1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/systm.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/task.h> 38 #include <sys/project.h> 39 #include <sys/signal.h> 40 #include <sys/errno.h> 41 #include <sys/vmparam.h> 42 #include <sys/stack.h> 43 #include <sys/procfs.h> 44 #include <sys/prsystm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/kmem.h> 47 #include <sys/vtrace.h> 48 #include <sys/door.h> 49 #include <vm/seg_kp.h> 50 #include <sys/debug.h> 51 #include <sys/tnf.h> 52 #include <sys/schedctl.h> 53 #include <sys/poll.h> 54 #include <sys/copyops.h> 55 #include <sys/lwp_upimutex_impl.h> 56 #include <sys/cpupart.h> 57 #include <sys/lgrp.h> 58 #include <sys/rctl.h> 59 #include <sys/contract_impl.h> 60 #include <sys/cpc_impl.h> 61 #include <sys/sdt.h> 62 #include <sys/cmn_err.h> 63 #include <sys/brand.h> 64 #include <sys/cyclic.h> 65 #include <sys/pool.h> 66 67 /* hash function for the lwpid hash table, p->p_tidhash[] */ 68 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 69 70 void *segkp_lwp; /* cookie for pool of segkp resources */ 71 extern void reapq_move_lq_to_tq(kthread_t *); 72 extern void freectx_ctx(struct ctxop *); 73 74 /* 75 * Create a kernel thread associated with a particular system process. Give 76 * it an LWP so that microstate accounting will be available for it. 77 */ 78 kthread_t * 79 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 80 { 81 klwp_t *lwp; 82 83 VERIFY((p->p_flag & SSYS) != 0); 84 85 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 86 87 VERIFY(lwp != NULL); 88 89 return (lwptot(lwp)); 90 } 91 92 /* 93 * Create a thread that appears to be stopped at sys_rtt. 94 */ 95 klwp_t * 96 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 97 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 98 { 99 klwp_t *lwp = NULL; 100 kthread_t *t; 101 kthread_t *tx; 102 cpupart_t *oldpart = NULL; 103 size_t stksize; 104 caddr_t lwpdata = NULL; 105 processorid_t binding; 106 int err = 0; 107 kproject_t *oldkpj, *newkpj; 108 void *bufp = NULL; 109 klwp_t *curlwp; 110 lwpent_t *lep; 111 lwpdir_t *old_dir = NULL; 112 uint_t old_dirsz = 0; 113 tidhash_t *old_hash = NULL; 114 uint_t old_hashsz = 0; 115 ret_tidhash_t *ret_tidhash = NULL; 116 int i; 117 int rctlfail = 0; 118 boolean_t branded = 0; 119 struct ctxop *ctx = NULL; 120 121 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 122 123 ASSERT(p != &p0); /* No new LWPs in p0. */ 124 125 mutex_enter(&p->p_lock); 126 mutex_enter(&p->p_zone->zone_nlwps_lock); 127 /* 128 * don't enforce rctl limits on system processes 129 */ 130 if (!CLASS_KERNEL(cid)) { 131 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 132 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 133 1, 0) & RCT_DENY) 134 rctlfail = 1; 135 if (p->p_task->tk_proj->kpj_nlwps >= 136 p->p_task->tk_proj->kpj_nlwps_ctl) 137 if (rctl_test(rc_project_nlwps, 138 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 139 & RCT_DENY) 140 rctlfail = 1; 141 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 142 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 143 1, 0) & RCT_DENY) 144 rctlfail = 1; 145 } 146 if (rctlfail) { 147 mutex_exit(&p->p_zone->zone_nlwps_lock); 148 mutex_exit(&p->p_lock); 149 return (NULL); 150 } 151 p->p_task->tk_nlwps++; 152 p->p_task->tk_proj->kpj_nlwps++; 153 p->p_zone->zone_nlwps++; 154 mutex_exit(&p->p_zone->zone_nlwps_lock); 155 mutex_exit(&p->p_lock); 156 157 curlwp = ttolwp(curthread); 158 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 159 stksize = lwp_default_stksize; 160 161 if (CLASS_KERNEL(cid)) { 162 /* 163 * Since we are creating an LWP in an SSYS process, we do not 164 * inherit anything from the current thread's LWP. We set 165 * stksize and lwpdata to 0 in order to let thread_create() 166 * allocate a regular kernel thread stack for this thread. 167 */ 168 curlwp = NULL; 169 stksize = 0; 170 lwpdata = NULL; 171 172 } else if (stksize == lwp_default_stksize) { 173 /* 174 * Try to reuse an <lwp,stack> from the LWP deathrow. 175 */ 176 if (lwp_reapcnt > 0) { 177 mutex_enter(&reaplock); 178 if ((t = lwp_deathrow) != NULL) { 179 ASSERT(t->t_swap); 180 lwp_deathrow = t->t_forw; 181 lwp_reapcnt--; 182 lwpdata = t->t_swap; 183 lwp = t->t_lwp; 184 ctx = t->t_ctx; 185 t->t_swap = NULL; 186 t->t_lwp = NULL; 187 t->t_ctx = NULL; 188 reapq_move_lq_to_tq(t); 189 } 190 mutex_exit(&reaplock); 191 if (lwp != NULL) { 192 lwp_stk_fini(lwp); 193 } 194 if (ctx != NULL) { 195 freectx_ctx(ctx); 196 } 197 } 198 if (lwpdata == NULL && 199 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 200 mutex_enter(&p->p_lock); 201 mutex_enter(&p->p_zone->zone_nlwps_lock); 202 p->p_task->tk_nlwps--; 203 p->p_task->tk_proj->kpj_nlwps--; 204 p->p_zone->zone_nlwps--; 205 mutex_exit(&p->p_zone->zone_nlwps_lock); 206 mutex_exit(&p->p_lock); 207 return (NULL); 208 } 209 } else { 210 stksize = roundup(stksize, PAGESIZE); 211 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 212 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 213 mutex_enter(&p->p_lock); 214 mutex_enter(&p->p_zone->zone_nlwps_lock); 215 p->p_task->tk_nlwps--; 216 p->p_task->tk_proj->kpj_nlwps--; 217 p->p_zone->zone_nlwps--; 218 mutex_exit(&p->p_zone->zone_nlwps_lock); 219 mutex_exit(&p->p_lock); 220 return (NULL); 221 } 222 } 223 224 /* 225 * Create a thread, initializing the stack pointer 226 */ 227 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 228 229 /* 230 * If a non-NULL stack base is passed in, thread_create() assumes 231 * that the stack might be statically allocated (as opposed to being 232 * allocated from segkp), and so it does not set t_swap. Since 233 * the lwpdata was allocated from segkp, we must set t_swap to point 234 * to it ourselves. 235 * 236 * This would be less confusing if t_swap had a better name; it really 237 * indicates that the stack is allocated from segkp, regardless of 238 * whether or not it is swappable. 239 */ 240 if (lwpdata != NULL) { 241 ASSERT(!CLASS_KERNEL(cid)); 242 ASSERT(t->t_swap == NULL); 243 t->t_swap = lwpdata; /* Start of page-able data */ 244 } 245 246 /* 247 * If the stack and lwp can be reused, mark the thread as such. 248 * When we get to reapq_add() from resume_from_zombie(), these 249 * threads will go onto lwp_deathrow instead of thread_deathrow. 250 */ 251 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 252 t->t_flag |= T_LWPREUSE; 253 254 if (lwp == NULL) 255 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 256 bzero(lwp, sizeof (*lwp)); 257 t->t_lwp = lwp; 258 259 t->t_hold = *smask; 260 lwp->lwp_thread = t; 261 lwp->lwp_procp = p; 262 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 263 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 264 lwp->lwp_childstksz = curlwp->lwp_childstksz; 265 266 t->t_stk = lwp_stk_init(lwp, t->t_stk); 267 thread_load(t, proc, arg, len); 268 269 /* 270 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 271 */ 272 if (p->p_rprof_cyclic != CYCLIC_NONE) 273 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 274 275 if (cid != NOCLASS) 276 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 277 278 /* 279 * Allocate an lwp directory entry for the new lwp. 280 */ 281 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 282 283 mutex_enter(&p->p_lock); 284 grow: 285 /* 286 * Grow the lwp (thread) directory and lwpid hash table if necessary. 