1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Kernel memory allocator, as described in the following two papers and a 28 * statement about the consolidator: 29 * 30 * Jeff Bonwick, 31 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 32 * Proceedings of the Summer 1994 Usenix Conference. 33 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 34 * 35 * Jeff Bonwick and Jonathan Adams, 36 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 37 * Arbitrary Resources. 38 * Proceedings of the 2001 Usenix Conference. 39 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 40 * 41 * kmem Slab Consolidator Big Theory Statement: 42 * 43 * 1. Motivation 44 * 45 * As stated in Bonwick94, slabs provide the following advantages over other 46 * allocation structures in terms of memory fragmentation: 47 * 48 * - Internal fragmentation (per-buffer wasted space) is minimal. 49 * - Severe external fragmentation (unused buffers on the free list) is 50 * unlikely. 51 * 52 * Segregating objects by size eliminates one source of external fragmentation, 53 * and according to Bonwick: 54 * 55 * The other reason that slabs reduce external fragmentation is that all 56 * objects in a slab are of the same type, so they have the same lifetime 57 * distribution. The resulting segregation of short-lived and long-lived 58 * objects at slab granularity reduces the likelihood of an entire page being 59 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 60 * 61 * While unlikely, severe external fragmentation remains possible. Clients that 62 * allocate both short- and long-lived objects from the same cache cannot 63 * anticipate the distribution of long-lived objects within the allocator's slab 64 * implementation. Even a small percentage of long-lived objects distributed 65 * randomly across many slabs can lead to a worst case scenario where the client 66 * frees the majority of its objects and the system gets back almost none of the 67 * slabs. Despite the client doing what it reasonably can to help the system 68 * reclaim memory, the allocator cannot shake free enough slabs because of 69 * lonely allocations stubbornly hanging on. Although the allocator is in a 70 * position to diagnose the fragmentation, there is nothing that the allocator 71 * by itself can do about it. It only takes a single allocated object to prevent 72 * an entire slab from being reclaimed, and any object handed out by 73 * kmem_cache_alloc() is by definition in the client's control. Conversely, 74 * although the client is in a position to move a long-lived object, it has no 75 * way of knowing if the object is causing fragmentation, and if so, where to 76 * move it. A solution necessarily requires further cooperation between the 77 * allocator and the client. 78 * 79 * 2. Move Callback 80 * 81 * The kmem slab consolidator therefore adds a move callback to the 82 * allocator/client interface, improving worst-case external fragmentation in 83 * kmem caches that supply a function to move objects from one memory location 84 * to another. In a situation of low memory kmem attempts to consolidate all of 85 * a cache's slabs at once; otherwise it works slowly to bring external 86 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 87 * thereby helping to avoid a low memory situation in the future. 88 * 89 * The callback has the following signature: 90 * 91 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 92 * 93 * It supplies the kmem client with two addresses: the allocated object that 94 * kmem wants to move and a buffer selected by kmem for the client to use as the 95 * copy destination. The callback is kmem's way of saying "Please get off of 96 * this buffer and use this one instead." kmem knows where it wants to move the 97 * object in order to best reduce fragmentation. All the client needs to know 98 * about the second argument (void *new) is that it is an allocated, constructed 99 * object ready to take the contents of the old object. When the move function 100 * is called, the system is likely to be low on memory, and the new object 101 * spares the client from having to worry about allocating memory for the 102 * requested move. The third argument supplies the size of the object, in case a 103 * single move function handles multiple caches whose objects differ only in 104 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 105 * user argument passed to the constructor, destructor, and reclaim functions is 106 * also passed to the move callback. 107 * 108 * 2.1 Setting the Move Callback 109 * 110 * The client sets the move callback after creating the cache and before 111 * allocating from it: 112 * 113 * object_cache = kmem_cache_create(...); 114 * kmem_cache_set_move(object_cache, object_move); 115 * 116 * 2.2 Move Callback Return Values 117 * 118 * Only the client knows about its own data and when is a good time to move it. 119 * The client is cooperating with kmem to return unused memory to the system, 120 * and kmem respectfully accepts this help at the client's convenience. When 121 * asked to move an object, the client can respond with any of the following: 122 * 123 * typedef enum kmem_cbrc { 124 * KMEM_CBRC_YES, 125 * KMEM_CBRC_NO, 126 * KMEM_CBRC_LATER, 127 * KMEM_CBRC_DONT_NEED, 128 * KMEM_CBRC_DONT_KNOW 129 * } kmem_cbrc_t; 130 * 131 * The client must not explicitly kmem_cache_free() either of the objects passed 132 * to the callback, since kmem wants to free them directly to the slab layer 133 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 134 * objects to free: 135 * 136 * YES: (Did it) The client moved the object, so kmem frees the old one. 137 * NO: (Never) The client refused, so kmem frees the new object (the 138 * unused copy destination). kmem also marks the slab of the old 139 * object so as not to bother the client with further callbacks for 140 * that object as long as the slab remains on the partial slab list. 141 * (The system won't be getting the slab back as long as the 142 * immovable object holds it hostage, so there's no point in moving 143 * any of its objects.) 144 * LATER: The client is using the object and cannot move it now, so kmem 145 * frees the new object (the unused copy destination). kmem still 146 * attempts to move other objects off the slab, since it expects to 147 * succeed in clearing the slab in a later callback. The client 148 * should use LATER instead of NO if the object is likely to become 149 * movable very soon. 150 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 151 * with the new object (the unused copy destination). This response 152 * is the client's opportunity to be a model citizen and give back as 153 * much as it can. 154 * DONT_KNOW: The client does not know about the object because 155 * a) the client has just allocated the object and not yet put it 156 * wherever it expects to find known objects 157 * b) the client has removed the object from wherever it expects to 158 * find known objects and is about to free it, or 159 * c) the client has freed the object. 160 * In all these cases (a, b, and c) kmem frees the new object (the 161 * unused copy destination) and searches for the old object in the 162 * magazine layer. If found, the object is removed from the magazine 163 * layer and freed to the slab layer so it will no longer hold the 164 * slab hostage. 165 * 166 * 2.3 Object States 167 * 168 * Neither kmem nor the client can be assumed to know the object's whereabouts 169 * at the time of the callback. An object belonging to a kmem cache may be in 170 * any of the following states: 171 * 172 * 1. Uninitialized on the slab 173 * 2. Allocated from the slab but not constructed (still uninitialized) 174 * 3. Allocated from the slab, constructed, but not yet ready for business 175 * (not in a valid state for the move callback) 176 * 4. In use (valid and known to the client) 177 * 5. About to be freed (no longer in a valid state for the move callback) 178 * 6. Freed to a magazine (still constructed) 179 * 7. Allocated from a magazine, not yet ready for business (not in a valid 180 * state for the move callback), and about to return to state #4 181 * 8. Deconstructed on a magazine that is about to be freed 182 * 9. Freed to the slab 183 * 184 * Since the move callback may be called at any time while the object is in any 185 * of the above states (except state #1), the client needs a safe way to 186 * determine whether or not it knows about the object. Specifically, the client 187 * needs to know whether or not the object is in state #4, the only state in 188 * which a move is valid. If the object is in any other state, the client should 189 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 190 * the object's fields. 191 * 192 * Note that although an object may be in state #4 when kmem initiates the move 193 * request, the object may no longer be in that state by the time kmem actually 194 * calls the move function. Not only does the client free objects 195 * asynchronously, kmem itself puts move requests on a queue where thay are 196 * pending until kmem processes them from another context. Also, objects freed 197 * to a magazine appear allocated from the point of view of the slab layer, so 198 * kmem may even initiate requests for objects in a state other than state #4. 199 * 200 * 2.3.1 Magazine Layer 201 * 202 * An important insight revealed by the states listed above is that the magazine 203 * layer is populated only by kmem_cache_free(). Magazines of constructed 204 * objects are never populated directly from the slab layer (which contains raw, 205 * unconstructed objects). Whenever an allocation request cannot be satisfied 206 * from the magazine layer, the magazines are bypassed and the request is 207 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 208 * the object constructor only when allocating from the slab layer, and only in 209 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 210 * the move callback. kmem does not preconstruct objects in anticipation of 211 * kmem_cache_alloc(). 212 * 213 * 2.3.2 Object Constructor and Destructor 214 * 215 * If the client supplies a destructor, it must be valid to call the destructor 216 * on a newly created object (immediately after the constructor). 217 * 218 * 2.4 Recognizing Known Objects 219 * 220 * There is a simple test to determine safely whether or not the client knows 221 * about a given object in the move callback. It relies on the fact that kmem 222 * guarantees that the object of the move callback has only been touched by the 223 * client itself or else by kmem. kmem does this by ensuring that none of the 224 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 225 * callback is pending. When the last object on a slab is freed, if there is a 226 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 227 * slabs on that list until all pending callbacks are completed. That way, 228 * clients can be certain that the object of a move callback is in one of the 229 * states listed above, making it possible to distinguish known objects (in 230 * state #4) using the two low order bits of any pointer member (with the 231 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 232 * platforms). 233 * 234 * The test works as long as the client always transitions objects from state #4 235 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 236 * order bit of the client-designated pointer member. Since kmem only writes 237 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 238 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 239 * guaranteed to set at least one of the two low order bits. Therefore, given an 240 * object with a back pointer to a 'container_t *o_container', the client can 241 * test 242 * 243 * container_t *container = object->o_container; 244 * if ((uintptr_t)container & 0x3) { 245 * return (KMEM_CBRC_DONT_KNOW); 246 * } 247 * 248 * Typically, an object will have a pointer to some structure with a list or 249 * hash where objects from the cache are kept while in use. Assuming that the 250 * client has some way of knowing that the container structure is valid and will 251 * not go away during the move, and assuming that the structure includes a lock 252 * to protect whatever collection is used, then the client would continue as 253 * follows: 254 * 255 * // Ensure that the container structure does not go away. 256 * if (container_hold(container) == 0) { 257 * return (KMEM_CBRC_DONT_KNOW); 258 * } 259 * mutex_enter(&container->c_objects_lock); 260 * if (container != object->o_container) { 261 * mutex_exit(&container->c_objects_lock); 262 * container_rele(container); 263 * return (KMEM_CBRC_DONT_KNOW); 264 * } 265 * 266 * At this point the client knows that the object cannot be freed as long as 267 * c_objects_lock is held. Note that after acquiring the lock, the client must 268 * recheck the o_container pointer in case the object was removed just before 269 * acquiring the lock. 270 * 271 * When the client is about to free an object, it must first remove that object 272 * from the list, hash, or other structure where it is kept. At that time, to 273 * mark the object so it can be distinguished from the remaining, known objects, 274 * the client sets the designated low order bit: 275 * 276 * mutex_enter(&container->c_objects_lock); 277 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 278 * list_remove(&container->c_objects, object); 279 * mutex_exit(&container->c_objects_lock); 280 * 281 * In the common case, the object is freed to the magazine layer, where it may 282 * be reused on a subsequent allocation without the overhead of calling the 283 * constructor. While in the magazine it appears allocated from the point of 284 * view of the slab layer, making it a candidate for the move callback. Most 285 * objects unrecognized by the client in the move callback fall into this 286 * category and are cheaply distinguished from known objects by the test 287 * described earlier. Since recognition is cheap for the client, and searching 288 * magazines is expensive for kmem, kmem defers searching until the client first 289 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 290 * elsewhere does what it can to avoid bothering the client unnecessarily. 291 * 292 * Invalidating the designated pointer member before freeing the object marks 293 * the object to be avoided in the callback, and conversely, assigning a valid 294 * value to the designated pointer member after allocating the object makes the 295 * object fair game for the callback: 296 * 297 * ... allocate object ... 298 * ... set any initial state not set by the constructor ... 299 * 300 * mutex_enter(&container->c_objects_lock); 301 * list_insert_tail(&container->c_objects, object); 302 * membar_producer(); 303 * object->o_container = container; 304 * mutex_exit(&container->c_objects_lock); 305 * 306 * Note that everything else must be valid before setting o_container makes the 307 * object fair game for the move callback. The membar_producer() call ensures 308 * that all the object's state is written to memory before setting the pointer 309 * that transitions the object from state #3 or #7 (allocated, constructed, not 310 * yet in use) to state #4 (in use, valid). That's important because the move 311 * function has to check the validity of the pointer before it can safely 312 * acquire the lock protecting the collection where it expects to find known 313 * objects. 314 * 315 * This method of distinguishing known objects observes the usual symmetry: 316 * invalidating the designated pointer is the first thing the client does before 317 * freeing the object, and setting the designated pointer is the last thing the 318 * client does after allocating the object. Of course, the client is not 319 * required to use this method. Fundamentally, how the client recognizes known 320 * objects is completely up to the client, but this method is recommended as an 321 * efficient and safe way to take advantage of the guarantees made by kmem. If 322 * the entire object is arbitrary data without any markable bits from a suitable 323 * pointer member, then the client must find some other method, such as 324 * searching a hash table of known objects. 325 * 326 * 2.5 Preventing Objects From Moving 327 * 328 * Besides a way to distinguish known objects, the other thing that the client 329 * needs is a strategy to ensure that an object will not move while the client 330 * is actively using it. The details of satisfying this requirement tend to be 331 * highly cache-specific. It might seem that the same rules that let a client 332 * remove an object safely should also decide when an object can be moved 333 * safely. However, any object state that makes a removal attempt invalid is 334 * likely to be long-lasting for objects that the client does not expect to 335 * remove. kmem knows nothing about the object state and is equally likely (from 336 * the client's point of view) to request a move for any object in the cache, 337 * whether prepared for removal or not. Even a low percentage of objects stuck 338 * in place by unremovability will defeat the consolidator if the stuck objects 339 * are the same long-lived allocations likely to hold slabs hostage. 340 * Fundamentally, the consolidator is not aimed at common cases. Severe external 341 * fragmentation is a worst case scenario manifested as sparsely allocated 342 * slabs, by definition a low percentage of the cache's objects. When deciding 343 * what makes an object movable, keep in mind the goal of the consolidator: to 344 * bring worst-case external fragmentation within the limits guaranteed for 345 * internal fragmentation. Removability is a poor criterion if it is likely to 346 * exclude more than an insignificant percentage of objects for long periods of 347 * time. 348 * 349 * A tricky general solution exists, and it has the advantage of letting you 350 * move any object at almost any moment, practically eliminating the likelihood 351 * that an object can hold a slab hostage. However, if there is a cache-specific 352 * way to ensure that an object is not actively in use in the vast majority of 353 * cases, a simpler solution that leverages this cache-specific knowledge is 354 * preferred. 355 * 356 * 2.5.1 Cache-Specific Solution 357 * 358 * As an example of a cache-specific solution, the ZFS znode cache takes 359 * advantage of the fact that the vast majority of znodes are only being 360 * referenced from the DNLC. (A typical case might be a few hundred in active 361 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 362 * client has established that it recognizes the znode and can access its fields 363 * safely (using the method described earlier), it then tests whether the znode 364 * is referenced by anything other than the DNLC. If so, it assumes that the 365 * znode may be in active use and is unsafe to move, so it drops its locks and 366 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 367 * else znodes are used, no change is needed to protect against the possibility 368 * of the znode moving. The disadvantage is that it remains possible for an 369 * application to hold a znode slab hostage with an open file descriptor. 370 * However, this case ought to be rare and the consolidator has a way to deal 371 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 372 * object, kmem eventually stops believing it and treats the slab as if the 373 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 374 * then focus on getting it off of the partial slab list by allocating rather 375 * than freeing all of its objects. (Either way of getting a slab off the 376 * free list reduces fragmentation.) 377 * 378 * 2.5.2 General Solution 379 * 380 * The general solution, on the other hand, requires an explicit hold everywhere 381 * the object is used to prevent it from moving. To keep the client locking 382 * strategy as uncomplicated as possible, kmem guarantees the simplifying 383 * assumption that move callbacks are sequential, even across multiple caches. 384 * Internally, a global queue processed by a single thread supports all caches 385 * implementing the callback function. No matter how many caches supply a move 386 * function, the consolidator never moves more than one object at a time, so the 387 * client does not have to worry about tricky lock ordering involving several 388 * related objects from different kmem caches. 389 * 390 * The general solution implements the explicit hold as a read-write lock, which 391 * allows multiple readers to access an object from the cache simultaneously 392 * while a single writer is excluded from moving it. A single rwlock for the 393 * entire cache would lock out all threads from using any of the cache's objects 394 * even though only a single object is being moved, so to reduce contention, 395 * the client can fan out the single rwlock into an array of rwlocks hashed by 396 * the object address, making it probable that moving one object will not 397 * prevent other threads from using a different object. The rwlock cannot be a 398 * member of the object itself, because the possibility of the object moving 399 * makes it unsafe to access any of the object's fields until the lock is 400 * acquired. 401 * 402 * Assuming a small, fixed number of locks, it's possible that multiple objects 403 * will hash to the same lock. A thread that needs to use multiple objects in 404 * the same function may acquire the same lock multiple times. Since rwlocks are 405 * reentrant for readers, and since there is never more than a single writer at 406 * a time (assuming that the client acquires the lock as a writer only when 407 * moving an object inside the callback), there would seem to be no problem. 408 * However, a client locking multiple objects in the same function must handle 409 * one case of potential deadlock: Assume that thread A needs to prevent both 410 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 411 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 412 * same lock, that thread A will acquire the lock for object 1 as a reader 413 * before thread B sets the lock's write-wanted bit, preventing thread A from 414 * reacquiring the lock for object 2 as a reader. Unable to make forward 415 * progress, thread A will never release the lock for object 1, resulting in 416 * deadlock. 