1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Kernel memory allocator, as described in the following two papers and a 28 * statement about the consolidator: 29 * 30 * Jeff Bonwick, 31 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 32 * Proceedings of the Summer 1994 Usenix Conference. 33 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 34 * 35 * Jeff Bonwick and Jonathan Adams, 36 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 37 * Arbitrary Resources. 38 * Proceedings of the 2001 Usenix Conference. 39 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 40 * 41 * kmem Slab Consolidator Big Theory Statement: 42 * 43 * 1. Motivation 44 * 45 * As stated in Bonwick94, slabs provide the following advantages over other 46 * allocation structures in terms of memory fragmentation: 47 * 48 * - Internal fragmentation (per-buffer wasted space) is minimal. 49 * - Severe external fragmentation (unused buffers on the free list) is 50 * unlikely. 51 * 52 * Segregating objects by size eliminates one source of external fragmentation, 53 * and according to Bonwick: 54 * 55 * The other reason that slabs reduce external fragmentation is that all 56 * objects in a slab are of the same type, so they have the same lifetime 57 * distribution. The resulting segregation of short-lived and long-lived 58 * objects at slab granularity reduces the likelihood of an entire page being 59 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 60 * 61 * While unlikely, severe external fragmentation remains possible. Clients that 62 * allocate both short- and long-lived objects from the same cache cannot 63 * anticipate the distribution of long-lived objects within the allocator's slab 64 * implementation. Even a small percentage of long-lived objects distributed 65 * randomly across many slabs can lead to a worst case scenario where the client 66 * frees the majority of its objects and the system gets back almost none of the 67 * slabs. Despite the client doing what it reasonably can to help the system 68 * reclaim memory, the allocator cannot shake free enough slabs because of 69 * lonely allocations stubbornly hanging on. Although the allocator is in a 70 * position to diagnose the fragmentation, there is nothing that the allocator 71 * by itself can do about it. It only takes a single allocated object to prevent 72 * an entire slab from being reclaimed, and any object handed out by 73 * kmem_cache_alloc() is by definition in the client's control. Conversely, 74 * although the client is in a position to move a long-lived object, it has no 75 * way of knowing if the object is causing fragmentation, and if so, where to 76 * move it. A solution necessarily requires further cooperation between the 77 * allocator and the client. 78 * 79 * 2. Move Callback 80 * 81 * The kmem slab consolidator therefore adds a move callback to the 82 * allocator/client interface, improving worst-case external fragmentation in 83 * kmem caches that supply a function to move objects from one memory location 84 * to another. In a situation of low memory kmem attempts to consolidate all of 85 * a cache's slabs at once; otherwise it works slowly to bring external 86 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 87 * thereby helping to avoid a low memory situation in the future. 88 * 89 * The callback has the following signature: 90 * 91 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 92 * 93 * It supplies the kmem client with two addresses: the allocated object that 94 * kmem wants to move and a buffer selected by kmem for the client to use as the 95 * copy destination. The callback is kmem's way of saying "Please get off of 96 * this buffer and use this one instead." kmem knows where it wants to move the 97 * object in order to best reduce fragmentation. All the client needs to know 98 * about the second argument (void *new) is that it is an allocated, constructed 99 * object ready to take the contents of the old object. When the move function 100 * is called, the system is likely to be low on memory, and the new object 101 * spares the client from having to worry about allocating memory for the 102 * requested move. The third argument supplies the size of the object, in case a 103 * single move function handles multiple caches whose objects differ only in 104 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 105 * user argument passed to the constructor, destructor, and reclaim functions is 106 * also passed to the move callback. 107 * 108 * 2.1 Setting the Move Callback 109 * 110 * The client sets the move callback after creating the cache and before 111 * allocating from it: 112 * 113 * object_cache = kmem_cache_create(...); 114 * kmem_cache_set_move(object_cache, object_move); 115 * 116 * 2.2 Move Callback Return Values 117 * 118 * Only the client knows about its own data and when is a good time to move it. 119 * The client is cooperating with kmem to return unused memory to the system, 120 * and kmem respectfully accepts this help at the client's convenience. When 121 * asked to move an object, the client can respond with any of the following: 122 * 123 * typedef enum kmem_cbrc { 124 * KMEM_CBRC_YES, 125 * KMEM_CBRC_NO, 126 * KMEM_CBRC_LATER, 127 * KMEM_CBRC_DONT_NEED, 128 * KMEM_CBRC_DONT_KNOW 129 * } kmem_cbrc_t; 130 * 131 * The client must not explicitly kmem_cache_free() either of the objects passed 132 * to the callback, since kmem wants to free them directly to the slab layer 133 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 134 * objects to free: 135 * 136 * YES: (Did it) The client moved the object, so kmem frees the old one. 137 * NO: (Never) The client refused, so kmem frees the new object (the 138 * unused copy destination). kmem also marks the slab of the old 139 * object so as not to bother the client with further callbacks for 140 * that object as long as the slab remains on the partial slab list. 141 * (The system won't be getting the slab back as long as the 142 * immovable object holds it hostage, so there's no point in moving 143 * any of its objects.) 144 * LATER: The client is using the object and cannot move it now, so kmem 145 * frees the new object (the unused copy destination). kmem still 146 * attempts to move other objects off the slab, since it expects to 147 * succeed in clearing the slab in a later callback. The client 148 * should use LATER instead of NO if the object is likely to become 149 * movable very soon. 150 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 151 * with the new object (the unused copy destination). This response 152 * is the client's opportunity to be a model citizen and give back as 153 * much as it can. 154 * DONT_KNOW: The client does not know about the object because 155 * a) the client has just allocated the object and not yet put it 156 * wherever it expects to find known objects 157 * b) the client has removed the object from wherever it expects to 158 * find known objects and is about to free it, or 159 * c) the client has freed the object. 160 * In all these cases (a, b, and c) kmem frees the new object (the 161 * unused copy destination) and searches for the old object in the 162 * magazine layer. If found, the object is removed from the magazine 163 * layer and freed to the slab layer so it will no longer hold the 164 * slab hostage. 165 * 166 * 2.3 Object States 167 * 168 * Neither kmem nor the client can be assumed to know the object's whereabouts 169 * at the time of the callback. An object belonging to a kmem cache may be in 170 * any of the following states: 171 * 172 * 1. Uninitialized on the slab 173 * 2. Allocated from the slab but not constructed (still uninitialized) 174 * 3. Allocated from the slab, constructed, but not yet ready for business 175 * (not in a valid state for the move callback) 176 * 4. In use (valid and known to the client) 177 * 5. About to be freed (no longer in a valid state for the move callback) 178 * 6. Freed to a magazine (still constructed) 179 * 7. Allocated from a magazine, not yet ready for business (not in a valid 180 * state for the move callback), and about to return to state #4 181 * 8. Deconstructed on a magazine that is about to be freed 182 * 9. Freed to the slab 183 * 184 * Since the move callback may be called at any time while the object is in any 185 * of the above states (except state #1), the client needs a safe way to 186 * determine whether or not it knows about the object. Specifically, the client 187 * needs to know whether or not the object is in state #4, the only state in 188 * which a move is valid. If the object is in any other state, the client should 189 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 190 * the object's fields. 191 * 192 * Note that although an object may be in state #4 when kmem initiates the move 193 * request, the object may no longer be in that state by the time kmem actually 194 * calls the move function. Not only does the client free objects 195 * asynchronously, kmem itself puts move requests on a queue where thay are 196 * pending until kmem processes them from another context. Also, objects freed 197 * to a magazine appear allocated from the point of view of the slab layer, so 198 * kmem may even initiate requests for objects in a state other than state #4. 199 * 200 * 2.3.1 Magazine Layer 201 * 202 * An important insight revealed by the states listed above is that the magazine 203 * layer is populated only by kmem_cache_free(). Magazines of constructed 204 * objects are never populated directly from the slab layer (which contains raw, 205 * unconstructed objects). Whenever an allocation request cannot be satisfied 206 * from the magazine layer, the magazines are bypassed and the request is 207 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 208 * the object constructor only when allocating from the slab layer, and only in 209 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 210 * the move callback. kmem does not preconstruct objects in anticipation of 211 * kmem_cache_alloc(). 212 * 213 * 2.3.2 Object Constructor and Destructor 214 * 215 * If the client supplies a destructor, it must be valid to call the destructor 216 * on a newly created object (immediately after the constructor). 217 * 218 * 2.4 Recognizing Known Objects 219 * 220 * There is a simple test to determine safely whether or not the client knows 221 * about a given object in the move callback. It relies on the fact that kmem 222 * guarantees that the object of the move callback has only been touched by the 223 * client itself or else by kmem. kmem does this by ensuring that none of the 224 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 225 * callback is pending. When the last object on a slab is freed, if there is a 226 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 227 * slabs on that list until all pending callbacks are completed. That way, 228 * clients can be certain that the object of a move callback is in one of the 229 * states listed above, making it possible to distinguish known objects (in 230 * state #4) using the two low order bits of any pointer member (with the 231 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 232 * platforms). 233 * 234 * The test works as long as the client always transitions objects from state #4 235 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 236 * order bit of the client-designated pointer member. Since kmem only writes 237 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 238 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 239 * guaranteed to set at least one of the two low order bits. Therefore, given an 240 * object with a back pointer to a 'container_t *o_container', the client can 241 * test 242 * 243 * container_t *container = object->o_container; 244 * if ((uintptr_t)container & 0x3) { 245 * return (KMEM_CBRC_DONT_KNOW); 246 * } 247 * 248 * Typically, an object will have a pointer to some structure with a list or 249 * hash where objects from the cache are kept while in use. Assuming that the 250 * client has some way of knowing that the container structure is valid and will 251 * not go away during the move, and assuming that the structure includes a lock 252 * to protect whatever collection is used, then the client would continue as 253 * follows: 254 * 255 * // Ensure that the container structure does not go away. 256 * if (container_hold(container) == 0) { 257 * return (KMEM_CBRC_DONT_KNOW); 258 * } 259 * mutex_enter(&container->c_objects_lock); 260 * if (container != object->o_container) { 261 * mutex_exit(&container->c_objects_lock); 262 * container_rele(container); 263 * return (KMEM_CBRC_DONT_KNOW); 264 * } 265 * 266 * At this point the client knows that the object cannot be freed as long as 267 * c_objects_lock is held. Note that after acquiring the lock, the client must 268 * recheck the o_container pointer in case the object was removed just before 269 * acquiring the lock. 270 * 271 * When the client is about to free an object, it must first remove that object 272 * from the list, hash, or other structure where it is kept. At that time, to 273 * mark the object so it can be distinguished from the remaining, known objects, 274 * the client sets the designated low order bit: 275 * 276 * mutex_enter(&container->c_objects_lock); 277 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 278 * list_remove(&container->c_objects, object); 279 * mutex_exit(&container->c_objects_lock); 280 * 281 * In the common case, the object is freed to the magazine layer, where it may 282 * be reused on a subsequent allocation without the overhead of calling the 283 * constructor. While in the magazine it appears allocated from the point of 284 * view of the slab layer, making it a candidate for the move callback. Most 285 * objects unrecognized by the client in the move callback fall into this 286 * category and are cheaply distinguished from known objects by the test 287 * described earlier. Since recognition is cheap for the client, and searching 288 * magazines is expensive for kmem, kmem defers searching until the client first 289 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 290 * elsewhere does what it can to avoid bothering the client unnecessarily. 291 * 292 * Invalidating the designated pointer member before freeing the object marks 293 * the object to be avoided in the callback, and conversely, assigning a valid 294 * value to the designated pointer member after allocating the object makes the 295 * object fair game for the callback: 296 * 297 * ... allocate object ... 298 * ... set any initial state not set by the constructor ... 299 * 300 * mutex_enter(&container->c_objects_lock); 301 * list_insert_tail(&container->c_objects, object); 302 * membar_producer(); 303 * object->o_container = container; 304 * mutex_exit(&container->c_objects_lock); 305 * 306 * Note that everything else must be valid before setting o_container makes the 307 * object fair game for the move callback. The membar_producer() call ensures 308 * that all the object's state is written to memory before setting the pointer 309 * that transitions the object from state #3 or #7 (allocated, constructed, not 310 * yet in use) to state #4 (in use, valid). That's important because the move 311 * function has to check the validity of the pointer before it can safely 312 * acquire the lock protecting the collection where it expects to find known 313 * objects. 314 * 315 * This method of distinguishing known objects observes the usual symmetry: 316 * invalidating the designated pointer is the first thing the client does before 317 * freeing the object, and setting the designated pointer is the last thing the 318 * client does after allocating the object. Of course, the client is not 319 * required to use this method. Fundamentally, how the client recognizes known 320 * objects is completely up to the client, but this method is recommended as an 321 * efficient and safe way to take advantage of the guarantees made by kmem. If 322 * the entire object is arbitrary data without any markable bits from a suitable 323 * pointer member, then the client must find some other method, such as 324 * searching a hash table of known objects. 325 * 326 * 2.5 Preventing Objects From Moving 327 * 328 * Besides a way to distinguish known objects, the other thing that the client 329 * needs is a strategy to ensure that an object will not move while the client 330 * is actively using it. The details of satisfying this requirement tend to be 331 * highly cache-specific. It might seem that the same rules that let a client 332 * remove an object safely should also decide when an object can be moved 333 * safely. However, any object state that makes a removal attempt invalid is 334 * likely to be long-lasting for objects that the client does not expect to 335 * remove. kmem knows nothing about the object state and is equally likely (from 336 * the client's point of view) to request a move for any object in the cache, 337 * whether prepared for removal or not. Even a low percentage of objects stuck 338 * in place by unremovability will defeat the consolidator if the stuck objects 339 * are the same long-lived allocations likely to hold slabs hostage. 340 * Fundamentally, the consolidator is not aimed at common cases. Severe external 341 * fragmentation is a worst case scenario manifested as sparsely allocated 342 * slabs, by definition a low percentage of the cache's objects. When deciding 343 * what makes an object movable, keep in mind the goal of the consolidator: to 344 * bring worst-case external fragmentation within the limits guaranteed for 345 * internal fragmentation. Removability is a poor criterion if it is likely to 346 * exclude more than an insignificant percentage of objects for long periods of 347 * time. 348 * 349 * A tricky general solution exists, and it has the advantage of letting you 350 * move any object at almost any moment, practically eliminating the likelihood 351 * that an object can hold a slab hostage. However, if there is a cache-specific 352 * way to ensure that an object is not actively in use in the vast majority of 353 * cases, a simpler solution that leverages this cache-specific knowledge is 354 * preferred. 355 * 356 * 2.5.1 Cache-Specific Solution 357 * 358 * As an example of a cache-specific solution, the ZFS znode cache takes 359 * advantage of the fact that the vast majority of znodes are only being 360 * referenced from the DNLC. (A typical case might be a few hundred in active 361 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 362 * client has established that it recognizes the znode and can access its fields 363 * safely (using the method described earlier), it then tests whether the znode 364 * is referenced by anything other than the DNLC. If so, it assumes that the 365 * znode may be in active use and is unsafe to move, so it drops its locks and 366 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 367 * else znodes are used, no change is needed to protect against the possibility 368 * of the znode moving. The disadvantage is that it remains possible for an 369 * application to hold a znode slab hostage with an open file descriptor. 370 * However, this case ought to be rare and the consolidator has a way to deal 371 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 372 * object, kmem eventually stops believing it and treats the slab as if the 373 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 374 * then focus on getting it off of the partial slab list by allocating rather 375 * than freeing all of its objects. (Either way of getting a slab off the 376 * free list reduces fragmentation.) 377 * 378 * 2.5.2 General Solution 379 * 380 * The general solution, on the other hand, requires an explicit hold everywhere 381 * the object is used to prevent it from moving. To keep the client locking 382 * strategy as uncomplicated as possible, kmem guarantees the simplifying 383 * assumption that move callbacks are sequential, even across multiple caches. 384 * Internally, a global queue processed by a single thread supports all caches 385 * implementing the callback function. No matter how many caches supply a move 386 * function, the consolidator never moves more than one object at a time, so the 387 * client does not have to worry about tricky lock ordering involving several 388 * related objects from different kmem caches. 389 * 390 * The general solution implements the explicit hold as a read-write lock, which 391 * allows multiple readers to access an object from the cache simultaneously 392 * while a single writer is excluded from moving it. A single rwlock for the 393 * entire cache would lock out all threads from using any of the cache's objects 394 * even though only a single object is being moved, so to reduce contention, 395 * the client can fan out the single rwlock into an array of rwlocks hashed by 396 * the object address, making it probable that moving one object will not 397 * prevent other threads from using a different object. The rwlock cannot be a 398 * member of the object itself, because the possibility of the object moving 399 * makes it unsafe to access any of the object's fields until the lock is 400 * acquired. 