287 * A note on the growth algorithm: 288 * The new lwp directory size is computed as: 289 * new = 2 * old + 2 290 * Starting with an initial size of 2 (see exec_common()), 291 * this yields numbers that are a power of two minus 2: 292 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 293 * The size of the lwpid hash table must be a power of two 294 * and must be commensurate in size with the lwp directory 295 * so that hash bucket chains remain short. Therefore, 296 * the lwpid hash table size is computed as: 297 * hashsz = (dirsz + 2) / 2 298 * which leads to these hash table sizes corresponding to 299 * the above directory sizes: 300 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 301 * A note on growing the hash table: 302 * For performance reasons, code in lwp_unpark() does not 303 * acquire curproc->p_lock when searching the hash table. 304 * Rather, it calls lwp_hash_lookup_and_lock() which 305 * acquires only the individual hash bucket lock, taking 306 * care to deal with reallocation of the hash table 307 * during the time it takes to acquire the lock. 308 * 309 * This is sufficient to protect the integrity of the 310 * hash table, but it requires us to acquire all of the 311 * old hash bucket locks before growing the hash table 312 * and to release them afterwards. It also requires us 313 * not to free the old hash table because some thread 314 * in lwp_hash_lookup_and_lock() might still be trying 315 * to acquire the old bucket lock. 316 * 317 * So we adopt the tactic of keeping all of the retired 318 * hash tables on a linked list, so they can be safely 319 * freed when the process exits or execs. 320 * 321 * Because the hash table grows in powers of two, the 322 * total size of all of the hash tables will be slightly 323 * less than twice the size of the largest hash table. 324 */ 325 while (p->p_lwpfree == NULL) { 326 uint_t dirsz = p->p_lwpdir_sz; 327 lwpdir_t *new_dir; 328 uint_t new_dirsz; 329 lwpdir_t *ldp; 330 tidhash_t *new_hash; 331 uint_t new_hashsz; 332 333 mutex_exit(&p->p_lock); 334 335 /* 336 * Prepare to remember the old p_tidhash for later 337 * kmem_free()ing when the process exits or execs. 338 */ 339 if (ret_tidhash == NULL) 340 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 341 KM_SLEEP); 342 if (old_dir != NULL) 343 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 344 if (old_hash != NULL) 345 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 346 347 new_dirsz = 2 * dirsz + 2; 348 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 349 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 350 ldp->ld_next = ldp + 1; 351 new_hashsz = (new_dirsz + 2) / 2; 352 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 353 KM_SLEEP); 354 355 mutex_enter(&p->p_lock); 356 if (p == curproc) 357 prbarrier(p); 358 359 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 360 /* 361 * Someone else beat us to it or some lwp exited. 362 * Set up to free our memory and take a lap. 363 */ 364 old_dir = new_dir; 365 old_dirsz = new_dirsz; 366 old_hash = new_hash; 367 old_hashsz = new_hashsz; 368 } else { 369 /* 370 * For the benefit of lwp_hash_lookup_and_lock(), 371 * called from lwp_unpark(), which searches the 372 * tid hash table without acquiring p->p_lock, 373 * we must acquire all of the tid hash table 374 * locks before replacing p->p_tidhash. 375 */ 376 old_hash = p->p_tidhash; 377 old_hashsz = p->p_tidhash_sz; 378 for (i = 0; i < old_hashsz; i++) { 379 mutex_enter(&old_hash[i].th_lock); 380 mutex_enter(&new_hash[i].th_lock); 381 } 382 383 /* 384 * We simply hash in all of the old directory entries. 385 * This works because the old directory has no empty 386 * slots and the new hash table starts out empty. 387 * This reproduces the original directory ordering 388 * (required for /proc directory semantics). 389 */ 390 old_dir = p->p_lwpdir; 391 old_dirsz = p->p_lwpdir_sz; 392 p->p_lwpdir = new_dir; 393 p->p_lwpfree = new_dir; 394 p->p_lwpdir_sz = new_dirsz; 395 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 396 lwp_hash_in(p, ldp->ld_entry, 397 new_hash, new_hashsz, 0); 398 399 /* 400 * Remember the old hash table along with all 401 * of the previously-remembered hash tables. 402 * We will free them at process exit or exec. 403 */ 404 ret_tidhash->rth_tidhash = old_hash; 405 ret_tidhash->rth_tidhash_sz = old_hashsz; 406 ret_tidhash->rth_next = p->p_ret_tidhash; 407 p->p_ret_tidhash = ret_tidhash; 408 409 /* 410 * Now establish the new tid hash table. 411 * As soon as we assign p->p_tidhash, 412 * code in lwp_unpark() can start using it. 413 */ 414 membar_producer(); 415 p->p_tidhash = new_hash; 416 417 /* 418 * It is necessary that p_tidhash reach global 419 * visibility before p_tidhash_sz. Otherwise, 420 * code in lwp_hash_lookup_and_lock() could 421 * index into the old p_tidhash using the new 422 * p_tidhash_sz and thereby access invalid data. 423 */ 424 membar_producer(); 425 p->p_tidhash_sz = new_hashsz; 426 427 /* 428 * Release the locks; allow lwp_unpark() to carry on. 429 */ 430 for (i = 0; i < old_hashsz; i++) { 431 mutex_exit(&old_hash[i].th_lock); 432 mutex_exit(&new_hash[i].th_lock); 433 } 434 435 /* 436 * Avoid freeing these objects below. 437 */ 438 ret_tidhash = NULL; 439 old_hash = NULL; 440 old_hashsz = 0; 441 } 442 } 443 444 /* 445 * Block the process against /proc while we manipulate p->p_tlist, 446 * unless lwp_create() was called by /proc for the PCAGENT operation. 447 * We want to do this early enough so that we don't drop p->p_lock 448 * until the thread is put on the p->p_tlist. 449 */ 450 if (p == curproc) { 451 prbarrier(p); 452 /* 453 * If the current lwp has been requested to stop, do so now. 454 * Otherwise we have a race condition between /proc attempting 455 * to stop the process and this thread creating a new lwp 456 * that was not seen when the /proc PCSTOP request was issued. 457 * We rely on stop() to call prbarrier(p) before returning. 458 */ 459 while ((curthread->t_proc_flag & TP_PRSTOP) && 460 !ttolwp(curthread)->lwp_nostop) { 461 /* 462 * We called pool_barrier_enter() before calling 463 * here to lwp_create(). We have to call 464 * pool_barrier_exit() before stopping. 465 */ 466 pool_barrier_exit(); 467 prbarrier(p); 468 stop(PR_REQUESTED, 0); 469 /* 470 * And we have to repeat the call to 471 * pool_barrier_enter after stopping. 472 */ 473 pool_barrier_enter(); 474 prbarrier(p); 475 } 476 477 /* 478 * If process is exiting, there could be a race between 479 * the agent lwp creation and the new lwp currently being 480 * created. So to prevent this race lwp creation is failed 481 * if the process is exiting. 482 */ 483 if (p->p_flag & (SEXITLWPS|SKILLED)) { 484 err = 1; 485 goto error; 486 } 487 488 /* 489 * Since we might have dropped p->p_lock, the 490 * lwp directory free list might have changed. 491 */ 492 if (p->p_lwpfree == NULL) 493 goto grow; 494 } 495 496 kpreempt_disable(); /* can't grab cpu_lock here */ 497 498 /* 499 * Inherit processor and processor set bindings from curthread. 500 * 501 * For kernel LWPs, we do not inherit processor set bindings at 502 * process creation time (i.e. when p != curproc). After the 503 * kernel process is created, any subsequent LWPs must be created 504 * by threads in the kernel process, at which point we *will* 505 * inherit processor set bindings. 