1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/systm.h> 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/task.h> 34 #include <sys/project.h> 35 #include <sys/signal.h> 36 #include <sys/errno.h> 37 #include <sys/vmparam.h> 38 #include <sys/stack.h> 39 #include <sys/procfs.h> 40 #include <sys/prsystm.h> 41 #include <sys/cpuvar.h> 42 #include <sys/kmem.h> 43 #include <sys/vtrace.h> 44 #include <sys/door.h> 45 #include <vm/seg_kp.h> 46 #include <sys/debug.h> 47 #include <sys/tnf.h> 48 #include <sys/schedctl.h> 49 #include <sys/poll.h> 50 #include <sys/copyops.h> 51 #include <sys/lwp_upimutex_impl.h> 52 #include <sys/cpupart.h> 53 #include <sys/lgrp.h> 54 #include <sys/rctl.h> 55 #include <sys/contract_impl.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/sdt.h> 58 #include <sys/cmn_err.h> 59 #include <sys/brand.h> 60 #include <sys/cyclic.h> 61 #include <sys/pool.h> 62 63 /* hash function for the lwpid hash table, p->p_tidhash[] */ 64 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 65 66 void *segkp_lwp; /* cookie for pool of segkp resources */ 67 extern void reapq_move_lq_to_tq(kthread_t *); 68 extern void freectx_ctx(struct ctxop *); 69 70 /* 71 * Create a kernel thread associated with a particular system process. Give 72 * it an LWP so that microstate accounting will be available for it. 73 */ 74 kthread_t * 75 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 76 { 77 klwp_t *lwp; 78 79 VERIFY((p->p_flag & SSYS) != 0); 80 81 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 82 83 VERIFY(lwp != NULL); 84 85 return (lwptot(lwp)); 86 } 87 88 /* 89 * Create a thread that appears to be stopped at sys_rtt. 90 */ 91 klwp_t * 92 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 93 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 94 { 95 klwp_t *lwp = NULL; 96 kthread_t *t; 97 kthread_t *tx; 98 cpupart_t *oldpart = NULL; 99 size_t stksize; 100 caddr_t lwpdata = NULL; 101 processorid_t binding; 102 int err = 0; 103 kproject_t *oldkpj, *newkpj; 104 void *bufp = NULL; 105 klwp_t *curlwp; 106 lwpent_t *lep; 107 lwpdir_t *old_dir = NULL; 108 uint_t old_dirsz = 0; 109 tidhash_t *old_hash = NULL; 110 uint_t old_hashsz = 0; 111 ret_tidhash_t *ret_tidhash = NULL; 112 int i; 113 int rctlfail = 0; 114 boolean_t branded = 0; 115 struct ctxop *ctx = NULL; 116 117 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 118 119 ASSERT(p != &p0); /* No new LWPs in p0. */ 120 121 mutex_enter(&p->p_lock); 122 mutex_enter(&p->p_zone->zone_nlwps_lock); 123 /* 124 * don't enforce rctl limits on system processes 125 */ 126 if (!CLASS_KERNEL(cid)) { 127 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 128 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 129 1, 0) & RCT_DENY) 130 rctlfail = 1; 131 if (p->p_task->tk_proj->kpj_nlwps >= 132 p->p_task->tk_proj->kpj_nlwps_ctl) 133 if (rctl_test(rc_project_nlwps, 134 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 135 & RCT_DENY) 136 rctlfail = 1; 137 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 138 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 139 1, 0) & RCT_DENY) 140 rctlfail = 1; 141 } 142 if (rctlfail) { 143 mutex_exit(&p->p_zone->zone_nlwps_lock); 144 mutex_exit(&p->p_lock); 145 return (NULL); 146 } 147 p->p_task->tk_nlwps++; 148 p->p_task->tk_proj->kpj_nlwps++; 149 p->p_zone->zone_nlwps++; 150 mutex_exit(&p->p_zone->zone_nlwps_lock); 151 mutex_exit(&p->p_lock); 152 153 curlwp = ttolwp(curthread); 154 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 155 stksize = lwp_default_stksize; 156 157 if (CLASS_KERNEL(cid)) { 158 /* 159 * Since we are creating an LWP in an SSYS process, we do not 160 * inherit anything from the current thread's LWP. We set 161 * stksize and lwpdata to 0 in order to let thread_create() 162 * allocate a regular kernel thread stack for this thread. 163 */ 164 curlwp = NULL; 165 stksize = 0; 166 lwpdata = NULL; 167 168 } else if (stksize == lwp_default_stksize) { 169 /* 170 * Try to reuse an <lwp,stack> from the LWP deathrow. 171 */ 172 if (lwp_reapcnt > 0) { 173 mutex_enter(&reaplock); 174 if ((t = lwp_deathrow) != NULL) { 175 ASSERT(t->t_swap); 176 lwp_deathrow = t->t_forw; 177 lwp_reapcnt--; 178 lwpdata = t->t_swap; 179 lwp = t->t_lwp; 180 ctx = t->t_ctx; 181 t->t_swap = NULL; 182 t->t_lwp = NULL; 183 t->t_ctx = NULL; 184 reapq_move_lq_to_tq(t); 185 } 186 mutex_exit(&reaplock); 187 if (lwp != NULL) { 188 lwp_stk_fini(lwp); 189 } 190 if (ctx != NULL) { 191 freectx_ctx(ctx); 192 } 193 } 194 if (lwpdata == NULL && 195 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 196 mutex_enter(&p->p_lock); 197 mutex_enter(&p->p_zone->zone_nlwps_lock); 198 p->p_task->tk_nlwps--; 199 p->p_task->tk_proj->kpj_nlwps--; 200 p->p_zone->zone_nlwps--; 201 mutex_exit(&p->p_zone->zone_nlwps_lock); 202 mutex_exit(&p->p_lock); 203 return (NULL); 204 } 205 } else { 206 stksize = roundup(stksize, PAGESIZE); 207 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 208 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 209 mutex_enter(&p->p_lock); 210 mutex_enter(&p->p_zone->zone_nlwps_lock); 211 p->p_task->tk_nlwps--; 212 p->p_task->tk_proj->kpj_nlwps--; 213 p->p_zone->zone_nlwps--; 214 mutex_exit(&p->p_zone->zone_nlwps_lock); 215 mutex_exit(&p->p_lock); 216 return (NULL); 217 } 218 } 219 220 /* 221 * Create a thread, initializing the stack pointer 222 */ 223 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 224 225 /* 226 * If a non-NULL stack base is passed in, thread_create() assumes 227 * that the stack might be statically allocated (as opposed to being 228 * allocated from segkp), and so it does not set t_swap. Since 229 * the lwpdata was allocated from segkp, we must set t_swap to point 230 * to it ourselves. 231 * 232 * This would be less confusing if t_swap had a better name; it really 233 * indicates that the stack is allocated from segkp, regardless of 234 * whether or not it is swappable. 235 */ 236 if (lwpdata != NULL) { 237 ASSERT(!CLASS_KERNEL(cid)); 238 ASSERT(t->t_swap == NULL); 239 t->t_swap = lwpdata; /* Start of page-able data */ 240 } 241 242 /* 243 * If the stack and lwp can be reused, mark the thread as such. 244 * When we get to reapq_add() from resume_from_zombie(), these 245 * threads will go onto lwp_deathrow instead of thread_deathrow. 246 */ 247 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 248 t->t_flag |= T_LWPREUSE; 249 250 if (lwp == NULL) 251 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 252 bzero(lwp, sizeof (*lwp)); 253 t->t_lwp = lwp; 254 255 t->t_hold = *smask; 256 lwp->lwp_thread = t; 257 lwp->lwp_procp = p; 258 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 259 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 260 lwp->lwp_childstksz = curlwp->lwp_childstksz; 261 262 t->t_stk = lwp_stk_init(lwp, t->t_stk); 263 thread_load(t, proc, arg, len); 264 265 /* 266 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 267 */ 268 if (p->p_rprof_cyclic != CYCLIC_NONE) 269 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 270 271 if (cid != NOCLASS) 272 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 273 274 /* 275 * Allocate an lwp directory entry for the new lwp. 276 */ 277 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 278 279 mutex_enter(&p->p_lock); 280 grow: 281 /* 282 * Grow the lwp (thread) directory and lwpid hash table if necessary. 