417 * 418 * There are two ways of avoiding the deadlock just described. The first is to 419 * use rw_tryenter() rather than rw_enter() in the callback function when 420 * attempting to acquire the lock as a writer. If tryenter discovers that the 421 * same object (or another object hashed to the same lock) is already in use, it 422 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 423 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 424 * since it allows a thread to acquire the lock as a reader in spite of a 425 * waiting writer. This second approach insists on moving the object now, no 426 * matter how many readers the move function must wait for in order to do so, 427 * and could delay the completion of the callback indefinitely (blocking 428 * callbacks to other clients). In practice, a less insistent callback using 429 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 430 * little reason to use anything else. 431 * 432 * Avoiding deadlock is not the only problem that an implementation using an 433 * explicit hold needs to solve. Locking the object in the first place (to 434 * prevent it from moving) remains a problem, since the object could move 435 * between the time you obtain a pointer to the object and the time you acquire 436 * the rwlock hashed to that pointer value. Therefore the client needs to 437 * recheck the value of the pointer after acquiring the lock, drop the lock if 438 * the value has changed, and try again. This requires a level of indirection: 439 * something that points to the object rather than the object itself, that the 440 * client can access safely while attempting to acquire the lock. (The object 441 * itself cannot be referenced safely because it can move at any time.) 442 * The following lock-acquisition function takes whatever is safe to reference 443 * (arg), follows its pointer to the object (using function f), and tries as 444 * often as necessary to acquire the hashed lock and verify that the object 445 * still has not moved: 446 * 447 * object_t * 448 * object_hold(object_f f, void *arg) 449 * { 450 * object_t *op; 451 * 452 * op = f(arg); 453 * if (op == NULL) { 454 * return (NULL); 455 * } 456 * 457 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 458 * while (op != f(arg)) { 459 * rw_exit(OBJECT_RWLOCK(op)); 460 * op = f(arg); 461 * if (op == NULL) { 462 * break; 463 * } 464 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 465 * } 466 * 467 * return (op); 468 * } 469 * 470 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 471 * lock reacquisition loop, while necessary, almost never executes. The function 472 * pointer f (used to obtain the object pointer from arg) has the following type 473 * definition: 474 * 475 * typedef object_t *(*object_f)(void *arg); 476 * 477 * An object_f implementation is likely to be as simple as accessing a structure 478 * member: 479 * 480 * object_t * 481 * s_object(void *arg) 482 * { 483 * something_t *sp = arg; 484 * return (sp->s_object); 485 * } 486 * 487 * The flexibility of a function pointer allows the path to the object to be 488 * arbitrarily complex and also supports the notion that depending on where you 489 * are using the object, you may need to get it from someplace different. 490 * 491 * The function that releases the explicit hold is simpler because it does not 492 * have to worry about the object moving: 493 * 494 * void 495 * object_rele(object_t *op) 496 * { 497 * rw_exit(OBJECT_RWLOCK(op)); 498 * } 499 * 500 * The caller is spared these details so that obtaining and releasing an 501 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 502 * of object_hold() only needs to know that the returned object pointer is valid 503 * if not NULL and that the object will not move until released. 504 * 505 * Although object_hold() prevents an object from moving, it does not prevent it 506 * from being freed. The caller must take measures before calling object_hold() 507 * (afterwards is too late) to ensure that the held object cannot be freed. The 508 * caller must do so without accessing the unsafe object reference, so any lock 509 * or reference count used to ensure the continued existence of the object must 510 * live outside the object itself. 511 * 512 * Obtaining a new object is a special case where an explicit hold is impossible 513 * for the caller. Any function that returns a newly allocated object (either as 514 * a return value, or as an in-out paramter) must return it already held; after 515 * the caller gets it is too late, since the object cannot be safely accessed 516 * without the level of indirection described earlier. The following 517 * object_alloc() example uses the same code shown earlier to transition a new 518 * object into the state of being recognized (by the client) as a known object. 519 * The function must acquire the hold (rw_enter) before that state transition 520 * makes the object movable: 521 * 522 * static object_t * 523 * object_alloc(container_t *container) 524 * { 525 * object_t *object = kmem_cache_alloc(object_cache, 0); 526 * ... set any initial state not set by the constructor ... 527 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 528 * mutex_enter(&container->c_objects_lock); 529 * list_insert_tail(&container->c_objects, object); 530 * membar_producer(); 531 * object->o_container = container; 532 * mutex_exit(&container->c_objects_lock); 533 * return (object); 534 * } 535 * 536 * Functions that implicitly acquire an object hold (any function that calls 537 * object_alloc() to supply an object for the caller) need to be carefully noted 538 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 539 * prevent all objects hashed to the affected rwlocks from ever being moved. 540 * 541 * The pointer to a held object can be hashed to the holding rwlock even after 542 * the object has been freed. Although it is possible to release the hold 543 * after freeing the object, you may decide to release the hold implicitly in 544 * whatever function frees the object, so as to release the hold as soon as 545 * possible, and for the sake of symmetry with the function that implicitly 546 * acquires the hold when it allocates the object. Here, object_free() releases 547 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 548 * matching pair with object_hold(): 549 * 550 * void 551 * object_free(object_t *object) 552 * { 553 * container_t *container; 554 * 555 * ASSERT(object_held(object)); 556 * container = object->o_container; 557 * mutex_enter(&container->c_objects_lock); 558 * object->o_container = 559 * (void *)((uintptr_t)object->o_container | 0x1); 560 * list_remove(&container->c_objects, object); 561 * mutex_exit(&container->c_objects_lock); 562 * object_rele(object); 563 * kmem_cache_free(object_cache, object); 564 * } 565 * 566 * Note that object_free() cannot safely accept an object pointer as an argument 567 * unless the object is already held. Any function that calls object_free() 568 * needs to be carefully noted since it similarly forms a matching pair with 569 * object_hold(). 570 * 571 * To complete the picture, the following callback function implements the 572 * general solution by moving objects only if they are currently unheld: 573 * 574 * static kmem_cbrc_t 575 * object_move(void *buf, void *newbuf, size_t size, void *arg) 576 * { 577 * object_t *op = buf, *np = newbuf; 578 * container_t *container; 579 * 580 * container = op->o_container; 581 * if ((uintptr_t)container & 0x3) { 582 * return (KMEM_CBRC_DONT_KNOW); 583 * } 584 * 585 * // Ensure that the container structure does not go away. 586 * if (container_hold(container) == 0) { 587 * return (KMEM_CBRC_DONT_KNOW); 588 * } 589 * 590 * mutex_enter(&container->c_objects_lock); 591 * if (container != op->o_container) { 592 * mutex_exit(&container->c_objects_lock); 593 * container_rele(container); 594 * return (KMEM_CBRC_DONT_KNOW); 595 * } 596 * 597 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 598 * mutex_exit(&container->c_objects_lock); 599 * container_rele(container); 600 * return (KMEM_CBRC_LATER); 601 * } 602 * 603 * object_move_impl(op, np); // critical section 604 * rw_exit(OBJECT_RWLOCK(op)); 605 * 606 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 607 * list_link_replace(&op->o_link_node, &np->o_link_node); 608 * mutex_exit(&container->c_objects_lock); 609 * container_rele(container); 610 * return (KMEM_CBRC_YES); 611 * } 612 * 613 * Note that object_move() must invalidate the designated o_container pointer of 614 * the old object in the same way that object_free() does, since kmem will free 615 * the object in response to the KMEM_CBRC_YES return value. 616 * 617 * The lock order in object_move() differs from object_alloc(), which locks 618 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 619 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 620 * not a problem. Holding the lock on the object list in the example above 621 * through the entire callback not only prevents the object from going away, it 622 * also allows you to lock the list elsewhere and know that none of its elements 623 * will move during iteration. 624 * 625 * Adding an explicit hold everywhere an object from the cache is used is tricky 626 * and involves much more change to client code than a cache-specific solution 627 * that leverages existing state to decide whether or not an object is 628 * movable. However, this approach has the advantage that no object remains 629 * immovable for any significant length of time, making it extremely unlikely 630 * that long-lived allocations can continue holding slabs hostage; and it works 631 * for any cache. 632 * 633 * 3. Consolidator Implementation 634 * 635 * Once the client supplies a move function that a) recognizes known objects and 636 * b) avoids moving objects that are actively in use, the remaining work is up 637 * to the consolidator to decide which objects to move and when to issue 638 * callbacks. 639 * 640 * The consolidator relies on the fact that a cache's slabs are ordered by 641 * usage. Each slab has a fixed number of objects. Depending on the slab's 642 * "color" (the offset of the first object from the beginning of the slab; 643 * offsets are staggered to mitigate false sharing of cache lines) it is either 644 * the maximum number of objects per slab determined at cache creation time or 645 * else the number closest to the maximum that fits within the space remaining 646 * after the initial offset. A completely allocated slab may contribute some 647 * internal fragmentation (per-slab overhead) but no external fragmentation, so 648 * it is of no interest to the consolidator. At the other extreme, slabs whose 649 * objects have all been freed to the slab are released to the virtual memory 650 * (VM) subsystem (objects freed to magazines are still allocated as far as the 651 * slab is concerned). External fragmentation exists when there are slabs 652 * somewhere between these extremes. A partial slab has at least one but not all 653 * of its objects allocated. The more partial slabs, and the fewer allocated 654 * objects on each of them, the higher the fragmentation. Hence the 655 * consolidator's overall strategy is to reduce the number of partial slabs by 656 * moving allocated objects from the least allocated slabs to the most allocated 657 * slabs. 658 * 659 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 660 * slabs are kept separately in an unordered list. Since the majority of slabs 661 * tend to be completely allocated (a typical unfragmented cache may have 662 * thousands of complete slabs and only a single partial slab), separating 663 * complete slabs improves the efficiency of partial slab ordering, since the 664 * complete slabs do not affect the depth or balance of the AVL tree. This 665 * ordered sequence of partial slabs acts as a "free list" supplying objects for 666 * allocation requests. 667 * 668 * Objects are always allocated from the first partial slab in the free list, 669 * where the allocation is most likely to eliminate a partial slab (by 670 * completely allocating it). Conversely, when a single object from a completely 671 * allocated slab is freed to the slab, that slab is added to the front of the 672 * free list. Since most free list activity involves highly allocated slabs 673 * coming and going at the front of the list, slabs tend naturally toward the 674 * ideal order: highly allocated at the front, sparsely allocated at the back. 675 * Slabs with few allocated objects are likely to become completely free if they 676 * keep a safe distance away from the front of the free list. Slab misorders 677 * interfere with the natural tendency of slabs to become completely free or 678 * completely allocated. For example, a slab with a single allocated object 679 * needs only a single free to escape the cache; its natural desire is 680 * frustrated when it finds itself at the front of the list where a second 681 * allocation happens just before the free could have released it. Another slab 682 * with all but one object allocated might have supplied the buffer instead, so 683 * that both (as opposed to neither) of the slabs would have been taken off the 684 * free list. 685 * 686 * Although slabs tend naturally toward the ideal order, misorders allowed by a 687 * simple list implementation defeat the consolidator's strategy of merging 688 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 689 * needs another way to fix misorders to optimize its callback strategy. One 690 * approach is to periodically scan a limited number of slabs, advancing a 691 * marker to hold the current scan position, and to move extreme misorders to 692 * the front or back of the free list and to the front or back of the current 693 * scan range. By making consecutive scan ranges overlap by one slab, the least 694 * allocated slab in the current range can be carried along from the end of one 695 * scan to the start of the next. 696 * 697 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 698 * task, however. Since most of the cache's activity is in the magazine layer, 699 * and allocations from the slab layer represent only a startup cost, the 700 * overhead of maintaining a balanced tree is not a significant concern compared 701 * to the opportunity of reducing complexity by eliminating the partial slab 702 * scanner just described. The overhead of an AVL tree is minimized by 703 * maintaining only partial slabs in the tree and keeping completely allocated 704 * slabs separately in a list. To avoid increasing the size of the slab 705 * structure the AVL linkage pointers are reused for the slab's list linkage, 706 * since the slab will always be either partial or complete, never stored both 707 * ways at the same time. To further minimize the overhead of the AVL tree the 708 * compare function that orders partial slabs by usage divides the range of 709 * allocated object counts into bins such that counts within the same bin are 710 * considered equal. Binning partial slabs makes it less likely that allocating 711 * or freeing a single object will change the slab's order, requiring a tree 712 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 713 * requiring some rebalancing of the tree). Allocation counts closest to 714 * completely free and completely allocated are left unbinned (finely sorted) to 715 * better support the consolidator's strategy of merging slabs at either 716 * extreme. 717 * 718 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 719 * 720 * The consolidator piggybacks on the kmem maintenance thread and is called on 721 * the same interval as kmem_cache_update(), once per cache every fifteen 722 * seconds. kmem maintains a running count of unallocated objects in the slab 723 * layer (cache_bufslab). The consolidator checks whether that number exceeds 724 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 725 * there is a significant number of slabs in the cache (arbitrarily a minimum 726 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 727 * working set are included in the assessment, and magazines in the depot are 728 * reaped if those objects would lift cache_bufslab above the fragmentation 729 * threshold. Once the consolidator decides that a cache is fragmented, it looks 730 * for a candidate slab to reclaim, starting at the end of the partial slab free 731 * list and scanning backwards. At first the consolidator is choosy: only a slab 732 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 733 * single allocated object, regardless of percentage). If there is difficulty 734 * finding a candidate slab, kmem raises the allocation threshold incrementally, 735 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 736 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 737 * even in the worst case of every slab in the cache being almost 7/8 allocated. 738 * The threshold can also be lowered incrementally when candidate slabs are easy 739 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 740 * is no longer fragmented. 741 * 742 * 3.2 Generating Callbacks 743 * 744 * Once an eligible slab is chosen, a callback is generated for every allocated 745 * object on the slab, in the hope that the client will move everything off the 746 * slab and make it reclaimable. Objects selected as move destinations are 747 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 748 * order (most allocated at the front, least allocated at the back) and a 749 * cooperative client, the consolidator will succeed in removing slabs from both 750 * ends of the free list, completely allocating on the one hand and completely 751 * freeing on the other. Objects selected as move destinations are allocated in 752 * the kmem maintenance thread where move requests are enqueued. A separate 753 * callback thread removes pending callbacks from the queue and calls the 754 * client. The separate thread ensures that client code (the move function) does 755 * not interfere with internal kmem maintenance tasks. A map of pending 756 * callbacks keyed by object address (the object to be moved) is checked to 757 * ensure that duplicate callbacks are not generated for the same object. 758 * Allocating the move destination (the object to move to) prevents subsequent 759 * callbacks from selecting the same destination as an earlier pending callback. 760 * 761 * Move requests can also be generated by kmem_cache_reap() when the system is 762 * desperate for memory and by kmem_cache_move_notify(), called by the client to 763 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 764 * The map of pending callbacks is protected by the same lock that protects the 765 * slab layer. 766 * 767 * When the system is desperate for memory, kmem does not bother to determine 768 * whether or not the cache exceeds the fragmentation threshold, but tries to 769 * consolidate as many slabs as possible. Normally, the consolidator chews 770 * slowly, one sparsely allocated slab at a time during each maintenance 771 * interval that the cache is fragmented. When desperate, the consolidator 772 * starts at the last partial slab and enqueues callbacks for every allocated 773 * object on every partial slab, working backwards until it reaches the first 774 * partial slab. The first partial slab, meanwhile, advances in pace with the 775 * consolidator as allocations to supply move destinations for the enqueued 776 * callbacks use up the highly allocated slabs at the front of the free list. 777 * Ideally, the overgrown free list collapses like an accordion, starting at 778 * both ends and ending at the center with a single partial slab. 779 * 780 * 3.3 Client Responses 781 * 782 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 783 * marks the slab that supplied the stuck object non-reclaimable and moves it to 784 * front of the free list. The slab remains marked as long as it remains on the 785 * free list, and it appears more allocated to the partial slab compare function 786 * than any unmarked slab, no matter how many of its objects are allocated. 787 * Since even one immovable object ties up the entire slab, the goal is to 788 * completely allocate any slab that cannot be completely freed. kmem does not 789 * bother generating callbacks to move objects from a marked slab unless the 790 * system is desperate. 791 * 792 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 793 * slab. If the client responds LATER too many times, kmem disbelieves and 794 * treats the response as a NO. The count is cleared when the slab is taken off 795 * the partial slab list or when the client moves one of the slab's objects. 796 * 797 * 4. Observability 798 * 799 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 800 * the ::kmem_slabs dcmd. For a complete description of the command, enter 801 * '::help kmem_slabs' at the mdb prompt. 802 */ 803 804 #include <sys/kmem_impl.h> 805 #include <sys/vmem_impl.h> 806 #include <sys/param.h> 807 #include <sys/sysmacros.h> 808 #include <sys/vm.h> 809 #include <sys/proc.h> 810 #include <sys/tuneable.h> 811 #include <sys/systm.h> 812 #include <sys/cmn_err.h> 813 #include <sys/debug.h> 814 #include <sys/sdt.h> 815 #include <sys/mutex.h> 816 #include <sys/bitmap.h> 817 #include <sys/atomic.h> 818 #include <sys/kobj.h> 819 #include <sys/disp.h> 820 #include <vm/seg_kmem.h> 821 #include <sys/log.h> 822 #include <sys/callb.h> 823 #include <sys/taskq.h> 824 #include <sys/modctl.h> 825 #include <sys/reboot.h> 826 #include <sys/id32.h> 827 #include <sys/zone.h> 828 #include <sys/netstack.h> 829 #ifdef DEBUG 830 #include <sys/random.h> 831 #endif 832 833 extern void streams_msg_init(void); 834 extern int segkp_fromheap; 835 extern void segkp_cache_free(void); 836 837 struct kmem_cache_kstat { 838 kstat_named_t kmc_buf_size; 839 kstat_named_t kmc_align; 840 kstat_named_t kmc_chunk_size; 841 kstat_named_t kmc_slab_size; 842 kstat_named_t kmc_alloc; 843 kstat_named_t kmc_alloc_fail; 844 kstat_named_t kmc_free; 845 kstat_named_t kmc_depot_alloc; 846 kstat_named_t kmc_depot_free; 847 kstat_named_t kmc_depot_contention; 848 kstat_named_t kmc_slab_alloc; 849 kstat_named_t kmc_slab_free; 850 kstat_named_t kmc_buf_constructed; 851 kstat_named_t kmc_buf_avail; 852 kstat_named_t kmc_buf_inuse; 853 kstat_named_t kmc_buf_total; 854 kstat_named_t kmc_buf_max; 855 kstat_named_t kmc_slab_create; 856 kstat_named_t kmc_slab_destroy; 857 kstat_named_t kmc_vmem_source; 858 kstat_named_t kmc_hash_size; 859 kstat_named_t kmc_hash_lookup_depth; 860 kstat_named_t kmc_hash_rescale; 861 kstat_named_t kmc_full_magazines; 862 kstat_named_t kmc_empty_magazines; 863 kstat_named_t kmc_magazine_size; 864 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 865 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 866 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 867 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 868 kstat_named_t kmc_move_yes; 869 kstat_named_t kmc_move_no; 870 kstat_named_t kmc_move_later; 871 kstat_named_t kmc_move_dont_need; 872 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 873 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 874 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 875 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 876 } kmem_cache_kstat = { 877 { "buf_size", KSTAT_DATA_UINT64 }, 878 { "align", KSTAT_DATA_UINT64 }, 879 { "chunk_size", KSTAT_DATA_UINT64 }, 880 { "slab_size", KSTAT_DATA_UINT64 }, 881 { "alloc", KSTAT_DATA_UINT64 }, 882 { "alloc_fail", KSTAT_DATA_UINT64 }, 883 { "free", KSTAT_DATA_UINT64 }, 884 { "depot_alloc", KSTAT_DATA_UINT64 }, 885 { "depot_free", KSTAT_DATA_UINT64 }, 886 { "depot_contention", KSTAT_DATA_UINT64 }, 887 { "slab_alloc", KSTAT_DATA_UINT64 }, 888 { "slab_free", KSTAT_DATA_UINT64 }, 889 { "buf_constructed", KSTAT_DATA_UINT64 }, 890 { "buf_avail", KSTAT_DATA_UINT64 }, 891 { "buf_inuse", KSTAT_DATA_UINT64 }, 892 { "buf_total", KSTAT_DATA_UINT64 }, 893 { "buf_max", KSTAT_DATA_UINT64 }, 894 { "slab_create", KSTAT_DATA_UINT64 }, 895 { "slab_destroy", KSTAT_DATA_UINT64 }, 896 { "vmem_source", KSTAT_DATA_UINT64 }, 897 { "hash_size", KSTAT_DATA_UINT64 }, 898 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 899 { "hash_rescale", KSTAT_DATA_UINT64 }, 900 { "full_magazines", KSTAT_DATA_UINT64 }, 901 { "empty_magazines", KSTAT_DATA_UINT64 }, 902 { "magazine_size", KSTAT_DATA_UINT64 }, 903 { "reap", KSTAT_DATA_UINT64 }, 904 { "defrag", KSTAT_DATA_UINT64 }, 905 { "scan", KSTAT_DATA_UINT64 }, 906 { "move_callbacks", KSTAT_DATA_UINT64 }, 907 { "move_yes", KSTAT_DATA_UINT64 }, 908 { "move_no", KSTAT_DATA_UINT64 }, 909 { "move_later", KSTAT_DATA_UINT64 }, 910 { "move_dont_need", KSTAT_DATA_UINT64 }, 911 { "move_dont_know", KSTAT_DATA_UINT64 }, 912 { "move_hunt_found", KSTAT_DATA_UINT64 }, 913 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 914 { "move_reclaimable", KSTAT_DATA_UINT64 }, 915 }; 916 917 static kmutex_t kmem_cache_kstat_lock; 918 919 /* 920 * The default set of caches to back kmem_alloc(). 