1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Kernel memory allocator, as described in the following two papers and a 30 * statement about the consolidator: 31 * 32 * Jeff Bonwick, 33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 34 * Proceedings of the Summer 1994 Usenix Conference. 35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 36 * 37 * Jeff Bonwick and Jonathan Adams, 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42 * 43 * kmem Slab Consolidator Big Theory Statement: 44 * 45 * 1. Motivation 46 * 47 * As stated in Bonwick94, slabs provide the following advantages over other 48 * allocation structures in terms of memory fragmentation: 49 * 50 * - Internal fragmentation (per-buffer wasted space) is minimal. 51 * - Severe external fragmentation (unused buffers on the free list) is 52 * unlikely. 53 * 54 * Segregating objects by size eliminates one source of external fragmentation, 55 * and according to Bonwick: 56 * 57 * The other reason that slabs reduce external fragmentation is that all 58 * objects in a slab are of the same type, so they have the same lifetime 59 * distribution. The resulting segregation of short-lived and long-lived 60 * objects at slab granularity reduces the likelihood of an entire page being 61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62 * 63 * While unlikely, severe external fragmentation remains possible. Clients that 64 * allocate both short- and long-lived objects from the same cache cannot 65 * anticipate the distribution of long-lived objects within the allocator's slab 66 * implementation. Even a small percentage of long-lived objects distributed 67 * randomly across many slabs can lead to a worst case scenario where the client 68 * frees the majority of its objects and the system gets back almost none of the 69 * slabs. Despite the client doing what it reasonably can to help the system 70 * reclaim memory, the allocator cannot shake free enough slabs because of 71 * lonely allocations stubbornly hanging on. Although the allocator is in a 72 * position to diagnose the fragmentation, there is nothing that the allocator 73 * by itself can do about it. It only takes a single allocated object to prevent 74 * an entire slab from being reclaimed, and any object handed out by 75 * kmem_cache_alloc() is by definition in the client's control. Conversely, 76 * although the client is in a position to move a long-lived object, it has no 77 * way of knowing if the object is causing fragmentation, and if so, where to 78 * move it. A solution necessarily requires further cooperation between the 79 * allocator and the client. 80 * 81 * 2. Move Callback 82 * 83 * The kmem slab consolidator therefore adds a move callback to the 84 * allocator/client interface, improving worst-case external fragmentation in 85 * kmem caches that supply a function to move objects from one memory location 86 * to another. In a situation of low memory kmem attempts to consolidate all of 87 * a cache's slabs at once; otherwise it works slowly to bring external 88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89 * thereby helping to avoid a low memory situation in the future. 90 * 91 * The callback has the following signature: 92 * 93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94 * 95 * It supplies the kmem client with two addresses: the allocated object that 96 * kmem wants to move and a buffer selected by kmem for the client to use as the 97 * copy destination. The callback is kmem's way of saying "Please get off of 98 * this buffer and use this one instead." kmem knows where it wants to move the 99 * object in order to best reduce fragmentation. All the client needs to know 100 * about the second argument (void *new) is that it is an allocated, constructed 101 * object ready to take the contents of the old object. When the move function 102 * is called, the system is likely to be low on memory, and the new object 103 * spares the client from having to worry about allocating memory for the 104 * requested move. The third argument supplies the size of the object, in case a 105 * single move function handles multiple caches whose objects differ only in 106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107 * user argument passed to the constructor, destructor, and reclaim functions is 108 * also passed to the move callback. 109 * 110 * 2.1 Setting the Move Callback 111 * 112 * The client sets the move callback after creating the cache and before 113 * allocating from it: 114 * 115 * object_cache = kmem_cache_create(...); 116 * kmem_cache_set_move(object_cache, object_move); 117 * 118 * 2.2 Move Callback Return Values 119 * 120 * Only the client knows about its own data and when is a good time to move it. 121 * The client is cooperating with kmem to return unused memory to the system, 122 * and kmem respectfully accepts this help at the client's convenience. When 123 * asked to move an object, the client can respond with any of the following: 124 * 125 * typedef enum kmem_cbrc { 126 * KMEM_CBRC_YES, 127 * KMEM_CBRC_NO, 128 * KMEM_CBRC_LATER, 129 * KMEM_CBRC_DONT_NEED, 130 * KMEM_CBRC_DONT_KNOW 131 * } kmem_cbrc_t; 132 * 133 * The client must not explicitly kmem_cache_free() either of the objects passed 134 * to the callback, since kmem wants to free them directly to the slab layer 135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136 * objects to free: 137 * 138 * YES: (Did it) The client moved the object, so kmem frees the old one. 139 * NO: (Never) The client refused, so kmem frees the new object (the 140 * unused copy destination). kmem also marks the slab of the old 141 * object so as not to bother the client with further callbacks for 142 * that object as long as the slab remains on the partial slab list. 143 * (The system won't be getting the slab back as long as the 144 * immovable object holds it hostage, so there's no point in moving 145 * any of its objects.) 146 * LATER: The client is using the object and cannot move it now, so kmem 147 * frees the new object (the unused copy destination). kmem still 148 * attempts to move other objects off the slab, since it expects to 149 * succeed in clearing the slab in a later callback. The client 150 * should use LATER instead of NO if the object is likely to become 151 * movable very soon. 152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153 * with the new object (the unused copy destination). This response 154 * is the client's opportunity to be a model citizen and give back as 155 * much as it can. 156 * DONT_KNOW: The client does not know about the object because 157 * a) the client has just allocated the object and not yet put it 158 * wherever it expects to find known objects 159 * b) the client has removed the object from wherever it expects to 160 * find known objects and is about to free it, or 161 * c) the client has freed the object. 162 * In all these cases (a, b, and c) kmem frees the new object (the 163 * unused copy destination) and searches for the old object in the 164 * magazine layer. If found, the object is removed from the magazine 165 * layer and freed to the slab layer so it will no longer hold the 166 * slab hostage. 