401 * 402 * Assuming a small, fixed number of locks, it's possible that multiple objects 403 * will hash to the same lock. A thread that needs to use multiple objects in 404 * the same function may acquire the same lock multiple times. Since rwlocks are 405 * reentrant for readers, and since there is never more than a single writer at 406 * a time (assuming that the client acquires the lock as a writer only when 407 * moving an object inside the callback), there would seem to be no problem. 408 * However, a client locking multiple objects in the same function must handle 409 * one case of potential deadlock: Assume that thread A needs to prevent both 410 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 411 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 412 * same lock, that thread A will acquire the lock for object 1 as a reader 413 * before thread B sets the lock's write-wanted bit, preventing thread A from 414 * reacquiring the lock for object 2 as a reader. Unable to make forward 415 * progress, thread A will never release the lock for object 1, resulting in 416 * deadlock. 417 * 418 * There are two ways of avoiding the deadlock just described. The first is to 419 * use rw_tryenter() rather than rw_enter() in the callback function when 420 * attempting to acquire the lock as a writer. If tryenter discovers that the 421 * same object (or another object hashed to the same lock) is already in use, it 422 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 423 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 424 * since it allows a thread to acquire the lock as a reader in spite of a 425 * waiting writer. This second approach insists on moving the object now, no 426 * matter how many readers the move function must wait for in order to do so, 427 * and could delay the completion of the callback indefinitely (blocking 428 * callbacks to other clients). In practice, a less insistent callback using 429 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 430 * little reason to use anything else. 431 * 432 * Avoiding deadlock is not the only problem that an implementation using an 433 * explicit hold needs to solve. Locking the object in the first place (to 434 * prevent it from moving) remains a problem, since the object could move 435 * between the time you obtain a pointer to the object and the time you acquire 436 * the rwlock hashed to that pointer value. Therefore the client needs to 437 * recheck the value of the pointer after acquiring the lock, drop the lock if 438 * the value has changed, and try again. This requires a level of indirection: 439 * something that points to the object rather than the object itself, that the 440 * client can access safely while attempting to acquire the lock. (The object 441 * itself cannot be referenced safely because it can move at any time.) 442 * The following lock-acquisition function takes whatever is safe to reference 443 * (arg), follows its pointer to the object (using function f), and tries as 444 * often as necessary to acquire the hashed lock and verify that the object 445 * still has not moved: 446 * 447 * object_t * 448 * object_hold(object_f f, void *arg) 449 * { 450 * object_t *op; 451 * 452 * op = f(arg); 453 * if (op == NULL) { 454 * return (NULL); 455 * } 456 * 457 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 458 * while (op != f(arg)) { 459 * rw_exit(OBJECT_RWLOCK(op)); 460 * op = f(arg); 461 * if (op == NULL) { 462 * break; 463 * } 464 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 465 * } 466 * 467 * return (op); 468 * } 469 * 470 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 471 * lock reacquisition loop, while necessary, almost never executes. The function 472 * pointer f (used to obtain the object pointer from arg) has the following type 473 * definition: 474 * 475 * typedef object_t *(*object_f)(void *arg); 476 * 477 * An object_f implementation is likely to be as simple as accessing a structure 478 * member: 479 * 480 * object_t * 481 * s_object(void *arg) 482 * { 483 * something_t *sp = arg; 484 * return (sp->s_object); 485 * } 486 * 487 * The flexibility of a function pointer allows the path to the object to be 488 * arbitrarily complex and also supports the notion that depending on where you 489 * are using the object, you may need to get it from someplace different. 490 * 491 * The function that releases the explicit hold is simpler because it does not 492 * have to worry about the object moving: 493 * 494 * void 495 * object_rele(object_t *op) 496 * { 497 * rw_exit(OBJECT_RWLOCK(op)); 498 * } 499 * 500 * The caller is spared these details so that obtaining and releasing an 501 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 502 * of object_hold() only needs to know that the returned object pointer is valid 503 * if not NULL and that the object will not move until released. 504 * 505 * Although object_hold() prevents an object from moving, it does not prevent it 506 * from being freed. The caller must take measures before calling object_hold() 507 * (afterwards is too late) to ensure that the held object cannot be freed. The 508 * caller must do so without accessing the unsafe object reference, so any lock 509 * or reference count used to ensure the continued existence of the object must 510 * live outside the object itself. 511 * 512 * Obtaining a new object is a special case where an explicit hold is impossible 513 * for the caller. Any function that returns a newly allocated object (either as 514 * a return value, or as an in-out paramter) must return it already held; after 515 * the caller gets it is too late, since the object cannot be safely accessed 516 * without the level of indirection described earlier. The following 517 * object_alloc() example uses the same code shown earlier to transition a new 518 * object into the state of being recognized (by the client) as a known object. 519 * The function must acquire the hold (rw_enter) before that state transition 520 * makes the object movable: 521 * 522 * static object_t * 523 * object_alloc(container_t *container) 524 * { 525 * object_t *object = kmem_cache_alloc(object_cache, 0); 526 * ... set any initial state not set by the constructor ... 527 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 528 * mutex_enter(&container->c_objects_lock); 529 * list_insert_tail(&container->c_objects, object); 530 * membar_producer(); 531 * object->o_container = container; 532 * mutex_exit(&container->c_objects_lock); 533 * return (object); 534 * } 535 * 536 * Functions that implicitly acquire an object hold (any function that calls 537 * object_alloc() to supply an object for the caller) need to be carefully noted 538 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 539 * prevent all objects hashed to the affected rwlocks from ever being moved. 540 * 541 * The pointer to a held object can be hashed to the holding rwlock even after 542 * the object has been freed. Although it is possible to release the hold 543 * after freeing the object, you may decide to release the hold implicitly in 544 * whatever function frees the object, so as to release the hold as soon as 545 * possible, and for the sake of symmetry with the function that implicitly 546 * acquires the hold when it allocates the object. Here, object_free() releases 547 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 548 * matching pair with object_hold(): 549 * 550 * void 551 * object_free(object_t *object) 552 * { 553 * container_t *container; 554 * 555 * ASSERT(object_held(object)); 556 * container = object->o_container; 557 * mutex_enter(&container->c_objects_lock); 558 * object->o_container = 559 * (void *)((uintptr_t)object->o_container | 0x1); 560 * list_remove(&container->c_objects, object); 561 * mutex_exit(&container->c_objects_lock); 562 * object_rele(object); 563 * kmem_cache_free(object_cache, object); 564 * } 565 * 566 * Note that object_free() cannot safely accept an object pointer as an argument 567 * unless the object is already held. Any function that calls object_free() 568 * needs to be carefully noted since it similarly forms a matching pair with 569 * object_hold(). 570 * 571 * To complete the picture, the following callback function implements the 572 * general solution by moving objects only if they are currently unheld: 573 * 574 * static kmem_cbrc_t 575 * object_move(void *buf, void *newbuf, size_t size, void *arg) 576 * { 577 * object_t *op = buf, *np = newbuf; 578 * container_t *container; 579 * 580 * container = op->o_container; 581 * if ((uintptr_t)container & 0x3) { 582 * return (KMEM_CBRC_DONT_KNOW); 583 * } 584 * 585 * // Ensure that the container structure does not go away. 586 * if (container_hold(container) == 0) { 587 * return (KMEM_CBRC_DONT_KNOW); 588 * } 589 * 590 * mutex_enter(&container->c_objects_lock); 591 * if (container != op->o_container) { 592 * mutex_exit(&container->c_objects_lock); 593 * container_rele(container); 594 * return (KMEM_CBRC_DONT_KNOW); 595 * } 596 * 597 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 598 * mutex_exit(&container->c_objects_lock); 599 * container_rele(container); 600 * return (KMEM_CBRC_LATER); 601 * } 602 * 603 * object_move_impl(op, np); // critical section 604 * rw_exit(OBJECT_RWLOCK(op)); 605 * 606 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 607 * list_link_replace(&op->o_link_node, &np->o_link_node); 608 * mutex_exit(&container->c_objects_lock); 609 * container_rele(container); 610 * return (KMEM_CBRC_YES); 611 * } 612 * 613 * Note that object_move() must invalidate the designated o_container pointer of 614 * the old object in the same way that object_free() does, since kmem will free 615 * the object in response to the KMEM_CBRC_YES return value. 616 * 617 * The lock order in object_move() differs from object_alloc(), which locks 618 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 619 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 620 * not a problem. Holding the lock on the object list in the example above 621 * through the entire callback not only prevents the object from going away, it 622 * also allows you to lock the list elsewhere and know that none of its elements 623 * will move during iteration. 624 * 625 * Adding an explicit hold everywhere an object from the cache is used is tricky 626 * and involves much more change to client code than a cache-specific solution 627 * that leverages existing state to decide whether or not an object is 628 * movable. However, this approach has the advantage that no object remains 629 * immovable for any significant length of time, making it extremely unlikely 630 * that long-lived allocations can continue holding slabs hostage; and it works 631 * for any cache. 632 * 633 * 3. Consolidator Implementation 634 * 635 * Once the client supplies a move function that a) recognizes known objects and 636 * b) avoids moving objects that are actively in use, the remaining work is up 637 * to the consolidator to decide which objects to move and when to issue 638 * callbacks. 639 * 640 * The consolidator relies on the fact that a cache's slabs are ordered by 641 * usage. Each slab has a fixed number of objects. Depending on the slab's 642 * "color" (the offset of the first object from the beginning of the slab; 643 * offsets are staggered to mitigate false sharing of cache lines) it is either 644 * the maximum number of objects per slab determined at cache creation time or 645 * else the number closest to the maximum that fits within the space remaining 646 * after the initial offset. A completely allocated slab may contribute some 647 * internal fragmentation (per-slab overhead) but no external fragmentation, so 648 * it is of no interest to the consolidator. At the other extreme, slabs whose 649 * objects have all been freed to the slab are released to the virtual memory 650 * (VM) subsystem (objects freed to magazines are still allocated as far as the 651 * slab is concerned). External fragmentation exists when there are slabs 652 * somewhere between these extremes. A partial slab has at least one but not all 653 * of its objects allocated. The more partial slabs, and the fewer allocated 654 * objects on each of them, the higher the fragmentation. Hence the 655 * consolidator's overall strategy is to reduce the number of partial slabs by 656 * moving allocated objects from the least allocated slabs to the most allocated 657 * slabs. 658 * 659 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 660 * slabs are kept separately in an unordered list. Since the majority of slabs 661 * tend to be completely allocated (a typical unfragmented cache may have 662 * thousands of complete slabs and only a single partial slab), separating 663 * complete slabs improves the efficiency of partial slab ordering, since the 664 * complete slabs do not affect the depth or balance of the AVL tree. This 665 * ordered sequence of partial slabs acts as a "free list" supplying objects for 666 * allocation requests. 667 * 668 * Objects are always allocated from the first partial slab in the free list, 669 * where the allocation is most likely to eliminate a partial slab (by 670 * completely allocating it). Conversely, when a single object from a completely 671 * allocated slab is freed to the slab, that slab is added to the front of the 672 * free list. Since most free list activity involves highly allocated slabs 673 * coming and going at the front of the list, slabs tend naturally toward the 674 * ideal order: highly allocated at the front, sparsely allocated at the back. 675 * Slabs with few allocated objects are likely to become completely free if they 676 * keep a safe distance away from the front of the free list. Slab misorders 677 * interfere with the natural tendency of slabs to become completely free or 678 * completely allocated. For example, a slab with a single allocated object 679 * needs only a single free to escape the cache; its natural desire is 680 * frustrated when it finds itself at the front of the list where a second 681 * allocation happens just before the free could have released it. Another slab 682 * with all but one object allocated might have supplied the buffer instead, so 683 * that both (as opposed to neither) of the slabs would have been taken off the 684 * free list. 685 * 686 * Although slabs tend naturally toward the ideal order, misorders allowed by a 687 * simple list implementation defeat the consolidator's strategy of merging 688 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 689 * needs another way to fix misorders to optimize its callback strategy. One 690 * approach is to periodically scan a limited number of slabs, advancing a 691 * marker to hold the current scan position, and to move extreme misorders to 692 * the front or back of the free list and to the front or back of the current 693 * scan range. By making consecutive scan ranges overlap by one slab, the least 694 * allocated slab in the current range can be carried along from the end of one 695 * scan to the start of the next. 696 * 697 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 698 * task, however. Since most of the cache's activity is in the magazine layer, 699 * and allocations from the slab layer represent only a startup cost, the 700 * overhead of maintaining a balanced tree is not a significant concern compared 701 * to the opportunity of reducing complexity by eliminating the partial slab 702 * scanner just described. The overhead of an AVL tree is minimized by 703 * maintaining only partial slabs in the tree and keeping completely allocated 704 * slabs separately in a list. To avoid increasing the size of the slab 705 * structure the AVL linkage pointers are reused for the slab's list linkage, 706 * since the slab will always be either partial or complete, never stored both 707 * ways at the same time. To further minimize the overhead of the AVL tree the 708 * compare function that orders partial slabs by usage divides the range of 709 * allocated object counts into bins such that counts within the same bin are 710 * considered equal. Binning partial slabs makes it less likely that allocating 711 * or freeing a single object will change the slab's order, requiring a tree 712 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 713 * requiring some rebalancing of the tree). Allocation counts closest to 714 * completely free and completely allocated are left unbinned (finely sorted) to 715 * better support the consolidator's strategy of merging slabs at either 716 * extreme. 717 * 718 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 719 * 720 * The consolidator piggybacks on the kmem maintenance thread and is called on 721 * the same interval as kmem_cache_update(), once per cache every fifteen 722 * seconds. kmem maintains a running count of unallocated objects in the slab 723 * layer (cache_bufslab). The consolidator checks whether that number exceeds 724 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 725 * there is a significant number of slabs in the cache (arbitrarily a minimum 726 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 727 * working set are included in the assessment, and magazines in the depot are 728 * reaped if those objects would lift cache_bufslab above the fragmentation 729 * threshold. Once the consolidator decides that a cache is fragmented, it looks 730 * for a candidate slab to reclaim, starting at the end of the partial slab free 731 * list and scanning backwards. At first the consolidator is choosy: only a slab 732 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 733 * single allocated object, regardless of percentage). If there is difficulty 734 * finding a candidate slab, kmem raises the allocation threshold incrementally, 735 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 736 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 737 * even in the worst case of every slab in the cache being almost 7/8 allocated. 738 * The threshold can also be lowered incrementally when candidate slabs are easy 739 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 740 * is no longer fragmented. 741 * 742 * 3.2 Generating Callbacks 743 * 744 * Once an eligible slab is chosen, a callback is generated for every allocated 745 * object on the slab, in the hope that the client will move everything off the 746 * slab and make it reclaimable. Objects selected as move destinations are 747 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 748 * order (most allocated at the front, least allocated at the back) and a 749 * cooperative client, the consolidator will succeed in removing slabs from both 750 * ends of the free list, completely allocating on the one hand and completely 751 * freeing on the other. Objects selected as move destinations are allocated in 752 * the kmem maintenance thread where move requests are enqueued. A separate 753 * callback thread removes pending callbacks from the queue and calls the 754 * client. The separate thread ensures that client code (the move function) does 755 * not interfere with internal kmem maintenance tasks. A map of pending 756 * callbacks keyed by object address (the object to be moved) is checked to 757 * ensure that duplicate callbacks are not generated for the same object. 758 * Allocating the move destination (the object to move to) prevents subsequent 759 * callbacks from selecting the same destination as an earlier pending callback. 760 * 761 * Move requests can also be generated by kmem_cache_reap() when the system is 762 * desperate for memory and by kmem_cache_move_notify(), called by the client to 763 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 764 * The map of pending callbacks is protected by the same lock that protects the 765 * slab layer. 766 * 767 * When the system is desperate for memory, kmem does not bother to determine 768 * whether or not the cache exceeds the fragmentation threshold, but tries to 769 * consolidate as many slabs as possible. Normally, the consolidator chews 770 * slowly, one sparsely allocated slab at a time during each maintenance 771 * interval that the cache is fragmented. When desperate, the consolidator 772 * starts at the last partial slab and enqueues callbacks for every allocated 773 * object on every partial slab, working backwards until it reaches the first 774 * partial slab. The first partial slab, meanwhile, advances in pace with the 775 * consolidator as allocations to supply move destinations for the enqueued 776 * callbacks use up the highly allocated slabs at the front of the free list. 777 * Ideally, the overgrown free list collapses like an accordion, starting at 778 * both ends and ending at the center with a single partial slab. 779 * 780 * 3.3 Client Responses 781 * 782 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 783 * marks the slab that supplied the stuck object non-reclaimable and moves it to 784 * front of the free list. The slab remains marked as long as it remains on the 785 * free list, and it appears more allocated to the partial slab compare function 786 * than any unmarked slab, no matter how many of its objects are allocated. 787 * Since even one immovable object ties up the entire slab, the goal is to 788 * completely allocate any slab that cannot be completely freed. kmem does not 789 * bother generating callbacks to move objects from a marked slab unless the 790 * system is desperate. 791 * 792 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 793 * slab. If the client responds LATER too many times, kmem disbelieves and 794 * treats the response as a NO. The count is cleared when the slab is taken off 795 * the partial slab list or when the client moves one of the slab's objects. 