506 */ 507 if (CLASS_KERNEL(cid) && p != curproc) { 508 t->t_bind_cpu = binding = PBIND_NONE; 509 t->t_cpupart = oldpart = &cp_default; 510 t->t_bind_pset = PS_NONE; 511 t->t_bindflag = (uchar_t)default_binding_mode; 512 } else { 513 binding = curthread->t_bind_cpu; 514 t->t_bind_cpu = binding; 515 oldpart = t->t_cpupart; 516 t->t_cpupart = curthread->t_cpupart; 517 t->t_bind_pset = curthread->t_bind_pset; 518 t->t_bindflag = curthread->t_bindflag | 519 (uchar_t)default_binding_mode; 520 } 521 522 /* 523 * thread_create() initializes this thread's home lgroup to the root. 524 * Choose a more suitable lgroup, since this thread is associated 525 * with an lwp. 526 */ 527 ASSERT(oldpart != NULL); 528 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 529 t->t_bound_cpu = cpu[binding]; 530 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 531 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 532 } else if (CLASS_KERNEL(cid)) { 533 /* 534 * Kernel threads are always in the root lgrp. 535 */ 536 lgrp_move_thread(t, 537 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 538 } else { 539 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 540 } 541 542 kpreempt_enable(); 543 544 /* 545 * make sure lpl points to our own partition 546 */ 547 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 548 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 549 t->t_cpupart->cp_nlgrploads); 550 551 /* 552 * It is safe to point the thread to the new project without holding it 553 * since we're holding the target process' p_lock here and therefore 554 * we're guaranteed that it will not move to another project. 555 */ 556 newkpj = p->p_task->tk_proj; 557 oldkpj = ttoproj(t); 558 if (newkpj != oldkpj) { 559 t->t_proj = newkpj; 560 (void) project_hold(newkpj); 561 project_rele(oldkpj); 562 } 563 564 if (cid != NOCLASS) { 565 /* 566 * If the lwp is being created in the current process 567 * and matches the current thread's scheduling class, 568 * we should propagate the current thread's scheduling 569 * parameters by calling CL_FORK. Otherwise just use 570 * the defaults by calling CL_ENTERCLASS. 571 */ 572 if (p != curproc || curthread->t_cid != cid) { 573 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 574 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 575 /* 576 * We don't call schedctl_set_cidpri(t) here 577 * because the schedctl data is not yet set 578 * up for the newly-created lwp. 579 */ 580 } else { 581 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 582 err = CL_FORK(curthread, t, bufp); 583 t->t_cid = cid; 584 } 585 if (err) 586 goto error; 587 else 588 bufp = NULL; 589 } 590 591 /* 592 * If we were given an lwpid then use it, else allocate one. 593 */ 594 if (lwpid != 0) 595 t->t_tid = lwpid; 596 else { 597 /* 598 * lwp/thread id 0 is never valid; reserved for special checks. 599 * lwp/thread id 1 is reserved for the main thread. 600 * Start again at 2 when INT_MAX has been reached 601 * (id_t is a signed 32-bit integer). 602 */ 603 id_t prev_id = p->p_lwpid; /* last allocated tid */ 604 605 do { /* avoid lwpid duplication */ 606 if (p->p_lwpid == INT_MAX) { 607 p->p_flag |= SLWPWRAP; 608 p->p_lwpid = 1; 609 } 610 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 611 /* 612 * All lwpids are allocated; fail the request. 613 */ 614 err = 1; 615 goto error; 616 } 617 /* 618 * We only need to worry about colliding with an id 619 * that's already in use if this process has 620 * cycled through all available lwp ids. 621 */ 622 if ((p->p_flag & SLWPWRAP) == 0) 623 break; 624 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 625 } 626 627 /* 628 * If this is a branded process, let the brand do any necessary lwp 629 * initialization. 630 */ 631 if (PROC_IS_BRANDED(p)) { 632 if (BROP(p)->b_initlwp(lwp)) { 633 err = 1; 634 goto error; 635 } 636 branded = 1; 637 } 638 639 if (t->t_tid == 1) { 640 kpreempt_disable(); 641 ASSERT(t->t_lpl != NULL); 642 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 643 kpreempt_enable(); 644 if (p->p_tr_lgrpid != LGRP_NONE && 645 p->p_tr_lgrpid != p->p_t1_lgrpid) { 646 lgrp_update_trthr_migrations(1); 647 } 648 } 649 650 p->p_lwpcnt++; 651 t->t_waitfor = -1; 652 653 /* 654 * Turn microstate accounting on for thread if on for process. 655 */ 656 if (p->p_flag & SMSACCT) 657 t->t_proc_flag |= TP_MSACCT; 658 659 /* 660 * If the process has watchpoints, mark the new thread as such. 661 */ 662 if (pr_watch_active(p)) 663 watch_enable(t); 664 665 /* 666 * The lwp is being created in the stopped state. 667 * We set all the necessary flags to indicate that fact here. 668 * We omit the TS_CREATE flag from t_schedflag so that the lwp 669 * cannot be set running until the caller is finished with it, 670 * even if lwp_continue() is called on it after we drop p->p_lock. 671 * When the caller is finished with the newly-created lwp, 672 * the caller must call lwp_create_done() to allow the lwp 673 * to be set running. If the TP_HOLDLWP is left set, the 674 * lwp will suspend itself after reaching system call exit. 675 */ 676 init_mstate(t, LMS_STOPPED); 677 t->t_proc_flag |= TP_HOLDLWP; 678 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 679 t->t_whystop = PR_SUSPENDED; 680 t->t_whatstop = SUSPEND_NORMAL; 681 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 682 683 /* 684 * Set system call processing flags in case tracing or profiling 685 * is set. The first system call will evaluate these and turn 686 * them off if they aren't needed. 687 */ 688 t->t_pre_sys = 1; 689 t->t_post_sys = 1; 690 691 /* 692 * Insert the new thread into the list of all threads. 693 */ 694 if ((tx = p->p_tlist) == NULL) { 695 t->t_back = t; 696 t->t_forw = t; 697 p->p_tlist = t; 698 } else { 699 t->t_forw = tx; 700 t->t_back = tx->t_back; 701 tx->t_back->t_forw = t; 702 tx->t_back = t; 703 } 704 705 /* 706 * Insert the new lwp into an lwp directory slot position 707 * and into the lwpid hash table. 708 */ 709 lep->le_thread = t; 710 lep->le_lwpid = t->t_tid; 711 lep->le_start = t->t_start; 712 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 713 714 if (state == TS_RUN) { 715 /* 716 * We set the new lwp running immediately. 717 */ 718 t->t_proc_flag &= ~TP_HOLDLWP; 719 lwp_create_done(t); 720 } 721 722 error: 723 if (err) { 724 if (CLASS_KERNEL(cid)) { 725 /* 726 * This should only happen if a system process runs 727 * out of lwpids, which shouldn't occur. 