167 * 168 * 2.3 Object States 169 * 170 * Neither kmem nor the client can be assumed to know the object's whereabouts 171 * at the time of the callback. An object belonging to a kmem cache may be in 172 * any of the following states: 173 * 174 * 1. Uninitialized on the slab 175 * 2. Allocated from the slab but not constructed (still uninitialized) 176 * 3. Allocated from the slab, constructed, but not yet ready for business 177 * (not in a valid state for the move callback) 178 * 4. In use (valid and known to the client) 179 * 5. About to be freed (no longer in a valid state for the move callback) 180 * 6. Freed to a magazine (still constructed) 181 * 7. Allocated from a magazine, not yet ready for business (not in a valid 182 * state for the move callback), and about to return to state #4 183 * 8. Deconstructed on a magazine that is about to be freed 184 * 9. Freed to the slab 185 * 186 * Since the move callback may be called at any time while the object is in any 187 * of the above states (except state #1), the client needs a safe way to 188 * determine whether or not it knows about the object. Specifically, the client 189 * needs to know whether or not the object is in state #4, the only state in 190 * which a move is valid. If the object is in any other state, the client should 191 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 192 * the object's fields. 193 * 194 * Note that although an object may be in state #4 when kmem initiates the move 195 * request, the object may no longer be in that state by the time kmem actually 196 * calls the move function. Not only does the client free objects 197 * asynchronously, kmem itself puts move requests on a queue where thay are 198 * pending until kmem processes them from another context. Also, objects freed 199 * to a magazine appear allocated from the point of view of the slab layer, so 200 * kmem may even initiate requests for objects in a state other than state #4. 201 * 202 * 2.3.1 Magazine Layer 203 * 204 * An important insight revealed by the states listed above is that the magazine 205 * layer is populated only by kmem_cache_free(). Magazines of constructed 206 * objects are never populated directly from the slab layer (which contains raw, 207 * unconstructed objects). Whenever an allocation request cannot be satisfied 208 * from the magazine layer, the magazines are bypassed and the request is 209 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 210 * the object constructor only when allocating from the slab layer, and only in 211 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 212 * the move callback. kmem does not preconstruct objects in anticipation of 213 * kmem_cache_alloc(). 214 * 215 * 2.3.2 Object Constructor and Destructor 216 * 217 * If the client supplies a destructor, it must be valid to call the destructor 218 * on a newly created object (immediately after the constructor). 219 * 220 * 2.4 Recognizing Known Objects 221 * 222 * There is a simple test to determine safely whether or not the client knows 223 * about a given object in the move callback. It relies on the fact that kmem 224 * guarantees that the object of the move callback has only been touched by the 225 * client itself or else by kmem. kmem does this by ensuring that none of the 226 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 227 * callback is pending. When the last object on a slab is freed, if there is a 228 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 229 * slabs on that list until all pending callbacks are completed. That way, 230 * clients can be certain that the object of a move callback is in one of the 231 * states listed above, making it possible to distinguish known objects (in 232 * state #4) using the two low order bits of any pointer member (with the 233 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 234 * platforms). 235 * 236 * The test works as long as the client always transitions objects from state #4 237 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 238 * order bit of the client-designated pointer member. Since kmem only writes 239 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 240 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 241 * guaranteed to set at least one of the two low order bits. Therefore, given an 242 * object with a back pointer to a 'container_t *o_container', the client can 243 * test 244 * 245 * container_t *container = object->o_container; 246 * if ((uintptr_t)container & 0x3) { 247 * return (KMEM_CBRC_DONT_KNOW); 248 * } 249 * 250 * Typically, an object will have a pointer to some structure with a list or 251 * hash where objects from the cache are kept while in use. Assuming that the 252 * client has some way of knowing that the container structure is valid and will 253 * not go away during the move, and assuming that the structure includes a lock 254 * to protect whatever collection is used, then the client would continue as 255 * follows: 256 * 257 * // Ensure that the container structure does not go away. 258 * if (container_hold(container) == 0) { 259 * return (KMEM_CBRC_DONT_KNOW); 260 * } 261 * mutex_enter(&container->c_objects_lock); 262 * if (container != object->o_container) { 263 * mutex_exit(&container->c_objects_lock); 264 * container_rele(container); 265 * return (KMEM_CBRC_DONT_KNOW); 266 * } 267 * 268 * At this point the client knows that the object cannot be freed as long as 269 * c_objects_lock is held. Note that after acquiring the lock, the client must 270 * recheck the o_container pointer in case the object was removed just before 271 * acquiring the lock. 272 * 273 * When the client is about to free an object, it must first remove that object 274 * from the list, hash, or other structure where it is kept. At that time, to 275 * mark the object so it can be distinguished from the remaining, known objects, 276 * the client sets the designated low order bit: 277 * 278 * mutex_enter(&container->c_objects_lock); 279 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 280 * list_remove(&container->c_objects, object); 281 * mutex_exit(&container->c_objects_lock); 282 * 283 * In the common case, the object is freed to the magazine layer, where it may 284 * be reused on a subsequent allocation without the overhead of calling the 285 * constructor. While in the magazine it appears allocated from the point of 286 * view of the slab layer, making it a candidate for the move callback. Most 287 * objects unrecognized by the client in the move callback fall into this 288 * category and are cheaply distinguished from known objects by the test 289 * described earlier. Since recognition is cheap for the client, and searching 290 * magazines is expensive for kmem, kmem defers searching until the client first 291 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 292 * elsewhere does what it can to avoid bothering the client unnecessarily. 