283 * A note on the growth algorithm: 284 * The new lwp directory size is computed as: 285 * new = 2 * old + 2 286 * Starting with an initial size of 2 (see exec_common()), 287 * this yields numbers that are a power of two minus 2: 288 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 289 * The size of the lwpid hash table must be a power of two 290 * and must be commensurate in size with the lwp directory 291 * so that hash bucket chains remain short. Therefore, 292 * the lwpid hash table size is computed as: 293 * hashsz = (dirsz + 2) / 2 294 * which leads to these hash table sizes corresponding to 295 * the above directory sizes: 296 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 297 * A note on growing the hash table: 298 * For performance reasons, code in lwp_unpark() does not 299 * acquire curproc->p_lock when searching the hash table. 300 * Rather, it calls lwp_hash_lookup_and_lock() which 301 * acquires only the individual hash bucket lock, taking 302 * care to deal with reallocation of the hash table 303 * during the time it takes to acquire the lock. 304 * 305 * This is sufficient to protect the integrity of the 306 * hash table, but it requires us to acquire all of the 307 * old hash bucket locks before growing the hash table 308 * and to release them afterwards. It also requires us 309 * not to free the old hash table because some thread 310 * in lwp_hash_lookup_and_lock() might still be trying 311 * to acquire the old bucket lock. 312 * 313 * So we adopt the tactic of keeping all of the retired 314 * hash tables on a linked list, so they can be safely 315 * freed when the process exits or execs. 316 * 317 * Because the hash table grows in powers of two, the 318 * total size of all of the hash tables will be slightly 319 * less than twice the size of the largest hash table. 320 */ 321 while (p->p_lwpfree == NULL) { 322 uint_t dirsz = p->p_lwpdir_sz; 323 lwpdir_t *new_dir; 324 uint_t new_dirsz; 325 lwpdir_t *ldp; 326 tidhash_t *new_hash; 327 uint_t new_hashsz; 328 329 mutex_exit(&p->p_lock); 330 331 /* 332 * Prepare to remember the old p_tidhash for later 333 * kmem_free()ing when the process exits or execs. 334 */ 335 if (ret_tidhash == NULL) 336 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 337 KM_SLEEP); 338 if (old_dir != NULL) 339 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 340 if (old_hash != NULL) 341 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 342 343 new_dirsz = 2 * dirsz + 2; 344 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 345 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 346 ldp->ld_next = ldp + 1; 347 new_hashsz = (new_dirsz + 2) / 2; 348 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 349 KM_SLEEP); 350 351 mutex_enter(&p->p_lock); 352 if (p == curproc) 353 prbarrier(p); 354 355 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 356 /* 357 * Someone else beat us to it or some lwp exited. 358 * Set up to free our memory and take a lap. 359 */ 360 old_dir = new_dir; 361 old_dirsz = new_dirsz; 362 old_hash = new_hash; 363 old_hashsz = new_hashsz; 364 } else { 365 /* 366 * For the benefit of lwp_hash_lookup_and_lock(), 367 * called from lwp_unpark(), which searches the 368 * tid hash table without acquiring p->p_lock, 369 * we must acquire all of the tid hash table 370 * locks before replacing p->p_tidhash. 371 */ 372 old_hash = p->p_tidhash; 373 old_hashsz = p->p_tidhash_sz; 374 for (i = 0; i < old_hashsz; i++) { 375 mutex_enter(&old_hash[i].th_lock); 376 mutex_enter(&new_hash[i].th_lock); 377 } 378 379 /* 380 * We simply hash in all of the old directory entries. 381 * This works because the old directory has no empty 382 * slots and the new hash table starts out empty. 383 * This reproduces the original directory ordering 384 * (required for /proc directory semantics). 385 */ 386 old_dir = p->p_lwpdir; 387 old_dirsz = p->p_lwpdir_sz; 388 p->p_lwpdir = new_dir; 389 p->p_lwpfree = new_dir; 390 p->p_lwpdir_sz = new_dirsz; 391 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 392 lwp_hash_in(p, ldp->ld_entry, 393 new_hash, new_hashsz, 0); 394 395 /* 396 * Remember the old hash table along with all 397 * of the previously-remembered hash tables. 398 * We will free them at process exit or exec. 399 */ 400 ret_tidhash->rth_tidhash = old_hash; 401 ret_tidhash->rth_tidhash_sz = old_hashsz; 402 ret_tidhash->rth_next = p->p_ret_tidhash; 403 p->p_ret_tidhash = ret_tidhash; 404 405 /* 406 * Now establish the new tid hash table. 407 * As soon as we assign p->p_tidhash, 408 * code in lwp_unpark() can start using it. 409 */ 410 membar_producer(); 411 p->p_tidhash = new_hash; 412 413 /* 414 * It is necessary that p_tidhash reach global 415 * visibility before p_tidhash_sz. Otherwise, 416 * code in lwp_hash_lookup_and_lock() could 417 * index into the old p_tidhash using the new 418 * p_tidhash_sz and thereby access invalid data. 419 */ 420 membar_producer(); 421 p->p_tidhash_sz = new_hashsz; 422 423 /* 424 * Release the locks; allow lwp_unpark() to carry on. 425 */ 426 for (i = 0; i < old_hashsz; i++) { 427 mutex_exit(&old_hash[i].th_lock); 428 mutex_exit(&new_hash[i].th_lock); 429 } 430 431 /* 432 * Avoid freeing these objects below. 433 */ 434 ret_tidhash = NULL; 435 old_hash = NULL; 436 old_hashsz = 0; 437 } 438 } 439 440 /* 441 * Block the process against /proc while we manipulate p->p_tlist, 442 * unless lwp_create() was called by /proc for the PCAGENT operation. 443 * We want to do this early enough so that we don't drop p->p_lock 444 * until the thread is put on the p->p_tlist. 445 */ 446 if (p == curproc) { 447 prbarrier(p); 448 /* 449 * If the current lwp has been requested to stop, do so now. 450 * Otherwise we have a race condition between /proc attempting 451 * to stop the process and this thread creating a new lwp 452 * that was not seen when the /proc PCSTOP request was issued. 453 * We rely on stop() to call prbarrier(p) before returning. 454 */ 455 while ((curthread->t_proc_flag & TP_PRSTOP) && 456 !ttolwp(curthread)->lwp_nostop) { 457 /* 458 * We called pool_barrier_enter() before calling 459 * here to lwp_create(). We have to call 460 * pool_barrier_exit() before stopping. 461 */ 462 pool_barrier_exit(); 463 prbarrier(p); 464 stop(PR_REQUESTED, 0); 465 /* 466 * And we have to repeat the call to 467 * pool_barrier_enter after stopping. 468 */ 469 pool_barrier_enter(); 470 prbarrier(p); 471 } 472 473 /* 474 * If process is exiting, there could be a race between 475 * the agent lwp creation and the new lwp currently being 476 * created. So to prevent this race lwp creation is failed 477 * if the process is exiting. 478 */ 479 if (p->p_flag & (SEXITLWPS|SKILLED)) { 480 err = 1; 481 goto error; 482 } 483 484 /* 485 * Since we might have dropped p->p_lock, the 486 * lwp directory free list might have changed. 487 */ 488 if (p->p_lwpfree == NULL) 489 goto grow; 490 } 491 492 kpreempt_disable(); /* can't grab cpu_lock here */ 493 494 /* 495 * Inherit processor and processor set bindings from curthread. 