728 */ 729 panic("Failed to create a system LWP"); 730 } 731 /* 732 * We have failed to create an lwp, so decrement the number 733 * of lwps in the task and let the lgroup load averages know 734 * that this thread isn't going to show up. 735 */ 736 kpreempt_disable(); 737 lgrp_move_thread(t, NULL, 1); 738 kpreempt_enable(); 739 740 ASSERT(MUTEX_HELD(&p->p_lock)); 741 mutex_enter(&p->p_zone->zone_nlwps_lock); 742 p->p_task->tk_nlwps--; 743 p->p_task->tk_proj->kpj_nlwps--; 744 p->p_zone->zone_nlwps--; 745 mutex_exit(&p->p_zone->zone_nlwps_lock); 746 if (cid != NOCLASS && bufp != NULL) 747 CL_FREE(cid, bufp); 748 749 if (branded) 750 BROP(p)->b_freelwp(lwp); 751 752 mutex_exit(&p->p_lock); 753 t->t_state = TS_FREE; 754 thread_rele(t); 755 756 /* 757 * We need to remove t from the list of all threads 758 * because thread_exit()/lwp_exit() isn't called on t. 759 */ 760 mutex_enter(&pidlock); 761 ASSERT(t != t->t_next); /* t0 never exits */ 762 t->t_next->t_prev = t->t_prev; 763 t->t_prev->t_next = t->t_next; 764 mutex_exit(&pidlock); 765 766 thread_free(t); 767 kmem_free(lep, sizeof (*lep)); 768 lwp = NULL; 769 } else { 770 mutex_exit(&p->p_lock); 771 } 772 773 if (old_dir != NULL) 774 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 775 if (old_hash != NULL) 776 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 777 if (ret_tidhash != NULL) 778 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 779 780 DTRACE_PROC1(lwp__create, kthread_t *, t); 781 return (lwp); 782 } 783 784 /* 785 * lwp_create_done() is called by the caller of lwp_create() to set the 786 * newly-created lwp running after the caller has finished manipulating it. 787 */ 788 void 789 lwp_create_done(kthread_t *t) 790 { 791 proc_t *p = ttoproc(t); 792 793 ASSERT(MUTEX_HELD(&p->p_lock)); 794 795 /* 796 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 797 * (The absence of the TS_CREATE flag prevents the lwp from running 798 * until we are finished with it, even if lwp_continue() is called on 799 * it by some other lwp in the process or elsewhere in the kernel.) 800 */ 801 thread_lock(t); 802 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 803 /* 804 * If TS_CSTART is set, lwp_continue(t) has been called and 805 * has already incremented p_lwprcnt; avoid doing this twice. 806 */ 807 if (!(t->t_schedflag & TS_CSTART)) 808 p->p_lwprcnt++; 809 t->t_schedflag |= (TS_CSTART | TS_CREATE); 810 setrun_locked(t); 811 thread_unlock(t); 812 } 813 814 /* 815 * Copy an LWP's active templates, and clear the latest contracts. 816 */ 817 void 818 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 819 { 820 int i; 821 822 for (i = 0; i < ct_ntypes; i++) { 823 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 824 dst->lwp_ct_latest[i] = NULL; 825 } 826 } 827 828 /* 829 * Clear an LWP's contract template state. 830 */ 831 void 832 lwp_ctmpl_clear(klwp_t *lwp) 833 { 834 ct_template_t *tmpl; 835 int i; 836 837 for (i = 0; i < ct_ntypes; i++) { 838 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 839 ctmpl_free(tmpl); 840 lwp->lwp_ct_active[i] = NULL; 841 } 842 843 if (lwp->lwp_ct_latest[i] != NULL) { 844 contract_rele(lwp->lwp_ct_latest[i]); 845 lwp->lwp_ct_latest[i] = NULL; 846 } 847 } 848 } 849 850 /* 851 * Individual lwp exit. 852 * If this is the last lwp, exit the whole process. 853 */ 854 void 855 lwp_exit(void) 856 { 857 kthread_t *t = curthread; 858 klwp_t *lwp = ttolwp(t); 859 proc_t *p = ttoproc(t); 860 861 ASSERT(MUTEX_HELD(&p->p_lock)); 862 863 mutex_exit(&p->p_lock); 864 865 #if defined(__sparc) 866 /* 867 * Ensure that the user stack is fully abandoned.. 868 */ 869 trash_user_windows(); 870 #endif 871 872 tsd_exit(); /* free thread specific data */ 873 874 kcpc_passivate(); /* Clean up performance counter state */ 875 876 pollcleanup(); 877 878 if (t->t_door) 879 door_slam(); 880 881 if (t->t_schedctl != NULL) 882 schedctl_lwp_cleanup(t); 883 884 if (t->t_upimutex != NULL) 885 upimutex_cleanup(); 886 887 /* 888 * Perform any brand specific exit processing, then release any 889 * brand data associated with the lwp 890 */ 891 if (PROC_IS_BRANDED(p)) 892 BROP(p)->b_lwpexit(lwp); 893 894 lwp_pcb_exit(); 895 896 mutex_enter(&p->p_lock); 897 lwp_cleanup(); 898 899 /* 900 * When this process is dumping core, its lwps are held here 901 * until the core dump is finished. Then exitlwps() is called 902 * again to release these lwps so that they can finish exiting. 903 */ 904 if (p->p_flag & SCOREDUMP) 905 stop(PR_SUSPENDED, SUSPEND_NORMAL); 906 907 /* 908 * Block the process against /proc now that we have really acquired 909 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 910 */ 911 prbarrier(p); 912 913 /* 914 * Call proc_exit() if this is the last non-daemon lwp in the process. 915 */ 916 if (!(t->t_proc_flag & TP_DAEMON) && 917 p->p_lwpcnt == p->p_lwpdaemon + 1) { 918 mutex_exit(&p->p_lock); 919 if (proc_exit(CLD_EXITED, 0) == 0) { 920 /* Restarting init. */ 921 return; 922 } 923 924 /* 925 * proc_exit() returns a non-zero value when some other 926 * lwp got there first. We just have to continue in 927 * lwp_exit(). 928 */ 929 mutex_enter(&p->p_lock); 930 ASSERT(curproc->p_flag & SEXITLWPS); 931 prbarrier(p); 932 } 933 934 DTRACE_PROC(lwp__exit); 935 936 /* 937 * If the lwp is a detached lwp or if the process is exiting, 938 * remove (lwp_hash_out()) the lwp from the lwp directory. 939 * Otherwise null out the lwp's le_thread pointer in the lwp 940 * directory so that other threads will see it as a zombie lwp. 941 */ 942 prlwpexit(t); /* notify /proc */ 943 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 944 lwp_hash_out(p, t->t_tid); 945 else { 946 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 947 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 948 p->p_zombcnt++; 949 cv_broadcast(&p->p_lwpexit); 950 } 951 if (t->t_proc_flag & TP_DAEMON) { 952 p->p_lwpdaemon--; 953 t->t_proc_flag &= ~TP_DAEMON; 954 } 955 t->t_proc_flag &= ~TP_TWAIT; 956 957 /* 958 * Maintain accurate lwp count for task.max-lwps resource control. 959 */ 960 mutex_enter(&p->p_zone->zone_nlwps_lock); 961 p->p_task->tk_nlwps--; 962 p->p_task->tk_proj->kpj_nlwps--; 963 p->p_zone->zone_nlwps--; 964 mutex_exit(&p->p_zone->zone_nlwps_lock); 965 966 CL_EXIT(t); /* tell the scheduler that t is exiting */ 967 ASSERT(p->p_lwpcnt != 0); 968 p->p_lwpcnt--; 969 970 /* 971 * If all remaining non-daemon lwps are waiting in lwp_wait(), 972 * wake them up so someone can return EDEADLK. 973 * (See the block comment preceeding lwp_wait().) 974 */ 975 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 976 cv_broadcast(&p->p_lwpexit); 977 978 t->t_proc_flag |= TP_LWPEXIT; 979 term_mstate(t); 980 981 #ifndef NPROBE 982 /* Kernel probe */ 983 if (t->t_tnf_tpdp) 984 tnf_thread_exit(); 985 #endif /* NPROBE */ 986 987 t->t_forw->t_back = t->t_back; 988 t->t_back->t_forw = t->t_forw; 989 if (t == p->p_tlist) 990 p->p_tlist = t->t_forw; 991 992 /* 993 * Clean up the signal state. 994 */ 995 if (t->t_sigqueue != NULL) 996 sigdelq(p, t, 0); 997 if (lwp->lwp_curinfo != NULL) { 998 siginfofree(lwp->lwp_curinfo); 999 lwp->lwp_curinfo = NULL; 1000 } 1001 1002 /* 1003 * If we have spymaster information (that is, if we're an agent LWP), 1004 * free that now. 1005 */ 1006 if (lwp->lwp_spymaster != NULL) { 1007 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t)); 1008 lwp->lwp_spymaster = NULL; 1009 } 1010 1011 thread_rele(t); 1012 1013 /* 1014 * Terminated lwps are associated with process zero and are put onto 1015 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1016 */ 1017 t->t_preempt++; 1018 1019 if (t->t_ctx != NULL) 1020 exitctx(t); 1021 if (p->p_pctx != NULL) 1022 exitpctx(p); 1023 1024 t->t_procp = &p0; 1025 1026 /* 1027 * Notify the HAT about the change of address space 1028 */ 1029 hat_thread_exit(t); 1030 /* 1031 * When this is the last running lwp in this process and some lwp is 1032 * waiting for this condition to become true, or this thread was being 1033 * suspended, then the waiting lwp is awakened. 