293 * 294 * Invalidating the designated pointer member before freeing the object marks 295 * the object to be avoided in the callback, and conversely, assigning a valid 296 * value to the designated pointer member after allocating the object makes the 297 * object fair game for the callback: 298 * 299 * ... allocate object ... 300 * ... set any initial state not set by the constructor ... 301 * 302 * mutex_enter(&container->c_objects_lock); 303 * list_insert_tail(&container->c_objects, object); 304 * membar_producer(); 305 * object->o_container = container; 306 * mutex_exit(&container->c_objects_lock); 307 * 308 * Note that everything else must be valid before setting o_container makes the 309 * object fair game for the move callback. The membar_producer() call ensures 310 * that all the object's state is written to memory before setting the pointer 311 * that transitions the object from state #3 or #7 (allocated, constructed, not 312 * yet in use) to state #4 (in use, valid). That's important because the move 313 * function has to check the validity of the pointer before it can safely 314 * acquire the lock protecting the collection where it expects to find known 315 * objects. 316 * 317 * This method of distinguishing known objects observes the usual symmetry: 318 * invalidating the designated pointer is the first thing the client does before 319 * freeing the object, and setting the designated pointer is the last thing the 320 * client does after allocating the object. Of course, the client is not 321 * required to use this method. Fundamentally, how the client recognizes known 322 * objects is completely up to the client, but this method is recommended as an 323 * efficient and safe way to take advantage of the guarantees made by kmem. If 324 * the entire object is arbitrary data without any markable bits from a suitable 325 * pointer member, then the client must find some other method, such as 326 * searching a hash table of known objects. 327 * 328 * 2.5 Preventing Objects From Moving 329 * 330 * Besides a way to distinguish known objects, the other thing that the client 331 * needs is a strategy to ensure that an object will not move while the client 332 * is actively using it. The details of satisfying this requirement tend to be 333 * highly cache-specific. It might seem that the same rules that let a client 334 * remove an object safely should also decide when an object can be moved 335 * safely. However, any object state that makes a removal attempt invalid is 336 * likely to be long-lasting for objects that the client does not expect to 337 * remove. kmem knows nothing about the object state and is equally likely (from 338 * the client's point of view) to request a move for any object in the cache, 339 * whether prepared for removal or not. Even a low percentage of objects stuck 340 * in place by unremovability will defeat the consolidator if the stuck objects 341 * are the same long-lived allocations likely to hold slabs hostage. 342 * Fundamentally, the consolidator is not aimed at common cases. Severe external 343 * fragmentation is a worst case scenario manifested as sparsely allocated 344 * slabs, by definition a low percentage of the cache's objects. When deciding 345 * what makes an object movable, keep in mind the goal of the consolidator: to 346 * bring worst-case external fragmentation within the limits guaranteed for 347 * internal fragmentation. Removability is a poor criterion if it is likely to 348 * exclude more than an insignificant percentage of objects for long periods of 349 * time. 350 * 351 * A tricky general solution exists, and it has the advantage of letting you 352 * move any object at almost any moment, practically eliminating the likelihood 353 * that an object can hold a slab hostage. However, if there is a cache-specific 354 * way to ensure that an object is not actively in use in the vast majority of 355 * cases, a simpler solution that leverages this cache-specific knowledge is 356 * preferred. 357 * 358 * 2.5.1 Cache-Specific Solution 359 * 360 * As an example of a cache-specific solution, the ZFS znode cache takes 361 * advantage of the fact that the vast majority of znodes are only being 362 * referenced from the DNLC. (A typical case might be a few hundred in active 363 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 364 * client has established that it recognizes the znode and can access its fields 365 * safely (using the method described earlier), it then tests whether the znode 366 * is referenced by anything other than the DNLC. If so, it assumes that the 367 * znode may be in active use and is unsafe to move, so it drops its locks and 368 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 369 * else znodes are used, no change is needed to protect against the possibility 370 * of the znode moving. The disadvantage is that it remains possible for an 371 * application to hold a znode slab hostage with an open file descriptor. 372 * However, this case ought to be rare and the consolidator has a way to deal 373 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 374 * object, kmem eventually stops believing it and treats the slab as if the 375 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 376 * then focus on getting it off of the partial slab list by allocating rather 377 * than freeing all of its objects. (Either way of getting a slab off the 378 * free list reduces fragmentation.) 379 * 380 * 2.5.2 General Solution 381 * 382 * The general solution, on the other hand, requires an explicit hold everywhere 383 * the object is used to prevent it from moving. To keep the client locking 384 * strategy as uncomplicated as possible, kmem guarantees the simplifying 385 * assumption that move callbacks are sequential, even across multiple caches. 386 * Internally, a global queue processed by a single thread supports all caches 387 * implementing the callback function. No matter how many caches supply a move 388 * function, the consolidator never moves more than one object at a time, so the 389 * client does not have to worry about tricky lock ordering involving several 390 * related objects from different kmem caches. 391 * 392 * The general solution implements the explicit hold as a read-write lock, which 393 * allows multiple readers to access an object from the cache simultaneously 394 * while a single writer is excluded from moving it. A single rwlock for the 395 * entire cache would lock out all threads from using any of the cache's objects 396 * even though only a single object is being moved, so to reduce contention, 397 * the client can fan out the single rwlock into an array of rwlocks hashed by 398 * the object address, making it probable that moving one object will not 399 * prevent other threads from using a different object. The rwlock cannot be a 400 * member of the object itself, because the possibility of the object moving 401 * makes it unsafe to access any of the object's fields until the lock is 402 * acquired. 