496 * 497 * For kernel LWPs, we do not inherit processor set bindings at 498 * process creation time (i.e. when p != curproc). After the 499 * kernel process is created, any subsequent LWPs must be created 500 * by threads in the kernel process, at which point we *will* 501 * inherit processor set bindings. 502 */ 503 if (CLASS_KERNEL(cid) && p != curproc) { 504 t->t_bind_cpu = binding = PBIND_NONE; 505 t->t_cpupart = oldpart = &cp_default; 506 t->t_bind_pset = PS_NONE; 507 t->t_bindflag = (uchar_t)default_binding_mode; 508 } else { 509 binding = curthread->t_bind_cpu; 510 t->t_bind_cpu = binding; 511 oldpart = t->t_cpupart; 512 t->t_cpupart = curthread->t_cpupart; 513 t->t_bind_pset = curthread->t_bind_pset; 514 t->t_bindflag = curthread->t_bindflag | 515 (uchar_t)default_binding_mode; 516 } 517 518 /* 519 * thread_create() initializes this thread's home lgroup to the root. 520 * Choose a more suitable lgroup, since this thread is associated 521 * with an lwp. 522 */ 523 ASSERT(oldpart != NULL); 524 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 525 t->t_bound_cpu = cpu[binding]; 526 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 527 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 528 } else if (CLASS_KERNEL(cid)) { 529 /* 530 * Kernel threads are always in the root lgrp. 531 */ 532 lgrp_move_thread(t, 533 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 534 } else { 535 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 536 } 537 538 kpreempt_enable(); 539 540 /* 541 * make sure lpl points to our own partition 542 */ 543 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 544 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 545 t->t_cpupart->cp_nlgrploads); 546 547 /* 548 * It is safe to point the thread to the new project without holding it 549 * since we're holding the target process' p_lock here and therefore 550 * we're guaranteed that it will not move to another project. 551 */ 552 newkpj = p->p_task->tk_proj; 553 oldkpj = ttoproj(t); 554 if (newkpj != oldkpj) { 555 t->t_proj = newkpj; 556 (void) project_hold(newkpj); 557 project_rele(oldkpj); 558 } 559 560 if (cid != NOCLASS) { 561 /* 562 * If the lwp is being created in the current process 563 * and matches the current thread's scheduling class, 564 * we should propagate the current thread's scheduling 565 * parameters by calling CL_FORK. Otherwise just use 566 * the defaults by calling CL_ENTERCLASS. 567 */ 568 if (p != curproc || curthread->t_cid != cid) { 569 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 570 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 571 /* 572 * We don't call schedctl_set_cidpri(t) here 573 * because the schedctl data is not yet set 574 * up for the newly-created lwp. 575 */ 576 } else { 577 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 578 err = CL_FORK(curthread, t, bufp); 579 t->t_cid = cid; 580 } 581 if (err) 582 goto error; 583 else 584 bufp = NULL; 585 } 586 587 /* 588 * If we were given an lwpid then use it, else allocate one. 589 */ 590 if (lwpid != 0) 591 t->t_tid = lwpid; 592 else { 593 /* 594 * lwp/thread id 0 is never valid; reserved for special checks. 595 * lwp/thread id 1 is reserved for the main thread. 596 * Start again at 2 when INT_MAX has been reached 597 * (id_t is a signed 32-bit integer). 598 */ 599 id_t prev_id = p->p_lwpid; /* last allocated tid */ 600 601 do { /* avoid lwpid duplication */ 602 if (p->p_lwpid == INT_MAX) { 603 p->p_flag |= SLWPWRAP; 604 p->p_lwpid = 1; 605 } 606 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 607 /* 608 * All lwpids are allocated; fail the request. 609 */ 610 err = 1; 611 goto error; 612 } 613 /* 614 * We only need to worry about colliding with an id 615 * that's already in use if this process has 616 * cycled through all available lwp ids. 617 */ 618 if ((p->p_flag & SLWPWRAP) == 0) 619 break; 620 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 621 } 622 623 /* 624 * If this is a branded process, let the brand do any necessary lwp 625 * initialization. 626 */ 627 if (PROC_IS_BRANDED(p)) { 628 if (BROP(p)->b_initlwp(lwp)) { 629 err = 1; 630 goto error; 631 } 632 branded = 1; 633 } 634 635 if (t->t_tid == 1) { 636 kpreempt_disable(); 637 ASSERT(t->t_lpl != NULL); 638 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 639 kpreempt_enable(); 640 if (p->p_tr_lgrpid != LGRP_NONE && 641 p->p_tr_lgrpid != p->p_t1_lgrpid) { 642 lgrp_update_trthr_migrations(1); 643 } 644 } 645 646 p->p_lwpcnt++; 647 t->t_waitfor = -1; 648 649 /* 650 * Turn microstate accounting on for thread if on for process. 651 */ 652 if (p->p_flag & SMSACCT) 653 t->t_proc_flag |= TP_MSACCT; 654 655 /* 656 * If the process has watchpoints, mark the new thread as such. 657 */ 658 if (pr_watch_active(p)) 659 watch_enable(t); 660 661 /* 662 * The lwp is being created in the stopped state. 663 * We set all the necessary flags to indicate that fact here. 664 * We omit the TS_CREATE flag from t_schedflag so that the lwp 665 * cannot be set running until the caller is finished with it, 666 * even if lwp_continue() is called on it after we drop p->p_lock. 667 * When the caller is finished with the newly-created lwp, 668 * the caller must call lwp_create_done() to allow the lwp 669 * to be set running. If the TP_HOLDLWP is left set, the 670 * lwp will suspend itself after reaching system call exit. 671 */ 672 init_mstate(t, LMS_STOPPED); 673 t->t_proc_flag |= TP_HOLDLWP; 674 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 675 t->t_whystop = PR_SUSPENDED; 676 t->t_whatstop = SUSPEND_NORMAL; 677 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 678 679 /* 680 * Set system call processing flags in case tracing or profiling 681 * is set. The first system call will evaluate these and turn 682 * them off if they aren't needed. 683 */ 684 t->t_pre_sys = 1; 685 t->t_post_sys = 1; 686 687 /* 688 * Insert the new thread into the list of all threads. 689 */ 690 if ((tx = p->p_tlist) == NULL) { 691 t->t_back = t; 692 t->t_forw = t; 693 p->p_tlist = t; 694 } else { 695 t->t_forw = tx; 696 t->t_back = tx->t_back; 697 tx->t_back->t_forw = t; 698 tx->t_back = t; 699 } 700 701 /* 702 * Insert the new lwp into an lwp directory slot position 703 * and into the lwpid hash table. 704 */ 705 lep->le_thread = t; 706 lep->le_lwpid = t->t_tid; 707 lep->le_start = t->t_start; 708 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 709 710 if (state == TS_RUN) { 711 /* 712 * We set the new lwp running immediately. 713 */ 714 t->t_proc_flag &= ~TP_HOLDLWP; 715 lwp_create_done(t); 716 } 717 718 error: 719 if (err) { 720 if (CLASS_KERNEL(cid)) { 721 /* 722 * This should only happen if a system process runs 723 * out of lwpids, which shouldn't occur. 