921 * These sizes should be reevaluated periodically. 922 * 923 * We want allocations that are multiples of the coherency granularity 924 * (64 bytes) to be satisfied from a cache which is a multiple of 64 925 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 926 * the next kmem_cache_size greater than or equal to it must be a 927 * multiple of 64. 928 * 929 * We split the table into two sections: size <= 4k and size > 4k. This 930 * saves a lot of space and cache footprint in our cache tables. 931 */ 932 static const int kmem_alloc_sizes[] = { 933 1 * 8, 934 2 * 8, 935 3 * 8, 936 4 * 8, 5 * 8, 6 * 8, 7 * 8, 937 4 * 16, 5 * 16, 6 * 16, 7 * 16, 938 4 * 32, 5 * 32, 6 * 32, 7 * 32, 939 4 * 64, 5 * 64, 6 * 64, 7 * 64, 940 4 * 128, 5 * 128, 6 * 128, 7 * 128, 941 P2ALIGN(8192 / 7, 64), 942 P2ALIGN(8192 / 6, 64), 943 P2ALIGN(8192 / 5, 64), 944 P2ALIGN(8192 / 4, 64), 945 P2ALIGN(8192 / 3, 64), 946 P2ALIGN(8192 / 2, 64), 947 }; 948 949 static const int kmem_big_alloc_sizes[] = { 950 2 * 4096, 3 * 4096, 951 2 * 8192, 3 * 8192, 952 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 953 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 954 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 955 16 * 8192 956 }; 957 958 #define KMEM_MAXBUF 4096 959 #define KMEM_BIG_MAXBUF_32BIT 32768 960 #define KMEM_BIG_MAXBUF 131072 961 962 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 963 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 964 965 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 966 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 967 968 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 969 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 970 971 static kmem_magtype_t kmem_magtype[] = { 972 { 1, 8, 3200, 65536 }, 973 { 3, 16, 256, 32768 }, 974 { 7, 32, 64, 16384 }, 975 { 15, 64, 0, 8192 }, 976 { 31, 64, 0, 4096 }, 977 { 47, 64, 0, 2048 }, 978 { 63, 64, 0, 1024 }, 979 { 95, 64, 0, 512 }, 980 { 143, 64, 0, 0 }, 981 }; 982 983 static uint32_t kmem_reaping; 984 static uint32_t kmem_reaping_idspace; 985 986 /* 987 * kmem tunables 988 */ 989 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 990 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 991 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 992 int kmem_panic = 1; /* whether to panic on error */ 993 int kmem_logging = 1; /* kmem_log_enter() override */ 994 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 995 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 996 size_t kmem_content_log_size; /* content log size [2% of memory] */ 997 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 998 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 999 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1000 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1001 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1002 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1003 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1004 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1005 1006 #ifdef _LP64 1007 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1008 #else 1009 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1010 #endif 1011 1012 #ifdef DEBUG 1013 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1014 #else 1015 int kmem_flags = 0; 1016 #endif 1017 int kmem_ready; 1018 1019 static kmem_cache_t *kmem_slab_cache; 1020 static kmem_cache_t *kmem_bufctl_cache; 1021 static kmem_cache_t *kmem_bufctl_audit_cache; 1022 1023 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1024 static list_t kmem_caches; 1025 1026 static taskq_t *kmem_taskq; 1027 static kmutex_t kmem_flags_lock; 1028 static vmem_t *kmem_metadata_arena; 1029 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1030 static vmem_t *kmem_cache_arena; 1031 static vmem_t *kmem_hash_arena; 1032 static vmem_t *kmem_log_arena; 1033 static vmem_t *kmem_oversize_arena; 1034 static vmem_t *kmem_va_arena; 1035 static vmem_t *kmem_default_arena; 1036 static vmem_t *kmem_firewall_va_arena; 1037 static vmem_t *kmem_firewall_arena; 1038 1039 /* 1040 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1041 * turned on when DEBUG is also defined. 1042 */ 1043 #ifdef DEBUG 1044 #define KMEM_STATS 1045 #endif /* DEBUG */ 1046 1047 #ifdef KMEM_STATS 1048 #define KMEM_STAT_ADD(stat) ((stat)++) 1049 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1050 #else 1051 #define KMEM_STAT_ADD(stat) /* nothing */ 1052 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1053 #endif /* KMEM_STATS */ 1054 1055 /* 1056 * kmem slab consolidator thresholds (tunables) 1057 */ 1058 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1059 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1060 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1061 /* 1062 * Maximum number of slabs from which to move buffers during a single 1063 * maintenance interval while the system is not low on memory. 1064 */ 1065 size_t kmem_reclaim_max_slabs = 1; 1066 /* 1067 * Number of slabs to scan backwards from the end of the partial slab list 1068 * when searching for buffers to relocate. 1069 */ 1070 size_t kmem_reclaim_scan_range = 12; 1071 1072 #ifdef KMEM_STATS 1073 static struct { 1074 uint64_t kms_callbacks; 1075 uint64_t kms_yes; 1076 uint64_t kms_no; 1077 uint64_t kms_later; 1078 uint64_t kms_dont_need; 1079 uint64_t kms_dont_know; 1080 uint64_t kms_hunt_found_mag; 1081 uint64_t kms_hunt_found_slab; 1082 uint64_t kms_hunt_alloc_fail; 1083 uint64_t kms_hunt_lucky; 1084 uint64_t kms_notify; 1085 uint64_t kms_notify_callbacks; 1086 uint64_t kms_disbelief; 1087 uint64_t kms_already_pending; 1088 uint64_t kms_callback_alloc_fail; 1089 uint64_t kms_callback_taskq_fail; 1090 uint64_t kms_endscan_slab_dead; 1091 uint64_t kms_endscan_slab_destroyed; 1092 uint64_t kms_endscan_nomem; 1093 uint64_t kms_endscan_refcnt_changed; 1094 uint64_t kms_endscan_nomove_changed; 1095 uint64_t kms_endscan_freelist; 1096 uint64_t kms_avl_update; 1097 uint64_t kms_avl_noupdate; 1098 uint64_t kms_no_longer_reclaimable; 1099 uint64_t kms_notify_no_longer_reclaimable; 1100 uint64_t kms_notify_slab_dead; 1101 uint64_t kms_notify_slab_destroyed; 1102 uint64_t kms_alloc_fail; 1103 uint64_t kms_constructor_fail; 1104 uint64_t kms_dead_slabs_freed; 1105 uint64_t kms_defrags; 1106 uint64_t kms_scans; 1107 uint64_t kms_scan_depot_ws_reaps; 1108 uint64_t kms_debug_reaps; 1109 uint64_t kms_debug_scans; 1110 } kmem_move_stats; 1111 #endif /* KMEM_STATS */ 1112 1113 /* consolidator knobs */ 1114 static boolean_t kmem_move_noreap; 1115 static boolean_t kmem_move_blocked; 1116 static boolean_t kmem_move_fulltilt; 1117 static boolean_t kmem_move_any_partial; 1118 1119 #ifdef DEBUG 1120 /* 1121 * kmem consolidator debug tunables: 1122 * Ensure code coverage by occasionally running the consolidator even when the 1123 * caches are not fragmented (they may never be). These intervals are mean time 1124 * in cache maintenance intervals (kmem_cache_update). 1125 */ 1126 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1127 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1128 #endif /* DEBUG */ 1129 1130 static kmem_cache_t *kmem_defrag_cache; 1131 static kmem_cache_t *kmem_move_cache; 1132 static taskq_t *kmem_move_taskq; 1133 1134 static void kmem_cache_scan(kmem_cache_t *); 1135 static void kmem_cache_defrag(kmem_cache_t *); 1136 1137 1138 kmem_log_header_t *kmem_transaction_log; 1139 kmem_log_header_t *kmem_content_log; 1140 kmem_log_header_t *kmem_failure_log; 1141 kmem_log_header_t *kmem_slab_log; 1142 1143 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1144 1145 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1146 if ((count) > 0) { \ 1147 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1148 pc_t *_e; \ 1149 /* memmove() the old entries down one notch */ \ 1150 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1151 *_e = *(_e - 1); \ 1152 *_s = (uintptr_t)(caller); \ 1153 } 1154 1155 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1156 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1157 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1158 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1159 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1160 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1161 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1162 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1163 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1164 1165 struct { 1166 hrtime_t kmp_timestamp; /* timestamp of panic */ 1167 int kmp_error; /* type of kmem error */ 1168 void *kmp_buffer; /* buffer that induced panic */ 1169 void *kmp_realbuf; /* real start address for buffer */ 1170 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1171 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1172 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1173 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1174 } kmem_panic_info; 1175 1176 1177 static void 1178 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1179 { 1180 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1181 uint64_t *buf = buf_arg; 1182 1183 while (buf < bufend) 1184 *buf++ = pattern; 1185 } 1186 1187 static void * 1188 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1189 { 1190 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1191 uint64_t *buf; 1192 1193 for (buf = buf_arg; buf < bufend; buf++) 1194 if (*buf != pattern) 1195 return (buf); 1196 return (NULL); 1197 } 1198 1199 static void * 1200 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1201 { 1202 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1203 uint64_t *buf; 1204 1205 for (buf = buf_arg; buf < bufend; buf++) { 1206 if (*buf != old) { 1207 copy_pattern(old, buf_arg, 1208 (char *)buf - (char *)buf_arg); 1209 return (buf); 1210 } 1211 *buf = new; 1212 } 1213 1214 return (NULL); 1215 } 1216 1217 static void 1218 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1219 { 1220 kmem_cache_t *cp; 1221 1222 mutex_enter(&kmem_cache_lock); 1223 for (cp = list_head(&kmem_caches); cp != NULL; 1224 cp = list_next(&kmem_caches, cp)) 1225 if (tq != NULL) 1226 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1227 tqflag); 1228 else 1229 func(cp); 1230 mutex_exit(&kmem_cache_lock); 1231 } 1232 1233 static void 1234 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1235 { 1236 kmem_cache_t *cp; 1237 1238 mutex_enter(&kmem_cache_lock); 1239 for (cp = list_head(&kmem_caches); cp != NULL; 1240 cp = list_next(&kmem_caches, cp)) { 1241 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1242 continue; 1243 if (tq != NULL) 1244 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1245 tqflag); 1246 else 1247 func(cp); 1248 } 1249 mutex_exit(&kmem_cache_lock); 1250 } 1251 1252 /* 1253 * Debugging support. Given a buffer address, find its slab. 1254 */ 1255 static kmem_slab_t * 1256 kmem_findslab(kmem_cache_t *cp, void *buf) 1257 { 1258 kmem_slab_t *sp; 1259 1260 mutex_enter(&cp->cache_lock); 1261 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1262 sp = list_next(&cp->cache_complete_slabs, sp)) { 1263 if (KMEM_SLAB_MEMBER(sp, buf)) { 1264 mutex_exit(&cp->cache_lock); 1265 return (sp); 1266 } 1267 } 1268 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1269 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1270 if (KMEM_SLAB_MEMBER(sp, buf)) { 1271 mutex_exit(&cp->cache_lock); 1272 return (sp); 1273 } 1274 } 1275 mutex_exit(&cp->cache_lock); 1276 1277 return (NULL); 1278 } 1279 1280 static void 1281 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1282 { 1283 kmem_buftag_t *btp = NULL; 1284 kmem_bufctl_t *bcp = NULL; 1285 kmem_cache_t *cp = cparg; 1286 kmem_slab_t *sp; 1287 uint64_t *off; 1288 void *buf = bufarg; 1289 1290 kmem_logging = 0; /* stop logging when a bad thing happens */ 1291 1292 kmem_panic_info.kmp_timestamp = gethrtime(); 1293 1294 sp = kmem_findslab(cp, buf); 1295 if (sp == NULL) { 1296 for (cp = list_tail(&kmem_caches); cp != NULL; 1297 cp = list_prev(&kmem_caches, cp)) { 1298 if ((sp = kmem_findslab(cp, buf)) != NULL) 1299 break; 1300 } 1301 } 1302 1303 if (sp == NULL) { 1304 cp = NULL; 1305 error = KMERR_BADADDR; 1306 } else { 1307 if (cp != cparg) 1308 error = KMERR_BADCACHE; 1309 else 1310 buf = (char *)bufarg - ((uintptr_t)bufarg - 1311 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1312 if (buf != bufarg) 1313 error = KMERR_BADBASE; 1314 if (cp->cache_flags & KMF_BUFTAG) 1315 btp = KMEM_BUFTAG(cp, buf); 1316 if (cp->cache_flags & KMF_HASH) { 1317 mutex_enter(&cp->cache_lock); 1318 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1319 if (bcp->bc_addr == buf) 1320 break; 1321 mutex_exit(&cp->cache_lock); 1322 if (bcp == NULL && btp != NULL) 1323 bcp = btp->bt_bufctl; 1324 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1325 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1326 bcp->bc_addr != buf) { 1327 error = KMERR_BADBUFCTL; 1328 bcp = NULL; 1329 } 1330 } 1331 } 1332 1333 kmem_panic_info.kmp_error = error; 1334 kmem_panic_info.kmp_buffer = bufarg; 1335 kmem_panic_info.kmp_realbuf = buf; 1336 kmem_panic_info.kmp_cache = cparg; 1337 kmem_panic_info.kmp_realcache = cp; 1338 kmem_panic_info.kmp_slab = sp; 1339 kmem_panic_info.kmp_bufctl = bcp; 1340 1341 printf("kernel memory allocator: "); 1342 1343 switch (error) { 1344 1345 case KMERR_MODIFIED: 1346 printf("buffer modified after being freed\n"); 1347 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1348 if (off == NULL) /* shouldn't happen */ 1349 off = buf; 1350 printf("modification occurred at offset 0x%lx " 1351 "(0x%llx replaced by 0x%llx)\n", 1352 (uintptr_t)off - (uintptr_t)buf, 1353 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1354 break; 1355 1356 case KMERR_REDZONE: 1357 printf("redzone violation: write past end of buffer\n"); 1358 break; 1359 1360 case KMERR_BADADDR: 1361 printf("invalid free: buffer not in cache\n"); 1362 break; 1363 1364 case KMERR_DUPFREE: 1365 printf("duplicate free: buffer freed twice\n"); 1366 break; 1367 1368 case KMERR_BADBUFTAG: 1369 printf("boundary tag corrupted\n"); 1370 printf("bcp ^ bxstat = %lx, should be %lx\n", 1371 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1372 KMEM_BUFTAG_FREE); 1373 break; 1374 1375 case KMERR_BADBUFCTL: 1376 printf("bufctl corrupted\n"); 1377 break; 1378 1379 case KMERR_BADCACHE: 1380 printf("buffer freed to wrong cache\n"); 1381 printf("buffer was allocated from %s,\n", cp->cache_name); 1382 printf("caller attempting free to %s.\n", cparg->cache_name); 1383 break; 1384 1385 case KMERR_BADSIZE: 1386 printf("bad free: free size (%u) != alloc size (%u)\n", 1387 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1388 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1389 break; 1390 1391 case KMERR_BADBASE: 1392 printf("bad free: free address (%p) != alloc address (%p)\n", 1393 bufarg, buf); 1394 break; 1395 } 1396 1397 printf("buffer=%p bufctl=%p cache: %s\n", 1398 bufarg, (void *)bcp, cparg->cache_name); 1399 1400 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1401 error != KMERR_BADBUFCTL) { 1402 int d; 1403 timestruc_t ts; 1404 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1405 1406 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1407 printf("previous transaction on buffer %p:\n", buf); 1408 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1409 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1410 (void *)sp, cp->cache_name); 1411 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1412 ulong_t off; 1413 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1414 printf("%s+%lx\n", sym ? sym : "?", off); 1415 } 1416 } 1417 if (kmem_panic > 0) 1418 panic("kernel heap corruption detected"); 1419 if (kmem_panic == 0) 1420 debug_enter(NULL); 1421 kmem_logging = 1; /* resume logging */ 1422 } 1423 1424 static kmem_log_header_t * 1425 kmem_log_init(size_t logsize) 1426 { 1427 kmem_log_header_t *lhp; 1428 int nchunks = 4 * max_ncpus; 1429 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1430 int i; 1431 1432 /* 1433 * Make sure that lhp->lh_cpu[] is nicely aligned 1434 * to prevent false sharing of cache lines. 1435 */ 1436 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1437 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1438 NULL, NULL, VM_SLEEP); 1439 bzero(lhp, lhsize); 1440 1441 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1442 lhp->lh_nchunks = nchunks; 1443 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1444 lhp->lh_base = vmem_alloc(kmem_log_arena, 1445 lhp->lh_chunksize * nchunks, VM_SLEEP); 1446 lhp->lh_free = vmem_alloc(kmem_log_arena, 1447 nchunks * sizeof (int), VM_SLEEP); 1448 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1449 1450 for (i = 0; i < max_ncpus; i++) { 1451 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1452 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1453 clhp->clh_chunk = i; 1454 } 1455 1456 for (i = max_ncpus; i < nchunks; i++) 1457 lhp->lh_free[i] = i; 1458 1459 lhp->lh_head = max_ncpus; 1460 lhp->lh_tail = 0; 1461 1462 return (lhp); 1463 } 1464 1465 static void * 1466 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1467 { 1468 void *logspace; 1469 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1470 1471 if (lhp == NULL || kmem_logging == 0 || panicstr) 1472 return (NULL); 1473 1474 mutex_enter(&clhp->clh_lock); 1475 clhp->clh_hits++; 1476 if (size > clhp->clh_avail) { 1477 mutex_enter(&lhp->lh_lock); 1478 lhp->lh_hits++; 1479 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1480 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1481 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1482 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1483 clhp->clh_current = lhp->lh_base + 1484 clhp->clh_chunk * lhp->lh_chunksize; 1485 clhp->clh_avail = lhp->lh_chunksize; 1486 if (size > lhp->lh_chunksize) 1487 size = lhp->lh_chunksize; 1488 mutex_exit(&lhp->lh_lock); 1489 } 1490 logspace = clhp->clh_current; 1491 clhp->clh_current += size; 1492 clhp->clh_avail -= size; 1493 bcopy(data, logspace, size); 1494 mutex_exit(&clhp->clh_lock); 1495 return (logspace); 1496 } 1497 1498 #define KMEM_AUDIT(lp, cp, bcp) \ 1499 { \ 1500 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1501 _bcp->bc_timestamp = gethrtime(); \ 1502 _bcp->bc_thread = curthread; \ 1503 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1504 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1505 } 1506 1507 static void 1508 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1509 kmem_slab_t *sp, void *addr) 1510 { 1511 kmem_bufctl_audit_t bca; 1512 1513 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1514 bca.bc_addr = addr; 1515 bca.bc_slab = sp; 1516 bca.bc_cache = cp; 1517 KMEM_AUDIT(lp, cp, &bca); 1518 } 1519 1520 /* 1521 * Create a new slab for cache cp. 1522 */ 1523 static kmem_slab_t * 1524 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1525 { 1526 size_t slabsize = cp->cache_slabsize; 1527 size_t chunksize = cp->cache_chunksize; 1528 int cache_flags = cp->cache_flags; 1529 size_t color, chunks; 1530 char *buf, *slab; 1531 kmem_slab_t *sp; 1532 kmem_bufctl_t *bcp; 1533 vmem_t *vmp = cp->cache_arena; 1534 1535 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1536 1537 color = cp->cache_color + cp->cache_align; 1538 if (color > cp->cache_maxcolor) 1539 color = cp->cache_mincolor; 1540 cp->cache_color = color; 1541 1542 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1543 1544 if (slab == NULL) 1545 goto vmem_alloc_failure; 1546 1547 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1548 1549 /* 1550 * Reverify what was already checked in kmem_cache_set_move(), since the 1551 * consolidator depends (for correctness) on slabs being initialized 1552 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1553 * clients to distinguish uninitialized memory from known objects). 1554 */ 1555 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1556 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1557 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1558 1559 if (cache_flags & KMF_HASH) { 1560 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1561 goto slab_alloc_failure; 1562 chunks = (slabsize - color) / chunksize; 1563 } else { 1564 sp = KMEM_SLAB(cp, slab); 1565 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1566 } 1567 1568 sp->slab_cache = cp; 1569 sp->slab_head = NULL; 1570 sp->slab_refcnt = 0; 1571 sp->slab_base = buf = slab + color; 1572 sp->slab_chunks = chunks; 1573 sp->slab_stuck_offset = (uint32_t)-1; 1574 sp->slab_later_count = 0; 1575 sp->slab_flags = 0; 1576 1577 ASSERT(chunks > 0); 1578 while (chunks-- != 0) { 1579 if (cache_flags & KMF_HASH) { 1580 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1581 if (bcp == NULL) 1582 goto bufctl_alloc_failure; 1583 if (cache_flags & KMF_AUDIT) { 1584 kmem_bufctl_audit_t *bcap = 1585 (kmem_bufctl_audit_t *)bcp; 1586 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1587 bcap->bc_cache = cp; 1588 } 1589 bcp->bc_addr = buf; 1590 bcp->bc_slab = sp; 1591 } else { 1592 bcp = KMEM_BUFCTL(cp, buf); 1593 } 1594 if (cache_flags & KMF_BUFTAG) { 1595 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1596 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1597 btp->bt_bufctl = bcp; 1598 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1599 if (cache_flags & KMF_DEADBEEF) { 1600 copy_pattern(KMEM_FREE_PATTERN, buf, 1601 cp->cache_verify); 1602 } 1603 } 1604 bcp->bc_next = sp->slab_head; 1605 sp->slab_head = bcp; 1606 buf += chunksize; 1607 } 1608 1609 kmem_log_event(kmem_slab_log, cp, sp, slab); 1610 1611 return (sp); 1612 1613 bufctl_alloc_failure: 1614 1615 while ((bcp = sp->slab_head) != NULL) { 1616 sp->slab_head = bcp->bc_next; 1617 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1618 } 1619 kmem_cache_free(kmem_slab_cache, sp); 1620 1621 slab_alloc_failure: 1622 1623 vmem_free(vmp, slab, slabsize); 1624 1625 vmem_alloc_failure: 1626 1627 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1628 atomic_add_64(&cp->cache_alloc_fail, 1); 1629 1630 return (NULL); 1631 } 1632 1633 /* 1634 * Destroy a slab. 1635 */ 1636 static void 1637 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1638 { 1639 vmem_t *vmp = cp->cache_arena; 1640 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1641 1642 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1643 ASSERT(sp->slab_refcnt == 0); 1644 1645 if (cp->cache_flags & KMF_HASH) { 1646 kmem_bufctl_t *bcp; 1647 while ((bcp = sp->slab_head) != NULL) { 1648 sp->slab_head = bcp->bc_next; 1649 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1650 } 1651 kmem_cache_free(kmem_slab_cache, sp); 1652 } 1653 vmem_free(vmp, slab, cp->cache_slabsize); 1654 } 1655 1656 static void * 1657 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp) 1658 { 1659 kmem_bufctl_t *bcp, **hash_bucket; 1660 void *buf; 1661 1662 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1663 /* 1664 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1665 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1666 * slab is newly created (sp->slab_refcnt == 0). 