403 * 404 * Assuming a small, fixed number of locks, it's possible that multiple objects 405 * will hash to the same lock. A thread that needs to use multiple objects in 406 * the same function may acquire the same lock multiple times. Since rwlocks are 407 * reentrant for readers, and since there is never more than a single writer at 408 * a time (assuming that the client acquires the lock as a writer only when 409 * moving an object inside the callback), there would seem to be no problem. 410 * However, a client locking multiple objects in the same function must handle 411 * one case of potential deadlock: Assume that thread A needs to prevent both 412 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 413 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 414 * same lock, that thread A will acquire the lock for object 1 as a reader 415 * before thread B sets the lock's write-wanted bit, preventing thread A from 416 * reacquiring the lock for object 2 as a reader. Unable to make forward 417 * progress, thread A will never release the lock for object 1, resulting in 418 * deadlock. 419 * 420 * There are two ways of avoiding the deadlock just described. The first is to 421 * use rw_tryenter() rather than rw_enter() in the callback function when 422 * attempting to acquire the lock as a writer. If tryenter discovers that the 423 * same object (or another object hashed to the same lock) is already in use, it 424 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 425 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 426 * since it allows a thread to acquire the lock as a reader in spite of a 427 * waiting writer. This second approach insists on moving the object now, no 428 * matter how many readers the move function must wait for in order to do so, 429 * and could delay the completion of the callback indefinitely (blocking 430 * callbacks to other clients). In practice, a less insistent callback using 431 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 432 * little reason to use anything else. 433 * 434 * Avoiding deadlock is not the only problem that an implementation using an 435 * explicit hold needs to solve. Locking the object in the first place (to 436 * prevent it from moving) remains a problem, since the object could move 437 * between the time you obtain a pointer to the object and the time you acquire 438 * the rwlock hashed to that pointer value. Therefore the client needs to 439 * recheck the value of the pointer after acquiring the lock, drop the lock if 440 * the value has changed, and try again. This requires a level of indirection: 441 * something that points to the object rather than the object itself, that the 442 * client can access safely while attempting to acquire the lock. (The object 443 * itself cannot be referenced safely because it can move at any time.) 444 * The following lock-acquisition function takes whatever is safe to reference 445 * (arg), follows its pointer to the object (using function f), and tries as 446 * often as necessary to acquire the hashed lock and verify that the object 447 * still has not moved: 448 * 449 * object_t * 450 * object_hold(object_f f, void *arg) 451 * { 452 * object_t *op; 453 * 454 * op = f(arg); 455 * if (op == NULL) { 456 * return (NULL); 457 * } 458 * 459 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 460 * while (op != f(arg)) { 461 * rw_exit(OBJECT_RWLOCK(op)); 462 * op = f(arg); 463 * if (op == NULL) { 464 * break; 465 * } 466 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 467 * } 468 * 469 * return (op); 470 * } 471 * 472 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 473 * lock reacquisition loop, while necessary, almost never executes. The function 474 * pointer f (used to obtain the object pointer from arg) has the following type 475 * definition: 476 * 477 * typedef object_t *(*object_f)(void *arg); 478 * 479 * An object_f implementation is likely to be as simple as accessing a structure 480 * member: 481 * 482 * object_t * 483 * s_object(void *arg) 484 * { 485 * something_t *sp = arg; 486 * return (sp->s_object); 487 * } 488 * 489 * The flexibility of a function pointer allows the path to the object to be 490 * arbitrarily complex and also supports the notion that depending on where you 491 * are using the object, you may need to get it from someplace different. 492 * 493 * The function that releases the explicit hold is simpler because it does not 494 * have to worry about the object moving: 495 * 496 * void 497 * object_rele(object_t *op) 498 * { 499 * rw_exit(OBJECT_RWLOCK(op)); 500 * } 501 * 502 * The caller is spared these details so that obtaining and releasing an 503 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 504 * of object_hold() only needs to know that the returned object pointer is valid 505 * if not NULL and that the object will not move until released. 506 * 507 * Although object_hold() prevents an object from moving, it does not prevent it 508 * from being freed. The caller must take measures before calling object_hold() 509 * (afterwards is too late) to ensure that the held object cannot be freed. The 510 * caller must do so without accessing the unsafe object reference, so any lock 511 * or reference count used to ensure the continued existence of the object must 512 * live outside the object itself. 513 * 514 * Obtaining a new object is a special case where an explicit hold is impossible 515 * for the caller. Any function that returns a newly allocated object (either as 516 * a return value, or as an in-out paramter) must return it already held; after 517 * the caller gets it is too late, since the object cannot be safely accessed 518 * without the level of indirection described earlier. The following 519 * object_alloc() example uses the same code shown earlier to transition a new 520 * object into the state of being recognized (by the client) as a known object. 521 * The function must acquire the hold (rw_enter) before that state transition 522 * makes the object movable: 523 * 524 * static object_t * 525 * object_alloc(container_t *container) 526 * { 527 * object_t *object = kmem_cache_create(object_cache, 0); 528 * ... set any initial state not set by the constructor ... 529 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 530 * mutex_enter(&container->c_objects_lock); 531 * list_insert_tail(&container->c_objects, object); 532 * membar_producer(); 533 * object->o_container = container; 534 * mutex_exit(&container->c_objects_lock); 535 * return (object); 536 * } 537 * 538 * Functions that implicitly acquire an object hold (any function that calls 539 * object_alloc() to supply an object for the caller) need to be carefully noted 540 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 541 * prevent all objects hashed to the affected rwlocks from ever being moved. 