724 */ 725 panic("Failed to create a system LWP"); 726 } 727 /* 728 * We have failed to create an lwp, so decrement the number 729 * of lwps in the task and let the lgroup load averages know 730 * that this thread isn't going to show up. 731 */ 732 kpreempt_disable(); 733 lgrp_move_thread(t, NULL, 1); 734 kpreempt_enable(); 735 736 ASSERT(MUTEX_HELD(&p->p_lock)); 737 mutex_enter(&p->p_zone->zone_nlwps_lock); 738 p->p_task->tk_nlwps--; 739 p->p_task->tk_proj->kpj_nlwps--; 740 p->p_zone->zone_nlwps--; 741 mutex_exit(&p->p_zone->zone_nlwps_lock); 742 if (cid != NOCLASS && bufp != NULL) 743 CL_FREE(cid, bufp); 744 745 if (branded) 746 BROP(p)->b_freelwp(lwp); 747 748 mutex_exit(&p->p_lock); 749 t->t_state = TS_FREE; 750 thread_rele(t); 751 752 /* 753 * We need to remove t from the list of all threads 754 * because thread_exit()/lwp_exit() isn't called on t. 755 */ 756 mutex_enter(&pidlock); 757 ASSERT(t != t->t_next); /* t0 never exits */ 758 t->t_next->t_prev = t->t_prev; 759 t->t_prev->t_next = t->t_next; 760 mutex_exit(&pidlock); 761 762 thread_free(t); 763 kmem_free(lep, sizeof (*lep)); 764 lwp = NULL; 765 } else { 766 mutex_exit(&p->p_lock); 767 } 768 769 if (old_dir != NULL) 770 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 771 if (old_hash != NULL) 772 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 773 if (ret_tidhash != NULL) 774 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 775 776 DTRACE_PROC1(lwp__create, kthread_t *, t); 777 return (lwp); 778 } 779 780 /* 781 * lwp_create_done() is called by the caller of lwp_create() to set the 782 * newly-created lwp running after the caller has finished manipulating it. 783 */ 784 void 785 lwp_create_done(kthread_t *t) 786 { 787 proc_t *p = ttoproc(t); 788 789 ASSERT(MUTEX_HELD(&p->p_lock)); 790 791 /* 792 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 793 * (The absence of the TS_CREATE flag prevents the lwp from running 794 * until we are finished with it, even if lwp_continue() is called on 795 * it by some other lwp in the process or elsewhere in the kernel.) 796 */ 797 thread_lock(t); 798 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 799 /* 800 * If TS_CSTART is set, lwp_continue(t) has been called and 801 * has already incremented p_lwprcnt; avoid doing this twice. 802 */ 803 if (!(t->t_schedflag & TS_CSTART)) 804 p->p_lwprcnt++; 805 t->t_schedflag |= (TS_CSTART | TS_CREATE); 806 setrun_locked(t); 807 thread_unlock(t); 808 } 809 810 /* 811 * Copy an LWP's active templates, and clear the latest contracts. 812 */ 813 void 814 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 815 { 816 int i; 817 818 for (i = 0; i < ct_ntypes; i++) { 819 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 820 dst->lwp_ct_latest[i] = NULL; 821 } 822 } 823 824 /* 825 * Clear an LWP's contract template state. 826 */ 827 void 828 lwp_ctmpl_clear(klwp_t *lwp) 829 { 830 ct_template_t *tmpl; 831 int i; 832 833 for (i = 0; i < ct_ntypes; i++) { 834 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 835 ctmpl_free(tmpl); 836 lwp->lwp_ct_active[i] = NULL; 837 } 838 839 if (lwp->lwp_ct_latest[i] != NULL) { 840 contract_rele(lwp->lwp_ct_latest[i]); 841 lwp->lwp_ct_latest[i] = NULL; 842 } 843 } 844 } 845 846 /* 847 * Individual lwp exit. 848 * If this is the last lwp, exit the whole process. 849 */ 850 void 851 lwp_exit(void) 852 { 853 kthread_t *t = curthread; 854 klwp_t *lwp = ttolwp(t); 855 proc_t *p = ttoproc(t); 856 857 ASSERT(MUTEX_HELD(&p->p_lock)); 858 859 mutex_exit(&p->p_lock); 860 861 #if defined(__sparc) 862 /* 863 * Ensure that the user stack is fully abandoned.. 864 */ 865 trash_user_windows(); 866 #endif 867 868 tsd_exit(); /* free thread specific data */ 869 870 kcpc_passivate(); /* Clean up performance counter state */ 871 872 pollcleanup(); 873 874 if (t->t_door) 875 door_slam(); 876 877 if (t->t_schedctl != NULL) 878 schedctl_lwp_cleanup(t); 879 880 if (t->t_upimutex != NULL) 881 upimutex_cleanup(); 882 883 /* 884 * Perform any brand specific exit processing, then release any 885 * brand data associated with the lwp 886 */ 887 if (PROC_IS_BRANDED(p)) 888 BROP(p)->b_lwpexit(lwp); 889 890 lwp_pcb_exit(); 891 892 mutex_enter(&p->p_lock); 893 lwp_cleanup(); 894 895 /* 896 * When this process is dumping core, its lwps are held here 897 * until the core dump is finished. Then exitlwps() is called 898 * again to release these lwps so that they can finish exiting. 899 */ 900 if (p->p_flag & SCOREDUMP) 901 stop(PR_SUSPENDED, SUSPEND_NORMAL); 902 903 /* 904 * Block the process against /proc now that we have really acquired 905 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 906 */ 907 prbarrier(p); 908 909 /* 910 * Call proc_exit() if this is the last non-daemon lwp in the process. 911 */ 912 if (!(t->t_proc_flag & TP_DAEMON) && 913 p->p_lwpcnt == p->p_lwpdaemon + 1) { 914 mutex_exit(&p->p_lock); 915 if (proc_exit(CLD_EXITED, 0) == 0) { 916 /* Restarting init. */ 917 return; 918 } 919 920 /* 921 * proc_exit() returns a non-zero value when some other 922 * lwp got there first. We just have to continue in 923 * lwp_exit(). 924 */ 925 mutex_enter(&p->p_lock); 926 ASSERT(curproc->p_flag & SEXITLWPS); 927 prbarrier(p); 928 } 929 930 DTRACE_PROC(lwp__exit); 931 932 /* 933 * If the lwp is a detached lwp or if the process is exiting, 934 * remove (lwp_hash_out()) the lwp from the lwp directory. 935 * Otherwise null out the lwp's le_thread pointer in the lwp 936 * directory so that other threads will see it as a zombie lwp. 937 */ 938 prlwpexit(t); /* notify /proc */ 939 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 940 lwp_hash_out(p, t->t_tid); 941 else { 942 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 943 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 944 p->p_zombcnt++; 945 cv_broadcast(&p->p_lwpexit); 946 } 947 if (t->t_proc_flag & TP_DAEMON) { 948 p->p_lwpdaemon--; 949 t->t_proc_flag &= ~TP_DAEMON; 950 } 951 t->t_proc_flag &= ~TP_TWAIT; 952 953 /* 954 * Maintain accurate lwp count for task.max-lwps resource control. 955 */ 956 mutex_enter(&p->p_zone->zone_nlwps_lock); 957 p->p_task->tk_nlwps--; 958 p->p_task->tk_proj->kpj_nlwps--; 959 p->p_zone->zone_nlwps--; 960 mutex_exit(&p->p_zone->zone_nlwps_lock); 961 962 CL_EXIT(t); /* tell the scheduler that t is exiting */ 963 ASSERT(p->p_lwpcnt != 0); 964 p->p_lwpcnt--; 965 966 /* 967 * If all remaining non-daemon lwps are waiting in lwp_wait(), 968 * wake them up so someone can return EDEADLK. 969 * (See the block comment preceeding lwp_wait().) 970 */ 971 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 972 cv_broadcast(&p->p_lwpexit); 973 974 t->t_proc_flag |= TP_LWPEXIT; 975 term_mstate(t); 976 977 #ifndef NPROBE 978 /* Kernel probe */ 979 if (t->t_tnf_tpdp) 980 tnf_thread_exit(); 981 #endif /* NPROBE */ 982 983 t->t_forw->t_back = t->t_back; 984 t->t_back->t_forw = t->t_forw; 985 if (t == p->p_tlist) 986 p->p_tlist = t->t_forw; 987 988 /* 989 * Clean up the signal state. 990 */ 991 if (t->t_sigqueue != NULL) 992 sigdelq(p, t, 0); 993 if (lwp->lwp_curinfo != NULL) { 994 siginfofree(lwp->lwp_curinfo); 995 lwp->lwp_curinfo = NULL; 996 } 997 998 thread_rele(t); 999 1000 /* 1001 * Terminated lwps are associated with process zero and are put onto 1002 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1003 */ 1004 t->t_preempt++; 1005 1006 if (t->t_ctx != NULL) 1007 exitctx(t); 1008 if (p->p_pctx != NULL) 1009 exitpctx(p); 1010 1011 t->t_procp = &p0; 1012 1013 /* 1014 * Notify the HAT about the change of address space 1015 */ 1016 hat_thread_exit(t); 1017 /* 1018 * When this is the last running lwp in this process and some lwp is 1019 * waiting for this condition to become true, or this thread was being 1020 * suspended, then the waiting lwp is awakened. 1021 * 1022 * Also, if the process is exiting, we may have a thread waiting in 1023 * exitlwps() that needs to be notified. 