1667 */ 1668 ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) && 1669 (sp == avl_first(&cp->cache_partial_slabs)))); 1670 ASSERT(sp->slab_cache == cp); 1671 1672 cp->cache_slab_alloc++; 1673 cp->cache_bufslab--; 1674 sp->slab_refcnt++; 1675 1676 bcp = sp->slab_head; 1677 if ((sp->slab_head = bcp->bc_next) == NULL) { 1678 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1679 if (sp->slab_refcnt == 1) { 1680 ASSERT(sp->slab_chunks == 1); 1681 } else { 1682 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1683 avl_remove(&cp->cache_partial_slabs, sp); 1684 sp->slab_later_count = 0; /* clear history */ 1685 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1686 sp->slab_stuck_offset = (uint32_t)-1; 1687 } 1688 list_insert_head(&cp->cache_complete_slabs, sp); 1689 cp->cache_complete_slab_count++; 1690 } else { 1691 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1692 if (sp->slab_refcnt == 1) { 1693 avl_add(&cp->cache_partial_slabs, sp); 1694 } else { 1695 /* 1696 * The slab is now more allocated than it was, so the 1697 * order remains unchanged. 1698 */ 1699 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1700 } 1701 } 1702 1703 if (cp->cache_flags & KMF_HASH) { 1704 /* 1705 * Add buffer to allocated-address hash table. 1706 */ 1707 buf = bcp->bc_addr; 1708 hash_bucket = KMEM_HASH(cp, buf); 1709 bcp->bc_next = *hash_bucket; 1710 *hash_bucket = bcp; 1711 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1712 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1713 } 1714 } else { 1715 buf = KMEM_BUF(cp, bcp); 1716 } 1717 1718 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1719 return (buf); 1720 } 1721 1722 /* 1723 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1724 */ 1725 static void * 1726 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1727 { 1728 kmem_slab_t *sp; 1729 void *buf; 1730 boolean_t test_destructor; 1731 1732 mutex_enter(&cp->cache_lock); 1733 test_destructor = (cp->cache_slab_alloc == 0); 1734 sp = avl_first(&cp->cache_partial_slabs); 1735 if (sp == NULL) { 1736 ASSERT(cp->cache_bufslab == 0); 1737 1738 /* 1739 * The freelist is empty. Create a new slab. 1740 */ 1741 mutex_exit(&cp->cache_lock); 1742 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1743 return (NULL); 1744 } 1745 mutex_enter(&cp->cache_lock); 1746 cp->cache_slab_create++; 1747 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1748 cp->cache_bufmax = cp->cache_buftotal; 1749 cp->cache_bufslab += sp->slab_chunks; 1750 } 1751 1752 buf = kmem_slab_alloc_impl(cp, sp); 1753 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1754 (cp->cache_complete_slab_count + 1755 avl_numnodes(&cp->cache_partial_slabs) + 1756 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1757 mutex_exit(&cp->cache_lock); 1758 1759 if (test_destructor && cp->cache_destructor != NULL) { 1760 /* 1761 * On the first kmem_slab_alloc(), assert that it is valid to 1762 * call the destructor on a newly constructed object without any 1763 * client involvement. 1764 */ 1765 if ((cp->cache_constructor == NULL) || 1766 cp->cache_constructor(buf, cp->cache_private, 1767 kmflag) == 0) { 1768 cp->cache_destructor(buf, cp->cache_private); 1769 } 1770 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1771 cp->cache_bufsize); 1772 if (cp->cache_flags & KMF_DEADBEEF) { 1773 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1774 } 1775 } 1776 1777 return (buf); 1778 } 1779 1780 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1781 1782 /* 1783 * Free a raw (unconstructed) buffer to cp's slab layer. 1784 */ 1785 static void 1786 kmem_slab_free(kmem_cache_t *cp, void *buf) 1787 { 1788 kmem_slab_t *sp; 1789 kmem_bufctl_t *bcp, **prev_bcpp; 1790 1791 ASSERT(buf != NULL); 1792 1793 mutex_enter(&cp->cache_lock); 1794 cp->cache_slab_free++; 1795 1796 if (cp->cache_flags & KMF_HASH) { 1797 /* 1798 * Look up buffer in allocated-address hash table. 1799 */ 1800 prev_bcpp = KMEM_HASH(cp, buf); 1801 while ((bcp = *prev_bcpp) != NULL) { 1802 if (bcp->bc_addr == buf) { 1803 *prev_bcpp = bcp->bc_next; 1804 sp = bcp->bc_slab; 1805 break; 1806 } 1807 cp->cache_lookup_depth++; 1808 prev_bcpp = &bcp->bc_next; 1809 } 1810 } else { 1811 bcp = KMEM_BUFCTL(cp, buf); 1812 sp = KMEM_SLAB(cp, buf); 1813 } 1814 1815 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1816 mutex_exit(&cp->cache_lock); 1817 kmem_error(KMERR_BADADDR, cp, buf); 1818 return; 1819 } 1820 1821 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1822 /* 1823 * If this is the buffer that prevented the consolidator from 1824 * clearing the slab, we can reset the slab flags now that the 1825 * buffer is freed. (It makes sense to do this in 1826 * kmem_cache_free(), where the client gives up ownership of the 1827 * buffer, but on the hot path the test is too expensive.) 1828 */ 1829 kmem_slab_move_yes(cp, sp, buf); 1830 } 1831 1832 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1833 if (cp->cache_flags & KMF_CONTENTS) 1834 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1835 kmem_log_enter(kmem_content_log, buf, 1836 cp->cache_contents); 1837 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1838 } 1839 1840 bcp->bc_next = sp->slab_head; 1841 sp->slab_head = bcp; 1842 1843 cp->cache_bufslab++; 1844 ASSERT(sp->slab_refcnt >= 1); 1845 1846 if (--sp->slab_refcnt == 0) { 1847 /* 1848 * There are no outstanding allocations from this slab, 1849 * so we can reclaim the memory. 1850 */ 1851 if (sp->slab_chunks == 1) { 1852 list_remove(&cp->cache_complete_slabs, sp); 1853 cp->cache_complete_slab_count--; 1854 } else { 1855 avl_remove(&cp->cache_partial_slabs, sp); 1856 } 1857 1858 cp->cache_buftotal -= sp->slab_chunks; 1859 cp->cache_bufslab -= sp->slab_chunks; 1860 /* 1861 * Defer releasing the slab to the virtual memory subsystem 1862 * while there is a pending move callback, since we guarantee 1863 * that buffers passed to the move callback have only been 1864 * touched by kmem or by the client itself. Since the memory 1865 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1866 * set at least one of the two lowest order bits, the client can 1867 * test those bits in the move callback to determine whether or 1868 * not it knows about the buffer (assuming that the client also 1869 * sets one of those low order bits whenever it frees a buffer). 1870 */ 1871 if (cp->cache_defrag == NULL || 1872 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1873 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1874 cp->cache_slab_destroy++; 1875 mutex_exit(&cp->cache_lock); 1876 kmem_slab_destroy(cp, sp); 1877 } else { 1878 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1879 /* 1880 * Slabs are inserted at both ends of the deadlist to 1881 * distinguish between slabs freed while move callbacks 1882 * are pending (list head) and a slab freed while the 1883 * lock is dropped in kmem_move_buffers() (list tail) so 1884 * that in both cases slab_destroy() is called from the 1885 * right context. 1886 */ 1887 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1888 list_insert_tail(deadlist, sp); 1889 } else { 1890 list_insert_head(deadlist, sp); 1891 } 1892 cp->cache_defrag->kmd_deadcount++; 1893 mutex_exit(&cp->cache_lock); 1894 } 1895 return; 1896 } 1897 1898 if (bcp->bc_next == NULL) { 1899 /* Transition the slab from completely allocated to partial. */ 1900 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1901 ASSERT(sp->slab_chunks > 1); 1902 list_remove(&cp->cache_complete_slabs, sp); 1903 cp->cache_complete_slab_count--; 1904 avl_add(&cp->cache_partial_slabs, sp); 1905 } else { 1906 #ifdef DEBUG 1907 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1908 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1909 } else { 1910 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1911 } 1912 #else 1913 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1914 #endif 1915 } 1916 1917 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1918 (cp->cache_complete_slab_count + 1919 avl_numnodes(&cp->cache_partial_slabs) + 1920 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1921 mutex_exit(&cp->cache_lock); 1922 } 1923 1924 /* 1925 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1926 */ 1927 static int 1928 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1929 caddr_t caller) 1930 { 1931 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1932 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1933 uint32_t mtbf; 1934 1935 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1936 kmem_error(KMERR_BADBUFTAG, cp, buf); 1937 return (-1); 1938 } 1939 1940 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1941 1942 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1943 kmem_error(KMERR_BADBUFCTL, cp, buf); 1944 return (-1); 1945 } 1946 1947 if (cp->cache_flags & KMF_DEADBEEF) { 1948 if (!construct && (cp->cache_flags & KMF_LITE)) { 1949 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1950 kmem_error(KMERR_MODIFIED, cp, buf); 1951 return (-1); 1952 } 1953 if (cp->cache_constructor != NULL) 1954 *(uint64_t *)buf = btp->bt_redzone; 1955 else 1956 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1957 } else { 1958 construct = 1; 1959 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1960 KMEM_UNINITIALIZED_PATTERN, buf, 1961 cp->cache_verify)) { 1962 kmem_error(KMERR_MODIFIED, cp, buf); 1963 return (-1); 1964 } 1965 } 1966 } 1967 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1968 1969 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1970 gethrtime() % mtbf == 0 && 1971 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1972 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1973 if (!construct && cp->cache_destructor != NULL) 1974 cp->cache_destructor(buf, cp->cache_private); 1975 } else { 1976 mtbf = 0; 1977 } 1978 1979 if (mtbf || (construct && cp->cache_constructor != NULL && 1980 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1981 atomic_add_64(&cp->cache_alloc_fail, 1); 1982 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1983 if (cp->cache_flags & KMF_DEADBEEF) 1984 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1985 kmem_slab_free(cp, buf); 1986 return (1); 1987 } 1988 1989 if (cp->cache_flags & KMF_AUDIT) { 1990 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1991 } 1992 1993 if ((cp->cache_flags & KMF_LITE) && 1994 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1995 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1996 } 1997 1998 return (0); 1999 } 2000 2001 static int 2002 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 2003 { 2004 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2005 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 2006 kmem_slab_t *sp; 2007 2008 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 2009 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 2010 kmem_error(KMERR_DUPFREE, cp, buf); 2011 return (-1); 2012 } 2013 sp = kmem_findslab(cp, buf); 2014 if (sp == NULL || sp->slab_cache != cp) 2015 kmem_error(KMERR_BADADDR, cp, buf); 2016 else 2017 kmem_error(KMERR_REDZONE, cp, buf); 2018 return (-1); 2019 } 2020 2021 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2022 2023 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2024 kmem_error(KMERR_BADBUFCTL, cp, buf); 2025 return (-1); 2026 } 2027 2028 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2029 kmem_error(KMERR_REDZONE, cp, buf); 2030 return (-1); 2031 } 2032 2033 if (cp->cache_flags & KMF_AUDIT) { 2034 if (cp->cache_flags & KMF_CONTENTS) 2035 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2036 buf, cp->cache_contents); 2037 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2038 } 2039 2040 if ((cp->cache_flags & KMF_LITE) && 2041 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2042 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2043 } 2044 2045 if (cp->cache_flags & KMF_DEADBEEF) { 2046 if (cp->cache_flags & KMF_LITE) 2047 btp->bt_redzone = *(uint64_t *)buf; 2048 else if (cp->cache_destructor != NULL) 2049 cp->cache_destructor(buf, cp->cache_private); 2050 2051 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2052 } 2053 2054 return (0); 2055 } 2056 2057 /* 2058 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2059 */ 2060 static void 2061 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2062 { 2063 int round; 2064 2065 ASSERT(!list_link_active(&cp->cache_link) || 2066 taskq_member(kmem_taskq, curthread)); 2067 2068 for (round = 0; round < nrounds; round++) { 2069 void *buf = mp->mag_round[round]; 2070 2071 if (cp->cache_flags & KMF_DEADBEEF) { 2072 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2073 cp->cache_verify) != NULL) { 2074 kmem_error(KMERR_MODIFIED, cp, buf); 2075 continue; 2076 } 2077 if ((cp->cache_flags & KMF_LITE) && 2078 cp->cache_destructor != NULL) { 2079 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2080 *(uint64_t *)buf = btp->bt_redzone; 2081 cp->cache_destructor(buf, cp->cache_private); 2082 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2083 } 2084 } else if (cp->cache_destructor != NULL) { 2085 cp->cache_destructor(buf, cp->cache_private); 2086 } 2087 2088 kmem_slab_free(cp, buf); 2089 } 2090 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2091 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2092 } 2093 2094 /* 2095 * Allocate a magazine from the depot. 2096 */ 2097 static kmem_magazine_t * 2098 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2099 { 2100 kmem_magazine_t *mp; 2101 2102 /* 2103 * If we can't get the depot lock without contention, 2104 * update our contention count. We use the depot 2105 * contention rate to determine whether we need to 2106 * increase the magazine size for better scalability. 2107 */ 2108 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2109 mutex_enter(&cp->cache_depot_lock); 2110 cp->cache_depot_contention++; 2111 } 2112 2113 if ((mp = mlp->ml_list) != NULL) { 2114 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2115 mlp->ml_list = mp->mag_next; 2116 if (--mlp->ml_total < mlp->ml_min) 2117 mlp->ml_min = mlp->ml_total; 2118 mlp->ml_alloc++; 2119 } 2120 2121 mutex_exit(&cp->cache_depot_lock); 2122 2123 return (mp); 2124 } 2125 2126 /* 2127 * Free a magazine to the depot. 2128 */ 2129 static void 2130 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2131 { 2132 mutex_enter(&cp->cache_depot_lock); 2133 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2134 mp->mag_next = mlp->ml_list; 2135 mlp->ml_list = mp; 2136 mlp->ml_total++; 2137 mutex_exit(&cp->cache_depot_lock); 2138 } 2139 2140 /* 2141 * Update the working set statistics for cp's depot. 2142 */ 2143 static void 2144 kmem_depot_ws_update(kmem_cache_t *cp) 2145 { 2146 mutex_enter(&cp->cache_depot_lock); 2147 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2148 cp->cache_full.ml_min = cp->cache_full.ml_total; 2149 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2150 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2151 mutex_exit(&cp->cache_depot_lock); 2152 } 2153 2154 /* 2155 * Reap all magazines that have fallen out of the depot's working set. 2156 */ 2157 static void 2158 kmem_depot_ws_reap(kmem_cache_t *cp) 2159 { 2160 long reap; 2161 kmem_magazine_t *mp; 2162 2163 ASSERT(!list_link_active(&cp->cache_link) || 2164 taskq_member(kmem_taskq, curthread)); 2165 2166 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2167 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2168 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2169 2170 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2171 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2172 kmem_magazine_destroy(cp, mp, 0); 2173 } 2174 2175 static void 2176 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2177 { 2178 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2179 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2180 ASSERT(ccp->cc_magsize > 0); 2181 2182 ccp->cc_ploaded = ccp->cc_loaded; 2183 ccp->cc_prounds = ccp->cc_rounds; 2184 ccp->cc_loaded = mp; 2185 ccp->cc_rounds = rounds; 2186 } 2187 2188 /* 2189 * Intercept kmem alloc/free calls during crash dump in order to avoid 2190 * changing kmem state while memory is being saved to the dump device. 2191 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2192 * there are no locks because only one CPU calls kmem during a crash 2193 * dump. To enable this feature, first create the associated vmem 2194 * arena with VMC_DUMPSAFE. 2195 */ 2196 static void *kmem_dump_start; /* start of pre-reserved heap */ 2197 static void *kmem_dump_end; /* end of heap area */ 2198 static void *kmem_dump_curr; /* current free heap pointer */ 2199 static size_t kmem_dump_size; /* size of heap area */ 2200 2201 /* append to each buf created in the pre-reserved heap */ 2202 typedef struct kmem_dumpctl { 2203 void *kdc_next; /* cache dump free list linkage */ 2204 } kmem_dumpctl_t; 2205 2206 #define KMEM_DUMPCTL(cp, buf) \ 2207 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2208 sizeof (void *))) 2209 2210 /* Keep some simple stats. */ 2211 #define KMEM_DUMP_LOGS (100) 2212 2213 typedef struct kmem_dump_log { 2214 kmem_cache_t *kdl_cache; 2215 uint_t kdl_allocs; /* # of dump allocations */ 2216 uint_t kdl_frees; /* # of dump frees */ 2217 uint_t kdl_alloc_fails; /* # of allocation failures */ 2218 uint_t kdl_free_nondump; /* # of non-dump frees */ 2219 uint_t kdl_unsafe; /* cache was used, but unsafe */ 2220 } kmem_dump_log_t; 2221 2222 static kmem_dump_log_t *kmem_dump_log; 2223 static int kmem_dump_log_idx; 2224 2225 #define KDI_LOG(cp, stat) { \ 2226 kmem_dump_log_t *kdl; \ 2227 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \ 2228 kdl->stat++; \ 2229 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \ 2230 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \ 2231 kdl->stat++; \ 2232 kdl->kdl_cache = (cp); \ 2233 (cp)->cache_dumplog = kdl; \ 2234 } \ 2235 } 2236 2237 /* set non zero for full report */ 2238 uint_t kmem_dump_verbose = 0; 2239 2240 /* stats for overize heap */ 2241 uint_t kmem_dump_oversize_allocs = 0; 2242 uint_t kmem_dump_oversize_max = 0; 2243 2244 static void 2245 kmem_dumppr(char **pp, char *e, const char *format, ...) 2246 { 2247 char *p = *pp; 2248 2249 if (p < e) { 2250 int n; 2251 va_list ap; 2252 2253 va_start(ap, format); 2254 n = vsnprintf(p, e - p, format, ap); 2255 va_end(ap); 2256 *pp = p + n; 2257 } 2258 } 2259 2260 /* 2261 * Called when dumpadm(1M) configures dump parameters. 2262 */ 2263 void 2264 kmem_dump_init(size_t size) 2265 { 2266 if (kmem_dump_start != NULL) 2267 kmem_free(kmem_dump_start, kmem_dump_size); 2268 2269 if (kmem_dump_log == NULL) 2270 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS * 2271 sizeof (kmem_dump_log_t), KM_SLEEP); 2272 2273 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2274 2275 if (kmem_dump_start != NULL) { 2276 kmem_dump_size = size; 2277 kmem_dump_curr = kmem_dump_start; 2278 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2279 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2280 } else { 2281 kmem_dump_size = 0; 2282 kmem_dump_curr = NULL; 2283 kmem_dump_end = NULL; 2284 } 2285 } 2286 2287 /* 2288 * Set flag for each kmem_cache_t if is safe to use alternate dump 2289 * memory. Called just before panic crash dump starts. Set the flag 2290 * for the calling CPU. 2291 */ 2292 void 2293 kmem_dump_begin(void) 2294 { 2295 ASSERT(panicstr != NULL); 2296 if (kmem_dump_start != NULL) { 2297 kmem_cache_t *cp; 2298 2299 for (cp = list_head(&kmem_caches); cp != NULL; 2300 cp = list_next(&kmem_caches, cp)) { 2301 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2302 2303 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2304 cp->cache_flags |= KMF_DUMPDIVERT; 2305 ccp->cc_flags |= KMF_DUMPDIVERT; 2306 ccp->cc_dump_rounds = ccp->cc_rounds; 2307 ccp->cc_dump_prounds = ccp->cc_prounds; 2308 ccp->cc_rounds = ccp->cc_prounds = -1; 2309 } else { 2310 cp->cache_flags |= KMF_DUMPUNSAFE; 2311 ccp->cc_flags |= KMF_DUMPUNSAFE; 2312 } 2313 } 2314 } 2315 } 2316 2317 /* 2318 * finished dump intercept 2319 * print any warnings on the console 2320 * return verbose information to dumpsys() in the given buffer 2321 */ 2322 size_t 2323 kmem_dump_finish(char *buf, size_t size) 2324 { 2325 int kdi_idx; 2326 int kdi_end = kmem_dump_log_idx; 2327 int percent = 0; 2328 int header = 0; 2329 int warn = 0; 2330 size_t used; 2331 kmem_cache_t *cp; 2332 kmem_dump_log_t *kdl; 2333 char *e = buf + size; 2334 char *p = buf; 2335 2336 if (kmem_dump_size == 0 || kmem_dump_verbose == 0) 2337 return (0); 2338 2339 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2340 percent = (used * 100) / kmem_dump_size; 2341 2342 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2343 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2344 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2345 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2346 kmem_dump_oversize_allocs); 2347 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2348 kmem_dump_oversize_max); 2349 2350 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) { 2351 kdl = &kmem_dump_log[kdi_idx]; 2352 cp = kdl->kdl_cache; 2353 if (cp == NULL) 2354 break; 2355 if (kdl->kdl_alloc_fails) 2356 ++warn; 2357 if (header == 0) { 2358 kmem_dumppr(&p, e, 2359 "Cache Name,Allocs,Frees,Alloc Fails," 2360 "Nondump Frees,Unsafe Allocs/Frees\n"); 2361 header = 1; 2362 } 2363 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n", 2364 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees, 2365 kdl->kdl_alloc_fails, kdl->kdl_free_nondump, 2366 kdl->kdl_unsafe); 2367 } 2368 2369 /* return buffer size used */ 2370 if (p < e) 2371 bzero(p, e - p); 2372 return (p - buf); 2373 } 2374 2375 /* 2376 * Allocate a constructed object from alternate dump memory. 2377 */ 2378 void * 2379 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2380 { 2381 void *buf; 2382 void *curr; 2383 char *bufend; 2384 2385 /* return a constructed object */ 2386 if ((buf = cp->cache_dumpfreelist) != NULL) { 2387 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2388 KDI_LOG(cp, kdl_allocs); 2389 return (buf); 2390 } 2391 2392 /* create a new constructed object */ 2393 curr = kmem_dump_curr; 2394 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2395 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2396 2397 /* hat layer objects cannot cross a page boundary */ 2398 if (cp->cache_align < PAGESIZE) { 2399 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2400 if (bufend > page) { 2401 bufend += page - (char *)buf; 2402 buf = (void *)page; 2403 } 2404 } 2405 2406 /* fall back to normal alloc if reserved area is used up */ 2407 if (bufend > (char *)kmem_dump_end) { 2408 kmem_dump_curr = kmem_dump_end; 2409 KDI_LOG(cp, kdl_alloc_fails); 2410 return (NULL); 2411 } 2412 2413 /* 2414 * Must advance curr pointer before calling a constructor that 2415 * may also allocate memory. 2416 */ 2417 kmem_dump_curr = bufend; 2418 2419 /* run constructor */ 2420 if (cp->cache_constructor != NULL && 2421 cp->cache_constructor(buf, cp->cache_private, kmflag) 2422 != 0) { 2423 #ifdef DEBUG 2424 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2425 cp->cache_name, (void *)cp); 2426 #endif 2427 /* reset curr pointer iff no allocs were done */ 2428 if (kmem_dump_curr == bufend) 2429 kmem_dump_curr = curr; 2430 2431 /* fall back to normal alloc if the constructor fails */ 2432 KDI_LOG(cp, kdl_alloc_fails); 2433 return (NULL); 2434 } 2435 2436 KDI_LOG(cp, kdl_allocs); 2437 return (buf); 2438 } 2439 2440 /* 2441 * Free a constructed object in alternate dump memory. 2442 */ 2443 int 2444 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2445 { 2446 /* save constructed buffers for next time */ 2447 if ((char *)buf >= (char *)kmem_dump_start && 2448 (char *)buf < (char *)kmem_dump_end) { 2449 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist; 2450 cp->cache_dumpfreelist = buf; 2451 KDI_LOG(cp, kdl_frees); 2452 return (0); 2453 } 2454 2455 /* count all non-dump buf frees */ 2456 KDI_LOG(cp, kdl_free_nondump); 2457 2458 /* just drop buffers that were allocated before dump started */ 2459 if (kmem_dump_curr < kmem_dump_end) 2460 return (0); 2461 2462 /* fall back to normal free if reserved area is used up */ 2463 return (1); 2464 } 2465 2466 /* 2467 * Allocate a constructed object from cache cp. 2468 */ 2469 void * 2470 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2471 { 2472 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2473 kmem_magazine_t *fmp; 2474 void *buf; 2475 2476 mutex_enter(&ccp->cc_lock); 2477 for (;;) { 2478 /* 2479 * If there's an object available in the current CPU's 2480 * loaded magazine, just take it and return. 