542 * 543 * The pointer to a held object can be hashed to the holding rwlock even after 544 * the object has been freed. Although it is possible to release the hold 545 * after freeing the object, you may decide to release the hold implicitly in 546 * whatever function frees the object, so as to release the hold as soon as 547 * possible, and for the sake of symmetry with the function that implicitly 548 * acquires the hold when it allocates the object. Here, object_free() releases 549 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 550 * matching pair with object_hold(): 551 * 552 * void 553 * object_free(object_t *object) 554 * { 555 * container_t *container; 556 * 557 * ASSERT(object_held(object)); 558 * container = object->o_container; 559 * mutex_enter(&container->c_objects_lock); 560 * object->o_container = 561 * (void *)((uintptr_t)object->o_container | 0x1); 562 * list_remove(&container->c_objects, object); 563 * mutex_exit(&container->c_objects_lock); 564 * object_rele(object); 565 * kmem_cache_free(object_cache, object); 566 * } 567 * 568 * Note that object_free() cannot safely accept an object pointer as an argument 569 * unless the object is already held. Any function that calls object_free() 570 * needs to be carefully noted since it similarly forms a matching pair with 571 * object_hold(). 572 * 573 * To complete the picture, the following callback function implements the 574 * general solution by moving objects only if they are currently unheld: 575 * 576 * static kmem_cbrc_t 577 * object_move(void *buf, void *newbuf, size_t size, void *arg) 578 * { 579 * object_t *op = buf, *np = newbuf; 580 * container_t *container; 581 * 582 * container = op->o_container; 583 * if ((uintptr_t)container & 0x3) { 584 * return (KMEM_CBRC_DONT_KNOW); 585 * } 586 * 587 * // Ensure that the container structure does not go away. 588 * if (container_hold(container) == 0) { 589 * return (KMEM_CBRC_DONT_KNOW); 590 * } 591 * 592 * mutex_enter(&container->c_objects_lock); 593 * if (container != op->o_container) { 594 * mutex_exit(&container->c_objects_lock); 595 * container_rele(container); 596 * return (KMEM_CBRC_DONT_KNOW); 597 * } 598 * 599 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 600 * mutex_exit(&container->c_objects_lock); 601 * container_rele(container); 602 * return (KMEM_CBRC_LATER); 603 * } 604 * 605 * object_move_impl(op, np); // critical section 606 * rw_exit(OBJECT_RWLOCK(op)); 607 * 608 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 609 * list_link_replace(&op->o_link_node, &np->o_link_node); 610 * mutex_exit(&container->c_objects_lock); 611 * container_rele(container); 612 * return (KMEM_CBRC_YES); 613 * } 614 * 615 * Note that object_move() must invalidate the designated o_container pointer of 616 * the old object in the same way that object_free() does, since kmem will free 617 * the object in response to the KMEM_CBRC_YES return value. 618 * 619 * The lock order in object_move() differs from object_alloc(), which locks 620 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 621 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 622 * not a problem. Holding the lock on the object list in the example above 623 * through the entire callback not only prevents the object from going away, it 624 * also allows you to lock the list elsewhere and know that none of its elements 625 * will move during iteration. 626 * 627 * Adding an explicit hold everywhere an object from the cache is used is tricky 628 * and involves much more change to client code than a cache-specific solution 629 * that leverages existing state to decide whether or not an object is 630 * movable. However, this approach has the advantage that no object remains 631 * immovable for any significant length of time, making it extremely unlikely 632 * that long-lived allocations can continue holding slabs hostage; and it works 633 * for any cache. 634 * 635 * 3. Consolidator Implementation 636 * 637 * Once the client supplies a move function that a) recognizes known objects and 638 * b) avoids moving objects that are actively in use, the remaining work is up 639 * to the consolidator to decide which objects to move and when to issue 640 * callbacks. 641 * 642 * The consolidator relies on the fact that a cache's slabs are ordered by 643 * usage. Each slab has a fixed number of objects. Depending on the slab's 644 * "color" (the offset of the first object from the beginning of the slab; 645 * offsets are staggered to mitigate false sharing of cache lines) it is either 646 * the maximum number of objects per slab determined at cache creation time or 647 * else the number closest to the maximum that fits within the space remaining 648 * after the initial offset. A completely allocated slab may contribute some 649 * internal fragmentation (per-slab overhead) but no external fragmentation, so 650 * it is of no interest to the consolidator. At the other extreme, slabs whose 651 * objects have all been freed to the slab are released to the virtual memory 652 * (VM) subsystem (objects freed to magazines are still allocated as far as the 653 * slab is concerned). External fragmentation exists when there are slabs 654 * somewhere between these extremes. A partial slab has at least one but not all 655 * of its objects allocated. The more partial slabs, and the fewer allocated 656 * objects on each of them, the higher the fragmentation. Hence the 657 * consolidator's overall strategy is to reduce the number of partial slabs by 658 * moving allocated objects from the least allocated slabs to the most allocated 659 * slabs. 660 * 661 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 662 * slabs are kept separately in an unordered list. Since the majority of slabs 663 * tend to be completely allocated (a typical unfragmented cache may have 664 * thousands of complete slabs and only a single partial slab), separating 665 * complete slabs improves the efficiency of partial slab ordering, since the 666 * complete slabs do not affect the depth or balance of the AVL tree. This 667 * ordered sequence of partial slabs acts as a "free list" supplying objects for 668 * allocation requests. 669 * 670 * Objects are always allocated from the first partial slab in the free list, 671 * where the allocation is most likely to eliminate a partial slab (by 672 * completely allocating it). Conversely, when a single object from a completely 673 * allocated slab is freed to the slab, that slab is added to the front of the 674 * free list. Since most free list activity involves highly allocated slabs 675 * coming and going at the front of the list, slabs tend naturally toward the 676 * ideal order: highly allocated at the front, sparsely allocated at the back. 677 * Slabs with few allocated objects are likely to become completely free if they 678 * keep a safe distance away from the front of the free list. Slab misorders 679 * interfere with the natural tendency of slabs to become completely free or 680 * completely allocated. For example, a slab with a single allocated object 681 * needs only a single free to escape the cache; its natural desire is 682 * frustrated when it finds itself at the front of the list where a second 683 * allocation happens just before the free could have released it. Another slab 684 * with all but one object allocated might have supplied the buffer instead, so 685 * that both (as opposed to neither) of the slabs would have been taken off the 686 * free list. 687 * 688 * Although slabs tend naturally toward the ideal order, misorders allowed by a 689 * simple list implementation defeat the