1024 */ 1025 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1026 (p->p_flag & SEXITLWPS)) 1027 cv_broadcast(&p->p_holdlwps); 1028 1029 /* 1030 * Need to drop p_lock so we can reacquire pidlock. 1031 */ 1032 mutex_exit(&p->p_lock); 1033 mutex_enter(&pidlock); 1034 1035 ASSERT(t != t->t_next); /* t0 never exits */ 1036 t->t_next->t_prev = t->t_prev; 1037 t->t_prev->t_next = t->t_next; 1038 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1039 mutex_exit(&pidlock); 1040 1041 t->t_state = TS_ZOMB; 1042 swtch_from_zombie(); 1043 /* never returns */ 1044 } 1045 1046 1047 /* 1048 * Cleanup function for an exiting lwp. 1049 * Called both from lwp_exit() and from proc_exit(). 1050 * p->p_lock is repeatedly released and grabbed in this function. 1051 */ 1052 void 1053 lwp_cleanup(void) 1054 { 1055 kthread_t *t = curthread; 1056 proc_t *p = ttoproc(t); 1057 1058 ASSERT(MUTEX_HELD(&p->p_lock)); 1059 1060 /* untimeout any lwp-bound realtime timers */ 1061 if (p->p_itimer != NULL) 1062 timer_lwpexit(); 1063 1064 /* 1065 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1066 * so it appears that the agent never existed, and clear p_agenttp. 1067 */ 1068 if (t == p->p_agenttp) { 1069 ASSERT(t->t_tid == p->p_lwpid); 1070 p->p_lwpid--; 1071 p->p_agenttp = NULL; 1072 } 1073 1074 /* 1075 * Do lgroup bookkeeping to account for thread exiting. 1076 */ 1077 kpreempt_disable(); 1078 lgrp_move_thread(t, NULL, 1); 1079 if (t->t_tid == 1) { 1080 p->p_t1_lgrpid = LGRP_NONE; 1081 } 1082 kpreempt_enable(); 1083 1084 lwp_ctmpl_clear(ttolwp(t)); 1085 } 1086 1087 int 1088 lwp_suspend(kthread_t *t) 1089 { 1090 int tid; 1091 proc_t *p = ttoproc(t); 1092 1093 ASSERT(MUTEX_HELD(&p->p_lock)); 1094 1095 /* 1096 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1097 * If an lwp is stopping itself, there is no need to wait. 1098 */ 1099 top: 1100 t->t_proc_flag |= TP_HOLDLWP; 1101 if (t == curthread) { 1102 t->t_sig_check = 1; 1103 } else { 1104 /* 1105 * Make sure the lwp stops promptly. 1106 */ 1107 thread_lock(t); 1108 t->t_sig_check = 1; 1109 /* 1110 * XXX Should use virtual stop like /proc does instead of 1111 * XXX waking the thread to get it to stop. 1112 */ 1113 if (ISWAKEABLE(t) || ISWAITING(t)) { 1114 setrun_locked(t); 1115 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1116 poke_cpu(t->t_cpu->cpu_id); 1117 } 1118 1119 tid = t->t_tid; /* remember thread ID */ 1120 /* 1121 * Wait for lwp to stop 1122 */ 1123 while (!SUSPENDED(t)) { 1124 /* 1125 * Drop the thread lock before waiting and reacquire it 1126 * afterwards, so the thread can change its t_state 1127 * field. 1128 */ 1129 thread_unlock(t); 1130 1131 /* 1132 * Check if aborted by exitlwps(). 1133 */ 1134 if (p->p_flag & SEXITLWPS) 1135 lwp_exit(); 1136 1137 /* 1138 * Cooperate with jobcontrol signals and /proc stopping 1139 * by calling cv_wait_sig() to wait for the target 1140 * lwp to stop. Just using cv_wait() can lead to 1141 * deadlock because, if some other lwp has stopped 1142 * by either of these mechanisms, then p_lwprcnt will 1143 * never become zero if we do a cv_wait(). 1144 */ 1145 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1146 return (EINTR); 1147 1148 /* 1149 * Check to see if thread died while we were 1150 * waiting for it to suspend. 1151 */ 1152 if (idtot(p, tid) == NULL) 1153 return (ESRCH); 1154 1155 thread_lock(t); 1156 /* 1157 * If the TP_HOLDLWP flag went away, lwp_continue() 1158 * or vfork() must have been called while we were 1159 * waiting, so start over again. 1160 */ 1161 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1162 thread_unlock(t); 1163 goto top; 1164 } 1165 } 1166 thread_unlock(t); 1167 } 1168 return (0); 1169 } 1170 1171 /* 1172 * continue a lwp that's been stopped by lwp_suspend(). 1173 */ 1174 void 1175 lwp_continue(kthread_t *t) 1176 { 1177 proc_t *p = ttoproc(t); 1178 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1179 1180 ASSERT(MUTEX_HELD(&p->p_lock)); 1181 1182 t->t_proc_flag &= ~TP_HOLDLWP; 1183 thread_lock(t); 1184 if (SUSPENDED(t) && 1185 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1186 p->p_lwprcnt++; 1187 t->t_schedflag |= TS_CSTART; 1188 setrun_locked(t); 1189 } 1190 thread_unlock(t); 1191 /* 1192 * Wakeup anyone waiting for this thread to be suspended 1193 */ 1194 if (was_suspended) 1195 cv_broadcast(&p->p_holdlwps); 1196 } 1197 1198 /* 1199 * ******************************** 1200 * Miscellaneous lwp routines * 1201 * ******************************** 1202 */ 1203 /* 1204 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1205 * This will cause the process's lwps to stop at a hold point. A hold 1206 * point is where a kernel thread has a flat stack. This is at the 1207 * return from a system call and at the return from a user level trap. 1208 * 1209 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1210 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1211 * hold point. The lwps in the process are not being cloned, so they 1212 * are held at the usual hold points and also within issig_forreal(). 1213 * This has the side-effect that their system calls do not return 1214 * showing EINTR. 1215 * 1216 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1217 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1218 * lwp is waiting for the target lwp to be stopped. 1219 */ 1220 void 1221 holdlwp(void) 1222 { 1223 proc_t *p = curproc; 1224 kthread_t *t = curthread; 1225 1226 mutex_enter(&p->p_lock); 1227 /* 1228 * Don't terminate immediately if the process is dumping core. 1229 * Once the process has dumped core, all lwps are terminated. 1230 */ 1231 if (!(p->p_flag & SCOREDUMP)) { 1232 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1233 lwp_exit(); 1234 } 1235 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1236 mutex_exit(&p->p_lock); 1237 return; 1238 } 1239 /* 1240 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1241 * when p->p_lwprcnt becomes zero. 1242 */ 1243 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1244 if (p->p_flag & SEXITLWPS) 1245 lwp_exit(); 1246 mutex_exit(&p->p_lock); 1247 } 1248 1249 /* 1250 * Have all lwps within the process hold at a point where they are 1251 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1252 */ 1253 int 1254 holdlwps(int holdflag) 1255 { 1256 proc_t *p = curproc; 1257 1258 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1259 mutex_enter(&p->p_lock); 1260 schedctl_finish_sigblock(curthread); 1261 again: 1262 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1263 /* 1264 * If another lwp is doing a forkall() or proc_exit(), bail out. 1265 */ 1266 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1267 mutex_exit(&p->p_lock); 1268 return (0); 1269 } 1270 /* 1271 * Another lwp is doing a fork1() or is undergoing 1272 * watchpoint activity. We hold here for it to complete. 1273 */ 1274 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1275 } 1276 p->p_flag |= holdflag; 1277 pokelwps(p); 1278 --p->p_lwprcnt; 1279 /* 1280 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1281 */ 1282 while (p->p_lwprcnt > 0) { 1283 /* 1284 * Check if aborted by exitlwps(). 1285 * Also check if SHOLDWATCH is set; it takes precedence. 