1034 * 1035 * Also, if the process is exiting, we may have a thread waiting in 1036 * exitlwps() that needs to be notified. 1037 */ 1038 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1039 (p->p_flag & SEXITLWPS)) 1040 cv_broadcast(&p->p_holdlwps); 1041 1042 /* 1043 * Need to drop p_lock so we can reacquire pidlock. 1044 */ 1045 mutex_exit(&p->p_lock); 1046 mutex_enter(&pidlock); 1047 1048 ASSERT(t != t->t_next); /* t0 never exits */ 1049 t->t_next->t_prev = t->t_prev; 1050 t->t_prev->t_next = t->t_next; 1051 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1052 mutex_exit(&pidlock); 1053 1054 t->t_state = TS_ZOMB; 1055 swtch_from_zombie(); 1056 /* never returns */ 1057 } 1058 1059 1060 /* 1061 * Cleanup function for an exiting lwp. 1062 * Called both from lwp_exit() and from proc_exit(). 1063 * p->p_lock is repeatedly released and grabbed in this function. 1064 */ 1065 void 1066 lwp_cleanup(void) 1067 { 1068 kthread_t *t = curthread; 1069 proc_t *p = ttoproc(t); 1070 1071 ASSERT(MUTEX_HELD(&p->p_lock)); 1072 1073 /* untimeout any lwp-bound realtime timers */ 1074 if (p->p_itimer != NULL) 1075 timer_lwpexit(); 1076 1077 /* 1078 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1079 * so it appears that the agent never existed, and clear p_agenttp. 1080 */ 1081 if (t == p->p_agenttp) { 1082 ASSERT(t->t_tid == p->p_lwpid); 1083 p->p_lwpid--; 1084 p->p_agenttp = NULL; 1085 } 1086 1087 /* 1088 * Do lgroup bookkeeping to account for thread exiting. 1089 */ 1090 kpreempt_disable(); 1091 lgrp_move_thread(t, NULL, 1); 1092 if (t->t_tid == 1) { 1093 p->p_t1_lgrpid = LGRP_NONE; 1094 } 1095 kpreempt_enable(); 1096 1097 lwp_ctmpl_clear(ttolwp(t)); 1098 } 1099 1100 int 1101 lwp_suspend(kthread_t *t) 1102 { 1103 int tid; 1104 proc_t *p = ttoproc(t); 1105 1106 ASSERT(MUTEX_HELD(&p->p_lock)); 1107 1108 /* 1109 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1110 * If an lwp is stopping itself, there is no need to wait. 1111 */ 1112 top: 1113 t->t_proc_flag |= TP_HOLDLWP; 1114 if (t == curthread) { 1115 t->t_sig_check = 1; 1116 } else { 1117 /* 1118 * Make sure the lwp stops promptly. 1119 */ 1120 thread_lock(t); 1121 t->t_sig_check = 1; 1122 /* 1123 * XXX Should use virtual stop like /proc does instead of 1124 * XXX waking the thread to get it to stop. 1125 */ 1126 if (ISWAKEABLE(t) || ISWAITING(t)) { 1127 setrun_locked(t); 1128 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1129 poke_cpu(t->t_cpu->cpu_id); 1130 } 1131 1132 tid = t->t_tid; /* remember thread ID */ 1133 /* 1134 * Wait for lwp to stop 1135 */ 1136 while (!SUSPENDED(t)) { 1137 /* 1138 * Drop the thread lock before waiting and reacquire it 1139 * afterwards, so the thread can change its t_state 1140 * field. 1141 */ 1142 thread_unlock(t); 1143 1144 /* 1145 * Check if aborted by exitlwps(). 1146 */ 1147 if (p->p_flag & SEXITLWPS) 1148 lwp_exit(); 1149 1150 /* 1151 * Cooperate with jobcontrol signals and /proc stopping 1152 * by calling cv_wait_sig() to wait for the target 1153 * lwp to stop. Just using cv_wait() can lead to 1154 * deadlock because, if some other lwp has stopped 1155 * by either of these mechanisms, then p_lwprcnt will 1156 * never become zero if we do a cv_wait(). 1157 */ 1158 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1159 return (EINTR); 1160 1161 /* 1162 * Check to see if thread died while we were 1163 * waiting for it to suspend. 1164 */ 1165 if (idtot(p, tid) == NULL) 1166 return (ESRCH); 1167 1168 thread_lock(t); 1169 /* 1170 * If the TP_HOLDLWP flag went away, lwp_continue() 1171 * or vfork() must have been called while we were 1172 * waiting, so start over again. 1173 */ 1174 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1175 thread_unlock(t); 1176 goto top; 1177 } 1178 } 1179 thread_unlock(t); 1180 } 1181 return (0); 1182 } 1183 1184 /* 1185 * continue a lwp that's been stopped by lwp_suspend(). 1186 */ 1187 void 1188 lwp_continue(kthread_t *t) 1189 { 1190 proc_t *p = ttoproc(t); 1191 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1192 1193 ASSERT(MUTEX_HELD(&p->p_lock)); 1194 1195 t->t_proc_flag &= ~TP_HOLDLWP; 1196 thread_lock(t); 1197 if (SUSPENDED(t) && 1198 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1199 p->p_lwprcnt++; 1200 t->t_schedflag |= TS_CSTART; 1201 setrun_locked(t); 1202 } 1203 thread_unlock(t); 1204 /* 1205 * Wakeup anyone waiting for this thread to be suspended 1206 */ 1207 if (was_suspended) 1208 cv_broadcast(&p->p_holdlwps); 1209 } 1210 1211 /* 1212 * ******************************** 1213 * Miscellaneous lwp routines * 1214 * ******************************** 1215 */ 1216 /* 1217 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1218 * This will cause the process's lwps to stop at a hold point. A hold 1219 * point is where a kernel thread has a flat stack. This is at the 1220 * return from a system call and at the return from a user level trap. 1221 * 1222 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1223 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1224 * hold point. The lwps in the process are not being cloned, so they 1225 * are held at the usual hold points and also within issig_forreal(). 1226 * This has the side-effect that their system calls do not return 1227 * showing EINTR. 1228 * 1229 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1230 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1231 * lwp is waiting for the target lwp to be stopped. 1232 */ 1233 void 1234 holdlwp(void) 1235 { 1236 proc_t *p = curproc; 1237 kthread_t *t = curthread; 1238 1239 mutex_enter(&p->p_lock); 1240 /* 1241 * Don't terminate immediately if the process is dumping core. 1242 * Once the process has dumped core, all lwps are terminated. 1243 */ 1244 if (!(p->p_flag & SCOREDUMP)) { 1245 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1246 lwp_exit(); 1247 } 1248 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1249 mutex_exit(&p->p_lock); 1250 return; 1251 } 1252 /* 1253 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1254 * when p->p_lwprcnt becomes zero. 1255 */ 1256 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1257 if (p->p_flag & SEXITLWPS) 1258 lwp_exit(); 1259 mutex_exit(&p->p_lock); 1260 } 1261 1262 /* 1263 * Have all lwps within the process hold at a point where they are 1264 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1265 */ 1266 int 1267 holdlwps(int holdflag) 1268 { 1269 proc_t *p = curproc; 1270 1271 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1272 mutex_enter(&p->p_lock); 1273 schedctl_finish_sigblock(curthread); 1274 again: 1275 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1276 /* 1277 * If another lwp is doing a forkall() or proc_exit(), bail out. 1278 */ 1279 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1280 mutex_exit(&p->p_lock); 1281 return (0); 1282 } 1283 /* 1284 * Another lwp is doing a fork1() or is undergoing 1285 * watchpoint activity. We hold here for it to complete. 1286 */ 1287 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1288 } 1289 p->p_flag |= holdflag; 1290 pokelwps(p); 1291 --p->p_lwprcnt; 1292 /* 1293 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1294 */ 1295 while (p->p_lwprcnt > 0) { 1296 /* 1297 * Check if aborted by exitlwps(). 