consolidator's strategy of merging 690 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 691 * needs another way to fix misorders to optimize its callback strategy. One 692 * approach is to periodically scan a limited number of slabs, advancing a 693 * marker to hold the current scan position, and to move extreme misorders to 694 * the front or back of the free list and to the front or back of the current 695 * scan range. By making consecutive scan ranges overlap by one slab, the least 696 * allocated slab in the current range can be carried along from the end of one 697 * scan to the start of the next. 698 * 699 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 700 * task, however. Since most of the cache's activity is in the magazine layer, 701 * and allocations from the slab layer represent only a startup cost, the 702 * overhead of maintaining a balanced tree is not a significant concern compared 703 * to the opportunity of reducing complexity by eliminating the partial slab 704 * scanner just described. The overhead of an AVL tree is minimized by 705 * maintaining only partial slabs in the tree and keeping completely allocated 706 * slabs separately in a list. To avoid increasing the size of the slab 707 * structure the AVL linkage pointers are reused for the slab's list linkage, 708 * since the slab will always be either partial or complete, never stored both 709 * ways at the same time. To further minimize the overhead of the AVL tree the 710 * compare function that orders partial slabs by usage divides the range of 711 * allocated object counts into bins such that counts within the same bin are 712 * considered equal. Binning partial slabs makes it less likely that allocating 713 * or freeing a single object will change the slab's order, requiring a tree 714 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 715 * requiring some rebalancing of the tree). Allocation counts closest to 716 * completely free and completely allocated are left unbinned (finely sorted) to 717 * better support the consolidator's strategy of merging slabs at either 718 * extreme. 719 * 720 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 721 * 722 * The consolidator piggybacks on the kmem maintenance thread and is called on 723 * the same interval as kmem_cache_update(), once per cache every fifteen 724 * seconds. kmem maintains a running count of unallocated objects in the slab 725 * layer (cache_bufslab). The consolidator checks whether that number exceeds 726 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 727 * there is a significant number of slabs in the cache (arbitrarily a minimum 728 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 729 * working set are included in the assessment, and magazines in the depot are 730 * reaped if those objects would lift cache_bufslab above the fragmentation 731 * threshold. Once the consolidator decides that a cache is fragmented, it looks 732 * for a candidate slab to reclaim, starting at the end of the partial slab free 733 * list and scanning backwards. At first the consolidator is choosy: only a slab 734 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 735 * single allocated object, regardless of percentage). If there is difficulty 736 * finding a candidate slab, kmem raises the allocation threshold incrementally, 737 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 738 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 739 * even in the worst case of every slab in the cache being almost 7/8 allocated. 740 * The threshold can also be lowered incrementally when candidate slabs are easy 741 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 742 * is no longer fragmented. 743 * 744 * 3.2 Generating Callbacks 745 * 746 * Once an eligible slab is chosen, a callback is generated for every allocated 747 * object on the slab, in the hope that the client will move everything off the 748 * slab and make it reclaimable. Objects selected as move destinations are 749 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 750 * order (most allocated at the front, least allocated at the back) and a 751 * cooperative client, the consolidator will succeed in removing slabs from both 752 * ends of the free list, completely allocating on the one hand and completely 753 * freeing on the other. Objects selected as move destinations are allocated in 754 * the kmem maintenance thread where move requests are enqueued. A separate 755 * callback thread removes pending callbacks from the queue and calls the 756 * client. The separate thread ensures that client code (the move function) does 757 * not interfere with internal kmem maintenance tasks. A map of pending 758 * callbacks keyed by object address (the object to be moved) is checked to 759 * ensure that duplicate callbacks are not generated for the same object. 760 * Allocating the move destination (the object to move to) prevents subsequent 761 * callbacks from selecting the same destination as an earlier pending callback. 762 * 763 * Move requests can also be generated by kmem_cache_reap() when the system is 764 * desperate for memory and by kmem_cache_move_notify(), called by the client to 765 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 766 * The map of pending callbacks is protected by the same lock that protects the 767 * slab layer. 768 * 769 * When the system is desperate for memory, kmem does not bother to determine 770 * whether or not the cache exceeds the fragmentation threshold, but tries to 771 * consolidate as many slabs as possible. Normally, the consolidator chews 772 * slowly, one sparsely allocated slab at a time during each maintenance 773 * interval that the cache is fragmented. When desperate, the consolidator 774 * starts at the last partial slab and enqueues callbacks for every allocated 775 * object on every partial slab, working backwards until it reaches the first 776 * partial slab. The first partial slab, meanwhile, advances in pace with the 777 * consolidator as allocations to supply move destinations for the enqueued 778 * callbacks use up the highly allocated slabs at the front of the free list. 779 * Ideally, the overgrown free list collapses like an accordion, starting at 780 * both ends and ending at the center with a single partial slab. 781 * 782 * 3.3 Client Responses 783 * 784 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 785 * marks the slab that supplied the stuck object non-reclaimable and moves it to 786 * front of the free list. The slab remains marked as long as it remains on the 787 * free list, and it appears more allocated to the partial slab compare function 788 * than any unmarked slab, no matter how many of its objects are allocated. 789 * Since even one immovable object ties up the entire slab, the goal is to 790 * completely allocate any slab that cannot be completely freed. kmem does not 791 * bother generating callbacks to move objects from a marked slab unless the 792 * system is desperate. 