1286 */ 1287 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1288 p->p_lwprcnt++; 1289 p->p_flag &= ~holdflag; 1290 cv_broadcast(&p->p_holdlwps); 1291 goto again; 1292 } 1293 /* 1294 * Cooperate with jobcontrol signals and /proc stopping. 1295 * If some other lwp has stopped by either of these 1296 * mechanisms, then p_lwprcnt will never become zero 1297 * and the process will appear deadlocked unless we 1298 * stop here in sympathy with the other lwp before 1299 * doing the cv_wait() below. 1300 * 1301 * If the other lwp stops after we do the cv_wait(), it 1302 * will wake us up to loop around and do the sympathy stop. 1303 * 1304 * Since stop() drops p->p_lock, we must start from 1305 * the top again on returning from stop(). 1306 */ 1307 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1308 int whystop = p->p_stopsig? PR_JOBCONTROL : 1309 PR_REQUESTED; 1310 p->p_lwprcnt++; 1311 p->p_flag &= ~holdflag; 1312 stop(whystop, p->p_stopsig); 1313 goto again; 1314 } 1315 cv_wait(&p->p_holdlwps, &p->p_lock); 1316 } 1317 p->p_lwprcnt++; 1318 p->p_flag &= ~holdflag; 1319 mutex_exit(&p->p_lock); 1320 return (1); 1321 } 1322 1323 /* 1324 * See comments for holdwatch(), below. 1325 */ 1326 static int 1327 holdcheck(int clearflags) 1328 { 1329 proc_t *p = curproc; 1330 1331 /* 1332 * If we are trying to exit, that takes precedence over anything else. 1333 */ 1334 if (p->p_flag & SEXITLWPS) { 1335 p->p_lwprcnt++; 1336 p->p_flag &= ~clearflags; 1337 lwp_exit(); 1338 } 1339 1340 /* 1341 * If another thread is calling fork1(), stop the current thread so the 1342 * other can complete. 1343 */ 1344 if (p->p_flag & SHOLDFORK1) { 1345 p->p_lwprcnt++; 1346 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1347 if (p->p_flag & SEXITLWPS) { 1348 p->p_flag &= ~clearflags; 1349 lwp_exit(); 1350 } 1351 return (-1); 1352 } 1353 1354 /* 1355 * If another thread is calling fork(), then indicate we are doing 1356 * watchpoint activity. This will cause holdlwps() above to stop the 1357 * forking thread, at which point we can continue with watchpoint 1358 * activity. 1359 */ 1360 if (p->p_flag & SHOLDFORK) { 1361 p->p_lwprcnt++; 1362 while (p->p_flag & SHOLDFORK) { 1363 p->p_flag |= SHOLDWATCH; 1364 cv_broadcast(&p->p_holdlwps); 1365 cv_wait(&p->p_holdlwps, &p->p_lock); 1366 p->p_flag &= ~SHOLDWATCH; 1367 } 1368 return (-1); 1369 } 1370 1371 return (0); 1372 } 1373 1374 /* 1375 * Stop all lwps within the process, holding themselves in the kernel while the 1376 * active lwp undergoes watchpoint activity. This is more complicated than 1377 * expected because stop() relies on calling holdwatch() in order to copyin data 1378 * from the user's address space. A double barrier is used to prevent an 1379 * infinite loop. 1380 * 1381 * o The first thread into holdwatch() is the 'master' thread and does 1382 * the following: 1383 * 1384 * - Sets SHOLDWATCH on the current process 1385 * - Sets TP_WATCHSTOP on the current thread 1386 * - Waits for all threads to be either stopped or have 1387 * TP_WATCHSTOP set. 1388 * - Sets the SWATCHOK flag on the process 1389 * - Unsets TP_WATCHSTOP 1390 * - Waits for the other threads to completely stop 1391 * - Unsets SWATCHOK 1392 * 1393 * o If SHOLDWATCH is already set when we enter this function, then another 1394 * thread is already trying to stop this thread. This 'slave' thread 1395 * does the following: 1396 * 1397 * - Sets TP_WATCHSTOP on the current thread 1398 * - Waits for SWATCHOK flag to be set 1399 * - Calls stop() 1400 * 1401 * o If SWATCHOK is set on the process, then this function immediately 1402 * returns, as we must have been called via stop(). 1403 * 1404 * In addition, there are other flags that take precedence over SHOLDWATCH: 1405 * 1406 * o If SEXITLWPS is set, exit immediately. 1407 * 1408 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1409 * 1410 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1411 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1412 * 1413 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1414 * stop the current thread. 1415 * 1416 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1417 * threads were stopped, or the list of watched pages has changed. 1418 */ 1419 int 1420 holdwatch(void) 1421 { 1422 proc_t *p = curproc; 1423 kthread_t *t = curthread; 1424 int ret = 0; 1425 1426 mutex_enter(&p->p_lock); 1427 1428 p->p_lwprcnt--; 1429 1430 /* 1431 * Check for bail-out conditions as outlined above. 1432 */ 1433 if (holdcheck(0) != 0) { 1434 mutex_exit(&p->p_lock); 1435 return (-1); 1436 } 1437 1438 if (!(p->p_flag & SHOLDWATCH)) { 1439 /* 1440 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1441 * the other threads. 1442 */ 1443 p->p_flag |= SHOLDWATCH; 1444 pokelwps(p); 1445 1446 /* 1447 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1448 */ 1449 while (pr_allstopped(p, 1) > 0) { 1450 if (holdcheck(SHOLDWATCH) != 0) { 1451 p->p_flag &= ~SHOLDWATCH; 1452 mutex_exit(&p->p_lock); 1453 return (-1); 1454 } 1455 1456 cv_wait(&p->p_holdlwps, &p->p_lock); 1457 } 1458 1459 /* 1460 * All threads are now stopped or in the process of stopping. 1461 * Set SWATCHOK and let them stop completely. 1462 */ 1463 p->p_flag |= SWATCHOK; 1464 t->t_proc_flag &= ~TP_WATCHSTOP; 1465 cv_broadcast(&p->p_holdlwps); 1466 1467 while (pr_allstopped(p, 0) > 0) { 1468 /* 1469 * At first glance, it may appear that we don't need a 1470 * call to holdcheck() here. But if the process gets a 1471 * SIGKILL signal, one of our stopped threads may have 1472 * been awakened and is waiting in exitlwps(), which 1473 * takes precedence over watchpoints. 1474 */ 1475 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1476 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1477 mutex_exit(&p->p_lock); 1478 return (-1); 1479 } 1480 1481 cv_wait(&p->p_holdlwps, &p->p_lock); 1482 } 1483 1484 /* 1485 * All threads are now completely stopped. 1486 */ 1487 p->p_flag &= ~SWATCHOK; 1488 p->p_flag &= ~SHOLDWATCH; 1489 p->p_lwprcnt++; 1490 1491 } else if (!(p->p_flag & SWATCHOK)) { 1492 1493 /* 1494 * SHOLDWATCH is set, so another thread is trying to do 1495 * watchpoint activity. Indicate this thread is stopping, and 1496 * wait for the OK from the master thread. 1497 */ 1498 t->t_proc_flag |= TP_WATCHSTOP; 1499 cv_broadcast(&p->p_holdlwps); 1500 1501 while (!(p->p_flag & SWATCHOK)) { 1502 if (holdcheck(0) != 0) { 1503 t->t_proc_flag &= ~TP_WATCHSTOP; 1504 mutex_exit(&p->p_lock); 1505 return (-1); 1506 } 1507 1508 cv_wait(&p->p_holdlwps, &p->p_lock); 1509 } 1510 1511 /* 1512 * Once the master thread has given the OK, this thread can 1513 * actually call stop(). 1514 */ 1515 t->t_proc_flag &= ~TP_WATCHSTOP; 1516 p->p_lwprcnt++; 1517 1518 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1519 1520 /* 1521 * It's not OK to do watchpoint activity, notify caller to 1522 * retry. 1523 */ 1524 ret = -1; 1525 1526 } else { 1527 1528 /* 1529 * The only way we can hit the case where SHOLDWATCH is set and 1530 * SWATCHOK is set is if we are triggering this from within a 1531 * stop() call. Assert that this is the case. 1532 */ 1533 1534 ASSERT(t->t_proc_flag & TP_STOPPING); 1535 p->p_lwprcnt++; 1536 } 1537 1538 mutex_exit(&p->p_lock); 1539 1540 return (ret); 1541 } 1542 1543 /* 1544 * force all interruptible lwps to trap into the kernel. 