1298 * Also check if SHOLDWATCH is set; it takes precedence. 1299 */ 1300 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1301 p->p_lwprcnt++; 1302 p->p_flag &= ~holdflag; 1303 cv_broadcast(&p->p_holdlwps); 1304 goto again; 1305 } 1306 /* 1307 * Cooperate with jobcontrol signals and /proc stopping. 1308 * If some other lwp has stopped by either of these 1309 * mechanisms, then p_lwprcnt will never become zero 1310 * and the process will appear deadlocked unless we 1311 * stop here in sympathy with the other lwp before 1312 * doing the cv_wait() below. 1313 * 1314 * If the other lwp stops after we do the cv_wait(), it 1315 * will wake us up to loop around and do the sympathy stop. 1316 * 1317 * Since stop() drops p->p_lock, we must start from 1318 * the top again on returning from stop(). 1319 */ 1320 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1321 int whystop = p->p_stopsig? PR_JOBCONTROL : 1322 PR_REQUESTED; 1323 p->p_lwprcnt++; 1324 p->p_flag &= ~holdflag; 1325 stop(whystop, p->p_stopsig); 1326 goto again; 1327 } 1328 cv_wait(&p->p_holdlwps, &p->p_lock); 1329 } 1330 p->p_lwprcnt++; 1331 p->p_flag &= ~holdflag; 1332 mutex_exit(&p->p_lock); 1333 return (1); 1334 } 1335 1336 /* 1337 * See comments for holdwatch(), below. 1338 */ 1339 static int 1340 holdcheck(int clearflags) 1341 { 1342 proc_t *p = curproc; 1343 1344 /* 1345 * If we are trying to exit, that takes precedence over anything else. 1346 */ 1347 if (p->p_flag & SEXITLWPS) { 1348 p->p_lwprcnt++; 1349 p->p_flag &= ~clearflags; 1350 lwp_exit(); 1351 } 1352 1353 /* 1354 * If another thread is calling fork1(), stop the current thread so the 1355 * other can complete. 1356 */ 1357 if (p->p_flag & SHOLDFORK1) { 1358 p->p_lwprcnt++; 1359 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1360 if (p->p_flag & SEXITLWPS) { 1361 p->p_flag &= ~clearflags; 1362 lwp_exit(); 1363 } 1364 return (-1); 1365 } 1366 1367 /* 1368 * If another thread is calling fork(), then indicate we are doing 1369 * watchpoint activity. This will cause holdlwps() above to stop the 1370 * forking thread, at which point we can continue with watchpoint 1371 * activity. 1372 */ 1373 if (p->p_flag & SHOLDFORK) { 1374 p->p_lwprcnt++; 1375 while (p->p_flag & SHOLDFORK) { 1376 p->p_flag |= SHOLDWATCH; 1377 cv_broadcast(&p->p_holdlwps); 1378 cv_wait(&p->p_holdlwps, &p->p_lock); 1379 p->p_flag &= ~SHOLDWATCH; 1380 } 1381 return (-1); 1382 } 1383 1384 return (0); 1385 } 1386 1387 /* 1388 * Stop all lwps within the process, holding themselves in the kernel while the 1389 * active lwp undergoes watchpoint activity. This is more complicated than 1390 * expected because stop() relies on calling holdwatch() in order to copyin data 1391 * from the user's address space. A double barrier is used to prevent an 1392 * infinite loop. 1393 * 1394 * o The first thread into holdwatch() is the 'master' thread and does 1395 * the following: 1396 * 1397 * - Sets SHOLDWATCH on the current process 1398 * - Sets TP_WATCHSTOP on the current thread 1399 * - Waits for all threads to be either stopped or have 1400 * TP_WATCHSTOP set. 1401 * - Sets the SWATCHOK flag on the process 1402 * - Unsets TP_WATCHSTOP 1403 * - Waits for the other threads to completely stop 1404 * - Unsets SWATCHOK 1405 * 1406 * o If SHOLDWATCH is already set when we enter this function, then another 1407 * thread is already trying to stop this thread. This 'slave' thread 1408 * does the following: 1409 * 1410 * - Sets TP_WATCHSTOP on the current thread 1411 * - Waits for SWATCHOK flag to be set 1412 * - Calls stop() 1413 * 1414 * o If SWATCHOK is set on the process, then this function immediately 1415 * returns, as we must have been called via stop(). 1416 * 1417 * In addition, there are other flags that take precedence over SHOLDWATCH: 1418 * 1419 * o If SEXITLWPS is set, exit immediately. 1420 * 1421 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1422 * 1423 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1424 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1425 * 1426 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1427 * stop the current thread. 1428 * 1429 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1430 * threads were stopped, or the list of watched pages has changed. 1431 */ 1432 int 1433 holdwatch(void) 1434 { 1435 proc_t *p = curproc; 1436 kthread_t *t = curthread; 1437 int ret = 0; 1438 1439 mutex_enter(&p->p_lock); 1440 1441 p->p_lwprcnt--; 1442 1443 /* 1444 * Check for bail-out conditions as outlined above. 1445 */ 1446 if (holdcheck(0) != 0) { 1447 mutex_exit(&p->p_lock); 1448 return (-1); 1449 } 1450 1451 if (!(p->p_flag & SHOLDWATCH)) { 1452 /* 1453 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1454 * the other threads. 1455 */ 1456 p->p_flag |= SHOLDWATCH; 1457 pokelwps(p); 1458 1459 /* 1460 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1461 */ 1462 while (pr_allstopped(p, 1) > 0) { 1463 if (holdcheck(SHOLDWATCH) != 0) { 1464 p->p_flag &= ~SHOLDWATCH; 1465 mutex_exit(&p->p_lock); 1466 return (-1); 1467 } 1468 1469 cv_wait(&p->p_holdlwps, &p->p_lock); 1470 } 1471 1472 /* 1473 * All threads are now stopped or in the process of stopping. 1474 * Set SWATCHOK and let them stop completely. 1475 */ 1476 p->p_flag |= SWATCHOK; 1477 t->t_proc_flag &= ~TP_WATCHSTOP; 1478 cv_broadcast(&p->p_holdlwps); 1479 1480 while (pr_allstopped(p, 0) > 0) { 1481 /* 1482 * At first glance, it may appear that we don't need a 1483 * call to holdcheck() here. But if the process gets a 1484 * SIGKILL signal, one of our stopped threads may have 1485 * been awakened and is waiting in exitlwps(), which 1486 * takes precedence over watchpoints. 1487 */ 1488 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1489 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1490 mutex_exit(&p->p_lock); 1491 return (-1); 1492 } 1493 1494 cv_wait(&p->p_holdlwps, &p->p_lock); 1495 } 1496 1497 /* 1498 * All threads are now completely stopped. 1499 */ 1500 p->p_flag &= ~SWATCHOK; 1501 p->p_flag &= ~SHOLDWATCH; 1502 p->p_lwprcnt++; 1503 1504 } else if (!(p->p_flag & SWATCHOK)) { 1505 1506 /* 1507 * SHOLDWATCH is set, so another thread is trying to do 1508 * watchpoint activity. Indicate this thread is stopping, and 1509 * wait for the OK from the master thread. 1510 */ 1511 t->t_proc_flag |= TP_WATCHSTOP; 1512 cv_broadcast(&p->p_holdlwps); 1513 1514 while (!(p->p_flag & SWATCHOK)) { 1515 if (holdcheck(0) != 0) { 1516 t->t_proc_flag &= ~TP_WATCHSTOP; 1517 mutex_exit(&p->p_lock); 1518 return (-1); 1519 } 1520 1521 cv_wait(&p->p_holdlwps, &p->p_lock); 1522 } 1523 1524 /* 1525 * Once the master thread has given the OK, this thread can 1526 * actually call stop(). 1527 */ 1528 t->t_proc_flag &= ~TP_WATCHSTOP; 1529 p->p_lwprcnt++; 1530 1531 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1532 1533 /* 1534 * It's not OK to do watchpoint activity, notify caller to 1535 * retry. 1536 */ 1537 ret = -1; 1538 1539 } else { 1540 1541 /* 1542 * The only way we can hit the case where SHOLDWATCH is set and 1543 * SWATCHOK is set is if we are triggering this from within a 1544 * stop() call. Assert that this is the case. 1545 */ 1546 1547 ASSERT(t->t_proc_flag & TP_STOPPING); 1548 p->p_lwprcnt++; 1549 } 1550 1551 mutex_exit(&p->p_lock); 1552 1553 return (ret); 1554 } 1555 1556 /* 1557 * force all interruptible lwps to trap into the kernel. 