796 * 797 * 4. Observability 798 * 799 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 800 * the ::kmem_slabs dcmd. For a complete description of the command, enter 801 * '::help kmem_slabs' at the mdb prompt. 802 */ 803 804 #include <sys/kmem_impl.h> 805 #include <sys/vmem_impl.h> 806 #include <sys/param.h> 807 #include <sys/sysmacros.h> 808 #include <sys/vm.h> 809 #include <sys/proc.h> 810 #include <sys/tuneable.h> 811 #include <sys/systm.h> 812 #include <sys/cmn_err.h> 813 #include <sys/debug.h> 814 #include <sys/sdt.h> 815 #include <sys/mutex.h> 816 #include <sys/bitmap.h> 817 #include <sys/atomic.h> 818 #include <sys/kobj.h> 819 #include <sys/disp.h> 820 #include <vm/seg_kmem.h> 821 #include <sys/log.h> 822 #include <sys/callb.h> 823 #include <sys/taskq.h> 824 #include <sys/modctl.h> 825 #include <sys/reboot.h> 826 #include <sys/id32.h> 827 #include <sys/zone.h> 828 #include <sys/netstack.h> 829 #ifdef DEBUG 830 #include <sys/random.h> 831 #endif 832 833 extern void streams_msg_init(void); 834 extern int segkp_fromheap; 835 extern void segkp_cache_free(void); 836 837 struct kmem_cache_kstat { 838 kstat_named_t kmc_buf_size; 839 kstat_named_t kmc_align; 840 kstat_named_t kmc_chunk_size; 841 kstat_named_t kmc_slab_size; 842 kstat_named_t kmc_alloc; 843 kstat_named_t kmc_alloc_fail; 844 kstat_named_t kmc_free; 845 kstat_named_t kmc_depot_alloc; 846 kstat_named_t kmc_depot_free; 847 kstat_named_t kmc_depot_contention; 848 kstat_named_t kmc_slab_alloc; 849 kstat_named_t kmc_slab_free; 850 kstat_named_t kmc_buf_constructed; 851 kstat_named_t kmc_buf_avail; 852 kstat_named_t kmc_buf_inuse; 853 kstat_named_t kmc_buf_total; 854 kstat_named_t kmc_buf_max; 855 kstat_named_t kmc_slab_create; 856 kstat_named_t kmc_slab_destroy; 857 kstat_named_t kmc_vmem_source; 858 kstat_named_t kmc_hash_size; 859 kstat_named_t kmc_hash_lookup_depth; 860 kstat_named_t kmc_hash_rescale; 861 kstat_named_t kmc_full_magazines; 862 kstat_named_t kmc_empty_magazines; 863 kstat_named_t kmc_magazine_size; 864 kstat_named_t kmc_move_callbacks; 865 kstat_named_t kmc_move_yes; 866 kstat_named_t kmc_move_no; 867 kstat_named_t kmc_move_later; 868 kstat_named_t kmc_move_dont_need; 869 kstat_named_t kmc_move_dont_know; 870 kstat_named_t kmc_move_hunt_found; 871 } kmem_cache_kstat = { 872 { "buf_size", KSTAT_DATA_UINT64 }, 873 { "align", KSTAT_DATA_UINT64 }, 874 { "chunk_size", KSTAT_DATA_UINT64 }, 875 { "slab_size", KSTAT_DATA_UINT64 }, 876 { "alloc", KSTAT_DATA_UINT64 }, 877 { "alloc_fail", KSTAT_DATA_UINT64 }, 878 { "free", KSTAT_DATA_UINT64 }, 879 { "depot_alloc", KSTAT_DATA_UINT64 }, 880 { "depot_free", KSTAT_DATA_UINT64 }, 881 { "depot_contention", KSTAT_DATA_UINT64 }, 882 { "slab_alloc", KSTAT_DATA_UINT64 }, 883 { "slab_free", KSTAT_DATA_UINT64 }, 884 { "buf_constructed", KSTAT_DATA_UINT64 }, 885 { "buf_avail", KSTAT_DATA_UINT64 }, 886 { "buf_inuse", KSTAT_DATA_UINT64 }, 887 { "buf_total", KSTAT_DATA_UINT64 }, 888 { "buf_max", KSTAT_DATA_UINT64 }, 889 { "slab_create", KSTAT_DATA_UINT64 }, 890 { "slab_destroy", KSTAT_DATA_UINT64 }, 891 { "vmem_source", KSTAT_DATA_UINT64 }, 892 { "hash_size", KSTAT_DATA_UINT64 }, 893 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 894 { "hash_rescale", KSTAT_DATA_UINT64 }, 895 { "full_magazines", KSTAT_DATA_UINT64 }, 896 { "empty_magazines", KSTAT_DATA_UINT64 }, 897 { "magazine_size", KSTAT_DATA_UINT64 }, 898 { "move_callbacks", KSTAT_DATA_UINT64 }, 899 { "move_yes", KSTAT_DATA_UINT64 }, 900 { "move_no", KSTAT_DATA_UINT64 }, 901 { "move_later", KSTAT_DATA_UINT64 }, 902 { "move_dont_need", KSTAT_DATA_UINT64 }, 903 { "move_dont_know", KSTAT_DATA_UINT64 }, 904 { "move_hunt_found", KSTAT_DATA_UINT64 }, 905 }; 906 907 static kmutex_t kmem_cache_kstat_lock; 908 909 /* 910 * The default set of caches to back kmem_alloc(). 911 * These sizes should be reevaluated periodically. 912 * 913 * We want allocations that are multiples of the coherency granularity 914 * (64 bytes) to be satisfied from a cache which is a multiple of 64 915 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 916 * the next kmem_cache_size greater than or equal to it must be a 917 * multiple of 64. 918 */ 919 static const int kmem_alloc_sizes[] = { 920 1 * 8, 921 2 * 8, 922 3 * 8, 923 4 * 8, 5 * 8, 6 * 8, 7 * 8, 924 4 * 16, 5 * 16, 6 * 16, 7 * 16, 925 4 * 32, 5 * 32, 6 * 32, 7 * 32, 926 4 * 64, 5 * 64, 6 * 64, 7 * 64, 927 4 * 128, 5 * 128, 6 * 128, 7 * 128, 928 P2ALIGN(8192 / 7, 64), 929 P2ALIGN(8192 / 6, 64), 930 P2ALIGN(8192 / 5, 64), 931 P2ALIGN(8192 / 4, 64), 932 P2ALIGN(8192 / 3, 64), 933 P2ALIGN(8192 / 2, 64), 934 P2ALIGN(8192 / 1, 64), 935 4096 * 3, 936 8192 * 2, 937 8192 * 3, 938 8192 * 4, 939 }; 940 941 #define KMEM_MAXBUF 32768 942 943 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 944 945 static kmem_magtype_t kmem_magtype[] = { 946 { 1, 8, 3200, 65536 }, 947 { 3, 16, 256, 32768 }, 948 { 7, 32, 64, 16384 }, 949 { 15, 64, 0, 8192 }, 950 { 31, 64, 0, 4096 }, 951 { 47, 64, 0, 2048 }, 952 { 63, 64, 0, 1024 }, 953 { 95, 64, 0, 512 }, 954 { 143, 64, 0, 0 }, 955 }; 956 957 static uint32_t kmem_reaping; 958 static uint32_t kmem_reaping_idspace; 959 960 /* 961 * kmem tunables 962 */ 963 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 964 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 965 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 966 int kmem_panic = 1; /* whether to panic on error */ 967 int kmem_logging = 1; /* kmem_log_enter() override */ 968 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 969 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 970 size_t kmem_content_log_size; /* content log size [2% of memory] */ 971 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 972 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 973 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 974 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 975 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 976 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 977 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 978 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 979 980 #ifdef DEBUG 981 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 982 #else 983 int kmem_flags = 0; 984 #endif 985 int kmem_ready; 986 987 static kmem_cache_t *kmem_slab_cache; 988 static kmem_cache_t *kmem_bufctl_cache; 989 static kmem_cache_t *kmem_bufctl_audit_cache; 990 991 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 992 static list_t kmem_caches; 993 994 static taskq_t *kmem_taskq; 995 static kmutex_t kmem_flags_lock; 996 static vmem_t *kmem_metadata_arena; 997 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 998 static vmem_t *kmem_cache_arena; 999 static vmem_t *kmem_hash_arena; 1000 static vmem_t *kmem_log_arena; 1001 static vmem_t *kmem_oversize_arena; 1002 static vmem_t *kmem_va_arena; 1003 static vmem_t *kmem_default_arena; 1004 static vmem_t *kmem_firewall_va_arena; 1005 static vmem_t *kmem_firewall_arena; 1006 1007 /* 1008 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1009 * turned on when DEBUG is also defined. 1010 */ 1011 #ifdef DEBUG 1012 #define KMEM_STATS 1013 #endif /* DEBUG */ 1014 1015 #ifdef KMEM_STATS 1016 #define KMEM_STAT_ADD(stat) ((stat)++) 1017 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1018 #else 1019 #define KMEM_STAT_ADD(stat) /* nothing */ 1020 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1021 #endif /* KMEM_STATS */ 1022 1023 /* 1024 * kmem slab consolidator thresholds (tunables) 1025 */ 1026 static size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1027 static size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1028 static size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1029 /* 1030 * Maximum number of slabs from which to move buffers during a single 1031 * maintenance interval while the system is not low on memory. 1032 */ 1033 static size_t kmem_reclaim_max_slabs = 1; 1034 /* 1035 * Number of slabs to scan backwards from the end of the partial slab list 1036 * when searching for buffers to relocate. 1037 */ 1038 static size_t kmem_reclaim_scan_range = 12; 1039 1040 #ifdef KMEM_STATS 1041 static struct { 1042 uint64_t kms_callbacks; 1043 uint64_t kms_yes; 1044 uint64_t kms_no; 1045 uint64_t kms_later; 1046 uint64_t kms_dont_need; 1047 uint64_t kms_dont_know; 1048 uint64_t kms_hunt_found_slab; 1049 uint64_t kms_hunt_found_mag; 1050 uint64_t kms_hunt_alloc_fail; 1051 uint64_t kms_hunt_lucky; 1052 uint64_t kms_notify; 1053 uint64_t kms_notify_callbacks; 1054 uint64_t kms_disbelief; 1055 uint64_t kms_already_pending; 1056 uint64_t kms_callback_alloc_fail; 1057 uint64_t kms_callback_taskq_fail; 1058 uint64_t kms_endscan_slab_destroyed; 1059 uint64_t kms_endscan_nomem; 1060 uint64_t kms_endscan_slab_all_used; 1061 uint64_t kms_endscan_refcnt_changed; 1062 uint64_t kms_endscan_nomove_changed; 1063 uint64_t kms_endscan_freelist; 1064 uint64_t kms_avl_update; 1065 uint64_t kms_avl_noupdate; 1066 uint64_t kms_no_longer_reclaimable; 1067 uint64_t kms_notify_no_longer_reclaimable; 1068 uint64_t kms_alloc_fail; 1069 uint64_t kms_constructor_fail; 1070 uint64_t kms_dead_slabs_freed; 1071 uint64_t kms_defrags; 1072 uint64_t kms_scan_depot_ws_reaps; 1073 uint64_t kms_debug_reaps; 1074 uint64_t kms_debug_move_scans; 1075 } kmem_move_stats; 1076 #endif /* KMEM_STATS */ 1077 1078 /* consolidator knobs */ 1079 static boolean_t kmem_move_noreap; 1080 static boolean_t kmem_move_blocked; 1081 static boolean_t kmem_move_fulltilt; 1082 static boolean_t kmem_move_any_partial; 1083 1084 #ifdef DEBUG 1085 /* 1086 * Ensure code coverage by occasionally running the consolidator even when the 1087 * caches are not fragmented (they may never be). These intervals are mean time 1088 * in cache maintenance intervals (kmem_cache_update). 1089 */ 1090 static int kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1091 static int kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1092 #endif /* DEBUG */ 1093 1094 static kmem_cache_t *kmem_defrag_cache; 1095 static kmem_cache_t *kmem_move_cache; 1096 static taskq_t *kmem_move_taskq; 1097 1098 static void kmem_cache_scan(kmem_cache_t *); 1099 static void kmem_cache_defrag(kmem_cache_t *); 1100 1101 1102 kmem_log_header_t *kmem_transaction_log; 1103 kmem_log_header_t *kmem_content_log; 1104 kmem_log_header_t *kmem_failure_log; 1105 kmem_log_header_t *kmem_slab_log; 1106 1107 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1108 1109 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1110 if ((count) > 0) { \ 1111 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1112 pc_t *_e; \ 1113 /* memmove() the old entries down one notch */ \ 1114 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1115 *_e = *(_e - 1); \ 1116 *_s = (uintptr_t)(caller); \ 1117 } 1118 1119 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1120 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1121 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1122 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1123 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1124 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1125 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1126 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1127 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1128 1129 struct { 1130 hrtime_t kmp_timestamp; /* timestamp of panic */ 1131 int kmp_error; /* type of kmem error */ 1132 void *kmp_buffer; /* buffer that induced panic */ 1133 void *kmp_realbuf; /* real start address for buffer */ 1134 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1135 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1136 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1137 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1138 } kmem_panic_info; 1139 1140 1141 static void 1142 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1143 { 1144 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1145 uint64_t *buf = buf_arg; 1146 1147 while (buf < bufend) 1148 *buf++ = pattern; 1149 } 1150 1151 static void * 1152 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1153 { 1154 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1155 uint64_t *buf; 1156 1157 for (buf = buf_arg; buf < bufend; buf++) 1158 if (*buf != pattern) 1159 return (buf); 1160 return (NULL); 1161 } 1162 1163 static void * 1164 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1165 { 1166 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1167 uint64_t *buf; 1168 1169 for (buf = buf_arg; buf < bufend; buf++) { 1170 if (*buf != old) { 1171 copy_pattern(old, buf_arg, 1172 (char *)buf - (char *)buf_arg); 1173 return (buf); 1174 } 1175 *buf = new; 1176 } 1177 1178 return (NULL); 1179 } 1180 1181 static void 1182 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1183 { 1184 kmem_cache_t *cp; 1185 1186 mutex_enter(&kmem_cache_lock); 1187 for (cp = list_head(&kmem_caches); cp != NULL; 1188 cp = list_next(&kmem_caches, cp)) 1189 if (tq != NULL) 1190 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1191 tqflag); 1192 else 1193 func(cp); 1194 mutex_exit(&kmem_cache_lock); 1195 } 1196 1197 static void 1198 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1199 { 1200 kmem_cache_t *cp; 1201 1202 mutex_enter(&kmem_cache_lock); 1203 for (cp = list_head(&kmem_caches); cp != NULL; 1204 cp = list_next(&kmem_caches, cp)) { 1205 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1206 continue; 1207 if (tq != NULL) 1208 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1209 tqflag); 1210 else 1211 func(cp); 1212 } 1213 mutex_exit(&kmem_cache_lock); 1214 } 1215 1216 /* 1217 * Debugging support. Given a buffer address, find its slab. 1218 */ 1219 static kmem_slab_t * 1220 kmem_findslab(kmem_cache_t *cp, void *buf) 1221 { 1222 kmem_slab_t *sp; 1223 1224 mutex_enter(&cp->cache_lock); 1225 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1226 sp = list_next(&cp->cache_complete_slabs, sp)) { 1227 if (KMEM_SLAB_MEMBER(sp, buf)) { 1228 mutex_exit(&cp->cache_lock); 1229 return (sp); 1230 } 1231 } 1232 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1233 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1234 if (KMEM_SLAB_MEMBER(sp, buf)) { 1235 mutex_exit(&cp->cache_lock); 1236 return (sp); 1237 } 1238 } 1239 mutex_exit(&cp->cache_lock); 1240 1241 return (NULL); 1242 } 1243 1244 static void 1245 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1246 { 1247 kmem_buftag_t *btp = NULL; 1248 kmem_bufctl_t *bcp = NULL; 1249 kmem_cache_t *cp = cparg; 1250 kmem_slab_t *sp; 1251 uint64_t *off; 1252 void *buf = bufarg; 1253 1254 kmem_logging = 0; /* stop logging when a bad thing happens */ 1255 1256 kmem_panic_info.kmp_timestamp = gethrtime(); 1257 1258 sp = kmem_findslab(cp, buf); 1259 if (sp == NULL) { 1260 for (cp = list_tail(&kmem_caches); cp != NULL; 1261 cp = list_prev(&kmem_caches, cp)) { 1262 if ((sp = kmem_findslab(cp, buf)) != NULL) 1263 break; 1264 } 1265 } 1266 1267 if (sp == NULL) { 1268 cp = NULL; 1269 error = KMERR_BADADDR; 1270 } else { 1271 if (cp != cparg) 1272 error = KMERR_BADCACHE; 1273 else 1274 buf = (char *)bufarg - ((uintptr_t)bufarg - 1275 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1276 if (buf != bufarg) 1277 error = KMERR_BADBASE; 1278 if (cp->cache_flags & KMF_BUFTAG) 1279 btp = KMEM_BUFTAG(cp, buf); 1280 if (cp->cache_flags & KMF_HASH) { 1281 mutex_enter(&cp->cache_lock); 1282 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1283 if (bcp->bc_addr == buf) 1284 break; 1285 mutex_exit(&cp->cache_lock); 1286 if (bcp == NULL && btp != NULL) 1287 bcp = btp->bt_bufctl; 1288 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1289 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1290 bcp->bc_addr != buf) { 1291 error = KMERR_BADBUFCTL; 1292 bcp = NULL; 1293 } 1294 } 1295 } 1296 1297 kmem_panic_info.kmp_error = error; 1298 kmem_panic_info.kmp_buffer = bufarg; 1299 kmem_panic_info.kmp_realbuf = buf; 1300 kmem_panic_info.kmp_cache = cparg; 1301 kmem_panic_info.kmp_realcache = cp; 1302 kmem_panic_info.kmp_slab = sp; 1303 kmem_panic_info.kmp_bufctl = bcp; 1304 1305 printf("kernel memory allocator: "); 1306 1307 switch (error) { 1308 1309 case KMERR_MODIFIED: 1310 printf("buffer modified after being freed\n"); 1311 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1312 if (off == NULL) /* shouldn't happen */ 1313 off = buf; 1314 printf("modification occurred at offset 0x%lx " 1315 "(0x%llx replaced by 0x%llx)\n", 1316 (uintptr_t)off - (uintptr_t)buf, 1317 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1318 break; 1319 1320 case KMERR_REDZONE: 1321 printf("redzone violation: write past end of buffer\n"); 1322 break; 1323 1324 case KMERR_BADADDR: 1325 printf("invalid free: buffer not in cache\n"); 1326 break; 1327 1328 case KMERR_DUPFREE: 1329 printf("duplicate free: buffer freed twice\n"); 1330 break; 1331 1332 case KMERR_BADBUFTAG: 1333 printf("boundary tag corrupted\n"); 1334 printf("bcp ^ bxstat = %lx, should be %lx\n", 1335 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1336 KMEM_BUFTAG_FREE); 1337 break; 1338 1339 case KMERR_BADBUFCTL: 1340 printf("bufctl corrupted\n"); 1341 break; 1342 1343 case KMERR_BADCACHE: 1344 printf("buffer freed to wrong cache\n"); 1345 printf("buffer was allocated from %s,\n", cp->cache_name); 1346 printf("caller attempting free to %s.\n", cparg->cache_name); 1347 break; 1348 1349 case KMERR_BADSIZE: 1350 printf("bad free: free size (%u) != alloc size (%u)\n", 1351 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1352 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1353 break; 1354 1355 case KMERR_BADBASE: 1356 printf("bad free: free address (%p) != alloc address (%p)\n", 1357 bufarg, buf); 1358 break; 1359 } 1360 1361 printf("buffer=%p bufctl=%p cache: %s\n", 1362 bufarg, (void *)bcp, cparg->cache_name); 1363 1364 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1365 error != KMERR_BADBUFCTL) { 1366 int d; 1367 timestruc_t ts; 1368 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1369 1370 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1371 printf("previous transaction on buffer %p:\n", buf); 1372 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1373 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1374 (void *)sp, cp->cache_name); 1375 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1376 ulong_t off; 1377 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1378 printf("%s+%lx\n", sym ? sym : "?", off); 1379 } 1380 } 1381 if (kmem_panic > 0) 1382 panic("kernel heap corruption detected"); 1383 if (kmem_panic == 0) 1384 debug_enter(NULL); 1385 kmem_logging = 1; /* resume logging */ 1386 } 1387 1388 static kmem_log_header_t * 1389 kmem_log_init(size_t logsize) 1390 { 1391 kmem_log_header_t *lhp; 1392 int nchunks = 4 * max_ncpus; 1393 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1394 int i; 1395 1396 /* 1397 * Make sure that lhp->lh_cpu[] is nicely aligned 1398 * to prevent false sharing of cache lines. 1399 */ 1400 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1401 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1402 NULL, NULL, VM_SLEEP); 1403 bzero(lhp, lhsize); 1404 1405 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1406 lhp->lh_nchunks = nchunks; 1407 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1408 lhp->lh_base = vmem_alloc(kmem_log_arena, 1409 lhp->lh_chunksize * nchunks, VM_SLEEP); 1410 lhp->lh_free = vmem_alloc(kmem_log_arena, 1411 nchunks * sizeof (int), VM_SLEEP); 1412 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1413 1414 for (i = 0; i < max_ncpus; i++) { 1415 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1416 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1417 clhp->clh_chunk = i; 1418 } 1419 1420 for (i = max_ncpus; i < nchunks; i++) 1421 lhp->lh_free[i] = i; 1422 1423 lhp->lh_head = max_ncpus; 1424 lhp->lh_tail = 0; 1425 1426 return (lhp); 1427 } 1428 1429 static void * 1430 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1431 { 1432 void *logspace; 1433 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1434 1435 if (lhp == NULL || kmem_logging == 0 || panicstr) 1436 return (NULL); 1437 1438 mutex_enter(&clhp->clh_lock); 1439 clhp->clh_hits++; 1440 if (size > clhp->clh_avail) { 1441 mutex_enter(&lhp->lh_lock); 1442 lhp->lh_hits++; 1443 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1444 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1445 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1446 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1447 clhp->clh_current = lhp->lh_base + 1448 clhp->clh_chunk * lhp->lh_chunksize; 1449 clhp->clh_avail = lhp->lh_chunksize; 1450 if (size > lhp->lh_chunksize) 1451 size = lhp->lh_chunksize; 1452 mutex_exit(&lhp->lh_lock); 1453 } 1454 logspace = clhp->clh_current; 1455 clhp->clh_current += size; 1456 clhp->clh_avail -= size; 1457 bcopy(data, logspace, size); 1458 mutex_exit(&clhp->clh_lock); 1459 return (logspace); 1460 } 1461 1462 #define KMEM_AUDIT(lp, cp, bcp) \ 1463 { \ 1464 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1465 _bcp->bc_timestamp = gethrtime(); \ 1466 _bcp->bc_thread = curthread; \ 1467 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1468 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1469 } 1470 1471 static void 1472 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1473 kmem_slab_t *sp, void *addr) 1474 { 1475 kmem_bufctl_audit_t bca; 1476 1477 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1478 bca.bc_addr = addr; 1479 bca.bc_slab = sp; 1480 bca.bc_cache = cp; 1481 KMEM_AUDIT(lp, cp, &bca); 1482 } 1483 1484 /* 1485 * Create a new slab for cache cp. 1486 */ 1487 static kmem_slab_t * 1488 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1489 { 1490 size_t slabsize = cp->cache_slabsize; 1491 size_t chunksize = cp->cache_chunksize; 1492 int cache_flags = cp->cache_flags; 1493 size_t color, chunks; 1494 char *buf, *slab; 1495 kmem_slab_t *sp; 1496 kmem_bufctl_t *bcp; 1497 vmem_t *vmp = cp->cache_arena; 1498 1499 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1500 1501 color = cp->cache_color + cp->cache_align; 1502 if (color > cp->cache_maxcolor) 1503 color = cp->cache_mincolor; 1504 cp->cache_color = color; 1505 1506 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1507 1508 if (slab == NULL) 1509 goto vmem_alloc_failure; 1510 1511 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1512 1513 /* 1514 * Reverify what was already checked in kmem_cache_set_move(), since the 1515 * consolidator depends (for correctness) on slabs being initialized 1516 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1517 * clients to distinguish uninitialized memory from known objects). 