)); 1784 break; 1785 } 1786 } 1787 } 1788 1789 /* 1790 * Lookup an lwp in the lwpid hash table by lwpid. 1791 */ 1792 lwpdir_t * 1793 lwp_hash_lookup(proc_t *p, id_t lwpid) 1794 { 1795 lwpdir_t *ldp; 1796 1797 /* 1798 * The process may be exiting, after p_tidhash has been set to NULL in 1799 * proc_exit() but before prfee() has been called. Return failure in 1800 * this case. 1801 */ 1802 if (p->p_tidhash == NULL) 1803 return (NULL); 1804 1805 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1806 ldp != NULL; ldp = ldp->ld_next) { 1807 if (ldp->ld_entry->le_lwpid == lwpid) 1808 return (ldp); 1809 } 1810 1811 return (NULL); 1812 } 1813 1814 /* 1815 * Update the indicated LWP usage statistic for the current LWP. 1816 */ 1817 void 1818 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1819 { 1820 klwp_t *lwp = ttolwp(curthread); 1821 1822 if (lwp == NULL) 1823 return; 1824 1825 switch (lwp_stat_id) { 1826 case LWP_STAT_INBLK: 1827 lwp->lwp_ru.inblock += inc; 1828 break; 1829 case LWP_STAT_OUBLK: 1830 lwp->lwp_ru.oublock += inc; 1831 break; 1832 case LWP_STAT_MSGRCV: 1833 lwp->lwp_ru.msgrcv += inc; 1834 break; 1835 case LWP_STAT_MSGSND: 1836 lwp->lwp_ru.msgsnd += inc; 1837 break; 1838 default: 1839 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1840 } 1841 } 1842