2481 */ 2482 if (ccp->cc_rounds > 0) { 2483 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2484 ccp->cc_alloc++; 2485 mutex_exit(&ccp->cc_lock); 2486 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2487 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2488 ASSERT(!(ccp->cc_flags & 2489 KMF_DUMPDIVERT)); 2490 KDI_LOG(cp, kdl_unsafe); 2491 } 2492 if ((ccp->cc_flags & KMF_BUFTAG) && 2493 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2494 caller()) != 0) { 2495 if (kmflag & KM_NOSLEEP) 2496 return (NULL); 2497 mutex_enter(&ccp->cc_lock); 2498 continue; 2499 } 2500 } 2501 return (buf); 2502 } 2503 2504 /* 2505 * The loaded magazine is empty. If the previously loaded 2506 * magazine was full, exchange them and try again. 2507 */ 2508 if (ccp->cc_prounds > 0) { 2509 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2510 continue; 2511 } 2512 2513 /* 2514 * Return an alternate buffer at dump time to preserve 2515 * the heap. 2516 */ 2517 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2518 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2519 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2520 /* log it so that we can warn about it */ 2521 KDI_LOG(cp, kdl_unsafe); 2522 } else { 2523 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2524 NULL) { 2525 mutex_exit(&ccp->cc_lock); 2526 return (buf); 2527 } 2528 break; /* fall back to slab layer */ 2529 } 2530 } 2531 2532 /* 2533 * If the magazine layer is disabled, break out now. 2534 */ 2535 if (ccp->cc_magsize == 0) 2536 break; 2537 2538 /* 2539 * Try to get a full magazine from the depot. 2540 */ 2541 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2542 if (fmp != NULL) { 2543 if (ccp->cc_ploaded != NULL) 2544 kmem_depot_free(cp, &cp->cache_empty, 2545 ccp->cc_ploaded); 2546 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2547 continue; 2548 } 2549 2550 /* 2551 * There are no full magazines in the depot, 2552 * so fall through to the slab layer. 2553 */ 2554 break; 2555 } 2556 mutex_exit(&ccp->cc_lock); 2557 2558 /* 2559 * We couldn't allocate a constructed object from the magazine layer, 2560 * so get a raw buffer from the slab layer and apply its constructor. 2561 */ 2562 buf = kmem_slab_alloc(cp, kmflag); 2563 2564 if (buf == NULL) 2565 return (NULL); 2566 2567 if (cp->cache_flags & KMF_BUFTAG) { 2568 /* 2569 * Make kmem_cache_alloc_debug() apply the constructor for us. 2570 */ 2571 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2572 if (rc != 0) { 2573 if (kmflag & KM_NOSLEEP) 2574 return (NULL); 2575 /* 2576 * kmem_cache_alloc_debug() detected corruption 2577 * but didn't panic (kmem_panic <= 0). We should not be 2578 * here because the constructor failed (indicated by a 2579 * return code of 1). Try again. 2580 */ 2581 ASSERT(rc == -1); 2582 return (kmem_cache_alloc(cp, kmflag)); 2583 } 2584 return (buf); 2585 } 2586 2587 if (cp->cache_constructor != NULL && 2588 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2589 atomic_add_64(&cp->cache_alloc_fail, 1); 2590 kmem_slab_free(cp, buf); 2591 return (NULL); 2592 } 2593 2594 return (buf); 2595 } 2596 2597 /* 2598 * The freed argument tells whether or not kmem_cache_free_debug() has already 2599 * been called so that we can avoid the duplicate free error. For example, a 2600 * buffer on a magazine has already been freed by the client but is still 2601 * constructed. 2602 */ 2603 static void 2604 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2605 { 2606 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2607 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2608 return; 2609 2610 /* 2611 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2612 * kmem_cache_free_debug() will have already applied the destructor. 2613 */ 2614 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2615 cp->cache_destructor != NULL) { 2616 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2617 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2618 *(uint64_t *)buf = btp->bt_redzone; 2619 cp->cache_destructor(buf, cp->cache_private); 2620 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2621 } else { 2622 cp->cache_destructor(buf, cp->cache_private); 2623 } 2624 } 2625 2626 kmem_slab_free(cp, buf); 2627 } 2628 2629 /* 2630 * Free a constructed object to cache cp. 2631 */ 2632 void 2633 kmem_cache_free(kmem_cache_t *cp, void *buf) 2634 { 2635 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2636 kmem_magazine_t *emp; 2637 kmem_magtype_t *mtp; 2638 2639 /* 2640 * The client must not free either of the buffers passed to the move 2641 * callback function. 2642 */ 2643 ASSERT(cp->cache_defrag == NULL || 2644 cp->cache_defrag->kmd_thread != curthread || 2645 (buf != cp->cache_defrag->kmd_from_buf && 2646 buf != cp->cache_defrag->kmd_to_buf)); 2647 2648 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2649 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2650 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2651 /* log it so that we can warn about it */ 2652 KDI_LOG(cp, kdl_unsafe); 2653 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2654 return; 2655 } 2656 if (ccp->cc_flags & KMF_BUFTAG) { 2657 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2658 return; 2659 } 2660 } 2661 2662 mutex_enter(&ccp->cc_lock); 2663 for (;;) { 2664 /* 2665 * If there's a slot available in the current CPU's 2666 * loaded magazine, just put the object there and return. 2667 */ 2668 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2669 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2670 ccp->cc_free++; 2671 mutex_exit(&ccp->cc_lock); 2672 return; 2673 } 2674 2675 /* 2676 * The loaded magazine is full. If the previously loaded 2677 * magazine was empty, exchange them and try again. 2678 */ 2679 if (ccp->cc_prounds == 0) { 2680 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2681 continue; 2682 } 2683 2684 /* 2685 * If the magazine layer is disabled, break out now. 2686 */ 2687 if (ccp->cc_magsize == 0) 2688 break; 2689 2690 /* 2691 * Try to get an empty magazine from the depot. 2692 */ 2693 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2694 if (emp != NULL) { 2695 if (ccp->cc_ploaded != NULL) 2696 kmem_depot_free(cp, &cp->cache_full, 2697 ccp->cc_ploaded); 2698 kmem_cpu_reload(ccp, emp, 0); 2699 continue; 2700 } 2701 2702 /* 2703 * There are no empty magazines in the depot, 2704 * so try to allocate a new one. We must drop all locks 2705 * across kmem_cache_alloc() because lower layers may 2706 * attempt to allocate from this cache. 2707 */ 2708 mtp = cp->cache_magtype; 2709 mutex_exit(&ccp->cc_lock); 2710 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2711 mutex_enter(&ccp->cc_lock); 2712 2713 if (emp != NULL) { 2714 /* 2715 * We successfully allocated an empty magazine. 2716 * However, we had to drop ccp->cc_lock to do it, 2717 * so the cache's magazine size may have changed. 2718 * If so, free the magazine and try again. 2719 */ 2720 if (ccp->cc_magsize != mtp->mt_magsize) { 2721 mutex_exit(&ccp->cc_lock); 2722 kmem_cache_free(mtp->mt_cache, emp); 2723 mutex_enter(&ccp->cc_lock); 2724 continue; 2725 } 2726 2727 /* 2728 * We got a magazine of the right size. Add it to 2729 * the depot and try the whole dance again. 2730 */ 2731 kmem_depot_free(cp, &cp->cache_empty, emp); 2732 continue; 2733 } 2734 2735 /* 2736 * We couldn't allocate an empty magazine, 2737 * so fall through to the slab layer. 2738 */ 2739 break; 2740 } 2741 mutex_exit(&ccp->cc_lock); 2742 2743 /* 2744 * We couldn't free our constructed object to the magazine layer, 2745 * so apply its destructor and free it to the slab layer. 2746 */ 2747 kmem_slab_free_constructed(cp, buf, B_TRUE); 2748 } 2749 2750 void * 2751 kmem_zalloc(size_t size, int kmflag) 2752 { 2753 size_t index; 2754 void *buf; 2755 2756 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2757 kmem_cache_t *cp = kmem_alloc_table[index]; 2758 buf = kmem_cache_alloc(cp, kmflag); 2759 if (buf != NULL) { 2760 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2761 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2762 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2763 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2764 2765 if (cp->cache_flags & KMF_LITE) { 2766 KMEM_BUFTAG_LITE_ENTER(btp, 2767 kmem_lite_count, caller()); 2768 } 2769 } 2770 bzero(buf, size); 2771 } 2772 } else { 2773 buf = kmem_alloc(size, kmflag); 2774 if (buf != NULL) 2775 bzero(buf, size); 2776 } 2777 return (buf); 2778 } 2779 2780 void * 2781 kmem_alloc(size_t size, int kmflag) 2782 { 2783 size_t index; 2784 kmem_cache_t *cp; 2785 void *buf; 2786 2787 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2788 cp = kmem_alloc_table[index]; 2789 /* fall through to kmem_cache_alloc() */ 2790 2791 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2792 kmem_big_alloc_table_max) { 2793 cp = kmem_big_alloc_table[index]; 2794 /* fall through to kmem_cache_alloc() */ 2795 2796 } else { 2797 if (size == 0) 2798 return (NULL); 2799 2800 buf = vmem_alloc(kmem_oversize_arena, size, 2801 kmflag & KM_VMFLAGS); 2802 if (buf == NULL) 2803 kmem_log_event(kmem_failure_log, NULL, NULL, 2804 (void *)size); 2805 else if (KMEM_DUMP(kmem_slab_cache)) { 2806 /* stats for dump intercept */ 2807 kmem_dump_oversize_allocs++; 2808 if (size > kmem_dump_oversize_max) 2809 kmem_dump_oversize_max = size; 2810 } 2811 return (buf); 2812 } 2813 2814 buf = kmem_cache_alloc(cp, kmflag); 2815 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2816 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2817 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2818 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2819 2820 if (cp->cache_flags & KMF_LITE) { 2821 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2822 } 2823 } 2824 return (buf); 2825 } 2826 2827 void 2828 kmem_free(void *buf, size_t size) 2829 { 2830 size_t index; 2831 kmem_cache_t *cp; 2832 2833 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2834 cp = kmem_alloc_table[index]; 2835 /* fall through to kmem_cache_free() */ 2836 2837 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2838 kmem_big_alloc_table_max) { 2839 cp = kmem_big_alloc_table[index]; 2840 /* fall through to kmem_cache_free() */ 2841 2842 } else { 2843 if (buf == NULL && size == 0) 2844 return; 2845 vmem_free(kmem_oversize_arena, buf, size); 2846 return; 2847 } 2848 2849 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2850 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2851 uint32_t *ip = (uint32_t *)btp; 2852 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2853 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2854 kmem_error(KMERR_DUPFREE, cp, buf); 2855 return; 2856 } 2857 if (KMEM_SIZE_VALID(ip[1])) { 2858 ip[0] = KMEM_SIZE_ENCODE(size); 2859 kmem_error(KMERR_BADSIZE, cp, buf); 2860 } else { 2861 kmem_error(KMERR_REDZONE, cp, buf); 2862 } 2863 return; 2864 } 2865 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2866 kmem_error(KMERR_REDZONE, cp, buf); 2867 return; 2868 } 2869 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2870 if (cp->cache_flags & KMF_LITE) { 2871 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2872 caller()); 2873 } 2874 } 2875 kmem_cache_free(cp, buf); 2876 } 2877 2878 void * 2879 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2880 { 2881 size_t realsize = size + vmp->vm_quantum; 2882 void *addr; 2883 2884 /* 2885 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2886 * vm_quantum will cause integer wraparound. Check for this, and 2887 * blow off the firewall page in this case. Note that such a 2888 * giant allocation (the entire kernel address space) can never 2889 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2890 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2891 * corresponding check in kmem_firewall_va_free(). 2892 */ 2893 if (realsize < size) 2894 realsize = size; 2895 2896 /* 2897 * While boot still owns resource management, make sure that this 2898 * redzone virtual address allocation is properly accounted for in 2899 * OBPs "virtual-memory" "available" lists because we're 2900 * effectively claiming them for a red zone. If we don't do this, 2901 * the available lists become too fragmented and too large for the 2902 * current boot/kernel memory list interface. 2903 */ 2904 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2905 2906 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2907 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2908 2909 return (addr); 2910 } 2911 2912 void 2913 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2914 { 2915 ASSERT((kvseg.s_base == NULL ? 2916 va_to_pfn((char *)addr + size) : 2917 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2918 2919 vmem_free(vmp, addr, size + vmp->vm_quantum); 2920 } 2921 2922 /* 2923 * Try to allocate at least `size' bytes of memory without sleeping or 2924 * panicking. Return actual allocated size in `asize'. If allocation failed, 2925 * try final allocation with sleep or panic allowed. 2926 */ 2927 void * 2928 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2929 { 2930 void *p; 2931 2932 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2933 do { 2934 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2935 if (p != NULL) 2936 return (p); 2937 *asize += KMEM_ALIGN; 2938 } while (*asize <= PAGESIZE); 2939 2940 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2941 return (kmem_alloc(*asize, kmflag)); 2942 } 2943 2944 /* 2945 * Reclaim all unused memory from a cache. 2946 */ 2947 static void 2948 kmem_cache_reap(kmem_cache_t *cp) 2949 { 2950 ASSERT(taskq_member(kmem_taskq, curthread)); 2951 cp->cache_reap++; 2952 2953 /* 2954 * Ask the cache's owner to free some memory if possible. 2955 * The idea is to handle things like the inode cache, which 2956 * typically sits on a bunch of memory that it doesn't truly 2957 * *need*. Reclaim policy is entirely up to the owner; this 2958 * callback is just an advisory plea for help. 2959 */ 2960 if (cp->cache_reclaim != NULL) { 2961 long delta; 2962 2963 /* 2964 * Reclaimed memory should be reapable (not included in the 2965 * depot's working set). 2966 */ 2967 delta = cp->cache_full.ml_total; 2968 cp->cache_reclaim(cp->cache_private); 2969 delta = cp->cache_full.ml_total - delta; 2970 if (delta > 0) { 2971 mutex_enter(&cp->cache_depot_lock); 2972 cp->cache_full.ml_reaplimit += delta; 2973 cp->cache_full.ml_min += delta; 2974 mutex_exit(&cp->cache_depot_lock); 2975 } 2976 } 2977 2978 kmem_depot_ws_reap(cp); 2979 2980 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 2981 kmem_cache_defrag(cp); 2982 } 2983 } 2984 2985 static void 2986 kmem_reap_timeout(void *flag_arg) 2987 { 2988 uint32_t *flag = (uint32_t *)flag_arg; 2989 2990 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2991 *flag = 0; 2992 } 2993 2994 static void 2995 kmem_reap_done(void *flag) 2996 { 2997 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 2998 } 2999 3000 static void 3001 kmem_reap_start(void *flag) 3002 { 3003 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3004 3005 if (flag == &kmem_reaping) { 3006 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3007 /* 3008 * if we have segkp under heap, reap segkp cache. 3009 */ 3010 if (segkp_fromheap) 3011 segkp_cache_free(); 3012 } 3013 else 3014 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3015 3016 /* 3017 * We use taskq_dispatch() to schedule a timeout to clear 3018 * the flag so that kmem_reap() becomes self-throttling: 3019 * we won't reap again until the current reap completes *and* 3020 * at least kmem_reap_interval ticks have elapsed. 3021 */ 3022 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3023 kmem_reap_done(flag); 3024 } 3025 3026 static void 3027 kmem_reap_common(void *flag_arg) 3028 { 3029 uint32_t *flag = (uint32_t *)flag_arg; 3030 3031 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3032 cas32(flag, 0, 1) != 0) 3033 return; 3034 3035 /* 3036 * It may not be kosher to do memory allocation when a reap is called 3037 * is called (for example, if vmem_populate() is in the call chain). 3038 * So we start the reap going with a TQ_NOALLOC dispatch. If the 3039 * dispatch fails, we reset the flag, and the next reap will try again. 3040 */ 3041 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3042 *flag = 0; 3043 } 3044 3045 /* 3046 * Reclaim all unused memory from all caches. Called from the VM system 3047 * when memory gets tight. 3048 */ 3049 void 3050 kmem_reap(void) 3051 { 3052 kmem_reap_common(&kmem_reaping); 3053 } 3054 3055 /* 3056 * Reclaim all unused memory from identifier arenas, called when a vmem 3057 * arena not back by memory is exhausted. Since reaping memory-backed caches 3058 * cannot help with identifier exhaustion, we avoid both a large amount of 3059 * work and unwanted side-effects from reclaim callbacks. 3060 */ 3061 void 3062 kmem_reap_idspace(void) 3063 { 3064 kmem_reap_common(&kmem_reaping_idspace); 3065 } 3066 3067 /* 3068 * Purge all magazines from a cache and set its magazine limit to zero. 3069 * All calls are serialized by the kmem_taskq lock, except for the final 3070 * call from kmem_cache_destroy(). 3071 */ 3072 static void 3073 kmem_cache_magazine_purge(kmem_cache_t *cp) 3074 { 3075 kmem_cpu_cache_t *ccp; 3076 kmem_magazine_t *mp, *pmp; 3077 int rounds, prounds, cpu_seqid; 3078 3079 ASSERT(!list_link_active(&cp->cache_link) || 3080 taskq_member(kmem_taskq, curthread)); 3081 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3082 3083 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3084 ccp = &cp->cache_cpu[cpu_seqid]; 3085 3086 mutex_enter(&ccp->cc_lock); 3087 mp = ccp->cc_loaded; 3088 pmp = ccp->cc_ploaded; 3089 rounds = ccp->cc_rounds; 3090 prounds = ccp->cc_prounds; 3091 ccp->cc_loaded = NULL; 3092 ccp->cc_ploaded = NULL; 3093 ccp->cc_rounds = -1; 3094 ccp->cc_prounds = -1; 3095 ccp->cc_magsize = 0; 3096 mutex_exit(&ccp->cc_lock); 3097 3098 if (mp) 3099 kmem_magazine_destroy(cp, mp, rounds); 3100 if (pmp) 3101 kmem_magazine_destroy(cp, pmp, prounds); 3102 } 3103 3104 /* 3105 * Updating the working set statistics twice in a row has the 3106 * effect of setting the working set size to zero, so everything 3107 * is eligible for reaping. 3108 */ 3109 kmem_depot_ws_update(cp); 3110 kmem_depot_ws_update(cp); 3111 3112 kmem_depot_ws_reap(cp); 3113 } 3114 3115 /* 3116 * Enable per-cpu magazines on a cache. 3117 */ 3118 static void 3119 kmem_cache_magazine_enable(kmem_cache_t *cp) 3120 { 3121 int cpu_seqid; 3122 3123 if (cp->cache_flags & KMF_NOMAGAZINE) 3124 return; 3125 3126 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3127 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3128 mutex_enter(&ccp->cc_lock); 3129 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3130 mutex_exit(&ccp->cc_lock); 3131 } 3132 3133 } 3134 3135 /* 3136 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 3137 * for explanation of the back-to-back kmem_depot_ws_update() calls. 3138 */ 3139 void 3140 kmem_cache_reap_now(kmem_cache_t *cp) 3141 { 3142 ASSERT(list_link_active(&cp->cache_link)); 3143 3144 kmem_depot_ws_update(cp); 3145 kmem_depot_ws_update(cp); 3146 3147 (void) taskq_dispatch(kmem_taskq, 3148 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3149 taskq_wait(kmem_taskq); 3150 } 3151 3152 /* 3153 * Recompute a cache's magazine size. The trade-off is that larger magazines 3154 * provide a higher transfer rate with the depot, while smaller magazines 3155 * reduce memory consumption. Magazine resizing is an expensive operation; 3156 * it should not be done frequently. 3157 * 3158 * Changes to the magazine size are serialized by the kmem_taskq lock. 3159 * 3160 * Note: at present this only grows the magazine size. It might be useful 3161 * to allow shrinkage too. 3162 */ 3163 static void 3164 kmem_cache_magazine_resize(kmem_cache_t *cp) 3165 { 3166 kmem_magtype_t *mtp = cp->cache_magtype; 3167 3168 ASSERT(taskq_member(kmem_taskq, curthread)); 3169 3170 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3171 kmem_cache_magazine_purge(cp); 3172 mutex_enter(&cp->cache_depot_lock); 3173 cp->cache_magtype = ++mtp; 3174 cp->cache_depot_contention_prev = 3175 cp->cache_depot_contention + INT_MAX; 3176 mutex_exit(&cp->cache_depot_lock); 3177 kmem_cache_magazine_enable(cp); 3178 } 3179 } 3180 3181 /* 3182 * Rescale a cache's hash table, so that the table size is roughly the 3183 * cache size. We want the average lookup time to be extremely small. 3184 */ 3185 static void 3186 kmem_hash_rescale(kmem_cache_t *cp) 3187 { 3188 kmem_bufctl_t **old_table, **new_table, *bcp; 3189 size_t old_size, new_size, h; 3190 3191 ASSERT(taskq_member(kmem_taskq, curthread)); 3192 3193 new_size = MAX(KMEM_HASH_INITIAL, 3194 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3195 old_size = cp->cache_hash_mask + 1; 3196 3197 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3198 return; 3199 3200 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3201 VM_NOSLEEP); 3202 if (new_table == NULL) 3203 return; 3204 bzero(new_table, new_size * sizeof (void *)); 3205 3206 mutex_enter(&cp->cache_lock); 3207 3208 old_size = cp->cache_hash_mask + 1; 3209 old_table = cp->cache_hash_table; 3210 3211 cp->cache_hash_mask = new_size - 1; 3212 cp->cache_hash_table = new_table; 3213 cp->cache_rescale++; 3214 3215 for (h = 0; h < old_size; h++) { 3216 bcp = old_table[h]; 3217 while (bcp != NULL) { 3218 void *addr = bcp->bc_addr; 3219 kmem_bufctl_t *next_bcp = bcp->bc_next; 3220 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3221 bcp->bc_next = *hash_bucket; 3222 *hash_bucket = bcp; 3223 bcp = next_bcp; 3224 } 3225 } 3226 3227 mutex_exit(&cp->cache_lock); 3228 3229 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3230 } 3231 3232 /* 3233 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3234 * update, magazine resizing, and slab consolidation. 3235 */ 3236 static void 3237 kmem_cache_update(kmem_cache_t *cp) 3238 { 3239 int need_hash_rescale = 0; 3240 int need_magazine_resize = 0; 3241 3242 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3243 3244 /* 3245 * If the cache has become much larger or smaller than its hash table, 3246 * fire off a request to rescale the hash table. 3247 */ 3248 mutex_enter(&cp->cache_lock); 3249 3250 if ((cp->cache_flags & KMF_HASH) && 3251 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3252 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3253 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3254 need_hash_rescale = 1; 3255 3256 mutex_exit(&cp->cache_lock); 3257 3258 /* 3259 * Update the depot working set statistics. 