793 * 794 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 795 * slab. If the client responds LATER too many times, kmem disbelieves and 796 * treats the response as a NO. The count is cleared when the slab is taken off 797 * the partial slab list or when the client moves one of the slab's objects. 798 * 799 * 4. Observability 800 * 801 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 802 * the ::kmem_slabs dcmd. For a complete description of the command, enter 803 * '::help kmem_slabs' at the mdb prompt. 804 */ 805 806 #include <sys/kmem_impl.h> 807 #include <sys/vmem_impl.h> 808 #include <sys/param.h> 809 #include <sys/sysmacros.h> 810 #include <sys/vm.h> 811 #include <sys/proc.h> 812 #include <sys/tuneable.h> 813 #include <sys/systm.h> 814 #include <sys/cmn_err.h> 815 #include <sys/debug.h> 816 #include <sys/sdt.h> 817 #include <sys/mutex.h> 818 #include <sys/bitmap.h> 819 #include <sys/atomic.h> 820 #include <sys/kobj.h> 821 #include <sys/disp.h> 822 #include <vm/seg_kmem.h> 823 #include <sys/log.h> 824 #include <sys/callb.h> 825 #include <sys/taskq.h> 826 #include <sys/modctl.h> 827 #include <sys/reboot.h> 828 #include <sys/id32.h> 829 #include <sys/zone.h> 830 #include <sys/netstack.h> 831 #ifdef DEBUG 832 #include <sys/random.h> 833 #endif 834 835 extern void streams_msg_init(void); 836 extern int segkp_fromheap; 837 extern void segkp_cache_free(void); 838 839 struct kmem_cache_kstat { 840 kstat_named_t kmc_buf_size; 841 kstat_named_t kmc_align; 842 kstat_named_t kmc_chunk_size; 843 kstat_named_t kmc_slab_size; 844 kstat_named_t kmc_alloc; 845 kstat_named_t kmc_alloc_fail; 846 kstat_named_t kmc_free; 847 kstat_named_t kmc_depot_alloc; 848 kstat_named_t kmc_depot_free; 849 kstat_named_t kmc_depot_contention; 850 kstat_named_t kmc_slab_alloc; 851 kstat_named_t kmc_slab_free; 852 kstat_named_t kmc_buf_constructed; 853 kstat_named_t kmc_buf_avail; 854 kstat_named_t kmc_buf_inuse; 855 kstat_named_t kmc_buf_total; 856 kstat_named_t kmc_buf_max; 857 kstat_named_t kmc_slab_create; 858 kstat_named_t kmc_slab_destroy; 859 kstat_named_t kmc_vmem_source; 860 kstat_named_t kmc_hash_size; 861 kstat_named_t kmc_hash_lookup_depth; 862 kstat_named_t kmc_hash_rescale; 863 kstat_named_t kmc_full_magazines; 864 kstat_named_t kmc_empty_magazines; 865 kstat_named_t kmc_magazine_size; 866 kstat_named_t kmc_move_callbacks; 867 kstat_named_t kmc_move_yes; 868 kstat_named_t kmc_move_no; 869 kstat_named_t kmc_move_later; 870 kstat_named_t kmc_move_dont_need; 871 kstat_named_t kmc_move_dont_know; 872 kstat_named_t kmc_move_hunt_found; 873 } kmem_cache_kstat = { 874 { "buf_size", KSTAT_DATA_UINT64 }, 875 { "align", KSTAT_DATA_UINT64 }, 876 { "chunk_size", KSTAT_DATA_UINT64 }, 877 { "slab_size", KSTAT_DATA_UINT64 }, 878 { "alloc", KSTAT_DATA_UINT64 }, 879 { "alloc_fail", KSTAT_DATA_UINT64 }, 880 { "free", KSTAT_DATA_UINT64 }, 881 { "depot_alloc", KSTAT_DATA_UINT64 }, 882 { "depot_free", KSTAT_DATA_UINT64 }, 883 { "depot_contention", KSTAT_DATA_UINT64 }, 884 { "slab_alloc", KSTAT_DATA_UINT64 }, 885 { "slab_free", KSTAT_DATA_UINT64 }, 886 { "buf_constructed", KSTAT_DATA_UINT64 }, 887 { "buf_avail", KSTAT_DATA_UINT64 }, 888 { "buf_inuse", KSTAT_DATA_UINT64 }, 889 { "buf_total", KSTAT_DATA_UINT64 }, 890 { "buf_max", KSTAT_DATA_UINT64 }, 891 { "slab_create", KSTAT_DATA_UINT64 }, 892 { "slab_destroy", KSTAT_DATA_UINT64 }, 893 { "vmem_source", KSTAT_DATA_UINT64 }, 894 { "hash_size", KSTAT_DATA_UINT64 }, 895 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 896 { "hash_rescale", KSTAT_DATA_UINT64 }, 897 { "full_magazines", KSTAT_DATA_UINT64 }, 898 { "empty_magazines", KSTAT_DATA_UINT64 }, 899 { "magazine_size", KSTAT_DATA_UINT64 }, 900 { "move_callbacks", KSTAT_DATA_UINT64 }, 901 { "move_yes", KSTAT_DATA_UINT64 }, 902 { "move_no", KSTAT_DATA_UINT64 }, 903 { "move_later", KSTAT_DATA_UINT64 }, 904 { "move_dont_need", KSTAT_DATA_UINT64 }, 905 { "move_dont_know", KSTAT_DATA_UINT64 }, 906 { "move_hunt_found", KSTAT_DATA_UINT64 }, 907 }; 908 909 static kmutex_t kmem_cache_kstat_lock; 910 911 /* 912 * The default set of caches to back kmem_alloc(). 913 * These sizes should be reevaluated periodically. 914 * 915 * We want allocations that are multiples of the coherency granularity 916 * (64 bytes) to be satisfied from a cache which is a multiple of 64 917 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 918 * the next kmem_cache_size greater than or equal to it must be a 919 * multiple of 64. 920 */ 921 static const int kmem_alloc_sizes[] = { 922 1 * 8, 923 2 * 8, 924 3 * 8, 925 4 * 8, 5 * 8, 6 * 8, 7 * 8, 926 4 * 16, 5 * 16, 6 * 16, 7 * 16, 927 4 * 32, 5 * 32, 6 * 32, 7 * 32, 928 4 * 64, 5 * 64, 6 * 64, 7 * 64, 929 4 * 128, 5 * 128, 6 * 128, 7 * 128, 930 P2ALIGN(8192 / 7, 64), 931 P2ALIGN(8192 / 6, 64), 932 P2ALIGN(8192 / 5, 64), 933 P2ALIGN(8192 / 4, 64), 934 P2ALIGN(8192 / 3, 64), 935 P2ALIGN(8192 / 2, 64), 936 P2ALIGN(8192 / 1, 64), 937 4096 * 3, 938 8192 * 2, 939 8192 * 3, 940 8192 * 4, 941 }; 942 943 #define KMEM_MAXBUF 32768 944 945 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 946 947 static kmem_magtype_t kmem_magtype[] = { 948 { 1, 8, 3200, 65536 }, 949 { 3, 16, 256, 32768 }, 950 { 7, 32, 64, 16384 }, 951 { 15, 64, 0, 8192 }, 952 { 31, 64, 0, 4096 }, 953 { 47, 64, 0, 2048 }, 954 { 63, 64, 0, 1024 }, 955 { 95, 64, 0, 512 }, 956 { 143, 64, 0, 0 }, 957 }; 958 959 static uint32_t kmem_reaping; 960 static uint32_t kmem_reaping_idspace; 961 962 /* 963 * kmem tunables 964 */ 965 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 966 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 967 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 968 int kmem_panic = 1; /* whether to panic on error */ 969 int kmem_logging = 1; /* kmem_log_enter() override */ 970 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 971 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 972 size_t kmem_content_log_size; /* content log size [2% of memory] */ 973 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 974 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 975 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 976 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 977 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 978 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 979 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 980 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 981 982 #ifdef DEBUG 983 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 984 #else 985 int kmem_flags = 0; 986 #endif 987 int kmem_ready; 988 static boolean_t kmem_mp_init_done = B_FALSE; 989 990 static kmem_cache_t *kmem_slab_cache; 991 static kmem_cache_t *kmem_bufctl_cache; 992 static kmem_cache_t *kmem_bufctl_audit_cache; 993 994 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 995 static list_t kmem_caches; 996 997 static taskq_t *kmem_taskq; 998 static kmutex_t kmem_flags_lock; 999 static vmem_t *kmem_metadata_arena; 1000 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1001 static vmem_t *kmem_cache_arena; 1002 static vmem_t *kmem_hash_arena; 1003 static vmem_t *kmem_log_arena; 1004 static vmem_t *kmem_oversize_arena; 1005 static vmem_t *kmem_va_arena; 1006 static vmem_t *kmem_default_arena; 1007 static vmem_t *kmem_firewall_va_arena; 1008 static vmem_t *kmem_firewall_arena; 1009 1010 /* 1011 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1012 * turned on when DEBUG is also defined. 