1518 */ 1519 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1520 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1521 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1522 1523 if (cache_flags & KMF_HASH) { 1524 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1525 goto slab_alloc_failure; 1526 chunks = (slabsize - color) / chunksize; 1527 } else { 1528 sp = KMEM_SLAB(cp, slab); 1529 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1530 } 1531 1532 sp->slab_cache = cp; 1533 sp->slab_head = NULL; 1534 sp->slab_refcnt = 0; 1535 sp->slab_base = buf = slab + color; 1536 sp->slab_chunks = chunks; 1537 sp->slab_stuck_offset = (uint32_t)-1; 1538 sp->slab_later_count = 0; 1539 sp->slab_flags = 0; 1540 1541 ASSERT(chunks > 0); 1542 while (chunks-- != 0) { 1543 if (cache_flags & KMF_HASH) { 1544 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1545 if (bcp == NULL) 1546 goto bufctl_alloc_failure; 1547 if (cache_flags & KMF_AUDIT) { 1548 kmem_bufctl_audit_t *bcap = 1549 (kmem_bufctl_audit_t *)bcp; 1550 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1551 bcap->bc_cache = cp; 1552 } 1553 bcp->bc_addr = buf; 1554 bcp->bc_slab = sp; 1555 } else { 1556 bcp = KMEM_BUFCTL(cp, buf); 1557 } 1558 if (cache_flags & KMF_BUFTAG) { 1559 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1560 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1561 btp->bt_bufctl = bcp; 1562 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1563 if (cache_flags & KMF_DEADBEEF) { 1564 copy_pattern(KMEM_FREE_PATTERN, buf, 1565 cp->cache_verify); 1566 } 1567 } 1568 bcp->bc_next = sp->slab_head; 1569 sp->slab_head = bcp; 1570 buf += chunksize; 1571 } 1572 1573 kmem_log_event(kmem_slab_log, cp, sp, slab); 1574 1575 return (sp); 1576 1577 bufctl_alloc_failure: 1578 1579 while ((bcp = sp->slab_head) != NULL) { 1580 sp->slab_head = bcp->bc_next; 1581 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1582 } 1583 kmem_cache_free(kmem_slab_cache, sp); 1584 1585 slab_alloc_failure: 1586 1587 vmem_free(vmp, slab, slabsize); 1588 1589 vmem_alloc_failure: 1590 1591 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1592 atomic_add_64(&cp->cache_alloc_fail, 1); 1593 1594 return (NULL); 1595 } 1596 1597 /* 1598 * Destroy a slab. 1599 */ 1600 static void 1601 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1602 { 1603 vmem_t *vmp = cp->cache_arena; 1604 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1605 1606 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1607 ASSERT(sp->slab_refcnt == 0); 1608 1609 if (cp->cache_flags & KMF_HASH) { 1610 kmem_bufctl_t *bcp; 1611 while ((bcp = sp->slab_head) != NULL) { 1612 sp->slab_head = bcp->bc_next; 1613 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1614 } 1615 kmem_cache_free(kmem_slab_cache, sp); 1616 } 1617 vmem_free(vmp, slab, cp->cache_slabsize); 1618 } 1619 1620 static void * 1621 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp) 1622 { 1623 kmem_bufctl_t *bcp, **hash_bucket; 1624 void *buf; 1625 1626 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1627 /* 1628 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1629 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1630 * slab is newly created (sp->slab_refcnt == 0). 1631 */ 1632 ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) && 1633 (sp == avl_first(&cp->cache_partial_slabs)))); 1634 ASSERT(sp->slab_cache == cp); 1635 1636 cp->cache_slab_alloc++; 1637 cp->cache_bufslab--; 1638 sp->slab_refcnt++; 1639 1640 bcp = sp->slab_head; 1641 if ((sp->slab_head = bcp->bc_next) == NULL) { 1642 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1643 if (sp->slab_refcnt == 1) { 1644 ASSERT(sp->slab_chunks == 1); 1645 } else { 1646 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1647 avl_remove(&cp->cache_partial_slabs, sp); 1648 sp->slab_later_count = 0; /* clear history */ 1649 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1650 sp->slab_stuck_offset = (uint32_t)-1; 1651 } 1652 list_insert_head(&cp->cache_complete_slabs, sp); 1653 cp->cache_complete_slab_count++; 1654 } else { 1655 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1656 if (sp->slab_refcnt == 1) { 1657 avl_add(&cp->cache_partial_slabs, sp); 1658 } else { 1659 /* 1660 * The slab is now more allocated than it was, so the 1661 * order remains unchanged. 1662 */ 1663 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1664 } 1665 } 1666 1667 if (cp->cache_flags & KMF_HASH) { 1668 /* 1669 * Add buffer to allocated-address hash table. 1670 */ 1671 buf = bcp->bc_addr; 1672 hash_bucket = KMEM_HASH(cp, buf); 1673 bcp->bc_next = *hash_bucket; 1674 *hash_bucket = bcp; 1675 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1676 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1677 } 1678 } else { 1679 buf = KMEM_BUF(cp, bcp); 1680 } 1681 1682 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1683 return (buf); 1684 } 1685 1686 /* 1687 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1688 */ 1689 static void * 1690 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1691 { 1692 kmem_slab_t *sp; 1693 void *buf; 1694 boolean_t test_destructor; 1695 1696 mutex_enter(&cp->cache_lock); 1697 test_destructor = (cp->cache_slab_alloc == 0); 1698 sp = avl_first(&cp->cache_partial_slabs); 1699 if (sp == NULL) { 1700 ASSERT(cp->cache_bufslab == 0); 1701 1702 /* 1703 * The freelist is empty. Create a new slab. 1704 */ 1705 mutex_exit(&cp->cache_lock); 1706 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1707 return (NULL); 1708 } 1709 mutex_enter(&cp->cache_lock); 1710 cp->cache_slab_create++; 1711 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1712 cp->cache_bufmax = cp->cache_buftotal; 1713 cp->cache_bufslab += sp->slab_chunks; 1714 } 1715 1716 buf = kmem_slab_alloc_impl(cp, sp); 1717 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1718 (cp->cache_complete_slab_count + 1719 avl_numnodes(&cp->cache_partial_slabs) + 1720 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1721 mutex_exit(&cp->cache_lock); 1722 1723 if (test_destructor && cp->cache_destructor != NULL) { 1724 /* 1725 * On the first kmem_slab_alloc(), assert that it is valid to 1726 * call the destructor on a newly constructed object without any 1727 * client involvement. 1728 */ 1729 if ((cp->cache_constructor == NULL) || 1730 cp->cache_constructor(buf, cp->cache_private, 1731 kmflag) == 0) { 1732 cp->cache_destructor(buf, cp->cache_private); 1733 } 1734 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1735 cp->cache_bufsize); 1736 if (cp->cache_flags & KMF_DEADBEEF) { 1737 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1738 } 1739 } 1740 1741 return (buf); 1742 } 1743 1744 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1745 1746 /* 1747 * Free a raw (unconstructed) buffer to cp's slab layer. 1748 */ 1749 static void 1750 kmem_slab_free(kmem_cache_t *cp, void *buf) 1751 { 1752 kmem_slab_t *sp; 1753 kmem_bufctl_t *bcp, **prev_bcpp; 1754 1755 ASSERT(buf != NULL); 1756 1757 mutex_enter(&cp->cache_lock); 1758 cp->cache_slab_free++; 1759 1760 if (cp->cache_flags & KMF_HASH) { 1761 /* 1762 * Look up buffer in allocated-address hash table. 1763 */ 1764 prev_bcpp = KMEM_HASH(cp, buf); 1765 while ((bcp = *prev_bcpp) != NULL) { 1766 if (bcp->bc_addr == buf) { 1767 *prev_bcpp = bcp->bc_next; 1768 sp = bcp->bc_slab; 1769 break; 1770 } 1771 cp->cache_lookup_depth++; 1772 prev_bcpp = &bcp->bc_next; 1773 } 1774 } else { 1775 bcp = KMEM_BUFCTL(cp, buf); 1776 sp = KMEM_SLAB(cp, buf); 1777 } 1778 1779 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1780 mutex_exit(&cp->cache_lock); 1781 kmem_error(KMERR_BADADDR, cp, buf); 1782 return; 1783 } 1784 1785 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1786 /* 1787 * If this is the buffer that prevented the consolidator from 1788 * clearing the slab, we can reset the slab flags now that the 1789 * buffer is freed. (It makes sense to do this in 1790 * kmem_cache_free(), where the client gives up ownership of the 1791 * buffer, but on the hot path the test is too expensive.) 1792 */ 1793 kmem_slab_move_yes(cp, sp, buf); 1794 } 1795 1796 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1797 if (cp->cache_flags & KMF_CONTENTS) 1798 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1799 kmem_log_enter(kmem_content_log, buf, 1800 cp->cache_contents); 1801 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1802 } 1803 1804 bcp->bc_next = sp->slab_head; 1805 sp->slab_head = bcp; 1806 1807 cp->cache_bufslab++; 1808 ASSERT(sp->slab_refcnt >= 1); 1809 1810 if (--sp->slab_refcnt == 0) { 1811 /* 1812 * There are no outstanding allocations from this slab, 1813 * so we can reclaim the memory. 1814 */ 1815 if (sp->slab_chunks == 1) { 1816 list_remove(&cp->cache_complete_slabs, sp); 1817 cp->cache_complete_slab_count--; 1818 } else { 1819 avl_remove(&cp->cache_partial_slabs, sp); 1820 } 1821 1822 cp->cache_buftotal -= sp->slab_chunks; 1823 cp->cache_bufslab -= sp->slab_chunks; 1824 /* 1825 * Defer releasing the slab to the virtual memory subsystem 1826 * while there is a pending move callback, since we guarantee 1827 * that buffers passed to the move callback have only been 1828 * touched by kmem or by the client itself. Since the memory 1829 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1830 * set at least one of the two lowest order bits, the client can 1831 * test those bits in the move callback to determine whether or 1832 * not it knows about the buffer (assuming that the client also 1833 * sets one of those low order bits whenever it frees a buffer). 1834 */ 1835 if (cp->cache_defrag == NULL || 1836 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1837 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1838 cp->cache_slab_destroy++; 1839 mutex_exit(&cp->cache_lock); 1840 kmem_slab_destroy(cp, sp); 1841 } else { 1842 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1843 /* 1844 * Slabs are inserted at both ends of the deadlist to 1845 * distinguish between slabs freed while move callbacks 1846 * are pending (list head) and a slab freed while the 1847 * lock is dropped in kmem_move_buffers() (list tail) so 1848 * that in both cases slab_destroy() is called from the 1849 * right context. 1850 */ 1851 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1852 list_insert_tail(deadlist, sp); 1853 } else { 1854 list_insert_head(deadlist, sp); 1855 } 1856 cp->cache_defrag->kmd_deadcount++; 1857 mutex_exit(&cp->cache_lock); 1858 } 1859 return; 1860 } 1861 1862 if (bcp->bc_next == NULL) { 1863 /* Transition the slab from completely allocated to partial. */ 1864 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1865 ASSERT(sp->slab_chunks > 1); 1866 list_remove(&cp->cache_complete_slabs, sp); 1867 cp->cache_complete_slab_count--; 1868 avl_add(&cp->cache_partial_slabs, sp); 1869 } else { 1870 #ifdef DEBUG 1871 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1872 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1873 } else { 1874 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1875 } 1876 #else 1877 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1878 #endif 1879 } 1880 1881 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1882 (cp->cache_complete_slab_count + 1883 avl_numnodes(&cp->cache_partial_slabs) + 1884 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1885 mutex_exit(&cp->cache_lock); 1886 } 1887 1888 /* 1889 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1890 */ 1891 static int 1892 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1893 caddr_t caller) 1894 { 1895 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1896 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1897 uint32_t mtbf; 1898 1899 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1900 kmem_error(KMERR_BADBUFTAG, cp, buf); 1901 return (-1); 1902 } 1903 1904 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1905 1906 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1907 kmem_error(KMERR_BADBUFCTL, cp, buf); 1908 return (-1); 1909 } 1910 1911 if (cp->cache_flags & KMF_DEADBEEF) { 1912 if (!construct && (cp->cache_flags & KMF_LITE)) { 1913 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1914 kmem_error(KMERR_MODIFIED, cp, buf); 1915 return (-1); 1916 } 1917 if (cp->cache_constructor != NULL) 1918 *(uint64_t *)buf = btp->bt_redzone; 1919 else 1920 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1921 } else { 1922 construct = 1; 1923 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1924 KMEM_UNINITIALIZED_PATTERN, buf, 1925 cp->cache_verify)) { 1926 kmem_error(KMERR_MODIFIED, cp, buf); 1927 return (-1); 1928 } 1929 } 1930 } 1931 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1932 1933 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1934 gethrtime() % mtbf == 0 && 1935 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1936 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1937 if (!construct && cp->cache_destructor != NULL) 1938 cp->cache_destructor(buf, cp->cache_private); 1939 } else { 1940 mtbf = 0; 1941 } 1942 1943 if (mtbf || (construct && cp->cache_constructor != NULL && 1944 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1945 atomic_add_64(&cp->cache_alloc_fail, 1); 1946 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1947 if (cp->cache_flags & KMF_DEADBEEF) 1948 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1949 kmem_slab_free(cp, buf); 1950 return (1); 1951 } 1952 1953 if (cp->cache_flags & KMF_AUDIT) { 1954 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1955 } 1956 1957 if ((cp->cache_flags & KMF_LITE) && 1958 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1959 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1960 } 1961 1962 return (0); 1963 } 1964 1965 static int 1966 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1967 { 1968 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1969 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1970 kmem_slab_t *sp; 1971 1972 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1973 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1974 kmem_error(KMERR_DUPFREE, cp, buf); 1975 return (-1); 1976 } 1977 sp = kmem_findslab(cp, buf); 1978 if (sp == NULL || sp->slab_cache != cp) 1979 kmem_error(KMERR_BADADDR, cp, buf); 1980 else 1981 kmem_error(KMERR_REDZONE, cp, buf); 1982 return (-1); 1983 } 1984 1985 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1986 1987 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1988 kmem_error(KMERR_BADBUFCTL, cp, buf); 1989 return (-1); 1990 } 1991 1992 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1993 kmem_error(KMERR_REDZONE, cp, buf); 1994 return (-1); 1995 } 1996 1997 if (cp->cache_flags & KMF_AUDIT) { 1998 if (cp->cache_flags & KMF_CONTENTS) 1999 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2000 buf, cp->cache_contents); 2001 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2002 } 2003 2004 if ((cp->cache_flags & KMF_LITE) && 2005 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2006 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2007 } 2008 2009 if (cp->cache_flags & KMF_DEADBEEF) { 2010 if (cp->cache_flags & KMF_LITE) 2011 btp->bt_redzone = *(uint64_t *)buf; 2012 else if (cp->cache_destructor != NULL) 2013 cp->cache_destructor(buf, cp->cache_private); 2014 2015 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2016 } 2017 2018 return (0); 2019 } 2020 2021 /* 2022 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2023 */ 2024 static void 2025 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2026 { 2027 int round; 2028 2029 ASSERT(!list_link_active(&cp->cache_link) || 2030 taskq_member(kmem_taskq, curthread)); 2031 2032 for (round = 0; round < nrounds; round++) { 2033 void *buf = mp->mag_round[round]; 2034 2035 if (cp->cache_flags & KMF_DEADBEEF) { 2036 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2037 cp->cache_verify) != NULL) { 2038 kmem_error(KMERR_MODIFIED, cp, buf); 2039 continue; 2040 } 2041 if ((cp->cache_flags & KMF_LITE) && 2042 cp->cache_destructor != NULL) { 2043 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2044 *(uint64_t *)buf = btp->bt_redzone; 2045 cp->cache_destructor(buf, cp->cache_private); 2046 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2047 } 2048 } else if (cp->cache_destructor != NULL) { 2049 cp->cache_destructor(buf, cp->cache_private); 2050 } 2051 2052 kmem_slab_free(cp, buf); 2053 } 2054 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2055 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2056 } 2057 2058 /* 2059 * Allocate a magazine from the depot. 2060 */ 2061 static kmem_magazine_t * 2062 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2063 { 2064 kmem_magazine_t *mp; 2065 2066 /* 2067 * If we can't get the depot lock without contention, 2068 * update our contention count. We use the depot 2069 * contention rate to determine whether we need to 2070 * increase the magazine size for better scalability. 2071 */ 2072 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2073 mutex_enter(&cp->cache_depot_lock); 2074 cp->cache_depot_contention++; 2075 } 2076 2077 if ((mp = mlp->ml_list) != NULL) { 2078 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2079 mlp->ml_list = mp->mag_next; 2080 if (--mlp->ml_total < mlp->ml_min) 2081 mlp->ml_min = mlp->ml_total; 2082 mlp->ml_alloc++; 2083 } 2084 2085 mutex_exit(&cp->cache_depot_lock); 2086 2087 return (mp); 2088 } 2089 2090 /* 2091 * Free a magazine to the depot. 2092 */ 2093 static void 2094 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2095 { 2096 mutex_enter(&cp->cache_depot_lock); 2097 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2098 mp->mag_next = mlp->ml_list; 2099 mlp->ml_list = mp; 2100 mlp->ml_total++; 2101 mutex_exit(&cp->cache_depot_lock); 2102 } 2103 2104 /* 2105 * Update the working set statistics for cp's depot. 2106 */ 2107 static void 2108 kmem_depot_ws_update(kmem_cache_t *cp) 2109 { 2110 mutex_enter(&cp->cache_depot_lock); 2111 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2112 cp->cache_full.ml_min = cp->cache_full.ml_total; 2113 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2114 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2115 mutex_exit(&cp->cache_depot_lock); 2116 } 2117 2118 /* 2119 * Reap all magazines that have fallen out of the depot's working set. 2120 */ 2121 static void 2122 kmem_depot_ws_reap(kmem_cache_t *cp) 2123 { 2124 long reap; 2125 kmem_magazine_t *mp; 2126 2127 ASSERT(!list_link_active(&cp->cache_link) || 2128 taskq_member(kmem_taskq, curthread)); 2129 2130 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2131 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2132 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2133 2134 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2135 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2136 kmem_magazine_destroy(cp, mp, 0); 2137 } 2138 2139 static void 2140 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2141 { 2142 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2143 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2144 ASSERT(ccp->cc_magsize > 0); 2145 2146 ccp->cc_ploaded = ccp->cc_loaded; 2147 ccp->cc_prounds = ccp->cc_rounds; 2148 ccp->cc_loaded = mp; 2149 ccp->cc_rounds = rounds; 2150 } 2151 2152 /* 2153 * Allocate a constructed object from cache cp. 2154 */ 2155 void * 2156 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2157 { 2158 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2159 kmem_magazine_t *fmp; 2160 void *buf; 2161 2162 mutex_enter(&ccp->cc_lock); 2163 for (;;) { 2164 /* 2165 * If there's an object available in the current CPU's 2166 * loaded magazine, just take it and return. 2167 */ 2168 if (ccp->cc_rounds > 0) { 2169 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2170 ccp->cc_alloc++; 2171 mutex_exit(&ccp->cc_lock); 2172 if ((ccp->cc_flags & KMF_BUFTAG) && 2173 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2174 caller()) != 0) { 2175 if (kmflag & KM_NOSLEEP) 2176 return (NULL); 2177 mutex_enter(&ccp->cc_lock); 2178 continue; 2179 } 2180 return (buf); 2181 } 2182 2183 /* 2184 * The loaded magazine is empty. If the previously loaded 2185 * magazine was full, exchange them and try again. 