3260 */ 3261 kmem_depot_ws_update(cp); 3262 3263 /* 3264 * If there's a lot of contention in the depot, 3265 * increase the magazine size. 3266 */ 3267 mutex_enter(&cp->cache_depot_lock); 3268 3269 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3270 (int)(cp->cache_depot_contention - 3271 cp->cache_depot_contention_prev) > kmem_depot_contention) 3272 need_magazine_resize = 1; 3273 3274 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3275 3276 mutex_exit(&cp->cache_depot_lock); 3277 3278 if (need_hash_rescale) 3279 (void) taskq_dispatch(kmem_taskq, 3280 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3281 3282 if (need_magazine_resize) 3283 (void) taskq_dispatch(kmem_taskq, 3284 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3285 3286 if (cp->cache_defrag != NULL) 3287 (void) taskq_dispatch(kmem_taskq, 3288 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3289 } 3290 3291 static void kmem_update(void *); 3292 3293 static void 3294 kmem_update_timeout(void *dummy) 3295 { 3296 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3297 } 3298 3299 static void 3300 kmem_update(void *dummy) 3301 { 3302 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3303 3304 /* 3305 * We use taskq_dispatch() to reschedule the timeout so that 3306 * kmem_update() becomes self-throttling: it won't schedule 3307 * new tasks until all previous tasks have completed. 3308 */ 3309 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3310 kmem_update_timeout(NULL); 3311 } 3312 3313 static int 3314 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3315 { 3316 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3317 kmem_cache_t *cp = ksp->ks_private; 3318 uint64_t cpu_buf_avail; 3319 uint64_t buf_avail = 0; 3320 int cpu_seqid; 3321 long reap; 3322 3323 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3324 3325 if (rw == KSTAT_WRITE) 3326 return (EACCES); 3327 3328 mutex_enter(&cp->cache_lock); 3329 3330 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3331 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3332 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3333 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3334 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3335 3336 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3337 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3338 3339 mutex_enter(&ccp->cc_lock); 3340 3341 cpu_buf_avail = 0; 3342 if (ccp->cc_rounds > 0) 3343 cpu_buf_avail += ccp->cc_rounds; 3344 if (ccp->cc_prounds > 0) 3345 cpu_buf_avail += ccp->cc_prounds; 3346 3347 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3348 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3349 buf_avail += cpu_buf_avail; 3350 3351 mutex_exit(&ccp->cc_lock); 3352 } 3353 3354 mutex_enter(&cp->cache_depot_lock); 3355 3356 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3357 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3358 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3359 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3360 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3361 kmcp->kmc_magazine_size.value.ui64 = 3362 (cp->cache_flags & KMF_NOMAGAZINE) ? 3363 0 : cp->cache_magtype->mt_magsize; 3364 3365 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3366 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3367 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3368 3369 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3370 reap = MIN(reap, cp->cache_full.ml_total); 3371 3372 mutex_exit(&cp->cache_depot_lock); 3373 3374 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3375 kmcp->kmc_align.value.ui64 = cp->cache_align; 3376 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3377 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3378 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3379 buf_avail += cp->cache_bufslab; 3380 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3381 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3382 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3383 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3384 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3385 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3386 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3387 cp->cache_hash_mask + 1 : 0; 3388 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3389 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3390 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3391 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3392 3393 if (cp->cache_defrag == NULL) { 3394 kmcp->kmc_move_callbacks.value.ui64 = 0; 3395 kmcp->kmc_move_yes.value.ui64 = 0; 3396 kmcp->kmc_move_no.value.ui64 = 0; 3397 kmcp->kmc_move_later.value.ui64 = 0; 3398 kmcp->kmc_move_dont_need.value.ui64 = 0; 3399 kmcp->kmc_move_dont_know.value.ui64 = 0; 3400 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3401 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3402 kmcp->kmc_defrag.value.ui64 = 0; 3403 kmcp->kmc_scan.value.ui64 = 0; 3404 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3405 } else { 3406 int64_t reclaimable; 3407 3408 kmem_defrag_t *kd = cp->cache_defrag; 3409 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3410 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3411 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3412 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3413 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3414 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3415 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3416 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3417 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3418 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3419 3420 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3421 reclaimable = MAX(reclaimable, 0); 3422 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3423 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3424 } 3425 3426 mutex_exit(&cp->cache_lock); 3427 return (0); 3428 } 3429 3430 /* 3431 * Return a named statistic about a particular cache. 3432 * This shouldn't be called very often, so it's currently designed for 3433 * simplicity (leverages existing kstat support) rather than efficiency. 3434 */ 3435 uint64_t 3436 kmem_cache_stat(kmem_cache_t *cp, char *name) 3437 { 3438 int i; 3439 kstat_t *ksp = cp->cache_kstat; 3440 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3441 uint64_t value = 0; 3442 3443 if (ksp != NULL) { 3444 mutex_enter(&kmem_cache_kstat_lock); 3445 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3446 for (i = 0; i < ksp->ks_ndata; i++) { 3447 if (strcmp(knp[i].name, name) == 0) { 3448 value = knp[i].value.ui64; 3449 break; 3450 } 3451 } 3452 mutex_exit(&kmem_cache_kstat_lock); 3453 } 3454 return (value); 3455 } 3456 3457 /* 3458 * Return an estimate of currently available kernel heap memory. 3459 * On 32-bit systems, physical memory may exceed virtual memory, 3460 * we just truncate the result at 1GB. 3461 */ 3462 size_t 3463 kmem_avail(void) 3464 { 3465 spgcnt_t rmem = availrmem - tune.t_minarmem; 3466 spgcnt_t fmem = freemem - minfree; 3467 3468 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3469 1 << (30 - PAGESHIFT)))); 3470 } 3471 3472 /* 3473 * Return the maximum amount of memory that is (in theory) allocatable 3474 * from the heap. This may be used as an estimate only since there 3475 * is no guarentee this space will still be available when an allocation 3476 * request is made, nor that the space may be allocated in one big request 3477 * due to kernel heap fragmentation. 3478 */ 3479 size_t 3480 kmem_maxavail(void) 3481 { 3482 spgcnt_t pmem = availrmem - tune.t_minarmem; 3483 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3484 3485 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3486 } 3487 3488 /* 3489 * Indicate whether memory-intensive kmem debugging is enabled. 3490 */ 3491 int 3492 kmem_debugging(void) 3493 { 3494 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3495 } 3496 3497 /* binning function, sorts finely at the two extremes */ 3498 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3499 ((((sp)->slab_refcnt <= (binshift)) || \ 3500 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3501 ? -(sp)->slab_refcnt \ 3502 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3503 3504 /* 3505 * Minimizing the number of partial slabs on the freelist minimizes 3506 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3507 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3508 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3509 * the most-used slabs at the front of the list where they have the best chance 3510 * of being completely allocated, and the least-used slabs at a safe distance 3511 * from the front to improve the odds that the few remaining buffers will all be 3512 * freed before another allocation can tie up the slab. For that reason a slab 3513 * with a higher slab_refcnt sorts less than than a slab with a lower 3514 * slab_refcnt. 3515 * 3516 * However, if a slab has at least one buffer that is deemed unfreeable, we 3517 * would rather have that slab at the front of the list regardless of 3518 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3519 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3520 * callback, the slab is marked unfreeable for as long as it remains on the 3521 * freelist. 3522 */ 3523 static int 3524 kmem_partial_slab_cmp(const void *p0, const void *p1) 3525 { 3526 const kmem_cache_t *cp; 3527 const kmem_slab_t *s0 = p0; 3528 const kmem_slab_t *s1 = p1; 3529 int w0, w1; 3530 size_t binshift; 3531 3532 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3533 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3534 ASSERT(s0->slab_cache == s1->slab_cache); 3535 cp = s1->slab_cache; 3536 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3537 binshift = cp->cache_partial_binshift; 3538 3539 /* weight of first slab */ 3540 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3541 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3542 w0 -= cp->cache_maxchunks; 3543 } 3544 3545 /* weight of second slab */ 3546 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3547 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3548 w1 -= cp->cache_maxchunks; 3549 } 3550 3551 if (w0 < w1) 3552 return (-1); 3553 if (w0 > w1) 3554 return (1); 3555 3556 /* compare pointer values */ 3557 if ((uintptr_t)s0 < (uintptr_t)s1) 3558 return (-1); 3559 if ((uintptr_t)s0 > (uintptr_t)s1) 3560 return (1); 3561 3562 return (0); 3563 } 3564 3565 /* 3566 * It must be valid to call the destructor (if any) on a newly created object. 3567 * That is, the constructor (if any) must leave the object in a valid state for 3568 * the destructor. 3569 */ 3570 kmem_cache_t * 3571 kmem_cache_create( 3572 char *name, /* descriptive name for this cache */ 3573 size_t bufsize, /* size of the objects it manages */ 3574 size_t align, /* required object alignment */ 3575 int (*constructor)(void *, void *, int), /* object constructor */ 3576 void (*destructor)(void *, void *), /* object destructor */ 3577 void (*reclaim)(void *), /* memory reclaim callback */ 3578 void *private, /* pass-thru arg for constr/destr/reclaim */ 3579 vmem_t *vmp, /* vmem source for slab allocation */ 3580 int cflags) /* cache creation flags */ 3581 { 3582 int cpu_seqid; 3583 size_t chunksize; 3584 kmem_cache_t *cp; 3585 kmem_magtype_t *mtp; 3586 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3587 3588 #ifdef DEBUG 3589 /* 3590 * Cache names should conform to the rules for valid C identifiers 3591 */ 3592 if (!strident_valid(name)) { 3593 cmn_err(CE_CONT, 3594 "kmem_cache_create: '%s' is an invalid cache name\n" 3595 "cache names must conform to the rules for " 3596 "C identifiers\n", name); 3597 } 3598 #endif /* DEBUG */ 3599 3600 if (vmp == NULL) 3601 vmp = kmem_default_arena; 3602 3603 /* 3604 * If this kmem cache has an identifier vmem arena as its source, mark 3605 * it such to allow kmem_reap_idspace(). 3606 */ 3607 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3608 if (vmp->vm_cflags & VMC_IDENTIFIER) 3609 cflags |= KMC_IDENTIFIER; 3610 3611 /* 3612 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3613 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3614 * false sharing of per-CPU data. 3615 */ 3616 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3617 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3618 bzero(cp, csize); 3619 list_link_init(&cp->cache_link); 3620 3621 if (align == 0) 3622 align = KMEM_ALIGN; 3623 3624 /* 3625 * If we're not at least KMEM_ALIGN aligned, we can't use free 3626 * memory to hold bufctl information (because we can't safely 3627 * perform word loads and stores on it). 3628 */ 3629 if (align < KMEM_ALIGN) 3630 cflags |= KMC_NOTOUCH; 3631 3632 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 3633 panic("kmem_cache_create: bad alignment %lu", align); 3634 3635 mutex_enter(&kmem_flags_lock); 3636 if (kmem_flags & KMF_RANDOMIZE) 3637 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3638 KMF_RANDOMIZE; 3639 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3640 mutex_exit(&kmem_flags_lock); 3641 3642 /* 3643 * Make sure all the various flags are reasonable. 3644 */ 3645 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3646 3647 if (cp->cache_flags & KMF_LITE) { 3648 if (bufsize >= kmem_lite_minsize && 3649 align <= kmem_lite_maxalign && 3650 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3651 cp->cache_flags |= KMF_BUFTAG; 3652 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3653 } else { 3654 cp->cache_flags &= ~KMF_DEBUG; 3655 } 3656 } 3657 3658 if (cp->cache_flags & KMF_DEADBEEF) 3659 cp->cache_flags |= KMF_REDZONE; 3660 3661 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3662 cp->cache_flags |= KMF_NOMAGAZINE; 3663 3664 if (cflags & KMC_NODEBUG) 3665 cp->cache_flags &= ~KMF_DEBUG; 3666 3667 if (cflags & KMC_NOTOUCH) 3668 cp->cache_flags &= ~KMF_TOUCH; 3669 3670 if (cflags & KMC_NOHASH) 3671 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3672 3673 if (cflags & KMC_NOMAGAZINE) 3674 cp->cache_flags |= KMF_NOMAGAZINE; 3675 3676 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3677 cp->cache_flags |= KMF_REDZONE; 3678 3679 if (!(cp->cache_flags & KMF_AUDIT)) 3680 cp->cache_flags &= ~KMF_CONTENTS; 3681 3682 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3683 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3684 cp->cache_flags |= KMF_FIREWALL; 3685 3686 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3687 cp->cache_flags &= ~KMF_FIREWALL; 3688 3689 if (cp->cache_flags & KMF_FIREWALL) { 3690 cp->cache_flags &= ~KMF_BUFTAG; 3691 cp->cache_flags |= KMF_NOMAGAZINE; 3692 ASSERT(vmp == kmem_default_arena); 3693 vmp = kmem_firewall_arena; 3694 } 3695 3696 /* 3697 * Set cache properties. 3698 */ 3699 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3700 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3701 cp->cache_bufsize = bufsize; 3702 cp->cache_align = align; 3703 cp->cache_constructor = constructor; 3704 cp->cache_destructor = destructor; 3705 cp->cache_reclaim = reclaim; 3706 cp->cache_private = private; 3707 cp->cache_arena = vmp; 3708 cp->cache_cflags = cflags; 3709 3710 /* 3711 * Determine the chunk size. 3712 */ 3713 chunksize = bufsize; 3714 3715 if (align >= KMEM_ALIGN) { 3716 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3717 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3718 } 3719 3720 if (cp->cache_flags & KMF_BUFTAG) { 3721 cp->cache_bufctl = chunksize; 3722 cp->cache_buftag = chunksize; 3723 if (cp->cache_flags & KMF_LITE) 3724 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3725 else 3726 chunksize += sizeof (kmem_buftag_t); 3727 } 3728 3729 if (cp->cache_flags & KMF_DEADBEEF) { 3730 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3731 if (cp->cache_flags & KMF_LITE) 3732 cp->cache_verify = sizeof (uint64_t); 3733 } 3734 3735 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3736 3737 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3738 3739 /* 3740 * Now that we know the chunk size, determine the optimal slab size. 3741 */ 3742 if (vmp == kmem_firewall_arena) { 3743 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3744 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3745 cp->cache_maxcolor = cp->cache_mincolor; 3746 cp->cache_flags |= KMF_HASH; 3747 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3748 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3749 !(cp->cache_flags & KMF_AUDIT) && 3750 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3751 cp->cache_slabsize = vmp->vm_quantum; 3752 cp->cache_mincolor = 0; 3753 cp->cache_maxcolor = 3754 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3755 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3756 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3757 } else { 3758 size_t chunks, bestfit, waste, slabsize; 3759 size_t minwaste = LONG_MAX; 3760 3761 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3762 slabsize = P2ROUNDUP(chunksize * chunks, 3763 vmp->vm_quantum); 3764 chunks = slabsize / chunksize; 3765 waste = (slabsize % chunksize) / chunks; 3766 if (waste < minwaste) { 3767 minwaste = waste; 3768 bestfit = slabsize; 3769 } 3770 } 3771 if (cflags & KMC_QCACHE) 3772 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3773 cp->cache_slabsize = bestfit; 3774 cp->cache_mincolor = 0; 3775 cp->cache_maxcolor = bestfit % chunksize; 3776 cp->cache_flags |= KMF_HASH; 3777 } 3778 3779 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3780 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3781 3782 if (cp->cache_flags & KMF_HASH) { 3783 ASSERT(!(cflags & KMC_NOHASH)); 3784 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3785 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3786 } 3787 3788 if (cp->cache_maxcolor >= vmp->vm_quantum) 3789 cp->cache_maxcolor = vmp->vm_quantum - 1; 3790 3791 cp->cache_color = cp->cache_mincolor; 3792 3793 /* 3794 * Initialize the rest of the slab layer. 3795 */ 3796 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3797 3798 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3799 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3800 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3801 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3802 /* reuse partial slab AVL linkage for complete slab list linkage */ 3803 list_create(&cp->cache_complete_slabs, 3804 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3805 3806 if (cp->cache_flags & KMF_HASH) { 3807 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3808 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3809 bzero(cp->cache_hash_table, 3810 KMEM_HASH_INITIAL * sizeof (void *)); 3811 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3812 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3813 } 3814 3815 /* 3816 * Initialize the depot. 3817 */ 3818 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3819 3820 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3821 continue; 3822 3823 cp->cache_magtype = mtp; 3824 3825 /* 3826 * Initialize the CPU layer. 3827 */ 3828 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3829 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3830 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3831 ccp->cc_flags = cp->cache_flags; 3832 ccp->cc_rounds = -1; 3833 ccp->cc_prounds = -1; 3834 } 3835 3836 /* 3837 * Create the cache's kstats. 3838 */ 3839 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3840 "kmem_cache", KSTAT_TYPE_NAMED, 3841 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3842 KSTAT_FLAG_VIRTUAL)) != NULL) { 3843 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3844 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3845 cp->cache_kstat->ks_private = cp; 3846 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3847 kstat_install(cp->cache_kstat); 3848 } 3849 3850 /* 3851 * Add the cache to the global list. This makes it visible 3852 * to kmem_update(), so the cache must be ready for business. 3853 */ 3854 mutex_enter(&kmem_cache_lock); 3855 list_insert_tail(&kmem_caches, cp); 3856 mutex_exit(&kmem_cache_lock); 3857 3858 if (kmem_ready) 3859 kmem_cache_magazine_enable(cp); 3860 3861 return (cp); 3862 } 3863 3864 static int 3865 kmem_move_cmp(const void *buf, const void *p) 3866 { 3867 const kmem_move_t *kmm = p; 3868 uintptr_t v1 = (uintptr_t)buf; 3869 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3870 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3871 } 3872 3873 static void 3874 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3875 { 3876 kmd->kmd_reclaim_numer = 1; 3877 } 3878 3879 /* 3880 * Initially, when choosing candidate slabs for buffers to move, we want to be 3881 * very selective and take only slabs that are less than 3882 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3883 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3884 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3885 * longer fragmented. 3886 */ 3887 static void 3888 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3889 { 3890 if (direction > 0) { 3891 /* make it easier to find a candidate slab */ 3892 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3893 kmd->kmd_reclaim_numer++; 3894 } 3895 } else { 3896 /* be more selective */ 3897 if (kmd->kmd_reclaim_numer > 1) { 3898 kmd->kmd_reclaim_numer--; 3899 } 3900 } 3901 } 3902 3903 void 3904 kmem_cache_set_move(kmem_cache_t *cp, 3905 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3906 { 3907 kmem_defrag_t *defrag; 3908 3909 ASSERT(move != NULL); 3910 /* 3911 * The consolidator does not support NOTOUCH caches because kmem cannot 3912 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3913 * a low order bit usable by clients to distinguish uninitialized memory 3914 * from known objects (see kmem_slab_create). 3915 */ 3916 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3917 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3918 3919 /* 3920 * We should not be holding anyone's cache lock when calling 3921 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3922 * lock. 3923 */ 3924 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3925 3926 mutex_enter(&cp->cache_lock); 3927 3928 if (KMEM_IS_MOVABLE(cp)) { 3929 if (cp->cache_move == NULL) { 3930 ASSERT(cp->cache_slab_alloc == 0); 3931 3932 cp->cache_defrag = defrag; 3933 defrag = NULL; /* nothing to free */ 3934 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 3935 avl_create(&cp->cache_defrag->kmd_moves_pending, 3936 kmem_move_cmp, sizeof (kmem_move_t), 3937 offsetof(kmem_move_t, kmm_entry)); 3938 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3939 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3940 /* reuse the slab's AVL linkage for deadlist linkage */ 3941 list_create(&cp->cache_defrag->kmd_deadlist, 3942 sizeof (kmem_slab_t), 3943 offsetof(kmem_slab_t, slab_link)); 3944 kmem_reset_reclaim_threshold(cp->cache_defrag); 3945 } 3946 cp->cache_move = move; 3947 } 3948 3949 mutex_exit(&cp->cache_lock); 3950 3951 if (defrag != NULL) { 3952 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 3953 } 3954 } 3955 3956 void 3957 kmem_cache_destroy(kmem_cache_t *cp) 3958 { 3959 int cpu_seqid; 3960 3961 /* 3962 * Remove the cache from the global cache list so that no one else 3963 * can schedule tasks on its behalf, wait for any pending tasks to 3964 * complete, purge the cache, and then destroy it. 3965 */ 3966 mutex_enter(&kmem_cache_lock); 3967 list_remove(&kmem_caches, cp); 3968 mutex_exit(&kmem_cache_lock); 3969 3970 if (kmem_taskq != NULL) 3971 taskq_wait(kmem_taskq); 3972 if (kmem_move_taskq != NULL) 3973 taskq_wait(kmem_move_taskq); 3974 3975 kmem_cache_magazine_purge(cp); 3976 3977 mutex_enter(&cp->cache_lock); 3978 if (cp->cache_buftotal != 0) 3979 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 3980 cp->cache_name, (void *)cp); 3981 if (cp->cache_defrag != NULL) { 3982 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 3983 list_destroy(&cp->cache_defrag->kmd_deadlist); 3984 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 3985 cp->cache_defrag = NULL; 3986 } 3987 /* 3988 * The cache is now dead. There should be no further activity. We 3989 * enforce this by setting land mines in the constructor, destructor, 3990 * reclaim, and move routines that induce a kernel text fault if 3991 * invoked. 