1558 */ 1559 void 1560 pokelwps(proc_t *p) 1561 { 1562 kthread_t *t; 1563 1564 ASSERT(MUTEX_HELD(&p->p_lock)); 1565 1566 t = p->p_tlist; 1567 do { 1568 if (t == curthread) 1569 continue; 1570 thread_lock(t); 1571 aston(t); /* make thread trap or do post_syscall */ 1572 if (ISWAKEABLE(t) || ISWAITING(t)) { 1573 setrun_locked(t); 1574 } else if (t->t_state == TS_STOPPED) { 1575 /* 1576 * Ensure that proc_exit() is not blocked by lwps 1577 * that were stopped via jobcontrol or /proc. 1578 */ 1579 if (p->p_flag & SEXITLWPS) { 1580 p->p_stopsig = 0; 1581 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1582 setrun_locked(t); 1583 } 1584 /* 1585 * If we are holding lwps for a forkall(), 1586 * force lwps that have been suspended via 1587 * lwp_suspend() and are suspended inside 1588 * of a system call to proceed to their 1589 * holdlwp() points where they are clonable. 1590 */ 1591 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1592 if ((t->t_schedflag & TS_CSTART) == 0) { 1593 p->p_lwprcnt++; 1594 t->t_schedflag |= TS_CSTART; 1595 setrun_locked(t); 1596 } 1597 } 1598 } else if (t->t_state == TS_ONPROC) { 1599 if (t->t_cpu != CPU) 1600 poke_cpu(t->t_cpu->cpu_id); 1601 } 1602 thread_unlock(t); 1603 } while ((t = t->t_forw) != p->p_tlist); 1604 } 1605 1606 /* 1607 * undo the effects of holdlwps() or holdwatch(). 1608 */ 1609 void 1610 continuelwps(proc_t *p) 1611 { 1612 kthread_t *t; 1613 1614 /* 1615 * If this flag is set, then the original holdwatch() didn't actually 1616 * stop the process. See comments for holdwatch(). 1617 */ 1618 if (p->p_flag & SWATCHOK) { 1619 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1620 return; 1621 } 1622 1623 ASSERT(MUTEX_HELD(&p->p_lock)); 1624 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1625 1626 t = p->p_tlist; 1627 do { 1628 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1629 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1630 p->p_lwprcnt++; 1631 t->t_schedflag |= TS_CSTART; 1632 setrun_locked(t); 1633 } 1634 thread_unlock(t); 1635 } while ((t = t->t_forw) != p->p_tlist); 1636 } 1637 1638 /* 1639 * Force all other LWPs in the current process other than the caller to exit, 1640 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1641 * is typically used in these situations: 1642 * 1643 * (a) prior to an exec() system call 1644 * (b) prior to dumping a core file 1645 * (c) prior to a uadmin() shutdown 1646 * 1647 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1648 * Multiple threads in the process can call this function at one time by 1649 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1650 * to declare one particular thread the winner who gets to kill the others. 1651 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1652 * appropriate errno value is returned to caller for its system call to return. 1653 */ 1654 int 1655 exitlwps(int coredump) 1656 { 1657 proc_t *p = curproc; 1658 int heldcnt; 1659 1660 if (curthread->t_door) 1661 door_slam(); 1662 if (p->p_door_list) 1663 door_revoke_all(); 1664 if (curthread->t_schedctl != NULL) 1665 schedctl_lwp_cleanup(curthread); 1666 1667 /* 1668 * Ensure that before starting to wait for other lwps to exit, 1669 * cleanup all upimutexes held by curthread. Otherwise, some other 1670 * lwp could be waiting (uninterruptibly) for a upimutex held by 1671 * curthread, and the call to pokelwps() below would deadlock. 1672 * Even if a blocked upimutex_lock is made interruptible, 1673 * curthread's upimutexes need to be unlocked: do it here. 1674 */ 1675 if (curthread->t_upimutex != NULL) 1676 upimutex_cleanup(); 1677 1678 /* 1679 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1680 * We must also block any further /proc access from this point forward. 1681 */ 1682 mutex_enter(&p->p_lock); 1683 prbarrier(p); 1684 1685 if (p->p_flag & SEXITLWPS) { 1686 mutex_exit(&p->p_lock); 1687 aston(curthread); /* force a trip through post_syscall */ 1688 return (set_errno(EINTR)); 1689 } 1690 1691 p->p_flag |= SEXITLWPS; 1692 if (coredump) /* tell other lwps to stop, not exit */ 1693 p->p_flag |= SCOREDUMP; 1694 1695 /* 1696 * Give precedence to exitlwps() if a holdlwps() is 1697 * in progress. The lwp doing the holdlwps() operation 1698 * is aborted when it is awakened. 1699 */ 1700 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1701 cv_broadcast(&p->p_holdlwps); 1702 cv_wait(&p->p_holdlwps, &p->p_lock); 1703 prbarrier(p); 1704 } 1705 p->p_flag |= SHOLDFORK; 1706 pokelwps(p); 1707 1708 /* 1709 * Wait for process to become quiescent. 1710 */ 1711 --p->p_lwprcnt; 1712 while (p->p_lwprcnt > 0) { 1713 cv_wait(&p->p_holdlwps, &p->p_lock); 1714 prbarrier(p); 1715 } 1716 p->p_lwprcnt++; 1717 ASSERT(p->p_lwprcnt == 1); 1718 1719 /* 1720 * The SCOREDUMP flag puts the process into a quiescent 1721 * state. The process's lwps remain attached to this 1722 * process until exitlwps() is called again without the 1723 * 'coredump' flag set, then the lwps are terminated 1724 * and the process can exit. 1725 */ 1726 if (coredump) { 1727 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1728 goto out; 1729 } 1730 1731 /* 1732 * Determine if there are any lwps left dangling in 1733 * the stopped state. This happens when exitlwps() 1734 * aborts a holdlwps() operation. 1735 */ 1736 p->p_flag &= ~SHOLDFORK; 1737 if ((heldcnt = p->p_lwpcnt) > 1) { 1738 kthread_t *t; 1739 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1740 t->t_proc_flag &= ~TP_TWAIT; 1741 lwp_continue(t); 1742 } 1743 } 1744 1745 /* 1746 * Wait for all other lwps to exit. 1747 */ 1748 --p->p_lwprcnt; 1749 while (p->p_lwpcnt > 1) { 1750 cv_wait(&p->p_holdlwps, &p->p_lock); 1751 prbarrier(p); 1752 } 1753 ++p->p_lwprcnt; 1754 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1755 1756 p->p_flag &= ~SEXITLWPS; 1757 curthread->t_proc_flag &= ~TP_TWAIT; 1758 1759 out: 1760 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1761 lwpdir_t *ldp; 1762 lwpent_t *lep; 1763 int i; 1764 1765 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1766 lep = ldp->ld_entry; 1767 if (lep != NULL && lep->le_thread != curthread) { 1768 ASSERT(lep->le_thread == NULL); 1769 p->p_zombcnt--; 1770 lwp_hash_out(p, lep->le_lwpid); 1771 } 1772 } 1773 ASSERT(p->p_zombcnt == 0); 1774 } 1775 1776 /* 1777 * If some other LWP in the process wanted us to suspend ourself, 1778 * then we will not do it. The other LWP is now terminated and 1779 * no one will ever continue us again if we suspend ourself. 