1545 */ 1546 void 1547 pokelwps(proc_t *p) 1548 { 1549 kthread_t *t; 1550 1551 ASSERT(MUTEX_HELD(&p->p_lock)); 1552 1553 t = p->p_tlist; 1554 do { 1555 if (t == curthread) 1556 continue; 1557 thread_lock(t); 1558 aston(t); /* make thread trap or do post_syscall */ 1559 if (ISWAKEABLE(t) || ISWAITING(t)) { 1560 setrun_locked(t); 1561 } else if (t->t_state == TS_STOPPED) { 1562 /* 1563 * Ensure that proc_exit() is not blocked by lwps 1564 * that were stopped via jobcontrol or /proc. 1565 */ 1566 if (p->p_flag & SEXITLWPS) { 1567 p->p_stopsig = 0; 1568 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1569 setrun_locked(t); 1570 } 1571 /* 1572 * If we are holding lwps for a forkall(), 1573 * force lwps that have been suspended via 1574 * lwp_suspend() and are suspended inside 1575 * of a system call to proceed to their 1576 * holdlwp() points where they are clonable. 1577 */ 1578 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1579 if ((t->t_schedflag & TS_CSTART) == 0) { 1580 p->p_lwprcnt++; 1581 t->t_schedflag |= TS_CSTART; 1582 setrun_locked(t); 1583 } 1584 } 1585 } else if (t->t_state == TS_ONPROC) { 1586 if (t->t_cpu != CPU) 1587 poke_cpu(t->t_cpu->cpu_id); 1588 } 1589 thread_unlock(t); 1590 } while ((t = t->t_forw) != p->p_tlist); 1591 } 1592 1593 /* 1594 * undo the effects of holdlwps() or holdwatch(). 1595 */ 1596 void 1597 continuelwps(proc_t *p) 1598 { 1599 kthread_t *t; 1600 1601 /* 1602 * If this flag is set, then the original holdwatch() didn't actually 1603 * stop the process. See comments for holdwatch(). 1604 */ 1605 if (p->p_flag & SWATCHOK) { 1606 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1607 return; 1608 } 1609 1610 ASSERT(MUTEX_HELD(&p->p_lock)); 1611 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1612 1613 t = p->p_tlist; 1614 do { 1615 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1616 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1617 p->p_lwprcnt++; 1618 t->t_schedflag |= TS_CSTART; 1619 setrun_locked(t); 1620 } 1621 thread_unlock(t); 1622 } while ((t = t->t_forw) != p->p_tlist); 1623 } 1624 1625 /* 1626 * Force all other LWPs in the current process other than the caller to exit, 1627 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1628 * is typically used in these situations: 1629 * 1630 * (a) prior to an exec() system call 1631 * (b) prior to dumping a core file 1632 * (c) prior to a uadmin() shutdown 1633 * 1634 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1635 * Multiple threads in the process can call this function at one time by 1636 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1637 * to declare one particular thread the winner who gets to kill the others. 1638 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1639 * appropriate errno value is returned to caller for its system call to return. 1640 */ 1641 int 1642 exitlwps(int coredump) 1643 { 1644 proc_t *p = curproc; 1645 int heldcnt; 1646 1647 if (curthread->t_door) 1648 door_slam(); 1649 if (p->p_door_list) 1650 door_revoke_all(); 1651 if (curthread->t_schedctl != NULL) 1652 schedctl_lwp_cleanup(curthread); 1653 1654 /* 1655 * Ensure that before starting to wait for other lwps to exit, 1656 * cleanup all upimutexes held by curthread. Otherwise, some other 1657 * lwp could be waiting (uninterruptibly) for a upimutex held by 1658 * curthread, and the call to pokelwps() below would deadlock. 1659 * Even if a blocked upimutex_lock is made interruptible, 1660 * curthread's upimutexes need to be unlocked: do it here. 1661 */ 1662 if (curthread->t_upimutex != NULL) 1663 upimutex_cleanup(); 1664 1665 /* 1666 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1667 * We must also block any further /proc access from this point forward. 1668 */ 1669 mutex_enter(&p->p_lock); 1670 prbarrier(p); 1671 1672 if (p->p_flag & SEXITLWPS) { 1673 mutex_exit(&p->p_lock); 1674 aston(curthread); /* force a trip through post_syscall */ 1675 return (set_errno(EINTR)); 1676 } 1677 1678 p->p_flag |= SEXITLWPS; 1679 if (coredump) /* tell other lwps to stop, not exit */ 1680 p->p_flag |= SCOREDUMP; 1681 1682 /* 1683 * Give precedence to exitlwps() if a holdlwps() is 1684 * in progress. The lwp doing the holdlwps() operation 1685 * is aborted when it is awakened. 1686 */ 1687 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1688 cv_broadcast(&p->p_holdlwps); 1689 cv_wait(&p->p_holdlwps, &p->p_lock); 1690 prbarrier(p); 1691 } 1692 p->p_flag |= SHOLDFORK; 1693 pokelwps(p); 1694 1695 /* 1696 * Wait for process to become quiescent. 1697 */ 1698 --p->p_lwprcnt; 1699 while (p->p_lwprcnt > 0) { 1700 cv_wait(&p->p_holdlwps, &p->p_lock); 1701 prbarrier(p); 1702 } 1703 p->p_lwprcnt++; 1704 ASSERT(p->p_lwprcnt == 1); 1705 1706 /* 1707 * The SCOREDUMP flag puts the process into a quiescent 1708 * state. The process's lwps remain attached to this 1709 * process until exitlwps() is called again without the 1710 * 'coredump' flag set, then the lwps are terminated 1711 * and the process can exit. 1712 */ 1713 if (coredump) { 1714 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1715 goto out; 1716 } 1717 1718 /* 1719 * Determine if there are any lwps left dangling in 1720 * the stopped state. This happens when exitlwps() 1721 * aborts a holdlwps() operation. 1722 */ 1723 p->p_flag &= ~SHOLDFORK; 1724 if ((heldcnt = p->p_lwpcnt) > 1) { 1725 kthread_t *t; 1726 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1727 t->t_proc_flag &= ~TP_TWAIT; 1728 lwp_continue(t); 1729 } 1730 } 1731 1732 /* 1733 * Wait for all other lwps to exit. 1734 */ 1735 --p->p_lwprcnt; 1736 while (p->p_lwpcnt > 1) { 1737 cv_wait(&p->p_holdlwps, &p->p_lock); 1738 prbarrier(p); 1739 } 1740 ++p->p_lwprcnt; 1741 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1742 1743 p->p_flag &= ~SEXITLWPS; 1744 curthread->t_proc_flag &= ~TP_TWAIT; 1745 1746 out: 1747 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1748 lwpdir_t *ldp; 1749 lwpent_t *lep; 1750 int i; 1751 1752 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1753 lep = ldp->ld_entry; 1754 if (lep != NULL && lep->le_thread != curthread) { 1755 ASSERT(lep->le_thread == NULL); 1756 p->p_zombcnt--; 1757 lwp_hash_out(p, lep->le_lwpid); 1758 } 1759 } 1760 ASSERT(p->p_zombcnt == 0); 1761 } 1762 1763 /* 1764 * If some other LWP in the process wanted us to suspend ourself, 1765 * then we will not do it. The other LWP is now terminated and 1766 * no one will ever continue us again if we suspend ourself. 