2186 */ 2187 if (ccp->cc_prounds > 0) { 2188 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2189 continue; 2190 } 2191 2192 /* 2193 * If the magazine layer is disabled, break out now. 2194 */ 2195 if (ccp->cc_magsize == 0) 2196 break; 2197 2198 /* 2199 * Try to get a full magazine from the depot. 2200 */ 2201 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2202 if (fmp != NULL) { 2203 if (ccp->cc_ploaded != NULL) 2204 kmem_depot_free(cp, &cp->cache_empty, 2205 ccp->cc_ploaded); 2206 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2207 continue; 2208 } 2209 2210 /* 2211 * There are no full magazines in the depot, 2212 * so fall through to the slab layer. 2213 */ 2214 break; 2215 } 2216 mutex_exit(&ccp->cc_lock); 2217 2218 /* 2219 * We couldn't allocate a constructed object from the magazine layer, 2220 * so get a raw buffer from the slab layer and apply its constructor. 2221 */ 2222 buf = kmem_slab_alloc(cp, kmflag); 2223 2224 if (buf == NULL) 2225 return (NULL); 2226 2227 if (cp->cache_flags & KMF_BUFTAG) { 2228 /* 2229 * Make kmem_cache_alloc_debug() apply the constructor for us. 2230 */ 2231 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2232 if (rc != 0) { 2233 if (kmflag & KM_NOSLEEP) 2234 return (NULL); 2235 /* 2236 * kmem_cache_alloc_debug() detected corruption 2237 * but didn't panic (kmem_panic <= 0). We should not be 2238 * here because the constructor failed (indicated by a 2239 * return code of 1). Try again. 2240 */ 2241 ASSERT(rc == -1); 2242 return (kmem_cache_alloc(cp, kmflag)); 2243 } 2244 return (buf); 2245 } 2246 2247 if (cp->cache_constructor != NULL && 2248 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2249 atomic_add_64(&cp->cache_alloc_fail, 1); 2250 kmem_slab_free(cp, buf); 2251 return (NULL); 2252 } 2253 2254 return (buf); 2255 } 2256 2257 /* 2258 * The freed argument tells whether or not kmem_cache_free_debug() has already 2259 * been called so that we can avoid the duplicate free error. For example, a 2260 * buffer on a magazine has already been freed by the client but is still 2261 * constructed. 2262 */ 2263 static void 2264 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2265 { 2266 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2267 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2268 return; 2269 2270 /* 2271 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2272 * kmem_cache_free_debug() will have already applied the destructor. 2273 */ 2274 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2275 cp->cache_destructor != NULL) { 2276 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2277 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2278 *(uint64_t *)buf = btp->bt_redzone; 2279 cp->cache_destructor(buf, cp->cache_private); 2280 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2281 } else { 2282 cp->cache_destructor(buf, cp->cache_private); 2283 } 2284 } 2285 2286 kmem_slab_free(cp, buf); 2287 } 2288 2289 /* 2290 * Free a constructed object to cache cp. 2291 */ 2292 void 2293 kmem_cache_free(kmem_cache_t *cp, void *buf) 2294 { 2295 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2296 kmem_magazine_t *emp; 2297 kmem_magtype_t *mtp; 2298 2299 /* 2300 * The client must not free either of the buffers passed to the move 2301 * callback function. 2302 */ 2303 ASSERT(cp->cache_defrag == NULL || 2304 cp->cache_defrag->kmd_thread != curthread || 2305 (buf != cp->cache_defrag->kmd_from_buf && 2306 buf != cp->cache_defrag->kmd_to_buf)); 2307 2308 if (ccp->cc_flags & KMF_BUFTAG) 2309 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2310 return; 2311 2312 mutex_enter(&ccp->cc_lock); 2313 for (;;) { 2314 /* 2315 * If there's a slot available in the current CPU's 2316 * loaded magazine, just put the object there and return. 2317 */ 2318 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2319 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2320 ccp->cc_free++; 2321 mutex_exit(&ccp->cc_lock); 2322 return; 2323 } 2324 2325 /* 2326 * The loaded magazine is full. If the previously loaded 2327 * magazine was empty, exchange them and try again. 2328 */ 2329 if (ccp->cc_prounds == 0) { 2330 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2331 continue; 2332 } 2333 2334 /* 2335 * If the magazine layer is disabled, break out now. 2336 */ 2337 if (ccp->cc_magsize == 0) 2338 break; 2339 2340 /* 2341 * Try to get an empty magazine from the depot. 2342 */ 2343 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2344 if (emp != NULL) { 2345 if (ccp->cc_ploaded != NULL) 2346 kmem_depot_free(cp, &cp->cache_full, 2347 ccp->cc_ploaded); 2348 kmem_cpu_reload(ccp, emp, 0); 2349 continue; 2350 } 2351 2352 /* 2353 * There are no empty magazines in the depot, 2354 * so try to allocate a new one. We must drop all locks 2355 * across kmem_cache_alloc() because lower layers may 2356 * attempt to allocate from this cache. 2357 */ 2358 mtp = cp->cache_magtype; 2359 mutex_exit(&ccp->cc_lock); 2360 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2361 mutex_enter(&ccp->cc_lock); 2362 2363 if (emp != NULL) { 2364 /* 2365 * We successfully allocated an empty magazine. 2366 * However, we had to drop ccp->cc_lock to do it, 2367 * so the cache's magazine size may have changed. 2368 * If so, free the magazine and try again. 2369 */ 2370 if (ccp->cc_magsize != mtp->mt_magsize) { 2371 mutex_exit(&ccp->cc_lock); 2372 kmem_cache_free(mtp->mt_cache, emp); 2373 mutex_enter(&ccp->cc_lock); 2374 continue; 2375 } 2376 2377 /* 2378 * We got a magazine of the right size. Add it to 2379 * the depot and try the whole dance again. 2380 */ 2381 kmem_depot_free(cp, &cp->cache_empty, emp); 2382 continue; 2383 } 2384 2385 /* 2386 * We couldn't allocate an empty magazine, 2387 * so fall through to the slab layer. 2388 */ 2389 break; 2390 } 2391 mutex_exit(&ccp->cc_lock); 2392 2393 /* 2394 * We couldn't free our constructed object to the magazine layer, 2395 * so apply its destructor and free it to the slab layer. 2396 */ 2397 kmem_slab_free_constructed(cp, buf, B_TRUE); 2398 } 2399 2400 void * 2401 kmem_zalloc(size_t size, int kmflag) 2402 { 2403 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2404 void *buf; 2405 2406 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2407 kmem_cache_t *cp = kmem_alloc_table[index]; 2408 buf = kmem_cache_alloc(cp, kmflag); 2409 if (buf != NULL) { 2410 if (cp->cache_flags & KMF_BUFTAG) { 2411 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2412 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2413 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2414 2415 if (cp->cache_flags & KMF_LITE) { 2416 KMEM_BUFTAG_LITE_ENTER(btp, 2417 kmem_lite_count, caller()); 2418 } 2419 } 2420 bzero(buf, size); 2421 } 2422 } else { 2423 buf = kmem_alloc(size, kmflag); 2424 if (buf != NULL) 2425 bzero(buf, size); 2426 } 2427 return (buf); 2428 } 2429 2430 void * 2431 kmem_alloc(size_t size, int kmflag) 2432 { 2433 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2434 void *buf; 2435 2436 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2437 kmem_cache_t *cp = kmem_alloc_table[index]; 2438 buf = kmem_cache_alloc(cp, kmflag); 2439 if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { 2440 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2441 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2442 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2443 2444 if (cp->cache_flags & KMF_LITE) { 2445 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2446 caller()); 2447 } 2448 } 2449 return (buf); 2450 } 2451 if (size == 0) 2452 return (NULL); 2453 buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); 2454 if (buf == NULL) 2455 kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); 2456 return (buf); 2457 } 2458 2459 void 2460 kmem_free(void *buf, size_t size) 2461 { 2462 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2463 2464 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2465 kmem_cache_t *cp = kmem_alloc_table[index]; 2466 if (cp->cache_flags & KMF_BUFTAG) { 2467 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2468 uint32_t *ip = (uint32_t *)btp; 2469 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2470 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2471 kmem_error(KMERR_DUPFREE, cp, buf); 2472 return; 2473 } 2474 if (KMEM_SIZE_VALID(ip[1])) { 2475 ip[0] = KMEM_SIZE_ENCODE(size); 2476 kmem_error(KMERR_BADSIZE, cp, buf); 2477 } else { 2478 kmem_error(KMERR_REDZONE, cp, buf); 2479 } 2480 return; 2481 } 2482 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2483 kmem_error(KMERR_REDZONE, cp, buf); 2484 return; 2485 } 2486 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2487 if (cp->cache_flags & KMF_LITE) { 2488 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2489 caller()); 2490 } 2491 } 2492 kmem_cache_free(cp, buf); 2493 } else { 2494 if (buf == NULL && size == 0) 2495 return; 2496 vmem_free(kmem_oversize_arena, buf, size); 2497 } 2498 } 2499 2500 void * 2501 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2502 { 2503 size_t realsize = size + vmp->vm_quantum; 2504 void *addr; 2505 2506 /* 2507 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2508 * vm_quantum will cause integer wraparound. Check for this, and 2509 * blow off the firewall page in this case. Note that such a 2510 * giant allocation (the entire kernel address space) can never 2511 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2512 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2513 * corresponding check in kmem_firewall_va_free(). 2514 */ 2515 if (realsize < size) 2516 realsize = size; 2517 2518 /* 2519 * While boot still owns resource management, make sure that this 2520 * redzone virtual address allocation is properly accounted for in 2521 * OBPs "virtual-memory" "available" lists because we're 2522 * effectively claiming them for a red zone. If we don't do this, 2523 * the available lists become too fragmented and too large for the 2524 * current boot/kernel memory list interface. 2525 */ 2526 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2527 2528 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2529 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2530 2531 return (addr); 2532 } 2533 2534 void 2535 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2536 { 2537 ASSERT((kvseg.s_base == NULL ? 2538 va_to_pfn((char *)addr + size) : 2539 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2540 2541 vmem_free(vmp, addr, size + vmp->vm_quantum); 2542 } 2543 2544 /* 2545 * Try to allocate at least `size' bytes of memory without sleeping or 2546 * panicking. Return actual allocated size in `asize'. If allocation failed, 2547 * try final allocation with sleep or panic allowed. 2548 */ 2549 void * 2550 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2551 { 2552 void *p; 2553 2554 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2555 do { 2556 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2557 if (p != NULL) 2558 return (p); 2559 *asize += KMEM_ALIGN; 2560 } while (*asize <= PAGESIZE); 2561 2562 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2563 return (kmem_alloc(*asize, kmflag)); 2564 } 2565 2566 /* 2567 * Reclaim all unused memory from a cache. 2568 */ 2569 static void 2570 kmem_cache_reap(kmem_cache_t *cp) 2571 { 2572 ASSERT(taskq_member(kmem_taskq, curthread)); 2573 2574 /* 2575 * Ask the cache's owner to free some memory if possible. 2576 * The idea is to handle things like the inode cache, which 2577 * typically sits on a bunch of memory that it doesn't truly 2578 * *need*. Reclaim policy is entirely up to the owner; this 2579 * callback is just an advisory plea for help. 2580 */ 2581 if (cp->cache_reclaim != NULL) { 2582 long delta; 2583 2584 /* 2585 * Reclaimed memory should be reapable (not included in the 2586 * depot's working set). 2587 */ 2588 delta = cp->cache_full.ml_total; 2589 cp->cache_reclaim(cp->cache_private); 2590 delta = cp->cache_full.ml_total - delta; 2591 if (delta > 0) { 2592 mutex_enter(&cp->cache_depot_lock); 2593 cp->cache_full.ml_reaplimit += delta; 2594 cp->cache_full.ml_min += delta; 2595 mutex_exit(&cp->cache_depot_lock); 2596 } 2597 } 2598 2599 kmem_depot_ws_reap(cp); 2600 2601 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 2602 kmem_cache_defrag(cp); 2603 } 2604 } 2605 2606 static void 2607 kmem_reap_timeout(void *flag_arg) 2608 { 2609 uint32_t *flag = (uint32_t *)flag_arg; 2610 2611 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2612 *flag = 0; 2613 } 2614 2615 static void 2616 kmem_reap_done(void *flag) 2617 { 2618 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 2619 } 2620 2621 static void 2622 kmem_reap_start(void *flag) 2623 { 2624 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2625 2626 if (flag == &kmem_reaping) { 2627 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2628 /* 2629 * if we have segkp under heap, reap segkp cache. 2630 */ 2631 if (segkp_fromheap) 2632 segkp_cache_free(); 2633 } 2634 else 2635 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2636 2637 /* 2638 * We use taskq_dispatch() to schedule a timeout to clear 2639 * the flag so that kmem_reap() becomes self-throttling: 2640 * we won't reap again until the current reap completes *and* 2641 * at least kmem_reap_interval ticks have elapsed. 2642 */ 2643 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 2644 kmem_reap_done(flag); 2645 } 2646 2647 static void 2648 kmem_reap_common(void *flag_arg) 2649 { 2650 uint32_t *flag = (uint32_t *)flag_arg; 2651 2652 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 2653 cas32(flag, 0, 1) != 0) 2654 return; 2655 2656 /* 2657 * It may not be kosher to do memory allocation when a reap is called 2658 * is called (for example, if vmem_populate() is in the call chain). 2659 * So we start the reap going with a TQ_NOALLOC dispatch. If the 2660 * dispatch fails, we reset the flag, and the next reap will try again. 2661 */ 2662 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 2663 *flag = 0; 2664 } 2665 2666 /* 2667 * Reclaim all unused memory from all caches. Called from the VM system 2668 * when memory gets tight. 2669 */ 2670 void 2671 kmem_reap(void) 2672 { 2673 kmem_reap_common(&kmem_reaping); 2674 } 2675 2676 /* 2677 * Reclaim all unused memory from identifier arenas, called when a vmem 2678 * arena not back by memory is exhausted. Since reaping memory-backed caches 2679 * cannot help with identifier exhaustion, we avoid both a large amount of 2680 * work and unwanted side-effects from reclaim callbacks. 2681 */ 2682 void 2683 kmem_reap_idspace(void) 2684 { 2685 kmem_reap_common(&kmem_reaping_idspace); 2686 } 2687 2688 /* 2689 * Purge all magazines from a cache and set its magazine limit to zero. 2690 * All calls are serialized by the kmem_taskq lock, except for the final 2691 * call from kmem_cache_destroy(). 2692 */ 2693 static void 2694 kmem_cache_magazine_purge(kmem_cache_t *cp) 2695 { 2696 kmem_cpu_cache_t *ccp; 2697 kmem_magazine_t *mp, *pmp; 2698 int rounds, prounds, cpu_seqid; 2699 2700 ASSERT(!list_link_active(&cp->cache_link) || 2701 taskq_member(kmem_taskq, curthread)); 2702 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 2703 2704 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2705 ccp = &cp->cache_cpu[cpu_seqid]; 2706 2707 mutex_enter(&ccp->cc_lock); 2708 mp = ccp->cc_loaded; 2709 pmp = ccp->cc_ploaded; 2710 rounds = ccp->cc_rounds; 2711 prounds = ccp->cc_prounds; 2712 ccp->cc_loaded = NULL; 2713 ccp->cc_ploaded = NULL; 2714 ccp->cc_rounds = -1; 2715 ccp->cc_prounds = -1; 2716 ccp->cc_magsize = 0; 2717 mutex_exit(&ccp->cc_lock); 2718 2719 if (mp) 2720 kmem_magazine_destroy(cp, mp, rounds); 2721 if (pmp) 2722 kmem_magazine_destroy(cp, pmp, prounds); 2723 } 2724 2725 /* 2726 * Updating the working set statistics twice in a row has the 2727 * effect of setting the working set size to zero, so everything 2728 * is eligible for reaping. 2729 */ 2730 kmem_depot_ws_update(cp); 2731 kmem_depot_ws_update(cp); 2732 2733 kmem_depot_ws_reap(cp); 2734 } 2735 2736 /* 2737 * Enable per-cpu magazines on a cache. 2738 */ 2739 static void 2740 kmem_cache_magazine_enable(kmem_cache_t *cp) 2741 { 2742 int cpu_seqid; 2743 2744 if (cp->cache_flags & KMF_NOMAGAZINE) 2745 return; 2746 2747 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2748 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2749 mutex_enter(&ccp->cc_lock); 2750 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2751 mutex_exit(&ccp->cc_lock); 2752 } 2753 2754 } 2755 2756 /* 2757 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 2758 * for explanation of the back-to-back kmem_depot_ws_update() calls. 2759 */ 2760 void 2761 kmem_cache_reap_now(kmem_cache_t *cp) 2762 { 2763 ASSERT(list_link_active(&cp->cache_link)); 2764 2765 kmem_depot_ws_update(cp); 2766 kmem_depot_ws_update(cp); 2767 2768 (void) taskq_dispatch(kmem_taskq, 2769 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 2770 taskq_wait(kmem_taskq); 2771 } 2772 2773 /* 2774 * Recompute a cache's magazine size. The trade-off is that larger magazines 2775 * provide a higher transfer rate with the depot, while smaller magazines 2776 * reduce memory consumption. Magazine resizing is an expensive operation; 2777 * it should not be done frequently. 2778 * 2779 * Changes to the magazine size are serialized by the kmem_taskq lock. 2780 * 2781 * Note: at present this only grows the magazine size. It might be useful 2782 * to allow shrinkage too. 2783 */ 2784 static void 2785 kmem_cache_magazine_resize(kmem_cache_t *cp) 2786 { 2787 kmem_magtype_t *mtp = cp->cache_magtype; 2788 2789 ASSERT(taskq_member(kmem_taskq, curthread)); 2790 2791 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2792 kmem_cache_magazine_purge(cp); 2793 mutex_enter(&cp->cache_depot_lock); 2794 cp->cache_magtype = ++mtp; 2795 cp->cache_depot_contention_prev = 2796 cp->cache_depot_contention + INT_MAX; 2797 mutex_exit(&cp->cache_depot_lock); 2798 kmem_cache_magazine_enable(cp); 2799 } 2800 } 2801 2802 /* 2803 * Rescale a cache's hash table, so that the table size is roughly the 2804 * cache size. We want the average lookup time to be extremely small. 2805 */ 2806 static void 2807 kmem_hash_rescale(kmem_cache_t *cp) 2808 { 2809 kmem_bufctl_t **old_table, **new_table, *bcp; 2810 size_t old_size, new_size, h; 2811 2812 ASSERT(taskq_member(kmem_taskq, curthread)); 2813 2814 new_size = MAX(KMEM_HASH_INITIAL, 2815 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2816 old_size = cp->cache_hash_mask + 1; 2817 2818 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2819 return; 2820 2821 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 2822 VM_NOSLEEP); 2823 if (new_table == NULL) 2824 return; 2825 bzero(new_table, new_size * sizeof (void *)); 2826 2827 mutex_enter(&cp->cache_lock); 2828 2829 old_size = cp->cache_hash_mask + 1; 2830 old_table = cp->cache_hash_table; 2831 2832 cp->cache_hash_mask = new_size - 1; 2833 cp->cache_hash_table = new_table; 2834 cp->cache_rescale++; 2835 2836 for (h = 0; h < old_size; h++) { 2837 bcp = old_table[h]; 2838 while (bcp != NULL) { 2839 void *addr = bcp->bc_addr; 2840 kmem_bufctl_t *next_bcp = bcp->bc_next; 2841 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 2842 bcp->bc_next = *hash_bucket; 2843 *hash_bucket = bcp; 2844 bcp = next_bcp; 2845 } 2846 } 2847 2848 mutex_exit(&cp->cache_lock); 2849 2850 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 2851 } 2852 2853 /* 2854 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 2855 * update, magazine resizing, and slab consolidation. 2856 */ 2857 static void 2858 kmem_cache_update(kmem_cache_t *cp) 2859 { 2860 int need_hash_rescale = 0; 2861 int need_magazine_resize = 0; 2862 2863 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 2864 2865 /* 2866 * If the cache has become much larger or smaller than its hash table, 2867 * fire off a request to rescale the hash table. 2868 */ 2869 mutex_enter(&cp->cache_lock); 2870 2871 if ((cp->cache_flags & KMF_HASH) && 2872 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2873 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2874 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 2875 need_hash_rescale = 1; 2876 2877 mutex_exit(&cp->cache_lock); 2878 2879 /* 2880 * Update the depot working set statistics. 2881 */ 2882 kmem_depot_ws_update(cp); 2883 2884 /* 2885 * If there's a lot of contention in the depot, 2886 * increase the magazine size. 2887 */ 2888 mutex_enter(&cp->cache_depot_lock); 2889 2890 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2891 (int)(cp->cache_depot_contention - 2892 cp->cache_depot_contention_prev) > kmem_depot_contention) 2893 need_magazine_resize = 1; 2894 2895 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2896 2897 mutex_exit(&cp->cache_depot_lock); 2898 2899 if (need_hash_rescale) 2900 (void) taskq_dispatch(kmem_taskq, 2901 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 2902 2903 if (need_magazine_resize) 2904 (void) taskq_dispatch(kmem_taskq, 2905 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 2906 2907 if (cp->cache_defrag != NULL) 2908 (void) taskq_dispatch(kmem_taskq, 2909 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 2910 } 2911 2912 static void 2913 kmem_update_timeout(void *dummy) 2914 { 2915 static void kmem_update(void *); 2916 2917 (void) timeout(kmem_update, dummy, kmem_reap_interval); 2918 } 2919 2920 static void 2921 kmem_update(void *dummy) 2922 { 2923 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 2924 2925 /* 2926 * We use taskq_dispatch() to reschedule the timeout so that 2927 * kmem_update() becomes self-throttling: it won't schedule 2928 * new tasks until all previous tasks have completed. 