1780 */ 1781 curthread->t_proc_flag &= ~TP_HOLDLWP; 1782 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1783 mutex_exit(&p->p_lock); 1784 return (0); 1785 } 1786 1787 /* 1788 * duplicate a lwp. 1789 */ 1790 klwp_t * 1791 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1792 { 1793 klwp_t *clwp; 1794 void *tregs, *tfpu; 1795 kthread_t *t = lwptot(lwp); 1796 kthread_t *ct; 1797 proc_t *p = lwptoproc(lwp); 1798 int cid; 1799 void *bufp; 1800 void *brand_data; 1801 int val; 1802 1803 ASSERT(p == curproc); 1804 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1805 1806 #if defined(__sparc) 1807 if (t == curthread) 1808 (void) flush_user_windows_to_stack(NULL); 1809 #endif 1810 1811 if (t == curthread) 1812 /* copy args out of registers first */ 1813 (void) save_syscall_args(); 1814 1815 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1816 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1817 if (clwp == NULL) 1818 return (NULL); 1819 1820 /* 1821 * most of the parent's lwp can be copied to its duplicate, 1822 * except for the fields that are unique to each lwp, like 1823 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1824 */ 1825 ct = clwp->lwp_thread; 1826 tregs = clwp->lwp_regs; 1827 tfpu = clwp->lwp_fpu; 1828 brand_data = clwp->lwp_brand; 1829 1830 /* 1831 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1832 * mstate_aggr_state() from reading stale mstate entries copied 1833 * from lwp to clwp. 1834 */ 1835 mutex_enter(&cp->p_lock); 1836 *clwp = *lwp; 1837 1838 /* clear microstate and resource usage data in new lwp */ 1839 init_mstate(ct, LMS_STOPPED); 1840 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1841 mutex_exit(&cp->p_lock); 1842 1843 /* fix up child's lwp */ 1844 1845 clwp->lwp_pcb.pcb_flags = 0; 1846 #if defined(__sparc) 1847 clwp->lwp_pcb.pcb_step = STEP_NONE; 1848 #endif 1849 clwp->lwp_cursig = 0; 1850 clwp->lwp_extsig = 0; 1851 clwp->lwp_curinfo = (struct sigqueue *)0; 1852 clwp->lwp_thread = ct; 1853 ct->t_sysnum = t->t_sysnum; 1854 clwp->lwp_regs = tregs; 1855 clwp->lwp_fpu = tfpu; 1856 clwp->lwp_brand = brand_data; 1857 clwp->lwp_ap = clwp->lwp_arg; 1858 clwp->lwp_procp = cp; 1859 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1860 clwp->lwp_lastfault = 0; 1861 clwp->lwp_lastfaddr = 0; 1862 1863 /* copy parent's struct regs to child. */ 1864 lwp_forkregs(lwp, clwp); 1865 1866 /* 1867 * Fork thread context ops, if any. 1868 */ 1869 if (t->t_ctx) 1870 forkctx(t, ct); 1871 1872 /* fix door state in the child */ 1873 if (t->t_door) 1874 door_fork(t, ct); 1875 1876 /* copy current contract templates, clear latest contracts */ 1877 lwp_ctmpl_copy(clwp, lwp); 1878 1879 mutex_enter(&cp->p_lock); 1880 /* lwp_create() set the TP_HOLDLWP flag */ 1881 if (!(t->t_proc_flag & TP_HOLDLWP)) 1882 ct->t_proc_flag &= ~TP_HOLDLWP; 1883 if (cp->p_flag & SMSACCT) 1884 ct->t_proc_flag |= TP_MSACCT; 1885 mutex_exit(&cp->p_lock); 1886 1887 /* Allow brand to propagate brand-specific state */ 1888 if (PROC_IS_BRANDED(p)) 1889 BROP(p)->b_forklwp(lwp, clwp); 1890 1891 retry: 1892 cid = t->t_cid; 1893 1894 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1895 ASSERT(val == 0); 1896 1897 mutex_enter(&p->p_lock); 1898 if (cid != t->t_cid) { 1899 /* 1900 * Someone just changed this thread's scheduling class, 1901 * so try pre-allocating the buffer again. Hopefully we 1902 * don't hit this often. 1903 */ 1904 mutex_exit(&p->p_lock); 1905 CL_FREE(cid, bufp); 1906 goto retry; 1907 } 1908 1909 ct->t_unpark = t->t_unpark; 1910 ct->t_clfuncs = t->t_clfuncs; 1911 CL_FORK(t, ct, bufp); 1912 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1913 mutex_exit(&p->p_lock); 1914 1915 return (clwp); 1916 } 1917 1918 /* 1919 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1920 */ 1921 void 1922 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1923 int do_lock) 1924 { 1925 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1926 lwpdir_t **ldpp; 1927 lwpdir_t *ldp; 1928 kthread_t *t; 1929 1930 /* 1931 * Allocate a directory element from the free list. 1932 * Code elsewhere guarantees a free slot. 1933 */ 1934 ldp = p->p_lwpfree; 1935 p->p_lwpfree = ldp->ld_next; 1936 ASSERT(ldp->ld_entry == NULL); 1937 ldp->ld_entry = lep; 1938 1939 if (do_lock) 1940 mutex_enter(&thp->th_lock); 1941 1942 /* 1943 * Insert it into the lwpid hash table. 1944 */ 1945 ldpp = &thp->th_list; 1946 ldp->ld_next = *ldpp; 1947 *ldpp = ldp; 1948 1949 /* 1950 * Set the active thread's directory slot entry. 1951 */ 1952 if ((t = lep->le_thread) != NULL) { 1953 ASSERT(lep->le_lwpid == t->t_tid); 1954 t->t_dslot = (int)(ldp - p->p_lwpdir); 1955 } 1956 1957 if (do_lock) 1958 mutex_exit(&thp->th_lock); 1959 } 1960 1961 /* 1962 * Remove an lwp from the lwpid hash table and free its directory entry. 1963 * This is done when a detached lwp exits in lwp_exit() or 1964 * when a non-detached lwp is waited for in lwp_wait() or 1965 * when a zombie lwp is detached in lwp_detach(). 1966 */ 1967 void 1968 lwp_hash_out(proc_t *p, id_t lwpid) 1969 { 1970 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1971 lwpdir_t **ldpp; 1972 lwpdir_t *ldp; 1973 lwpent_t *lep; 1974 1975 mutex_enter(&thp->th_lock); 1976 for (ldpp = &thp->th_list; 1977 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1978 lep = ldp->ld_entry; 1979 if (lep->le_lwpid == lwpid) { 1980 prlwpfree(p, lep); /* /proc deals with le_trace */ 1981 *ldpp = ldp->ld_next; 1982 ldp->ld_entry = NULL; 1983 ldp->ld_next = p->p_lwpfree; 1984 p->p_lwpfree = ldp; 1985 kmem_free(lep, sizeof (*lep)); 1986 break; 1987 } 1988 } 1989 mutex_exit(&thp->th_lock); 1990 } 1991 1992 /* 1993 * Lookup an lwp in the lwpid hash table by lwpid. 1994 */ 1995 lwpdir_t * 1996 lwp_hash_lookup(proc_t *p, id_t lwpid) 1997 { 1998 tidhash_t *thp; 1999 lwpdir_t *ldp; 2000 2001 /* 2002 * The process may be exiting, after p_tidhash has been set to NULL in 2003 * proc_exit() but before prfee() has been called. Return failure in 2004 * this case. 2005 */ 2006 if (p->p_tidhash == NULL) 2007 return (NULL); 2008 2009 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2010 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2011 if (ldp->ld_entry->le_lwpid == lwpid) 2012 return (ldp); 2013 } 2014 2015 return (NULL); 2016 } 2017 2018 /* 2019 * Same as lwp_hash_lookup(), but acquire and return 2020 * the tid hash table entry lock on success. 2021 */ 2022 lwpdir_t * 2023 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2024 { 2025 tidhash_t *tidhash; 2026 uint_t tidhash_sz; 2027 tidhash_t *thp; 2028 lwpdir_t *ldp; 2029 2030 top: 2031 tidhash_sz = p->p_tidhash_sz; 2032 membar_consumer(); 2033 if ((tidhash = p->p_tidhash) == NULL) 2034 return (NULL); 2035 2036 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2037 mutex_enter(&thp->th_lock); 2038 2039 /* 2040 * Since we are not holding p->p_lock, the tid hash table 2041 * may have changed. If so, start over. If not, then 2042 * it cannot change until after we drop &thp->th_lock; 2043 */ 2044 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2045 mutex_exit(&thp->th_lock); 2046 goto top; 2047 } 2048 2049 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2050 if (ldp->ld_entry->le_lwpid == lwpid) { 2051 *mpp = &thp->th_lock; 2052 return (ldp); 2053 } 2054 } 2055 2056 mutex_exit(&thp->th_lock); 2057 return (NULL); 2058 } 2059 2060 /* 2061 * Update the indicated LWP usage statistic for the current LWP. 2062 */ 2063 void 2064 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2065 { 2066 klwp_t *lwp = ttolwp(curthread); 2067 2068 if (lwp == NULL) 2069 return; 2070 2071 switch (lwp_stat_id) { 2072 case LWP_STAT_INBLK: 2073 lwp->lwp_ru.inblock += inc; 2074 break; 2075 case LWP_STAT_OUBLK: 2076 lwp->lwp_ru.oublock += inc; 2077 break; 2078 case LWP_STAT_MSGRCV: 2079 lwp->lwp_ru.msgrcv += inc; 2080 break; 2081 case LWP_STAT_MSGSND: 2082 lwp->lwp_ru.msgsnd += inc; 2083 break; 2084 default: 2085 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2086 } 2087 } 2088