1767 */ 1768 curthread->t_proc_flag &= ~TP_HOLDLWP; 1769 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1770 mutex_exit(&p->p_lock); 1771 return (0); 1772 } 1773 1774 /* 1775 * duplicate a lwp. 1776 */ 1777 klwp_t * 1778 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1779 { 1780 klwp_t *clwp; 1781 void *tregs, *tfpu; 1782 kthread_t *t = lwptot(lwp); 1783 kthread_t *ct; 1784 proc_t *p = lwptoproc(lwp); 1785 int cid; 1786 void *bufp; 1787 void *brand_data; 1788 int val; 1789 1790 ASSERT(p == curproc); 1791 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1792 1793 #if defined(__sparc) 1794 if (t == curthread) 1795 (void) flush_user_windows_to_stack(NULL); 1796 #endif 1797 1798 if (t == curthread) 1799 /* copy args out of registers first */ 1800 (void) save_syscall_args(); 1801 1802 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1803 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1804 if (clwp == NULL) 1805 return (NULL); 1806 1807 /* 1808 * most of the parent's lwp can be copied to its duplicate, 1809 * except for the fields that are unique to each lwp, like 1810 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1811 */ 1812 ct = clwp->lwp_thread; 1813 tregs = clwp->lwp_regs; 1814 tfpu = clwp->lwp_fpu; 1815 brand_data = clwp->lwp_brand; 1816 1817 /* 1818 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1819 * mstate_aggr_state() from reading stale mstate entries copied 1820 * from lwp to clwp. 1821 */ 1822 mutex_enter(&cp->p_lock); 1823 *clwp = *lwp; 1824 1825 /* clear microstate and resource usage data in new lwp */ 1826 init_mstate(ct, LMS_STOPPED); 1827 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1828 mutex_exit(&cp->p_lock); 1829 1830 /* fix up child's lwp */ 1831 1832 clwp->lwp_pcb.pcb_flags = 0; 1833 #if defined(__sparc) 1834 clwp->lwp_pcb.pcb_step = STEP_NONE; 1835 #endif 1836 clwp->lwp_cursig = 0; 1837 clwp->lwp_extsig = 0; 1838 clwp->lwp_curinfo = (struct sigqueue *)0; 1839 clwp->lwp_thread = ct; 1840 ct->t_sysnum = t->t_sysnum; 1841 clwp->lwp_regs = tregs; 1842 clwp->lwp_fpu = tfpu; 1843 clwp->lwp_brand = brand_data; 1844 clwp->lwp_ap = clwp->lwp_arg; 1845 clwp->lwp_procp = cp; 1846 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1847 clwp->lwp_lastfault = 0; 1848 clwp->lwp_lastfaddr = 0; 1849 1850 /* copy parent's struct regs to child. */ 1851 lwp_forkregs(lwp, clwp); 1852 1853 /* 1854 * Fork thread context ops, if any. 1855 */ 1856 if (t->t_ctx) 1857 forkctx(t, ct); 1858 1859 /* fix door state in the child */ 1860 if (t->t_door) 1861 door_fork(t, ct); 1862 1863 /* copy current contract templates, clear latest contracts */ 1864 lwp_ctmpl_copy(clwp, lwp); 1865 1866 mutex_enter(&cp->p_lock); 1867 /* lwp_create() set the TP_HOLDLWP flag */ 1868 if (!(t->t_proc_flag & TP_HOLDLWP)) 1869 ct->t_proc_flag &= ~TP_HOLDLWP; 1870 if (cp->p_flag & SMSACCT) 1871 ct->t_proc_flag |= TP_MSACCT; 1872 mutex_exit(&cp->p_lock); 1873 1874 /* Allow brand to propagate brand-specific state */ 1875 if (PROC_IS_BRANDED(p)) 1876 BROP(p)->b_forklwp(lwp, clwp); 1877 1878 retry: 1879 cid = t->t_cid; 1880 1881 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1882 ASSERT(val == 0); 1883 1884 mutex_enter(&p->p_lock); 1885 if (cid != t->t_cid) { 1886 /* 1887 * Someone just changed this thread's scheduling class, 1888 * so try pre-allocating the buffer again. Hopefully we 1889 * don't hit this often. 1890 */ 1891 mutex_exit(&p->p_lock); 1892 CL_FREE(cid, bufp); 1893 goto retry; 1894 } 1895 1896 ct->t_unpark = t->t_unpark; 1897 ct->t_clfuncs = t->t_clfuncs; 1898 CL_FORK(t, ct, bufp); 1899 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1900 mutex_exit(&p->p_lock); 1901 1902 return (clwp); 1903 } 1904 1905 /* 1906 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1907 */ 1908 void 1909 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1910 int do_lock) 1911 { 1912 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1913 lwpdir_t **ldpp; 1914 lwpdir_t *ldp; 1915 kthread_t *t; 1916 1917 /* 1918 * Allocate a directory element from the free list. 1919 * Code elsewhere guarantees a free slot. 1920 */ 1921 ldp = p->p_lwpfree; 1922 p->p_lwpfree = ldp->ld_next; 1923 ASSERT(ldp->ld_entry == NULL); 1924 ldp->ld_entry = lep; 1925 1926 if (do_lock) 1927 mutex_enter(&thp->th_lock); 1928 1929 /* 1930 * Insert it into the lwpid hash table. 1931 */ 1932 ldpp = &thp->th_list; 1933 ldp->ld_next = *ldpp; 1934 *ldpp = ldp; 1935 1936 /* 1937 * Set the active thread's directory slot entry. 1938 */ 1939 if ((t = lep->le_thread) != NULL) { 1940 ASSERT(lep->le_lwpid == t->t_tid); 1941 t->t_dslot = (int)(ldp - p->p_lwpdir); 1942 } 1943 1944 if (do_lock) 1945 mutex_exit(&thp->th_lock); 1946 } 1947 1948 /* 1949 * Remove an lwp from the lwpid hash table and free its directory entry. 1950 * This is done when a detached lwp exits in lwp_exit() or 1951 * when a non-detached lwp is waited for in lwp_wait() or 1952 * when a zombie lwp is detached in lwp_detach(). 1953 */ 1954 void 1955 lwp_hash_out(proc_t *p, id_t lwpid) 1956 { 1957 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1958 lwpdir_t **ldpp; 1959 lwpdir_t *ldp; 1960 lwpent_t *lep; 1961 1962 mutex_enter(&thp->th_lock); 1963 for (ldpp = &thp->th_list; 1964 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1965 lep = ldp->ld_entry; 1966 if (lep->le_lwpid == lwpid) { 1967 prlwpfree(p, lep); /* /proc deals with le_trace */ 1968 *ldpp = ldp->ld_next; 1969 ldp->ld_entry = NULL; 1970 ldp->ld_next = p->p_lwpfree; 1971 p->p_lwpfree = ldp; 1972 kmem_free(lep, sizeof (*lep)); 1973 break; 1974 } 1975 } 1976 mutex_exit(&thp->th_lock); 1977 } 1978 1979 /* 1980 * Lookup an lwp in the lwpid hash table by lwpid. 1981 */ 1982 lwpdir_t * 1983 lwp_hash_lookup(proc_t *p, id_t lwpid) 1984 { 1985 tidhash_t *thp; 1986 lwpdir_t *ldp; 1987 1988 /* 1989 * The process may be exiting, after p_tidhash has been set to NULL in 1990 * proc_exit() but before prfee() has been called. Return failure in 1991 * this case. 1992 */ 1993 if (p->p_tidhash == NULL) 1994 return (NULL); 1995 1996 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1997 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 1998 if (ldp->ld_entry->le_lwpid == lwpid) 1999 return (ldp); 2000 } 2001 2002 return (NULL); 2003 } 2004 2005 /* 2006 * Same as lwp_hash_lookup(), but acquire and return 2007 * the tid hash table entry lock on success. 2008 */ 2009 lwpdir_t * 2010 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2011 { 2012 tidhash_t *tidhash; 2013 uint_t tidhash_sz; 2014 tidhash_t *thp; 2015 lwpdir_t *ldp; 2016 2017 top: 2018 tidhash_sz = p->p_tidhash_sz; 2019 membar_consumer(); 2020 if ((tidhash = p->p_tidhash) == NULL) 2021 return (NULL); 2022 2023 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2024 mutex_enter(&thp->th_lock); 2025 2026 /* 2027 * Since we are not holding p->p_lock, the tid hash table 2028 * may have changed. If so, start over. If not, then 2029 * it cannot change until after we drop &thp->th_lock; 2030 */ 2031 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2032 mutex_exit(&thp->th_lock); 2033 goto top; 2034 } 2035 2036 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2037 if (ldp->ld_entry->le_lwpid == lwpid) { 2038 *mpp = &thp->th_lock; 2039 return (ldp); 2040 } 2041 } 2042 2043 mutex_exit(&thp->th_lock); 2044 return (NULL); 2045 } 2046 2047 /* 2048 * Update the indicated LWP usage statistic for the current LWP. 2049 */ 2050 void 2051 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2052 { 2053 klwp_t *lwp = ttolwp(curthread); 2054 2055 if (lwp == NULL) 2056 return; 2057 2058 switch (lwp_stat_id) { 2059 case LWP_STAT_INBLK: 2060 lwp->lwp_ru.inblock += inc; 2061 break; 2062 case LWP_STAT_OUBLK: 2063 lwp->lwp_ru.oublock += inc; 2064 break; 2065 case LWP_STAT_MSGRCV: 2066 lwp->lwp_ru.msgrcv += inc; 2067 break; 2068 case LWP_STAT_MSGSND: 2069 lwp->lwp_ru.msgsnd += inc; 2070 break; 2071 default: 2072 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2073 } 2074 } 2075