2929 */ 2930 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 2931 kmem_update_timeout(NULL); 2932 } 2933 2934 static int 2935 kmem_cache_kstat_update(kstat_t *ksp, int rw) 2936 { 2937 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 2938 kmem_cache_t *cp = ksp->ks_private; 2939 uint64_t cpu_buf_avail; 2940 uint64_t buf_avail = 0; 2941 int cpu_seqid; 2942 2943 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 2944 2945 if (rw == KSTAT_WRITE) 2946 return (EACCES); 2947 2948 mutex_enter(&cp->cache_lock); 2949 2950 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 2951 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 2952 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 2953 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 2954 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 2955 2956 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2957 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2958 2959 mutex_enter(&ccp->cc_lock); 2960 2961 cpu_buf_avail = 0; 2962 if (ccp->cc_rounds > 0) 2963 cpu_buf_avail += ccp->cc_rounds; 2964 if (ccp->cc_prounds > 0) 2965 cpu_buf_avail += ccp->cc_prounds; 2966 2967 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 2968 kmcp->kmc_free.value.ui64 += ccp->cc_free; 2969 buf_avail += cpu_buf_avail; 2970 2971 mutex_exit(&ccp->cc_lock); 2972 } 2973 2974 mutex_enter(&cp->cache_depot_lock); 2975 2976 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 2977 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 2978 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 2979 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 2980 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 2981 kmcp->kmc_magazine_size.value.ui64 = 2982 (cp->cache_flags & KMF_NOMAGAZINE) ? 2983 0 : cp->cache_magtype->mt_magsize; 2984 2985 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 2986 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 2987 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 2988 2989 mutex_exit(&cp->cache_depot_lock); 2990 2991 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 2992 kmcp->kmc_align.value.ui64 = cp->cache_align; 2993 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 2994 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 2995 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 2996 buf_avail += cp->cache_bufslab; 2997 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 2998 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 2999 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3000 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3001 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3002 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3003 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3004 cp->cache_hash_mask + 1 : 0; 3005 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3006 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3007 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3008 3009 if (cp->cache_defrag == NULL) { 3010 kmcp->kmc_move_callbacks.value.ui64 = 0; 3011 kmcp->kmc_move_yes.value.ui64 = 0; 3012 kmcp->kmc_move_no.value.ui64 = 0; 3013 kmcp->kmc_move_later.value.ui64 = 0; 3014 kmcp->kmc_move_dont_need.value.ui64 = 0; 3015 kmcp->kmc_move_dont_know.value.ui64 = 0; 3016 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3017 } else { 3018 kmem_defrag_t *kd = cp->cache_defrag; 3019 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3020 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3021 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3022 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3023 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3024 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3025 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3026 } 3027 3028 mutex_exit(&cp->cache_lock); 3029 return (0); 3030 } 3031 3032 /* 3033 * Return a named statistic about a particular cache. 3034 * This shouldn't be called very often, so it's currently designed for 3035 * simplicity (leverages existing kstat support) rather than efficiency. 3036 */ 3037 uint64_t 3038 kmem_cache_stat(kmem_cache_t *cp, char *name) 3039 { 3040 int i; 3041 kstat_t *ksp = cp->cache_kstat; 3042 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3043 uint64_t value = 0; 3044 3045 if (ksp != NULL) { 3046 mutex_enter(&kmem_cache_kstat_lock); 3047 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3048 for (i = 0; i < ksp->ks_ndata; i++) { 3049 if (strcmp(knp[i].name, name) == 0) { 3050 value = knp[i].value.ui64; 3051 break; 3052 } 3053 } 3054 mutex_exit(&kmem_cache_kstat_lock); 3055 } 3056 return (value); 3057 } 3058 3059 /* 3060 * Return an estimate of currently available kernel heap memory. 3061 * On 32-bit systems, physical memory may exceed virtual memory, 3062 * we just truncate the result at 1GB. 3063 */ 3064 size_t 3065 kmem_avail(void) 3066 { 3067 spgcnt_t rmem = availrmem - tune.t_minarmem; 3068 spgcnt_t fmem = freemem - minfree; 3069 3070 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3071 1 << (30 - PAGESHIFT)))); 3072 } 3073 3074 /* 3075 * Return the maximum amount of memory that is (in theory) allocatable 3076 * from the heap. This may be used as an estimate only since there 3077 * is no guarentee this space will still be available when an allocation 3078 * request is made, nor that the space may be allocated in one big request 3079 * due to kernel heap fragmentation. 3080 */ 3081 size_t 3082 kmem_maxavail(void) 3083 { 3084 spgcnt_t pmem = availrmem - tune.t_minarmem; 3085 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3086 3087 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3088 } 3089 3090 /* 3091 * Indicate whether memory-intensive kmem debugging is enabled. 3092 */ 3093 int 3094 kmem_debugging(void) 3095 { 3096 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3097 } 3098 3099 /* binning function, sorts finely at the two extremes */ 3100 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3101 ((((sp)->slab_refcnt <= (binshift)) || \ 3102 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3103 ? -(sp)->slab_refcnt \ 3104 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3105 3106 /* 3107 * Minimizing the number of partial slabs on the freelist minimizes 3108 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3109 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3110 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3111 * the most-used slabs at the front of the list where they have the best chance 3112 * of being completely allocated, and the least-used slabs at a safe distance 3113 * from the front to improve the odds that the few remaining buffers will all be 3114 * freed before another allocation can tie up the slab. For that reason a slab 3115 * with a higher slab_refcnt sorts less than than a slab with a lower 3116 * slab_refcnt. 3117 * 3118 * However, if a slab has at least one buffer that is deemed unfreeable, we 3119 * would rather have that slab at the front of the list regardless of 3120 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3121 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3122 * callback, the slab is marked unfreeable for as long as it remains on the 3123 * freelist. 3124 */ 3125 static int 3126 kmem_partial_slab_cmp(const void *p0, const void *p1) 3127 { 3128 const kmem_cache_t *cp; 3129 const kmem_slab_t *s0 = p0; 3130 const kmem_slab_t *s1 = p1; 3131 int w0, w1; 3132 size_t binshift; 3133 3134 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3135 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3136 ASSERT(s0->slab_cache == s1->slab_cache); 3137 cp = s1->slab_cache; 3138 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3139 binshift = cp->cache_partial_binshift; 3140 3141 /* weight of first slab */ 3142 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3143 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3144 w0 -= cp->cache_maxchunks; 3145 } 3146 3147 /* weight of second slab */ 3148 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3149 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3150 w1 -= cp->cache_maxchunks; 3151 } 3152 3153 if (w0 < w1) 3154 return (-1); 3155 if (w0 > w1) 3156 return (1); 3157 3158 /* compare pointer values */ 3159 if ((uintptr_t)s0 < (uintptr_t)s1) 3160 return (-1); 3161 if ((uintptr_t)s0 > (uintptr_t)s1) 3162 return (1); 3163 3164 return (0); 3165 } 3166 3167 /* 3168 * It must be valid to call the destructor (if any) on a newly created object. 3169 * That is, the constructor (if any) must leave the object in a valid state for 3170 * the destructor. 3171 */ 3172 kmem_cache_t * 3173 kmem_cache_create( 3174 char *name, /* descriptive name for this cache */ 3175 size_t bufsize, /* size of the objects it manages */ 3176 size_t align, /* required object alignment */ 3177 int (*constructor)(void *, void *, int), /* object constructor */ 3178 void (*destructor)(void *, void *), /* object destructor */ 3179 void (*reclaim)(void *), /* memory reclaim callback */ 3180 void *private, /* pass-thru arg for constr/destr/reclaim */ 3181 vmem_t *vmp, /* vmem source for slab allocation */ 3182 int cflags) /* cache creation flags */ 3183 { 3184 int cpu_seqid; 3185 size_t chunksize; 3186 kmem_cache_t *cp; 3187 kmem_magtype_t *mtp; 3188 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3189 3190 #ifdef DEBUG 3191 /* 3192 * Cache names should conform to the rules for valid C identifiers 3193 */ 3194 if (!strident_valid(name)) { 3195 cmn_err(CE_CONT, 3196 "kmem_cache_create: '%s' is an invalid cache name\n" 3197 "cache names must conform to the rules for " 3198 "C identifiers\n", name); 3199 } 3200 #endif /* DEBUG */ 3201 3202 if (vmp == NULL) 3203 vmp = kmem_default_arena; 3204 3205 /* 3206 * If this kmem cache has an identifier vmem arena as its source, mark 3207 * it such to allow kmem_reap_idspace(). 3208 */ 3209 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3210 if (vmp->vm_cflags & VMC_IDENTIFIER) 3211 cflags |= KMC_IDENTIFIER; 3212 3213 /* 3214 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3215 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3216 * false sharing of per-CPU data. 3217 */ 3218 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3219 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3220 bzero(cp, csize); 3221 list_link_init(&cp->cache_link); 3222 3223 if (align == 0) 3224 align = KMEM_ALIGN; 3225 3226 /* 3227 * If we're not at least KMEM_ALIGN aligned, we can't use free 3228 * memory to hold bufctl information (because we can't safely 3229 * perform word loads and stores on it). 3230 */ 3231 if (align < KMEM_ALIGN) 3232 cflags |= KMC_NOTOUCH; 3233 3234 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 3235 panic("kmem_cache_create: bad alignment %lu", align); 3236 3237 mutex_enter(&kmem_flags_lock); 3238 if (kmem_flags & KMF_RANDOMIZE) 3239 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3240 KMF_RANDOMIZE; 3241 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3242 mutex_exit(&kmem_flags_lock); 3243 3244 /* 3245 * Make sure all the various flags are reasonable. 3246 */ 3247 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3248 3249 if (cp->cache_flags & KMF_LITE) { 3250 if (bufsize >= kmem_lite_minsize && 3251 align <= kmem_lite_maxalign && 3252 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3253 cp->cache_flags |= KMF_BUFTAG; 3254 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3255 } else { 3256 cp->cache_flags &= ~KMF_DEBUG; 3257 } 3258 } 3259 3260 if (cp->cache_flags & KMF_DEADBEEF) 3261 cp->cache_flags |= KMF_REDZONE; 3262 3263 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3264 cp->cache_flags |= KMF_NOMAGAZINE; 3265 3266 if (cflags & KMC_NODEBUG) 3267 cp->cache_flags &= ~KMF_DEBUG; 3268 3269 if (cflags & KMC_NOTOUCH) 3270 cp->cache_flags &= ~KMF_TOUCH; 3271 3272 if (cflags & KMC_NOHASH) 3273 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3274 3275 if (cflags & KMC_NOMAGAZINE) 3276 cp->cache_flags |= KMF_NOMAGAZINE; 3277 3278 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3279 cp->cache_flags |= KMF_REDZONE; 3280 3281 if (!(cp->cache_flags & KMF_AUDIT)) 3282 cp->cache_flags &= ~KMF_CONTENTS; 3283 3284 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3285 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3286 cp->cache_flags |= KMF_FIREWALL; 3287 3288 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3289 cp->cache_flags &= ~KMF_FIREWALL; 3290 3291 if (cp->cache_flags & KMF_FIREWALL) { 3292 cp->cache_flags &= ~KMF_BUFTAG; 3293 cp->cache_flags |= KMF_NOMAGAZINE; 3294 ASSERT(vmp == kmem_default_arena); 3295 vmp = kmem_firewall_arena; 3296 } 3297 3298 /* 3299 * Set cache properties. 3300 */ 3301 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3302 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3303 cp->cache_bufsize = bufsize; 3304 cp->cache_align = align; 3305 cp->cache_constructor = constructor; 3306 cp->cache_destructor = destructor; 3307 cp->cache_reclaim = reclaim; 3308 cp->cache_private = private; 3309 cp->cache_arena = vmp; 3310 cp->cache_cflags = cflags; 3311 3312 /* 3313 * Determine the chunk size. 3314 */ 3315 chunksize = bufsize; 3316 3317 if (align >= KMEM_ALIGN) { 3318 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3319 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3320 } 3321 3322 if (cp->cache_flags & KMF_BUFTAG) { 3323 cp->cache_bufctl = chunksize; 3324 cp->cache_buftag = chunksize; 3325 if (cp->cache_flags & KMF_LITE) 3326 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3327 else 3328 chunksize += sizeof (kmem_buftag_t); 3329 } 3330 3331 if (cp->cache_flags & KMF_DEADBEEF) { 3332 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3333 if (cp->cache_flags & KMF_LITE) 3334 cp->cache_verify = sizeof (uint64_t); 3335 } 3336 3337 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3338 3339 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3340 3341 /* 3342 * Now that we know the chunk size, determine the optimal slab size. 3343 */ 3344 if (vmp == kmem_firewall_arena) { 3345 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3346 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3347 cp->cache_maxcolor = cp->cache_mincolor; 3348 cp->cache_flags |= KMF_HASH; 3349 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3350 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3351 !(cp->cache_flags & KMF_AUDIT) && 3352 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3353 cp->cache_slabsize = vmp->vm_quantum; 3354 cp->cache_mincolor = 0; 3355 cp->cache_maxcolor = 3356 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3357 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3358 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3359 } else { 3360 size_t chunks, bestfit, waste, slabsize; 3361 size_t minwaste = LONG_MAX; 3362 3363 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3364 slabsize = P2ROUNDUP(chunksize * chunks, 3365 vmp->vm_quantum); 3366 chunks = slabsize / chunksize; 3367 waste = (slabsize % chunksize) / chunks; 3368 if (waste < minwaste) { 3369 minwaste = waste; 3370 bestfit = slabsize; 3371 } 3372 } 3373 if (cflags & KMC_QCACHE) 3374 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3375 cp->cache_slabsize = bestfit; 3376 cp->cache_mincolor = 0; 3377 cp->cache_maxcolor = bestfit % chunksize; 3378 cp->cache_flags |= KMF_HASH; 3379 } 3380 3381 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3382 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3383 3384 if (cp->cache_flags & KMF_HASH) { 3385 ASSERT(!(cflags & KMC_NOHASH)); 3386 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3387 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3388 } 3389 3390 if (cp->cache_maxcolor >= vmp->vm_quantum) 3391 cp->cache_maxcolor = vmp->vm_quantum - 1; 3392 3393 cp->cache_color = cp->cache_mincolor; 3394 3395 /* 3396 * Initialize the rest of the slab layer. 3397 */ 3398 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3399 3400 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3401 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3402 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3403 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3404 /* reuse partial slab AVL linkage for complete slab list linkage */ 3405 list_create(&cp->cache_complete_slabs, 3406 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3407 3408 if (cp->cache_flags & KMF_HASH) { 3409 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3410 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3411 bzero(cp->cache_hash_table, 3412 KMEM_HASH_INITIAL * sizeof (void *)); 3413 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3414 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3415 } 3416 3417 /* 3418 * Initialize the depot. 3419 */ 3420 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3421 3422 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3423 continue; 3424 3425 cp->cache_magtype = mtp; 3426 3427 /* 3428 * Initialize the CPU layer. 3429 */ 3430 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3431 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3432 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3433 ccp->cc_flags = cp->cache_flags; 3434 ccp->cc_rounds = -1; 3435 ccp->cc_prounds = -1; 3436 } 3437 3438 /* 3439 * Create the cache's kstats. 3440 */ 3441 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3442 "kmem_cache", KSTAT_TYPE_NAMED, 3443 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3444 KSTAT_FLAG_VIRTUAL)) != NULL) { 3445 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3446 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3447 cp->cache_kstat->ks_private = cp; 3448 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3449 kstat_install(cp->cache_kstat); 3450 } 3451 3452 /* 3453 * Add the cache to the global list. This makes it visible 3454 * to kmem_update(), so the cache must be ready for business. 3455 */ 3456 mutex_enter(&kmem_cache_lock); 3457 list_insert_tail(&kmem_caches, cp); 3458 mutex_exit(&kmem_cache_lock); 3459 3460 if (kmem_ready) 3461 kmem_cache_magazine_enable(cp); 3462 3463 return (cp); 3464 } 3465 3466 static int 3467 kmem_move_cmp(const void *buf, const void *p) 3468 { 3469 const kmem_move_t *kmm = p; 3470 uintptr_t v1 = (uintptr_t)buf; 3471 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3472 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3473 } 3474 3475 static void 3476 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3477 { 3478 kmd->kmd_reclaim_numer = 1; 3479 } 3480 3481 /* 3482 * Initially, when choosing candidate slabs for buffers to move, we want to be 3483 * very selective and take only slabs that are less than 3484 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3485 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3486 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3487 * longer fragmented. 3488 */ 3489 static void 3490 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3491 { 3492 if (direction > 0) { 3493 /* make it easier to find a candidate slab */ 3494 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3495 kmd->kmd_reclaim_numer++; 3496 } 3497 } else { 3498 /* be more selective */ 3499 if (kmd->kmd_reclaim_numer > 1) { 3500 kmd->kmd_reclaim_numer--; 3501 } 3502 } 3503 } 3504 3505 void 3506 kmem_cache_set_move(kmem_cache_t *cp, 3507 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3508 { 3509 kmem_defrag_t *defrag; 3510 3511 ASSERT(move != NULL); 3512 /* 3513 * The consolidator does not support NOTOUCH caches because kmem cannot 3514 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3515 * a low order bit usable by clients to distinguish uninitialized memory 3516 * from known objects (see kmem_slab_create). 3517 */ 3518 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3519 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3520 3521 /* 3522 * We should not be holding anyone's cache lock when calling 3523 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3524 * lock. 3525 */ 3526 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3527 3528 mutex_enter(&cp->cache_lock); 3529 3530 if (KMEM_IS_MOVABLE(cp)) { 3531 if (cp->cache_move == NULL) { 3532 ASSERT(cp->cache_slab_alloc == 0); 3533 3534 cp->cache_defrag = defrag; 3535 defrag = NULL; /* nothing to free */ 3536 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 3537 avl_create(&cp->cache_defrag->kmd_moves_pending, 3538 kmem_move_cmp, sizeof (kmem_move_t), 3539 offsetof(kmem_move_t, kmm_entry)); 3540 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3541 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3542 /* reuse the slab's AVL linkage for deadlist linkage */ 3543 list_create(&cp->cache_defrag->kmd_deadlist, 3544 sizeof (kmem_slab_t), 3545 offsetof(kmem_slab_t, slab_link)); 3546 kmem_reset_reclaim_threshold(cp->cache_defrag); 3547 } 3548 cp->cache_move = move; 3549 } 3550 3551 mutex_exit(&cp->cache_lock); 3552 3553 if (defrag != NULL) { 3554 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 3555 } 3556 } 3557 3558 void 3559 kmem_cache_destroy(kmem_cache_t *cp) 3560 { 3561 int cpu_seqid; 3562 3563 /* 3564 * Remove the cache from the global cache list so that no one else 3565 * can schedule tasks on its behalf, wait for any pending tasks to 3566 * complete, purge the cache, and then destroy it. 3567 */ 3568 mutex_enter(&kmem_cache_lock); 3569 list_remove(&kmem_caches, cp); 3570 mutex_exit(&kmem_cache_lock); 3571 3572 if (kmem_taskq != NULL) 3573 taskq_wait(kmem_taskq); 3574 if (kmem_move_taskq != NULL) 3575 taskq_wait(kmem_move_taskq); 3576 3577 kmem_cache_magazine_purge(cp); 3578 3579 mutex_enter(&cp->cache_lock); 3580 if (cp->cache_buftotal != 0) 3581 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 3582 cp->cache_name, (void *)cp); 3583 if (cp->cache_defrag != NULL) { 3584 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 3585 list_destroy(&cp->cache_defrag->kmd_deadlist); 3586 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 3587 cp->cache_defrag = NULL; 3588 } 3589 /* 3590 * The cache is now dead. There should be no further activity. We 3591 * enforce this by setting land mines in the constructor, destructor, 3592 * reclaim, and move routines that induce a kernel text fault if 3593 * invoked. 