3992 */ 3993 cp->cache_constructor = (int (*)(void *, void *, int))1; 3994 cp->cache_destructor = (void (*)(void *, void *))2; 3995 cp->cache_reclaim = (void (*)(void *))3; 3996 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 3997 mutex_exit(&cp->cache_lock); 3998 3999 kstat_delete(cp->cache_kstat); 4000 4001 if (cp->cache_hash_table != NULL) 4002 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4003 (cp->cache_hash_mask + 1) * sizeof (void *)); 4004 4005 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4006 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4007 4008 mutex_destroy(&cp->cache_depot_lock); 4009 mutex_destroy(&cp->cache_lock); 4010 4011 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4012 } 4013 4014 /*ARGSUSED*/ 4015 static int 4016 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4017 { 4018 ASSERT(MUTEX_HELD(&cpu_lock)); 4019 if (what == CPU_UNCONFIG) { 4020 kmem_cache_applyall(kmem_cache_magazine_purge, 4021 kmem_taskq, TQ_SLEEP); 4022 kmem_cache_applyall(kmem_cache_magazine_enable, 4023 kmem_taskq, TQ_SLEEP); 4024 } 4025 return (0); 4026 } 4027 4028 static void 4029 kmem_alloc_caches_create(const int *array, size_t count, 4030 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4031 { 4032 char name[KMEM_CACHE_NAMELEN + 1]; 4033 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4034 size_t size = table_unit; 4035 int i; 4036 4037 for (i = 0; i < count; i++) { 4038 size_t cache_size = array[i]; 4039 size_t align = KMEM_ALIGN; 4040 kmem_cache_t *cp; 4041 4042 /* if the table has an entry for maxbuf, we're done */ 4043 if (size > maxbuf) 4044 break; 4045 4046 /* cache size must be a multiple of the table unit */ 4047 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4048 4049 /* 4050 * If they allocate a multiple of the coherency granularity, 4051 * they get a coherency-granularity-aligned address. 4052 */ 4053 if (IS_P2ALIGNED(cache_size, 64)) 4054 align = 64; 4055 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4056 align = PAGESIZE; 4057 (void) snprintf(name, sizeof (name), 4058 "kmem_alloc_%lu", cache_size); 4059 cp = kmem_cache_create(name, cache_size, align, 4060 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4061 4062 while (size <= cache_size) { 4063 alloc_table[(size - 1) >> shift] = cp; 4064 size += table_unit; 4065 } 4066 } 4067 4068 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4069 } 4070 4071 static void 4072 kmem_cache_init(int pass, int use_large_pages) 4073 { 4074 int i; 4075 size_t maxbuf; 4076 kmem_magtype_t *mtp; 4077 4078 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4079 char name[KMEM_CACHE_NAMELEN + 1]; 4080 4081 mtp = &kmem_magtype[i]; 4082 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4083 mtp->mt_cache = kmem_cache_create(name, 4084 (mtp->mt_magsize + 1) * sizeof (void *), 4085 mtp->mt_align, NULL, NULL, NULL, NULL, 4086 kmem_msb_arena, KMC_NOHASH); 4087 } 4088 4089 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4090 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4091 kmem_msb_arena, KMC_NOHASH); 4092 4093 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4094 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4095 kmem_msb_arena, KMC_NOHASH); 4096 4097 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4098 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4099 kmem_msb_arena, KMC_NOHASH); 4100 4101 if (pass == 2) { 4102 kmem_va_arena = vmem_create("kmem_va", 4103 NULL, 0, PAGESIZE, 4104 vmem_alloc, vmem_free, heap_arena, 4105 8 * PAGESIZE, VM_SLEEP); 4106 4107 if (use_large_pages) { 4108 kmem_default_arena = vmem_xcreate("kmem_default", 4109 NULL, 0, PAGESIZE, 4110 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4111 0, VMC_DUMPSAFE | VM_SLEEP); 4112 } else { 4113 kmem_default_arena = vmem_create("kmem_default", 4114 NULL, 0, PAGESIZE, 4115 segkmem_alloc, segkmem_free, kmem_va_arena, 4116 0, VMC_DUMPSAFE | VM_SLEEP); 4117 } 4118 4119 /* Figure out what our maximum cache size is */ 4120 maxbuf = kmem_max_cached; 4121 if (maxbuf <= KMEM_MAXBUF) { 4122 maxbuf = 0; 4123 kmem_max_cached = KMEM_MAXBUF; 4124 } else { 4125 size_t size = 0; 4126 size_t max = 4127 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4128 /* 4129 * Round maxbuf up to an existing cache size. If maxbuf 4130 * is larger than the largest cache, we truncate it to 4131 * the largest cache's size. 4132 */ 4133 for (i = 0; i < max; i++) { 4134 size = kmem_big_alloc_sizes[i]; 4135 if (maxbuf <= size) 4136 break; 4137 } 4138 kmem_max_cached = maxbuf = size; 4139 } 4140 4141 /* 4142 * The big alloc table may not be completely overwritten, so 4143 * we clear out any stale cache pointers from the first pass. 4144 */ 4145 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4146 } else { 4147 /* 4148 * During the first pass, the kmem_alloc_* caches 4149 * are treated as metadata. 4150 */ 4151 kmem_default_arena = kmem_msb_arena; 4152 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4153 } 4154 4155 /* 4156 * Set up the default caches to back kmem_alloc() 4157 */ 4158 kmem_alloc_caches_create( 4159 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4160 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4161 4162 kmem_alloc_caches_create( 4163 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4164 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4165 4166 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4167 } 4168 4169 void 4170 kmem_init(void) 4171 { 4172 kmem_cache_t *cp; 4173 int old_kmem_flags = kmem_flags; 4174 int use_large_pages = 0; 4175 size_t maxverify, minfirewall; 4176 4177 kstat_init(); 4178 4179 /* 4180 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 4181 */ 4182 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 4183 kmem_flags = 0; 4184 4185 /* 4186 * Don't do firewalled allocations if the heap is less than 1TB 4187 * (i.e. on a 32-bit kernel) 4188 * The resulting VM_NEXTFIT allocations would create too much 4189 * fragmentation in a small heap. 4190 */ 4191 #if defined(_LP64) 4192 maxverify = minfirewall = PAGESIZE / 2; 4193 #else 4194 maxverify = minfirewall = ULONG_MAX; 4195 #endif 4196 4197 /* LINTED */ 4198 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4199 4200 list_create(&kmem_caches, sizeof (kmem_cache_t), 4201 offsetof(kmem_cache_t, cache_link)); 4202 4203 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4204 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4205 VM_SLEEP | VMC_NO_QCACHE); 4206 4207 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4208 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4209 VMC_DUMPSAFE | VM_SLEEP); 4210 4211 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4212 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4213 4214 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4215 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4216 4217 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4218 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4219 4220 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4221 NULL, 0, PAGESIZE, 4222 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4223 0, VM_SLEEP); 4224 4225 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4226 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4227 VMC_DUMPSAFE | VM_SLEEP); 4228 4229 /* temporary oversize arena for mod_read_system_file */ 4230 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4231 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4232 4233 kmem_reap_interval = 15 * hz; 4234 4235 /* 4236 * Read /etc/system. This is a chicken-and-egg problem because 4237 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4238 * needs to use the allocator. The simplest solution is to create 4239 * all the standard kmem caches, read /etc/system, destroy all the 4240 * caches we just created, and then create them all again in light 4241 * of the (possibly) new kmem_flags and other kmem tunables. 4242 */ 4243 kmem_cache_init(1, 0); 4244 4245 mod_read_system_file(boothowto & RB_ASKNAME); 4246 4247 while ((cp = list_tail(&kmem_caches)) != NULL) 4248 kmem_cache_destroy(cp); 4249 4250 vmem_destroy(kmem_oversize_arena); 4251 4252 if (old_kmem_flags & KMF_STICKY) 4253 kmem_flags = old_kmem_flags; 4254 4255 if (!(kmem_flags & KMF_AUDIT)) 4256 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4257 4258 if (kmem_maxverify == 0) 4259 kmem_maxverify = maxverify; 4260 4261 if (kmem_minfirewall == 0) 4262 kmem_minfirewall = minfirewall; 4263 4264 /* 4265 * give segkmem a chance to figure out if we are using large pages 4266 * for the kernel heap 4267 */ 4268 use_large_pages = segkmem_lpsetup(); 4269 4270 /* 4271 * To protect against corruption, we keep the actual number of callers 4272 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4273 * to 16, since the overhead for small buffers quickly gets out of 4274 * hand. 4275 * 4276 * The real limit would depend on the needs of the largest KMC_NOHASH 4277 * cache. 4278 */ 4279 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4280 kmem_lite_pcs = kmem_lite_count; 4281 4282 /* 4283 * Normally, we firewall oversized allocations when possible, but 4284 * if we are using large pages for kernel memory, and we don't have 4285 * any non-LITE debugging flags set, we want to allocate oversized 4286 * buffers from large pages, and so skip the firewalling. 4287 */ 4288 if (use_large_pages && 4289 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4290 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4291 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4292 0, VMC_DUMPSAFE | VM_SLEEP); 4293 } else { 4294 kmem_oversize_arena = vmem_create("kmem_oversize", 4295 NULL, 0, PAGESIZE, 4296 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4297 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4298 VM_SLEEP); 4299 } 4300 4301 kmem_cache_init(2, use_large_pages); 4302 4303 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4304 if (kmem_transaction_log_size == 0) 4305 kmem_transaction_log_size = kmem_maxavail() / 50; 4306 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4307 } 4308 4309 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4310 if (kmem_content_log_size == 0) 4311 kmem_content_log_size = kmem_maxavail() / 50; 4312 kmem_content_log = kmem_log_init(kmem_content_log_size); 4313 } 4314 4315 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4316 4317 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4318 4319 /* 4320 * Initialize STREAMS message caches so allocb() is available. 4321 * This allows us to initialize the logging framework (cmn_err(9F), 4322 * strlog(9F), etc) so we can start recording messages. 4323 */ 4324 streams_msg_init(); 4325 4326 /* 4327 * Initialize the ZSD framework in Zones so modules loaded henceforth 4328 * can register their callbacks. 4329 */ 4330 zone_zsd_init(); 4331 4332 log_init(); 4333 taskq_init(); 4334 4335 /* 4336 * Warn about invalid or dangerous values of kmem_flags. 4337 * Always warn about unsupported values. 4338 */ 4339 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4340 KMF_CONTENTS | KMF_LITE)) != 0) || 4341 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4342 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4343 "See the Solaris Tunable Parameters Reference Manual.", 4344 kmem_flags); 4345 4346 #ifdef DEBUG 4347 if ((kmem_flags & KMF_DEBUG) == 0) 4348 cmn_err(CE_NOTE, "kmem debugging disabled."); 4349 #else 4350 /* 4351 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4352 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4353 * if KMF_AUDIT is set). We should warn the user about the performance 4354 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4355 * isn't set (since that disables AUDIT). 4356 */ 4357 if (!(kmem_flags & KMF_LITE) && 4358 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4359 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4360 "enabled (kmem_flags = 0x%x). Performance degradation " 4361 "and large memory overhead possible. See the Solaris " 4362 "Tunable Parameters Reference Manual.", kmem_flags); 4363 #endif /* not DEBUG */ 4364 4365 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4366 4367 kmem_ready = 1; 4368 4369 /* 4370 * Initialize the platform-specific aligned/DMA memory allocator. 4371 */ 4372 ka_init(); 4373 4374 /* 4375 * Initialize 32-bit ID cache. 4376 */ 4377 id32_init(); 4378 4379 /* 4380 * Initialize the networking stack so modules loaded can 4381 * register their callbacks. 4382 */ 4383 netstack_init(); 4384 } 4385 4386 static void 4387 kmem_move_init(void) 4388 { 4389 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4390 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4391 kmem_msb_arena, KMC_NOHASH); 4392 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4393 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4394 kmem_msb_arena, KMC_NOHASH); 4395 4396 /* 4397 * kmem guarantees that move callbacks are sequential and that even 4398 * across multiple caches no two moves ever execute simultaneously. 4399 * Move callbacks are processed on a separate taskq so that client code 4400 * does not interfere with internal maintenance tasks. 4401 */ 4402 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4403 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4404 } 4405 4406 void 4407 kmem_thread_init(void) 4408 { 4409 kmem_move_init(); 4410 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4411 300, INT_MAX, TASKQ_PREPOPULATE); 4412 } 4413 4414 void 4415 kmem_mp_init(void) 4416 { 4417 mutex_enter(&cpu_lock); 4418 register_cpu_setup_func(kmem_cpu_setup, NULL); 4419 mutex_exit(&cpu_lock); 4420 4421 kmem_update_timeout(NULL); 4422 4423 taskq_mp_init(); 4424 } 4425 4426 /* 4427 * Return the slab of the allocated buffer, or NULL if the buffer is not 4428 * allocated. This function may be called with a known slab address to determine 4429 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4430 * an allocated buffer's slab. 4431 */ 4432 static kmem_slab_t * 4433 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4434 { 4435 kmem_bufctl_t *bcp, *bufbcp; 4436 4437 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4438 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4439 4440 if (cp->cache_flags & KMF_HASH) { 4441 for (bcp = *KMEM_HASH(cp, buf); 4442 (bcp != NULL) && (bcp->bc_addr != buf); 4443 bcp = bcp->bc_next) { 4444 continue; 4445 } 4446 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4447 return (bcp == NULL ? NULL : bcp->bc_slab); 4448 } 4449 4450 if (sp == NULL) { 4451 sp = KMEM_SLAB(cp, buf); 4452 } 4453 bufbcp = KMEM_BUFCTL(cp, buf); 4454 for (bcp = sp->slab_head; 4455 (bcp != NULL) && (bcp != bufbcp); 4456 bcp = bcp->bc_next) { 4457 continue; 4458 } 4459 return (bcp == NULL ? sp : NULL); 4460 } 4461 4462 static boolean_t 4463 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4464 { 4465 long refcnt = sp->slab_refcnt; 4466 4467 ASSERT(cp->cache_defrag != NULL); 4468 4469 /* 4470 * For code coverage we want to be able to move an object within the 4471 * same slab (the only partial slab) even if allocating the destination 4472 * buffer resulted in a completely allocated slab. 4473 */ 4474 if (flags & KMM_DEBUG) { 4475 return ((flags & KMM_DESPERATE) || 4476 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4477 } 4478 4479 /* If we're desperate, we don't care if the client said NO. */ 4480 if (flags & KMM_DESPERATE) { 4481 return (refcnt < sp->slab_chunks); /* any partial */ 4482 } 4483 4484 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4485 return (B_FALSE); 4486 } 4487 4488 if ((refcnt == 1) || kmem_move_any_partial) { 4489 return (refcnt < sp->slab_chunks); 4490 } 4491 4492 /* 4493 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4494 * slabs with a progressively higher percentage of used buffers can be 4495 * reclaimed until the cache as a whole is no longer fragmented. 4496 * 4497 * sp->slab_refcnt kmd_reclaim_numer 4498 * --------------- < ------------------ 4499 * sp->slab_chunks KMEM_VOID_FRACTION 4500 */ 4501 return ((refcnt * KMEM_VOID_FRACTION) < 4502 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4503 } 4504 4505 static void * 4506 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4507 void *tbuf) 4508 { 4509 int i; /* magazine round index */ 4510 4511 for (i = 0; i < n; i++) { 4512 if (buf == m->mag_round[i]) { 4513 if (cp->cache_flags & KMF_BUFTAG) { 4514 (void) kmem_cache_free_debug(cp, tbuf, 4515 caller()); 4516 } 4517 m->mag_round[i] = tbuf; 4518 return (buf); 4519 } 4520 } 4521 4522 return (NULL); 4523 } 4524 4525 /* 4526 * Hunt the magazine layer for the given buffer. If found, the buffer is 4527 * removed from the magazine layer and returned, otherwise NULL is returned. 4528 * The state of the returned buffer is freed and constructed. 4529 */ 4530 static void * 4531 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4532 { 4533 kmem_cpu_cache_t *ccp; 4534 kmem_magazine_t *m; 4535 int cpu_seqid; 4536 int n; /* magazine rounds */ 4537 void *tbuf; /* temporary swap buffer */ 4538 4539 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4540 4541 /* 4542 * Allocated a buffer to swap with the one we hope to pull out of a 4543 * magazine when found. 4544 */ 4545 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4546 if (tbuf == NULL) { 4547 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4548 return (NULL); 4549 } 4550 if (tbuf == buf) { 4551 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4552 if (cp->cache_flags & KMF_BUFTAG) { 4553 (void) kmem_cache_free_debug(cp, buf, caller()); 4554 } 4555 return (buf); 4556 } 4557 4558 /* Hunt the depot. */ 4559 mutex_enter(&cp->cache_depot_lock); 4560 n = cp->cache_magtype->mt_magsize; 4561 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4562 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4563 mutex_exit(&cp->cache_depot_lock); 4564 return (buf); 4565 } 4566 } 4567 mutex_exit(&cp->cache_depot_lock); 4568 4569 /* Hunt the per-CPU magazines. */ 4570 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4571 ccp = &cp->cache_cpu[cpu_seqid]; 4572 4573 mutex_enter(&ccp->cc_lock); 4574 m = ccp->cc_loaded; 4575 n = ccp->cc_rounds; 4576 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4577 mutex_exit(&ccp->cc_lock); 4578 return (buf); 4579 } 4580 m = ccp->cc_ploaded; 4581 n = ccp->cc_prounds; 4582 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4583 mutex_exit(&ccp->cc_lock); 4584 return (buf); 4585 } 4586 mutex_exit(&ccp->cc_lock); 4587 } 4588 4589 kmem_cache_free(cp, tbuf); 4590 return (NULL); 4591 } 4592 4593 /* 4594 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4595 * or when the buffer is freed. 4596 */ 4597 static void 4598 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4599 { 4600 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4601 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4602 4603 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4604 return; 4605 } 4606 4607 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4608 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4609 avl_remove(&cp->cache_partial_slabs, sp); 4610 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4611 sp->slab_stuck_offset = (uint32_t)-1; 4612 avl_add(&cp->cache_partial_slabs, sp); 4613 } 4614 } else { 4615 sp->slab_later_count = 0; 4616 sp->slab_stuck_offset = (uint32_t)-1; 4617 } 4618 } 4619 4620 static void 4621 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4622 { 4623 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4624 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4625 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4626 4627 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4628 return; 4629 } 4630 4631 avl_remove(&cp->cache_partial_slabs, sp); 4632 sp->slab_later_count = 0; 4633 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4634 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4635 avl_add(&cp->cache_partial_slabs, sp); 4636 } 4637 4638 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4639 4640 /* 4641 * The move callback takes two buffer addresses, the buffer to be moved, and a 4642 * newly allocated and constructed buffer selected by kmem as the destination. 4643 * It also takes the size of the buffer and an optional user argument specified 4644 * at cache creation time. kmem guarantees that the buffer to be moved has not 4645 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4646 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4647 * the client to safely determine whether or not it is still using the buffer. 4648 * The client must not free either of the buffers passed to the move callback, 4649 * since kmem wants to free them directly to the slab layer. The client response 4650 * tells kmem which of the two buffers to free: 4651 * 4652 * YES kmem frees the old buffer (the move was successful) 4653 * NO kmem frees the new buffer, marks the slab of the old buffer 4654 * non-reclaimable to avoid bothering the client again 4655 * LATER kmem frees the new buffer, increments slab_later_count 4656 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4657 * DONT_NEED kmem frees both the old buffer and the new buffer 4658 * 4659 * The pending callback argument now being processed contains both of the 4660 * buffers (old and new) passed to the move callback function, the slab of the 4661 * old buffer, and flags related to the move request, such as whether or not the 4662 * system was desperate for memory. 4663 * 4664 * Slabs are not freed while there is a pending callback, but instead are kept 4665 * on a deadlist, which is drained after the last callback completes. This means 4666 * that slabs are safe to access until kmem_move_end(), no matter how many of 4667 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4668 * zero for as long as the slab remains on the deadlist and until the slab is 4669 * freed. 4670 */ 4671 static void 4672 kmem_move_buffer(kmem_move_t *callback) 4673 { 4674 kmem_cbrc_t response; 4675 kmem_slab_t *sp = callback->kmm_from_slab; 4676 kmem_cache_t *cp = sp->slab_cache; 4677 boolean_t free_on_slab; 4678 4679 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4680 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4681 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4682 4683 /* 4684 * The number of allocated buffers on the slab may have changed since we 4685 * last checked the slab's reclaimability (when the pending move was 4686 * enqueued), or the client may have responded NO when asked to move 4687 * another buffer on the same slab. 4688 */ 4689 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4690 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4691 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4692 kmem_move_stats.kms_notify_no_longer_reclaimable); 4693 kmem_slab_free(cp, callback->kmm_to_buf); 4694 kmem_move_end(cp, callback); 4695 return; 4696 } 4697 4698 /* 4699 * Hunting magazines is expensive, so we'll wait to do that until the 4700 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4701 * is cheap, so we might as well do that here in case we can avoid 4702 * bothering the client. 