3594 */ 3595 cp->cache_constructor = (int (*)(void *, void *, int))1; 3596 cp->cache_destructor = (void (*)(void *, void *))2; 3597 cp->cache_reclaim = (void (*)(void *))3; 3598 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 3599 mutex_exit(&cp->cache_lock); 3600 3601 kstat_delete(cp->cache_kstat); 3602 3603 if (cp->cache_hash_table != NULL) 3604 vmem_free(kmem_hash_arena, cp->cache_hash_table, 3605 (cp->cache_hash_mask + 1) * sizeof (void *)); 3606 3607 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 3608 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 3609 3610 mutex_destroy(&cp->cache_depot_lock); 3611 mutex_destroy(&cp->cache_lock); 3612 3613 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 3614 } 3615 3616 /*ARGSUSED*/ 3617 static int 3618 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 3619 { 3620 ASSERT(MUTEX_HELD(&cpu_lock)); 3621 if (what == CPU_UNCONFIG) { 3622 kmem_cache_applyall(kmem_cache_magazine_purge, 3623 kmem_taskq, TQ_SLEEP); 3624 kmem_cache_applyall(kmem_cache_magazine_enable, 3625 kmem_taskq, TQ_SLEEP); 3626 } 3627 return (0); 3628 } 3629 3630 static void 3631 kmem_cache_init(int pass, int use_large_pages) 3632 { 3633 int i; 3634 size_t size; 3635 kmem_cache_t *cp; 3636 kmem_magtype_t *mtp; 3637 char name[KMEM_CACHE_NAMELEN + 1]; 3638 3639 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 3640 mtp = &kmem_magtype[i]; 3641 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 3642 mtp->mt_cache = kmem_cache_create(name, 3643 (mtp->mt_magsize + 1) * sizeof (void *), 3644 mtp->mt_align, NULL, NULL, NULL, NULL, 3645 kmem_msb_arena, KMC_NOHASH); 3646 } 3647 3648 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 3649 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 3650 kmem_msb_arena, KMC_NOHASH); 3651 3652 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 3653 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3654 kmem_msb_arena, KMC_NOHASH); 3655 3656 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 3657 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 3658 kmem_msb_arena, KMC_NOHASH); 3659 3660 if (pass == 2) { 3661 kmem_va_arena = vmem_create("kmem_va", 3662 NULL, 0, PAGESIZE, 3663 vmem_alloc, vmem_free, heap_arena, 3664 8 * PAGESIZE, VM_SLEEP); 3665 3666 if (use_large_pages) { 3667 kmem_default_arena = vmem_xcreate("kmem_default", 3668 NULL, 0, PAGESIZE, 3669 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 3670 0, VM_SLEEP); 3671 } else { 3672 kmem_default_arena = vmem_create("kmem_default", 3673 NULL, 0, PAGESIZE, 3674 segkmem_alloc, segkmem_free, kmem_va_arena, 3675 0, VM_SLEEP); 3676 } 3677 } else { 3678 /* 3679 * During the first pass, the kmem_alloc_* caches 3680 * are treated as metadata. 3681 */ 3682 kmem_default_arena = kmem_msb_arena; 3683 } 3684 3685 /* 3686 * Set up the default caches to back kmem_alloc() 3687 */ 3688 size = KMEM_ALIGN; 3689 for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) { 3690 size_t align = KMEM_ALIGN; 3691 size_t cache_size = kmem_alloc_sizes[i]; 3692 /* 3693 * If they allocate a multiple of the coherency granularity, 3694 * they get a coherency-granularity-aligned address. 3695 */ 3696 if (IS_P2ALIGNED(cache_size, 64)) 3697 align = 64; 3698 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 3699 align = PAGESIZE; 3700 (void) sprintf(name, "kmem_alloc_%lu", cache_size); 3701 cp = kmem_cache_create(name, cache_size, align, 3702 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 3703 while (size <= cache_size) { 3704 kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp; 3705 size += KMEM_ALIGN; 3706 } 3707 } 3708 } 3709 3710 void 3711 kmem_init(void) 3712 { 3713 kmem_cache_t *cp; 3714 int old_kmem_flags = kmem_flags; 3715 int use_large_pages = 0; 3716 size_t maxverify, minfirewall; 3717 3718 kstat_init(); 3719 3720 /* 3721 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 3722 */ 3723 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 3724 kmem_flags = 0; 3725 3726 /* 3727 * Don't do firewalled allocations if the heap is less than 1TB 3728 * (i.e. on a 32-bit kernel) 3729 * The resulting VM_NEXTFIT allocations would create too much 3730 * fragmentation in a small heap. 3731 */ 3732 #if defined(_LP64) 3733 maxverify = minfirewall = PAGESIZE / 2; 3734 #else 3735 maxverify = minfirewall = ULONG_MAX; 3736 #endif 3737 3738 /* LINTED */ 3739 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 3740 3741 list_create(&kmem_caches, sizeof (kmem_cache_t), 3742 offsetof(kmem_cache_t, cache_link)); 3743 3744 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 3745 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 3746 VM_SLEEP | VMC_NO_QCACHE); 3747 3748 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 3749 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 3750 VM_SLEEP); 3751 3752 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 3753 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3754 3755 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 3756 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3757 3758 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 3759 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3760 3761 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 3762 NULL, 0, PAGESIZE, 3763 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 3764 0, VM_SLEEP); 3765 3766 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 3767 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); 3768 3769 /* temporary oversize arena for mod_read_system_file */ 3770 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 3771 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3772 3773 kmem_reap_interval = 15 * hz; 3774 3775 /* 3776 * Read /etc/system. This is a chicken-and-egg problem because 3777 * kmem_flags may be set in /etc/system, but mod_read_system_file() 3778 * needs to use the allocator. The simplest solution is to create 3779 * all the standard kmem caches, read /etc/system, destroy all the 3780 * caches we just created, and then create them all again in light 3781 * of the (possibly) new kmem_flags and other kmem tunables. 3782 */ 3783 kmem_cache_init(1, 0); 3784 3785 mod_read_system_file(boothowto & RB_ASKNAME); 3786 3787 while ((cp = list_tail(&kmem_caches)) != NULL) 3788 kmem_cache_destroy(cp); 3789 3790 vmem_destroy(kmem_oversize_arena); 3791 3792 if (old_kmem_flags & KMF_STICKY) 3793 kmem_flags = old_kmem_flags; 3794 3795 if (!(kmem_flags & KMF_AUDIT)) 3796 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 3797 3798 if (kmem_maxverify == 0) 3799 kmem_maxverify = maxverify; 3800 3801 if (kmem_minfirewall == 0) 3802 kmem_minfirewall = minfirewall; 3803 3804 /* 3805 * give segkmem a chance to figure out if we are using large pages 3806 * for the kernel heap 3807 */ 3808 use_large_pages = segkmem_lpsetup(); 3809 3810 /* 3811 * To protect against corruption, we keep the actual number of callers 3812 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 3813 * to 16, since the overhead for small buffers quickly gets out of 3814 * hand. 3815 * 3816 * The real limit would depend on the needs of the largest KMC_NOHASH 3817 * cache. 3818 */ 3819 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 3820 kmem_lite_pcs = kmem_lite_count; 3821 3822 /* 3823 * Normally, we firewall oversized allocations when possible, but 3824 * if we are using large pages for kernel memory, and we don't have 3825 * any non-LITE debugging flags set, we want to allocate oversized 3826 * buffers from large pages, and so skip the firewalling. 3827 */ 3828 if (use_large_pages && 3829 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 3830 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 3831 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 3832 0, VM_SLEEP); 3833 } else { 3834 kmem_oversize_arena = vmem_create("kmem_oversize", 3835 NULL, 0, PAGESIZE, 3836 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 3837 kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); 3838 } 3839 3840 kmem_cache_init(2, use_large_pages); 3841 3842 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 3843 if (kmem_transaction_log_size == 0) 3844 kmem_transaction_log_size = kmem_maxavail() / 50; 3845 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 3846 } 3847 3848 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 3849 if (kmem_content_log_size == 0) 3850 kmem_content_log_size = kmem_maxavail() / 50; 3851 kmem_content_log = kmem_log_init(kmem_content_log_size); 3852 } 3853 3854 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 3855 3856 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 3857 3858 /* 3859 * Initialize STREAMS message caches so allocb() is available. 3860 * This allows us to initialize the logging framework (cmn_err(9F), 3861 * strlog(9F), etc) so we can start recording messages. 3862 */ 3863 streams_msg_init(); 3864 3865 /* 3866 * Initialize the ZSD framework in Zones so modules loaded henceforth 3867 * can register their callbacks. 3868 */ 3869 zone_zsd_init(); 3870 3871 log_init(); 3872 taskq_init(); 3873 3874 /* 3875 * Warn about invalid or dangerous values of kmem_flags. 3876 * Always warn about unsupported values. 3877 */ 3878 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 3879 KMF_CONTENTS | KMF_LITE)) != 0) || 3880 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 3881 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 3882 "See the Solaris Tunable Parameters Reference Manual.", 3883 kmem_flags); 3884 3885 #ifdef DEBUG 3886 if ((kmem_flags & KMF_DEBUG) == 0) 3887 cmn_err(CE_NOTE, "kmem debugging disabled."); 3888 #else 3889 /* 3890 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 3891 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 3892 * if KMF_AUDIT is set). We should warn the user about the performance 3893 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 3894 * isn't set (since that disables AUDIT). 3895 */ 3896 if (!(kmem_flags & KMF_LITE) && 3897 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 3898 cmn_err(CE_WARN, "High-overhead kmem debugging features " 3899 "enabled (kmem_flags = 0x%x). Performance degradation " 3900 "and large memory overhead possible. See the Solaris " 3901 "Tunable Parameters Reference Manual.", kmem_flags); 3902 #endif /* not DEBUG */ 3903 3904 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 3905 3906 kmem_ready = 1; 3907 3908 /* 3909 * Initialize the platform-specific aligned/DMA memory allocator. 3910 */ 3911 ka_init(); 3912 3913 /* 3914 * Initialize 32-bit ID cache. 3915 */ 3916 id32_init(); 3917 3918 /* 3919 * Initialize the networking stack so modules loaded can 3920 * register their callbacks. 3921 */ 3922 netstack_init(); 3923 } 3924 3925 static void 3926 kmem_move_init(void) 3927 { 3928 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 3929 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 3930 kmem_msb_arena, KMC_NOHASH); 3931 kmem_move_cache = kmem_cache_create("kmem_move_cache", 3932 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 3933 kmem_msb_arena, KMC_NOHASH); 3934 3935 /* 3936 * kmem guarantees that move callbacks are sequential and that even 3937 * across multiple caches no two moves ever execute simultaneously. 3938 * Move callbacks are processed on a separate taskq so that client code 3939 * does not interfere with internal maintenance tasks. 3940 */ 3941 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 3942 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 3943 } 3944 3945 void 3946 kmem_thread_init(void) 3947 { 3948 kmem_move_init(); 3949 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 3950 300, INT_MAX, TASKQ_PREPOPULATE); 3951 } 3952 3953 void 3954 kmem_mp_init(void) 3955 { 3956 mutex_enter(&cpu_lock); 3957 register_cpu_setup_func(kmem_cpu_setup, NULL); 3958 mutex_exit(&cpu_lock); 3959 3960 kmem_update_timeout(NULL); 3961 } 3962 3963 /* 3964 * Return the slab of the allocated buffer, or NULL if the buffer is not 3965 * allocated. This function may be called with a known slab address to determine 3966 * whether or not the buffer is allocated, or with a NULL slab address to obtain 3967 * an allocated buffer's slab. 3968 */ 3969 static kmem_slab_t * 3970 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 3971 { 3972 kmem_bufctl_t *bcp, *bufbcp; 3973 3974 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3975 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 3976 3977 if (cp->cache_flags & KMF_HASH) { 3978 for (bcp = *KMEM_HASH(cp, buf); 3979 (bcp != NULL) && (bcp->bc_addr != buf); 3980 bcp = bcp->bc_next) { 3981 continue; 3982 } 3983 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 3984 return (bcp == NULL ? NULL : bcp->bc_slab); 3985 } 3986 3987 if (sp == NULL) { 3988 sp = KMEM_SLAB(cp, buf); 3989 } 3990 bufbcp = KMEM_BUFCTL(cp, buf); 3991 for (bcp = sp->slab_head; 3992 (bcp != NULL) && (bcp != bufbcp); 3993 bcp = bcp->bc_next) { 3994 continue; 3995 } 3996 return (bcp == NULL ? sp : NULL); 3997 } 3998 3999 static boolean_t 4000 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4001 { 4002 long refcnt; 4003 4004 ASSERT(cp->cache_defrag != NULL); 4005 4006 /* If we're desperate, we don't care if the client said NO. */ 4007 refcnt = sp->slab_refcnt; 4008 if (flags & KMM_DESPERATE) { 4009 return (refcnt < sp->slab_chunks); /* any partial */ 4010 } 4011 4012 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4013 return (B_FALSE); 4014 } 4015 4016 if (kmem_move_any_partial) { 4017 return (refcnt < sp->slab_chunks); 4018 } 4019 4020 if ((refcnt == 1) && (refcnt < sp->slab_chunks)) { 4021 return (B_TRUE); 4022 } 4023 4024 /* 4025 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4026 * slabs with a progressively higher percentage of used buffers can be 4027 * reclaimed until the cache as a whole is no longer fragmented. 4028 * 4029 * sp->slab_refcnt kmd_reclaim_numer 4030 * --------------- < ------------------ 4031 * sp->slab_chunks KMEM_VOID_FRACTION 4032 */ 4033 return ((refcnt * KMEM_VOID_FRACTION) < 4034 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4035 } 4036 4037 static void * 4038 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4039 void *tbuf) 4040 { 4041 int i; /* magazine round index */ 4042 4043 for (i = 0; i < n; i++) { 4044 if (buf == m->mag_round[i]) { 4045 if (cp->cache_flags & KMF_BUFTAG) { 4046 (void) kmem_cache_free_debug(cp, tbuf, 4047 caller()); 4048 } 4049 m->mag_round[i] = tbuf; 4050 return (buf); 4051 } 4052 } 4053 4054 return (NULL); 4055 } 4056 4057 /* 4058 * Hunt the magazine layer for the given buffer. If found, the buffer is 4059 * removed from the magazine layer and returned, otherwise NULL is returned. 4060 * The state of the returned buffer is freed and constructed. 4061 */ 4062 static void * 4063 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4064 { 4065 kmem_cpu_cache_t *ccp; 4066 kmem_magazine_t *m; 4067 int cpu_seqid; 4068 int n; /* magazine rounds */ 4069 void *tbuf; /* temporary swap buffer */ 4070 4071 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4072 4073 /* 4074 * Allocated a buffer to swap with the one we hope to pull out of a 4075 * magazine when found. 4076 */ 4077 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4078 if (tbuf == NULL) { 4079 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4080 return (NULL); 4081 } 4082 if (tbuf == buf) { 4083 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4084 if (cp->cache_flags & KMF_BUFTAG) { 4085 (void) kmem_cache_free_debug(cp, buf, caller()); 4086 } 4087 return (buf); 4088 } 4089 4090 /* Hunt the depot. */ 4091 mutex_enter(&cp->cache_depot_lock); 4092 n = cp->cache_magtype->mt_magsize; 4093 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4094 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4095 mutex_exit(&cp->cache_depot_lock); 4096 return (buf); 4097 } 4098 } 4099 mutex_exit(&cp->cache_depot_lock); 4100 4101 /* Hunt the per-CPU magazines. */ 4102 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4103 ccp = &cp->cache_cpu[cpu_seqid]; 4104 4105 mutex_enter(&ccp->cc_lock); 4106 m = ccp->cc_loaded; 4107 n = ccp->cc_rounds; 4108 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4109 mutex_exit(&ccp->cc_lock); 4110 return (buf); 4111 } 4112 m = ccp->cc_ploaded; 4113 n = ccp->cc_prounds; 4114 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4115 mutex_exit(&ccp->cc_lock); 4116 return (buf); 4117 } 4118 mutex_exit(&ccp->cc_lock); 4119 } 4120 4121 kmem_cache_free(cp, tbuf); 4122 return (NULL); 4123 } 4124 4125 /* 4126 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4127 * or when the buffer is freed. 4128 */ 4129 static void 4130 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4131 { 4132 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4133 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4134 4135 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4136 return; 4137 } 4138 4139 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4140 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4141 avl_remove(&cp->cache_partial_slabs, sp); 4142 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4143 sp->slab_stuck_offset = (uint32_t)-1; 4144 avl_add(&cp->cache_partial_slabs, sp); 4145 } 4146 } else { 4147 sp->slab_later_count = 0; 4148 sp->slab_stuck_offset = (uint32_t)-1; 4149 } 4150 } 4151 4152 static void 4153 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4154 { 4155 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4156 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4157 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4158 4159 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4160 return; 4161 } 4162 4163 avl_remove(&cp->cache_partial_slabs, sp); 4164 sp->slab_later_count = 0; 4165 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4166 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4167 avl_add(&cp->cache_partial_slabs, sp); 4168 } 4169 4170 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4171 4172 /* 4173 * The move callback takes two buffer addresses, the buffer to be moved, and a 4174 * newly allocated and constructed buffer selected by kmem as the destination. 4175 * It also takes the size of the buffer and an optional user argument specified 4176 * at cache creation time. kmem guarantees that the buffer to be moved has not 4177 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4178 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4179 * the client to safely determine whether or not it is still using the buffer. 4180 * The client must not free either of the buffers passed to the move callback, 4181 * since kmem wants to free them directly to the slab layer. The client response 4182 * tells kmem which of the two buffers to free: 4183 * 4184 * YES kmem frees the old buffer (the move was successful) 4185 * NO kmem frees the new buffer, marks the slab of the old buffer 4186 * non-reclaimable to avoid bothering the client again 4187 * LATER kmem frees the new buffer, increments slab_later_count 4188 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4189 * DONT_NEED kmem frees both the old buffer and the new buffer 4190 * 4191 * The pending callback argument now being processed contains both of the 4192 * buffers (old and new) passed to the move callback function, the slab of the 4193 * old buffer, and flags related to the move request, such as whether or not the 4194 * system was desperate for memory. 4195 */ 4196 static void 4197 kmem_move_buffer(kmem_move_t *callback) 4198 { 4199 kmem_cbrc_t response; 4200 kmem_slab_t *sp = callback->kmm_from_slab; 4201 kmem_cache_t *cp = sp->slab_cache; 4202 boolean_t free_on_slab; 4203 4204 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4205 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4206 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4207 4208 /* 4209 * The number of allocated buffers on the slab may have changed since we 4210 * last checked the slab's reclaimability (when the pending move was 4211 * enqueued), or the client may have responded NO when asked to move 4212 * another buffer on the same slab. 4213 */ 4214 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4215 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4216 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4217 kmem_move_stats.kms_notify_no_longer_reclaimable); 4218 kmem_slab_free(cp, callback->kmm_to_buf); 4219 kmem_move_end(cp, callback); 4220 return; 4221 } 4222 4223 /* 4224 * Hunting magazines is expensive, so we'll wait to do that until the 4225 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4226 * is cheap, so we might as well do that here in case we can avoid 4227 * bothering the client. 4228 */ 4229 mutex_enter(&cp->cache_lock); 4230 free_on_slab = (kmem_slab_allocated(cp, sp, 4231 callback->kmm_from_buf) == NULL); 4232 mutex_exit(&cp->cache_lock); 4233 4234 if (free_on_slab) { 4235 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4236 kmem_slab_free(cp, callback->kmm_to_buf); 4237 kmem_move_end(cp, callback); 4238 return; 4239 } 4240 4241 if (cp->cache_flags & KMF_BUFTAG) { 4242 /* 4243 * Make kmem_cache_alloc_debug() apply the constructor for us. 4244 */ 4245 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4246 KM_NOSLEEP, 1, caller()) != 0) { 4247 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4248 kmem_move_end(cp, callback); 4249 return; 4250 } 4251 } else if (cp->cache_constructor != NULL && 4252 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4253 KM_NOSLEEP) != 0) { 4254 atomic_add_64(&cp->cache_alloc_fail, 1); 4255 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4256 kmem_slab_free(cp, callback->kmm_to_buf); 4257 kmem_move_end(cp, callback); 4258 return; 4259 } 4260 4261 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4262 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4263 kmem_move_stats.kms_notify_callbacks); 4264 cp->cache_defrag->kmd_callbacks++; 4265 cp->cache_defrag->kmd_thread = curthread; 4266 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4267 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4268 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4269 callback); 4270 4271 response = cp->cache_move(callback->kmm_from_buf, 4272 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4273 4274 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4275 callback, kmem_cbrc_t, response); 4276 cp->cache_defrag->kmd_thread = NULL; 4277 cp->cache_defrag->kmd_from_buf = NULL; 4278 cp->cache_defrag->kmd_to_buf = NULL; 4279 4280 if (response == KMEM_CBRC_YES) { 4281 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4282 cp->cache_defrag->kmd_yes++; 4283 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4284 mutex_enter(&cp->cache_lock); 4285 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4286 mutex_exit(&cp->cache_lock); 4287 kmem_move_end(cp, callback); 4288 return; 4289 } 4290 4291 switch (response) { 4292 case KMEM_CBRC_NO: 4293 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4294 cp->cache_defrag->kmd_no++; 4295 mutex_enter(&cp->cache_lock); 4296 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4297 mutex_exit(&cp->cache_lock); 4298 break; 4299 case KMEM_CBRC_LATER: 4300 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4301 cp->cache_defrag->kmd_later++; 4302 mutex_enter(&cp->cache_lock); 4303 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4304 mutex_exit(&cp->cache_lock); 4305 break; 4306 } 4307 4308 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4309 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4310 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4311 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4312 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4313 callback->kmm_from_buf); 4314 } 4315 mutex_exit(&cp->cache_lock); 4316 break; 4317 case KMEM_CBRC_DONT_NEED: 4318 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4319 cp->cache_defrag->kmd_dont_need++; 4320 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4321 mutex_enter(&cp->cache_lock); 4322 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4323 mutex_exit(&cp->cache_lock); 4324 break; 4325 case KMEM_CBRC_DONT_KNOW: 4326 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4327 cp->cache_defrag->kmd_dont_know++; 4328 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4329 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4330 cp->cache_defrag->kmd_hunt_found++; 4331 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4332 B_TRUE); 4333 mutex_enter(&cp->cache_lock); 4334 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4335 mutex_exit(&cp->cache_lock); 4336 } 4337 break; 4338 default: 4339 panic("'%s' (%p) unexpected move callback response %d\n", 4340 cp->cache_name, (void *)cp, response); 4341 } 4342 4343 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4344 kmem_move_end(cp, callback); 4345 } 4346 4347 /* Return B_FALSE if there is insufficient memory for the move request. */ 4348 static boolean_t 4349 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4350 { 4351 void *to_buf; 4352 avl_index_t index; 4353 kmem_move_t *callback, *pending; 4354 4355 ASSERT(taskq_member(kmem_taskq, curthread)); 4356 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4357 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4358 4359 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4360 if (callback == NULL) { 4361 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4362 return (B_FALSE); 4363 } 4364 4365 callback->kmm_from_slab = sp; 4366 callback->kmm_from_buf = buf; 4367 callback->kmm_flags = flags; 4368 4369 mutex_enter(&cp->cache_lock); 4370 4371 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) { 4372 mutex_exit(&cp->cache_lock); 4373 kmem_cache_free(kmem_move_cache, callback); 4374 return (B_TRUE); /* there is no need for the move request */ 4375 } 4376 4377 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4378 if (pending != NULL) { 4379 /* 4380 * If the move is already pending and we're desperate now, 4381 * update the move flags. 4382 */ 4383 if (flags & KMM_DESPERATE) { 4384 pending->kmm_flags |= KMM_DESPERATE; 4385 } 4386 mutex_exit(&cp->cache_lock); 4387 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4388 kmem_cache_free(kmem_move_cache, callback); 4389 return (B_TRUE); 4390 } 4391 4392 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs)); 4393 callback->kmm_to_buf = to_buf; 4394 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4395 4396 mutex_exit(&cp->cache_lock); 4397 4398 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4399 callback, TQ_NOSLEEP)) { 4400 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail); 4401 mutex_enter(&cp->cache_lock); 4402 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4403 mutex_exit(&cp->cache_lock); 4404 kmem_slab_free(cp, to_buf); 4405 kmem_cache_free(kmem_move_cache, callback); 4406 return (B_FALSE); 4407 } 4408 4409 return (B_TRUE); 4410 } 4411 4412 static void 4413 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4414 { 4415 avl_index_t index; 4416 4417 ASSERT(cp->cache_defrag != NULL); 4418 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4419 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4420 4421 mutex_enter(&cp->cache_lock); 4422 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4423 callback->kmm_from_buf, &index) != NULL); 4424 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4425 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4426 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4427 kmem_slab_t *sp; 4428 4429 /* 4430 * The last pending move completed. Release all slabs from the 4431 * front of the dead list except for any slab at the tail that 4432 * needs to be released from the context of kmem_move_buffers(). 4433 * kmem deferred unmapping the buffers on these slabs in order 4434 * to guarantee that buffers passed to the move callback have 4435 * been touched only by kmem or by the client itself. 4436 */ 4437 while ((sp = list_remove_head(deadlist)) != NULL) { 4438 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4439 list_insert_tail(deadlist, sp); 4440 break; 4441 } 4442 cp->cache_defrag->kmd_deadcount--; 4443 cp->cache_slab_destroy++; 4444 mutex_exit(&cp->cache_lock); 4445 kmem_slab_destroy(cp, sp); 4446 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4447 mutex_enter(&cp->cache_lock); 4448 } 4449 } 4450 mutex_exit(&cp->cache_lock); 4451 kmem_cache_free(kmem_move_cache, callback); 4452 } 4453 4454 /* 4455 * Move buffers from least used slabs first by scanning backwards from the end 4456 * of the partial slab list. Scan at most max_scan candidate slabs and move 4457 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4458 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4459 * skip slabs with a ratio of allocated buffers at or above the current 4460 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4461 * scan is aborted) so that the caller can adjust the reclaimability threshold 4462 * depending on how many reclaimable slabs it finds. 4463 * 4464 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4465 * move request, since it is not valid for kmem_move_begin() to call 4466 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4467 */ 4468 static int 4469 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4470 int flags) 4471 { 4472 kmem_slab_t *sp; 4473 void *buf; 4474 int i, j; /* slab index, buffer index */ 4475 int s; /* reclaimable slabs */ 4476 int b; /* allocated (movable) buffers on reclaimable slab */ 4477 boolean_t success; 4478 int refcnt; 4479 int nomove; 4480 4481 ASSERT(taskq_member(kmem_taskq, curthread)); 4482 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4483 ASSERT(kmem_move_cache != NULL); 4484 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4485 ASSERT(avl_numnodes(&cp->cache_partial_slabs) > 1); 4486 4487 if (kmem_move_blocked) { 4488 return (0); 4489 } 4490 4491 if (kmem_move_fulltilt) { 4492 max_slabs = 0; 4493 flags |= KMM_DESPERATE; 4494 } 4495 4496 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4497 /* 4498 * Scan as many slabs as needed to find the desired number of 4499 * candidate slabs. 4500 */ 4501 max_scan = (size_t)-1; 4502 } 4503 4504 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4505 /* Find as many candidate slabs as possible. */ 4506 max_slabs = (size_t)-1; 4507 } 4508 4509 sp = avl_last(&cp->cache_partial_slabs); 4510 ASSERT(sp != NULL && KMEM_SLAB_IS_PARTIAL(sp)); 4511 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && 4512 (sp != avl_first(&cp->cache_partial_slabs)); 4513 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4514 4515 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4516 continue; 4517 } 4518 s++; 4519 4520 /* Look for allocated buffers to move. */ 4521 for (j = 0, b = 0, buf = sp->slab_base; 4522 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4523 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4524 4525 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4526 continue; 4527 } 4528 4529 b++; 4530 4531 /* 4532 * Prevent the slab from being destroyed while we drop 4533 * cache_lock and while the pending move is not yet 4534 * registered. Flag the pending move while 4535 * kmd_moves_pending may still be empty, since we can't 4536 * yet rely on a non-zero pending move count to prevent 4537 * the slab from being destroyed. 4538 */ 4539 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4540 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4541 /* 4542 * Recheck refcnt and nomove after reacquiring the lock, 4543 * since these control the order of partial slabs, and 4544 * we want to know if we can pick up the scan where we 4545 * left off. 4546 */ 4547 refcnt = sp->slab_refcnt; 4548 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 4549 mutex_exit(&cp->cache_lock); 4550 4551 success = kmem_move_begin(cp, sp, buf, flags); 4552 4553 /* 4554 * Now, before the lock is reacquired, kmem could 4555 * process all pending move requests and purge the 4556 * deadlist, so that upon reacquiring the lock, sp has 4557 * been remapped. Therefore, the KMEM_SLAB_MOVE_PENDING 4558 * flag causes the slab to be put at the end of the 4559 * deadlist and prevents it from being purged, since we 4560 * plan to destroy it here after reacquiring the lock. 4561 */ 4562 mutex_enter(&cp->cache_lock); 4563 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4564 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4565 4566 /* 4567 * Destroy the slab now if it was completely freed while 4568 * we dropped cache_lock. 4569 */ 4570 if (sp->slab_refcnt == 0) { 4571 list_t *deadlist = 4572 &cp->cache_defrag->kmd_deadlist; 4573 4574 ASSERT(!list_is_empty(deadlist)); 4575 ASSERT(list_link_active((list_node_t *) 4576 &sp->slab_link)); 4577 4578 list_remove(deadlist, sp); 4579 cp->cache_defrag->kmd_deadcount--; 4580 cp->cache_slab_destroy++; 4581 mutex_exit(&cp->cache_lock); 4582 kmem_slab_destroy(cp, sp); 4583 KMEM_STAT_ADD(kmem_move_stats. 4584 kms_dead_slabs_freed); 4585 KMEM_STAT_ADD(kmem_move_stats. 4586 kms_endscan_slab_destroyed); 4587 mutex_enter(&cp->cache_lock); 4588 /* 4589 * Since we can't pick up the scan where we left 4590 * off, abort the scan and say nothing about the 4591 * number of reclaimable slabs. 4592 */ 4593 return (-1); 4594 } 4595 4596 if (!success) { 4597 /* 4598 * Abort the scan if there is not enough memory 4599 * for the request and say nothing about the 4600 * number of reclaimable slabs. 4601 */ 4602 KMEM_STAT_ADD( 4603 kmem_move_stats.kms_endscan_nomem); 4604 return (-1); 4605 } 4606 4607 /* 4608 * The slab may have been completely allocated while the 4609 * lock was dropped. 4610 */ 4611 if (KMEM_SLAB_IS_ALL_USED(sp)) { 4612 KMEM_STAT_ADD( 4613 kmem_move_stats.kms_endscan_slab_all_used); 4614 return (-1); 4615 } 4616 4617 /* 4618 * The slab's position changed while the lock was 4619 * dropped, so we don't know where we are in the 4620 * sequence any more. 4621 */ 4622 if (sp->slab_refcnt != refcnt) { 4623 KMEM_STAT_ADD( 4624 kmem_move_stats.kms_endscan_refcnt_changed); 4625 return (-1); 4626 } 4627 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 4628 KMEM_STAT_ADD( 4629 kmem_move_stats.kms_endscan_nomove_changed); 4630 return (-1); 4631 } 4632 4633 /* 4634 * Generating a move request allocates a destination 4635 * buffer from the slab layer, bumping the first slab if 4636 * it is completely allocated. 4637 */ 4638 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 4639 if (sp == avl_first(&cp->cache_partial_slabs)) { 4640 goto end_scan; 4641 } 4642 } 4643 } 4644 end_scan: 4645 4646 KMEM_STAT_COND_ADD(sp == avl_first(&cp->cache_partial_slabs), 4647 kmem_move_stats.kms_endscan_freelist); 4648 4649 return (s); 4650 } 4651 4652 typedef struct kmem_move_notify_args { 4653 kmem_cache_t *kmna_cache; 4654 void *kmna_buf; 4655 } kmem_move_notify_args_t; 4656 4657 static void 4658 kmem_cache_move_notify_task(void *arg) 4659 { 4660 kmem_move_notify_args_t *args = arg; 4661 kmem_cache_t *cp = args->kmna_cache; 4662 void *buf = args->kmna_buf; 4663 kmem_slab_t *sp; 4664 4665 ASSERT(taskq_member(kmem_taskq, curthread)); 4666 ASSERT(list_link_active(&cp->cache_link)); 4667 4668 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4669 mutex_enter(&cp->cache_lock); 4670 sp = kmem_slab_allocated(cp, NULL, buf); 4671 4672 /* Ignore the notification if the buffer is no longer allocated. */ 4673 if (sp == NULL) { 4674 mutex_exit(&cp->cache_lock); 4675 return; 4676 } 4677 4678 /* Ignore the notification if there's no reason to move the buffer. */ 4679 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4680 /* 4681 * So far the notification is not ignored. Ignore the 4682 * notification if the slab is not marked by an earlier refusal 4683 * to move a buffer. 4684 */ 4685 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 4686 (sp->slab_later_count == 0)) { 4687 mutex_exit(&cp->cache_lock); 4688 return; 4689 } 4690 4691 kmem_slab_move_yes(cp, sp, buf); 4692 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4693 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4694 mutex_exit(&cp->cache_lock); 4695 /* see kmem_move_buffers() about dropping the lock */ 4696 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 4697 mutex_enter(&cp->cache_lock); 4698 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4699 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4700 if (sp->slab_refcnt == 0) { 4701 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4702 4703 ASSERT(!list_is_empty(deadlist)); 4704 ASSERT(list_link_active((list_node_t *) 4705 &sp->slab_link)); 4706 4707 list_remove(deadlist, sp); 4708 cp->cache_defrag->kmd_deadcount--; 4709 cp->cache_slab_destroy++; 4710 mutex_exit(&cp->cache_lock); 4711 kmem_slab_destroy(cp, sp); 4712 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4713 return; 4714 } 4715 } else { 4716 kmem_slab_move_yes(cp, sp, buf); 4717 } 4718 mutex_exit(&cp->cache_lock); 4719 } 4720 4721 void 4722 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 4723 { 4724 kmem_move_notify_args_t *args; 4725 4726 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 4727 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 4728 if (args != NULL) { 4729 args->kmna_cache = cp; 4730 args->kmna_buf = buf; 4731 if (!taskq_dispatch(kmem_taskq, 4732 (task_func_t *)kmem_cache_move_notify_task, args, 4733 TQ_NOSLEEP)) 4734 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4735 } 4736 } 4737 4738 static void 4739 kmem_cache_defrag(kmem_cache_t *cp) 4740 { 4741 size_t n; 4742 4743 ASSERT(cp->cache_defrag != NULL); 4744 4745 mutex_enter(&cp->cache_lock); 4746 n = avl_numnodes(&cp->cache_partial_slabs); 4747 if (n > 1) { 4748 /* kmem_move_buffers() drops and reacquires cache_lock */ 4749 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 4750 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 4751 } 4752 mutex_exit(&cp->cache_lock); 4753 } 4754 4755 /* Is this cache above the fragmentation threshold? */ 4756 static boolean_t 4757 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 4758 { 4759 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) 4760 return (B_FALSE); 4761 4762 /* 4763 * nfree kmem_frag_numer 4764 * ------------------ > --------------- 4765 * cp->cache_buftotal kmem_frag_denom 4766 */ 4767 return ((nfree * kmem_frag_denom) > 4768 (cp->cache_buftotal * kmem_frag_numer)); 4769 } 4770 4771 static boolean_t 4772 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 4773 { 4774 boolean_t fragmented; 4775 uint64_t nfree; 4776 4777 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4778 *doreap = B_FALSE; 4779 4780 if (!kmem_move_fulltilt && ((cp->cache_complete_slab_count + 4781 avl_numnodes(&cp->cache_partial_slabs)) < kmem_frag_minslabs)) 4782 return (B_FALSE); 4783 4784 nfree = cp->cache_bufslab; 4785 fragmented = kmem_cache_frag_threshold(cp, nfree); 4786 /* 4787 * Free buffers in the magazine layer appear allocated from the point of 4788 * view of the slab layer. We want to know if the slab layer would 4789 * appear fragmented if we included free buffers from magazines that 4790 * have fallen out of the working set. 4791 */ 4792 if (!fragmented) { 4793 long reap; 4794 4795 mutex_enter(&cp->cache_depot_lock); 4796 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 4797 reap = MIN(reap, cp->cache_full.ml_total); 4798 mutex_exit(&cp->cache_depot_lock); 4799 4800 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 4801 if (kmem_cache_frag_threshold(cp, nfree)) { 4802 *doreap = B_TRUE; 4803 } 4804 } 4805 4806 return (fragmented); 4807 } 4808 4809 /* Called periodically from kmem_taskq */ 4810 static void 4811 kmem_cache_scan(kmem_cache_t *cp) 4812 { 4813 boolean_t reap = B_FALSE; 4814 4815 ASSERT(taskq_member(kmem_taskq, curthread)); 4816 ASSERT(cp->cache_defrag != NULL); 4817 4818 mutex_enter(&cp->cache_lock); 4819 4820 if (kmem_cache_is_fragmented(cp, &reap)) { 4821 kmem_defrag_t *kmd = cp->cache_defrag; 4822 size_t slabs_found; 4823 4824 /* 4825 * Consolidate reclaimable slabs from the end of the partial 4826 * slab list (scan at most kmem_reclaim_scan_range slabs to find 4827 * reclaimable slabs). Keep track of how many candidate slabs we 4828 * looked for and how many we actually found so we can adjust 4829 * the definition of a candidate slab if we're having trouble 4830 * finding them. 4831 * 4832 * kmem_move_buffers() drops and reacquires cache_lock. 4833 */ 4834 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 4835 kmem_reclaim_max_slabs, 0); 4836 if (slabs_found >= 0) { 4837 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 4838 kmd->kmd_slabs_found += slabs_found; 4839 } 4840 4841 if (++kmd->kmd_scans >= kmem_reclaim_scan_range) { 4842 kmd->kmd_scans = 0; 4843 4844 /* 4845 * If we had difficulty finding candidate slabs in 4846 * previous scans, adjust the threshold so that 4847 * candidates are easier to find. 4848 */ 4849 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 4850 kmem_adjust_reclaim_threshold(kmd, -1); 4851 } else if ((kmd->kmd_slabs_found * 2) < 4852 kmd->kmd_slabs_sought) { 4853 kmem_adjust_reclaim_threshold(kmd, 1); 4854 } 4855 kmd->kmd_slabs_sought = 0; 4856 kmd->kmd_slabs_found = 0; 4857 } 4858 } else { 4859 kmem_reset_reclaim_threshold(cp->cache_defrag); 4860 #ifdef DEBUG 4861 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4862 /* 4863 * In a debug kernel we want the consolidator to 4864 * run occasionally even when there is plenty of 4865 * memory. 4866 */ 4867 uint32_t debug_rand; 4868 4869 (void) random_get_bytes((uint8_t *)&debug_rand, 4); 4870 if (!kmem_move_noreap && 4871 ((debug_rand % kmem_mtb_reap) == 0)) { 4872 mutex_exit(&cp->cache_lock); 4873 kmem_cache_reap(cp); 4874 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 4875 return; 4876 } else if ((debug_rand % kmem_mtb_move) == 0) { 4877 (void) kmem_move_buffers(cp, 4878 kmem_reclaim_scan_range, 1, 0); 4879 KMEM_STAT_ADD(kmem_move_stats. 4880 kms_debug_move_scans); 4881 } 4882 } 4883 #endif /* DEBUG */ 4884 } 4885 4886 mutex_exit(&cp->cache_lock); 4887 4888 if (reap) { 4889 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 4890 kmem_depot_ws_reap(cp); 4891 } 4892 } 4893