4703 */ 4704 mutex_enter(&cp->cache_lock); 4705 free_on_slab = (kmem_slab_allocated(cp, sp, 4706 callback->kmm_from_buf) == NULL); 4707 mutex_exit(&cp->cache_lock); 4708 4709 if (free_on_slab) { 4710 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4711 kmem_slab_free(cp, callback->kmm_to_buf); 4712 kmem_move_end(cp, callback); 4713 return; 4714 } 4715 4716 if (cp->cache_flags & KMF_BUFTAG) { 4717 /* 4718 * Make kmem_cache_alloc_debug() apply the constructor for us. 4719 */ 4720 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4721 KM_NOSLEEP, 1, caller()) != 0) { 4722 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4723 kmem_move_end(cp, callback); 4724 return; 4725 } 4726 } else if (cp->cache_constructor != NULL && 4727 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4728 KM_NOSLEEP) != 0) { 4729 atomic_add_64(&cp->cache_alloc_fail, 1); 4730 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4731 kmem_slab_free(cp, callback->kmm_to_buf); 4732 kmem_move_end(cp, callback); 4733 return; 4734 } 4735 4736 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4737 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4738 kmem_move_stats.kms_notify_callbacks); 4739 cp->cache_defrag->kmd_callbacks++; 4740 cp->cache_defrag->kmd_thread = curthread; 4741 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4742 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4743 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4744 callback); 4745 4746 response = cp->cache_move(callback->kmm_from_buf, 4747 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4748 4749 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4750 callback, kmem_cbrc_t, response); 4751 cp->cache_defrag->kmd_thread = NULL; 4752 cp->cache_defrag->kmd_from_buf = NULL; 4753 cp->cache_defrag->kmd_to_buf = NULL; 4754 4755 if (response == KMEM_CBRC_YES) { 4756 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4757 cp->cache_defrag->kmd_yes++; 4758 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4759 /* slab safe to access until kmem_move_end() */ 4760 if (sp->slab_refcnt == 0) 4761 cp->cache_defrag->kmd_slabs_freed++; 4762 mutex_enter(&cp->cache_lock); 4763 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4764 mutex_exit(&cp->cache_lock); 4765 kmem_move_end(cp, callback); 4766 return; 4767 } 4768 4769 switch (response) { 4770 case KMEM_CBRC_NO: 4771 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4772 cp->cache_defrag->kmd_no++; 4773 mutex_enter(&cp->cache_lock); 4774 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4775 mutex_exit(&cp->cache_lock); 4776 break; 4777 case KMEM_CBRC_LATER: 4778 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4779 cp->cache_defrag->kmd_later++; 4780 mutex_enter(&cp->cache_lock); 4781 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4782 mutex_exit(&cp->cache_lock); 4783 break; 4784 } 4785 4786 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4787 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4788 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4789 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4790 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4791 callback->kmm_from_buf); 4792 } 4793 mutex_exit(&cp->cache_lock); 4794 break; 4795 case KMEM_CBRC_DONT_NEED: 4796 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4797 cp->cache_defrag->kmd_dont_need++; 4798 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4799 if (sp->slab_refcnt == 0) 4800 cp->cache_defrag->kmd_slabs_freed++; 4801 mutex_enter(&cp->cache_lock); 4802 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4803 mutex_exit(&cp->cache_lock); 4804 break; 4805 case KMEM_CBRC_DONT_KNOW: 4806 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4807 cp->cache_defrag->kmd_dont_know++; 4808 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4809 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4810 cp->cache_defrag->kmd_hunt_found++; 4811 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4812 B_TRUE); 4813 if (sp->slab_refcnt == 0) 4814 cp->cache_defrag->kmd_slabs_freed++; 4815 mutex_enter(&cp->cache_lock); 4816 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4817 mutex_exit(&cp->cache_lock); 4818 } 4819 break; 4820 default: 4821 panic("'%s' (%p) unexpected move callback response %d\n", 4822 cp->cache_name, (void *)cp, response); 4823 } 4824 4825 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4826 kmem_move_end(cp, callback); 4827 } 4828 4829 /* Return B_FALSE if there is insufficient memory for the move request. */ 4830 static boolean_t 4831 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4832 { 4833 void *to_buf; 4834 avl_index_t index; 4835 kmem_move_t *callback, *pending; 4836 ulong_t n; 4837 4838 ASSERT(taskq_member(kmem_taskq, curthread)); 4839 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4840 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4841 4842 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4843 if (callback == NULL) { 4844 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4845 return (B_FALSE); 4846 } 4847 4848 callback->kmm_from_slab = sp; 4849 callback->kmm_from_buf = buf; 4850 callback->kmm_flags = flags; 4851 4852 mutex_enter(&cp->cache_lock); 4853 4854 n = avl_numnodes(&cp->cache_partial_slabs); 4855 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4856 mutex_exit(&cp->cache_lock); 4857 kmem_cache_free(kmem_move_cache, callback); 4858 return (B_TRUE); /* there is no need for the move request */ 4859 } 4860 4861 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4862 if (pending != NULL) { 4863 /* 4864 * If the move is already pending and we're desperate now, 4865 * update the move flags. 4866 */ 4867 if (flags & KMM_DESPERATE) { 4868 pending->kmm_flags |= KMM_DESPERATE; 4869 } 4870 mutex_exit(&cp->cache_lock); 4871 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4872 kmem_cache_free(kmem_move_cache, callback); 4873 return (B_TRUE); 4874 } 4875 4876 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs)); 4877 callback->kmm_to_buf = to_buf; 4878 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4879 4880 mutex_exit(&cp->cache_lock); 4881 4882 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4883 callback, TQ_NOSLEEP)) { 4884 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail); 4885 mutex_enter(&cp->cache_lock); 4886 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4887 mutex_exit(&cp->cache_lock); 4888 kmem_slab_free(cp, to_buf); 4889 kmem_cache_free(kmem_move_cache, callback); 4890 return (B_FALSE); 4891 } 4892 4893 return (B_TRUE); 4894 } 4895 4896 static void 4897 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4898 { 4899 avl_index_t index; 4900 4901 ASSERT(cp->cache_defrag != NULL); 4902 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4903 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4904 4905 mutex_enter(&cp->cache_lock); 4906 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4907 callback->kmm_from_buf, &index) != NULL); 4908 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4909 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4910 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4911 kmem_slab_t *sp; 4912 4913 /* 4914 * The last pending move completed. Release all slabs from the 4915 * front of the dead list except for any slab at the tail that 4916 * needs to be released from the context of kmem_move_buffers(). 4917 * kmem deferred unmapping the buffers on these slabs in order 4918 * to guarantee that buffers passed to the move callback have 4919 * been touched only by kmem or by the client itself. 4920 */ 4921 while ((sp = list_remove_head(deadlist)) != NULL) { 4922 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4923 list_insert_tail(deadlist, sp); 4924 break; 4925 } 4926 cp->cache_defrag->kmd_deadcount--; 4927 cp->cache_slab_destroy++; 4928 mutex_exit(&cp->cache_lock); 4929 kmem_slab_destroy(cp, sp); 4930 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4931 mutex_enter(&cp->cache_lock); 4932 } 4933 } 4934 mutex_exit(&cp->cache_lock); 4935 kmem_cache_free(kmem_move_cache, callback); 4936 } 4937 4938 /* 4939 * Move buffers from least used slabs first by scanning backwards from the end 4940 * of the partial slab list. Scan at most max_scan candidate slabs and move 4941 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4942 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4943 * skip slabs with a ratio of allocated buffers at or above the current 4944 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4945 * scan is aborted) so that the caller can adjust the reclaimability threshold 4946 * depending on how many reclaimable slabs it finds. 4947 * 4948 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4949 * move request, since it is not valid for kmem_move_begin() to call 4950 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4951 */ 4952 static int 4953 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4954 int flags) 4955 { 4956 kmem_slab_t *sp; 4957 void *buf; 4958 int i, j; /* slab index, buffer index */ 4959 int s; /* reclaimable slabs */ 4960 int b; /* allocated (movable) buffers on reclaimable slab */ 4961 boolean_t success; 4962 int refcnt; 4963 int nomove; 4964 4965 ASSERT(taskq_member(kmem_taskq, curthread)); 4966 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4967 ASSERT(kmem_move_cache != NULL); 4968 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4969 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4970 avl_numnodes(&cp->cache_partial_slabs) > 1); 4971 4972 if (kmem_move_blocked) { 4973 return (0); 4974 } 4975 4976 if (kmem_move_fulltilt) { 4977 flags |= KMM_DESPERATE; 4978 } 4979 4980 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4981 /* 4982 * Scan as many slabs as needed to find the desired number of 4983 * candidate slabs. 4984 */ 4985 max_scan = (size_t)-1; 4986 } 4987 4988 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4989 /* Find as many candidate slabs as possible. */ 4990 max_slabs = (size_t)-1; 4991 } 4992 4993 sp = avl_last(&cp->cache_partial_slabs); 4994 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 4995 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 4996 ((sp != avl_first(&cp->cache_partial_slabs)) || 4997 (flags & KMM_DEBUG)); 4998 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4999 5000 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 5001 continue; 5002 } 5003 s++; 5004 5005 /* Look for allocated buffers to move. */ 5006 for (j = 0, b = 0, buf = sp->slab_base; 5007 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 5008 buf = (((char *)buf) + cp->cache_chunksize), j++) { 5009 5010 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 5011 continue; 5012 } 5013 5014 b++; 5015 5016 /* 5017 * Prevent the slab from being destroyed while we drop 5018 * cache_lock and while the pending move is not yet 5019 * registered. Flag the pending move while 5020 * kmd_moves_pending may still be empty, since we can't 5021 * yet rely on a non-zero pending move count to prevent 5022 * the slab from being destroyed. 5023 */ 5024 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5025 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5026 /* 5027 * Recheck refcnt and nomove after reacquiring the lock, 5028 * since these control the order of partial slabs, and 5029 * we want to know if we can pick up the scan where we 5030 * left off. 5031 */ 5032 refcnt = sp->slab_refcnt; 5033 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5034 mutex_exit(&cp->cache_lock); 5035 5036 success = kmem_move_begin(cp, sp, buf, flags); 5037 5038 /* 5039 * Now, before the lock is reacquired, kmem could 5040 * process all pending move requests and purge the 5041 * deadlist, so that upon reacquiring the lock, sp has 5042 * been remapped. Or, the client may free all the 5043 * objects on the slab while the pending moves are still 5044 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5045 * flag causes the slab to be put at the end of the 5046 * deadlist and prevents it from being destroyed, since 5047 * we plan to destroy it here after reacquiring the 5048 * lock. 5049 */ 5050 mutex_enter(&cp->cache_lock); 5051 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5052 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5053 5054 if (sp->slab_refcnt == 0) { 5055 list_t *deadlist = 5056 &cp->cache_defrag->kmd_deadlist; 5057 list_remove(deadlist, sp); 5058 5059 if (!avl_is_empty( 5060 &cp->cache_defrag->kmd_moves_pending)) { 5061 /* 5062 * A pending move makes it unsafe to 5063 * destroy the slab, because even though 5064 * the move is no longer needed, the 5065 * context where that is determined 5066 * requires the slab to exist. 5067 * Fortunately, a pending move also 5068 * means we don't need to destroy the 5069 * slab here, since it will get 5070 * destroyed along with any other slabs 5071 * on the deadlist after the last 5072 * pending move completes. 5073 */ 5074 list_insert_head(deadlist, sp); 5075 KMEM_STAT_ADD(kmem_move_stats. 5076 kms_endscan_slab_dead); 5077 return (-1); 5078 } 5079 5080 /* 5081 * Destroy the slab now if it was completely 5082 * freed while we dropped cache_lock and there 5083 * are no pending moves. Since slab_refcnt 5084 * cannot change once it reaches zero, no new 5085 * pending moves from that slab are possible. 5086 */ 5087 cp->cache_defrag->kmd_deadcount--; 5088 cp->cache_slab_destroy++; 5089 mutex_exit(&cp->cache_lock); 5090 kmem_slab_destroy(cp, sp); 5091 KMEM_STAT_ADD(kmem_move_stats. 5092 kms_dead_slabs_freed); 5093 KMEM_STAT_ADD(kmem_move_stats. 5094 kms_endscan_slab_destroyed); 5095 mutex_enter(&cp->cache_lock); 5096 /* 5097 * Since we can't pick up the scan where we left 5098 * off, abort the scan and say nothing about the 5099 * number of reclaimable slabs. 5100 */ 5101 return (-1); 5102 } 5103 5104 if (!success) { 5105 /* 5106 * Abort the scan if there is not enough memory 5107 * for the request and say nothing about the 5108 * number of reclaimable slabs. 5109 */ 5110 KMEM_STAT_COND_ADD(s < max_slabs, 5111 kmem_move_stats.kms_endscan_nomem); 5112 return (-1); 5113 } 5114 5115 /* 5116 * The slab's position changed while the lock was 5117 * dropped, so we don't know where we are in the 5118 * sequence any more. 5119 */ 5120 if (sp->slab_refcnt != refcnt) { 5121 /* 5122 * If this is a KMM_DEBUG move, the slab_refcnt 5123 * may have changed because we allocated a 5124 * destination buffer on the same slab. In that 5125 * case, we're not interested in counting it. 5126 */ 5127 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 5128 (s < max_slabs), 5129 kmem_move_stats.kms_endscan_refcnt_changed); 5130 return (-1); 5131 } 5132 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 5133 KMEM_STAT_COND_ADD(s < max_slabs, 5134 kmem_move_stats.kms_endscan_nomove_changed); 5135 return (-1); 5136 } 5137 5138 /* 5139 * Generating a move request allocates a destination 5140 * buffer from the slab layer, bumping the first partial 5141 * slab if it is completely allocated. If the current 5142 * slab becomes the first partial slab as a result, we 5143 * can't continue to scan backwards. 5144 * 5145 * If this is a KMM_DEBUG move and we allocated the 5146 * destination buffer from the last partial slab, then 5147 * the buffer we're moving is on the same slab and our 5148 * slab_refcnt has changed, causing us to return before 5149 * reaching here if there are no partial slabs left. 5150 */ 5151 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5152 if (sp == avl_first(&cp->cache_partial_slabs)) { 5153 /* 5154 * We're not interested in a second KMM_DEBUG 5155 * move. 5156 */ 5157 goto end_scan; 5158 } 5159 } 5160 } 5161 end_scan: 5162 5163 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 5164 (s < max_slabs) && 5165 (sp == avl_first(&cp->cache_partial_slabs)), 5166 kmem_move_stats.kms_endscan_freelist); 5167 5168 return (s); 5169 } 5170 5171 typedef struct kmem_move_notify_args { 5172 kmem_cache_t *kmna_cache; 5173 void *kmna_buf; 5174 } kmem_move_notify_args_t; 5175 5176 static void 5177 kmem_cache_move_notify_task(void *arg) 5178 { 5179 kmem_move_notify_args_t *args = arg; 5180 kmem_cache_t *cp = args->kmna_cache; 5181 void *buf = args->kmna_buf; 5182 kmem_slab_t *sp; 5183 5184 ASSERT(taskq_member(kmem_taskq, curthread)); 5185 ASSERT(list_link_active(&cp->cache_link)); 5186 5187 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5188 mutex_enter(&cp->cache_lock); 5189 sp = kmem_slab_allocated(cp, NULL, buf); 5190 5191 /* Ignore the notification if the buffer is no longer allocated. */ 5192 if (sp == NULL) { 5193 mutex_exit(&cp->cache_lock); 5194 return; 5195 } 5196 5197 /* Ignore the notification if there's no reason to move the buffer. */ 5198 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5199 /* 5200 * So far the notification is not ignored. Ignore the 5201 * notification if the slab is not marked by an earlier refusal 5202 * to move a buffer. 5203 */ 5204 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5205 (sp->slab_later_count == 0)) { 5206 mutex_exit(&cp->cache_lock); 5207 return; 5208 } 5209 5210 kmem_slab_move_yes(cp, sp, buf); 5211 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5212 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5213 mutex_exit(&cp->cache_lock); 5214 /* see kmem_move_buffers() about dropping the lock */ 5215 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5216 mutex_enter(&cp->cache_lock); 5217 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5218 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5219 if (sp->slab_refcnt == 0) { 5220 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5221 list_remove(deadlist, sp); 5222 5223 if (!avl_is_empty( 5224 &cp->cache_defrag->kmd_moves_pending)) { 5225 list_insert_head(deadlist, sp); 5226 mutex_exit(&cp->cache_lock); 5227 KMEM_STAT_ADD(kmem_move_stats. 5228 kms_notify_slab_dead); 5229 return; 5230 } 5231 5232 cp->cache_defrag->kmd_deadcount--; 5233 cp->cache_slab_destroy++; 5234 mutex_exit(&cp->cache_lock); 5235 kmem_slab_destroy(cp, sp); 5236 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 5237 KMEM_STAT_ADD(kmem_move_stats. 5238 kms_notify_slab_destroyed); 5239 return; 5240 } 5241 } else { 5242 kmem_slab_move_yes(cp, sp, buf); 5243 } 5244 mutex_exit(&cp->cache_lock); 5245 } 5246 5247 void 5248 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5249 { 5250 kmem_move_notify_args_t *args; 5251 5252 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 5253 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5254 if (args != NULL) { 5255 args->kmna_cache = cp; 5256 args->kmna_buf = buf; 5257 if (!taskq_dispatch(kmem_taskq, 5258 (task_func_t *)kmem_cache_move_notify_task, args, 5259 TQ_NOSLEEP)) 5260 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5261 } 5262 } 5263 5264 static void 5265 kmem_cache_defrag(kmem_cache_t *cp) 5266 { 5267 size_t n; 5268 5269 ASSERT(cp->cache_defrag != NULL); 5270 5271 mutex_enter(&cp->cache_lock); 5272 n = avl_numnodes(&cp->cache_partial_slabs); 5273 if (n > 1) { 5274 /* kmem_move_buffers() drops and reacquires cache_lock */ 5275 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 5276 cp->cache_defrag->kmd_defrags++; 5277 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5278 } 5279 mutex_exit(&cp->cache_lock); 5280 } 5281 5282 /* Is this cache above the fragmentation threshold? */ 5283 static boolean_t 5284 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5285 { 5286 /* 5287 * nfree kmem_frag_numer 5288 * ------------------ > --------------- 5289 * cp->cache_buftotal kmem_frag_denom 5290 */ 5291 return ((nfree * kmem_frag_denom) > 5292 (cp->cache_buftotal * kmem_frag_numer)); 5293 } 5294 5295 static boolean_t 5296 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5297 { 5298 boolean_t fragmented; 5299 uint64_t nfree; 5300 5301 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5302 *doreap = B_FALSE; 5303 5304 if (kmem_move_fulltilt) { 5305 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5306 return (B_TRUE); 5307 } 5308 } else { 5309 if ((cp->cache_complete_slab_count + avl_numnodes( 5310 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5311 return (B_FALSE); 5312 } 5313 } 5314 5315 nfree = cp->cache_bufslab; 5316 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5317 kmem_cache_frag_threshold(cp, nfree)); 5318 5319 /* 5320 * Free buffers in the magazine layer appear allocated from the point of 5321 * view of the slab layer. We want to know if the slab layer would 5322 * appear fragmented if we included free buffers from magazines that 5323 * have fallen out of the working set. 5324 */ 5325 if (!fragmented) { 5326 long reap; 5327 5328 mutex_enter(&cp->cache_depot_lock); 5329 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5330 reap = MIN(reap, cp->cache_full.ml_total); 5331 mutex_exit(&cp->cache_depot_lock); 5332 5333 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5334 if (kmem_cache_frag_threshold(cp, nfree)) { 5335 *doreap = B_TRUE; 5336 } 5337 } 5338 5339 return (fragmented); 5340 } 5341 5342 /* Called periodically from kmem_taskq */ 5343 static void 5344 kmem_cache_scan(kmem_cache_t *cp) 5345 { 5346 boolean_t reap = B_FALSE; 5347 kmem_defrag_t *kmd; 5348 5349 ASSERT(taskq_member(kmem_taskq, curthread)); 5350 5351 mutex_enter(&cp->cache_lock); 5352 5353 kmd = cp->cache_defrag; 5354 if (kmd->kmd_consolidate > 0) { 5355 kmd->kmd_consolidate--; 5356 mutex_exit(&cp->cache_lock); 5357 kmem_cache_reap(cp); 5358 return; 5359 } 5360 5361 if (kmem_cache_is_fragmented(cp, &reap)) { 5362 size_t slabs_found; 5363 5364 /* 5365 * Consolidate reclaimable slabs from the end of the partial 5366 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5367 * reclaimable slabs). Keep track of how many candidate slabs we 5368 * looked for and how many we actually found so we can adjust 5369 * the definition of a candidate slab if we're having trouble 5370 * finding them. 5371 * 5372 * kmem_move_buffers() drops and reacquires cache_lock. 5373 */ 5374 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5375 kmd->kmd_scans++; 5376 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5377 kmem_reclaim_max_slabs, 0); 5378 if (slabs_found >= 0) { 5379 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5380 kmd->kmd_slabs_found += slabs_found; 5381 } 5382 5383 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5384 kmd->kmd_tries = 0; 5385 5386 /* 5387 * If we had difficulty finding candidate slabs in 5388 * previous scans, adjust the threshold so that 5389 * candidates are easier to find. 5390 */ 5391 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5392 kmem_adjust_reclaim_threshold(kmd, -1); 5393 } else if ((kmd->kmd_slabs_found * 2) < 5394 kmd->kmd_slabs_sought) { 5395 kmem_adjust_reclaim_threshold(kmd, 1); 5396 } 5397 kmd->kmd_slabs_sought = 0; 5398 kmd->kmd_slabs_found = 0; 5399 } 5400 } else { 5401 kmem_reset_reclaim_threshold(cp->cache_defrag); 5402 #ifdef DEBUG 5403 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5404 /* 5405 * In a debug kernel we want the consolidator to 5406 * run occasionally even when there is plenty of 5407 * memory. 5408 */ 5409 uint16_t debug_rand; 5410 5411 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5412 if (!kmem_move_noreap && 5413 ((debug_rand % kmem_mtb_reap) == 0)) { 5414 mutex_exit(&cp->cache_lock); 5415 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 5416 kmem_cache_reap(cp); 5417 return; 5418 } else if ((debug_rand % kmem_mtb_move) == 0) { 5419 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5420 KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans); 5421 kmd->kmd_scans++; 5422 (void) kmem_move_buffers(cp, 5423 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5424 } 5425 } 5426 #endif /* DEBUG */ 5427 } 5428 5429 mutex_exit(&cp->cache_lock); 5430 5431 if (reap) { 5432 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 5433 kmem_depot_ws_reap(cp); 5434 } 5435 } 5436