1013 */ 1014 #ifdef DEBUG 1015 #define KMEM_STATS 1016 #endif /* DEBUG */ 1017 1018 #ifdef KMEM_STATS 1019 #define KMEM_STAT_ADD(stat) ((stat)++) 1020 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1021 #else 1022 #define KMEM_STAT_ADD(stat) /* nothing */ 1023 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1024 #endif /* KMEM_STATS */ 1025 1026 /* 1027 * kmem slab consolidator thresholds (tunables) 1028 */ 1029 static size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1030 static size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1031 static size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1032 /* 1033 * Maximum number of slabs from which to move buffers during a single 1034 * maintenance interval while the system is not low on memory. 1035 */ 1036 static size_t kmem_reclaim_max_slabs = 1; 1037 /* 1038 * Number of slabs to scan backwards from the end of the partial slab list 1039 * when searching for buffers to relocate. 1040 */ 1041 static size_t kmem_reclaim_scan_range = 12; 1042 1043 #ifdef KMEM_STATS 1044 static struct { 1045 uint64_t kms_callbacks; 1046 uint64_t kms_yes; 1047 uint64_t kms_no; 1048 uint64_t kms_later; 1049 uint64_t kms_dont_need; 1050 uint64_t kms_dont_know; 1051 uint64_t kms_hunt_found_slab; 1052 uint64_t kms_hunt_found_mag; 1053 uint64_t kms_hunt_alloc_fail; 1054 uint64_t kms_hunt_lucky; 1055 uint64_t kms_notify; 1056 uint64_t kms_notify_callbacks; 1057 uint64_t kms_disbelief; 1058 uint64_t kms_already_pending; 1059 uint64_t kms_callback_alloc_fail; 1060 uint64_t kms_callback_taskq_fail; 1061 uint64_t kms_endscan_slab_destroyed; 1062 uint64_t kms_endscan_nomem; 1063 uint64_t kms_endscan_slab_all_used; 1064 uint64_t kms_endscan_refcnt_changed; 1065 uint64_t kms_endscan_nomove_changed; 1066 uint64_t kms_endscan_freelist; 1067 uint64_t kms_avl_update; 1068 uint64_t kms_avl_noupdate; 1069 uint64_t kms_no_longer_reclaimable; 1070 uint64_t kms_notify_no_longer_reclaimable; 1071 uint64_t kms_alloc_fail; 1072 uint64_t kms_constructor_fail; 1073 uint64_t kms_dead_slabs_freed; 1074 uint64_t kms_defrags; 1075 uint64_t kms_scan_depot_ws_reaps; 1076 uint64_t kms_debug_reaps; 1077 uint64_t kms_debug_move_scans; 1078 } kmem_move_stats; 1079 #endif /* KMEM_STATS */ 1080 1081 /* consolidator knobs */ 1082 static boolean_t kmem_move_noreap; 1083 static boolean_t kmem_move_blocked; 1084 static boolean_t kmem_move_fulltilt; 1085 static boolean_t kmem_move_any_partial; 1086 1087 #ifdef DEBUG 1088 /* 1089 * Ensure code coverage by occasionally running the consolidator even when the 1090 * caches are not fragmented (they may never be). These intervals are mean time 1091 * in cache maintenance intervals (kmem_cache_update). 1092 */ 1093 static int kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1094 static int kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1095 #endif /* DEBUG */ 1096 1097 static kmem_cache_t *kmem_defrag_cache; 1098 static kmem_cache_t *kmem_move_cache; 1099 static taskq_t *kmem_move_taskq; 1100 1101 static void kmem_cache_scan(kmem_cache_t *); 1102 static void kmem_cache_defrag(kmem_cache_t *); 1103 1104 1105 kmem_log_header_t *kmem_transaction_log; 1106 kmem_log_header_t *kmem_content_log; 1107 kmem_log_header_t *kmem_failure_log; 1108 kmem_log_header_t *kmem_slab_log; 1109 1110 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1111 1112 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1113 if ((count) > 0) { \ 1114 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1115 pc_t *_e; \ 1116 /* memmove() the old entries down one notch */ \ 1117 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1118 *_e = *(_e - 1); \ 1119 *_s = (uintptr_t)(caller); \ 1120 } 1121 1122 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1123 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1124 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1125 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1126 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1127 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1128 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1129 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1130 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1131 1132 struct { 1133 hrtime_t kmp_timestamp; /* timestamp of panic */ 1134 int kmp_error; /* type of kmem error */ 1135 void *kmp_buffer; /* buffer that induced panic */ 1136 void *kmp_realbuf; /* real start address for buffer */ 1137 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1138 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1139 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1140 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1141 } kmem_panic_info; 1142 1143 1144 static void 1145 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1146 { 1147 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1148 uint64_t *buf = buf_arg; 1149 1150 while (buf < bufend) 1151 *buf++ = pattern; 1152 } 1153 1154 static void * 1155 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1156 { 1157 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1158 uint64_t *buf; 1159 1160 for (buf = buf_arg; buf < bufend; buf++) 1161 if (*buf != pattern) 1162 return (buf); 1163 return (NULL); 1164 } 1165 1166 static void * 1167 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1168 { 1169 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1170 uint64_t *buf; 1171 1172 for (buf = buf_arg; buf < bufend; buf++) { 1173 if (*buf != old) { 1174 copy_pattern(old, buf_arg, 1175 (char *)buf - (char *)buf_arg); 1176 return (buf); 1177 } 1178 *buf = new; 1179 } 1180 1181 return (NULL); 1182 } 1183 1184 static void 1185 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1186 { 1187 kmem_cache_t *cp; 1188 1189 mutex_enter(&kmem_cache_lock); 1190 for (cp = list_head(&kmem_caches); cp != NULL; 1191 cp = list_next(&kmem_caches, cp)) 1192 if (tq != NULL) 1193 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1194 tqflag); 1195 else 1196 func(cp); 1197 mutex_exit(&kmem_cache_lock); 1198 } 1199 1200 static void 1201 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1202 { 1203 kmem_cache_t *cp; 1204 1205 mutex_enter(&kmem_cache_lock); 1206 for (cp = list_head(&kmem_caches); cp != NULL; 1207 cp = list_next(&kmem_caches, cp)) { 1208 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1209 continue; 1210 if (tq != NULL) 1211 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1212 tqflag); 1213 else 1214 func(cp); 1215 } 1216 mutex_exit(&kmem_cache_lock); 1217 } 1218 1219 /* 1220 * Debugging support. Given a buffer address, find its slab. 1221 */ 1222 static kmem_slab_t * 1223 kmem_findslab(kmem_cache_t *cp, void *buf) 1224 { 1225 kmem_slab_t *sp; 1226 1227 mutex_enter(&cp->cache_lock); 1228 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1229 sp = list_next(&cp->cache_complete_slabs, sp)) { 1230 if (KMEM_SLAB_MEMBER(sp, buf)) { 1231 mutex_exit(&cp->cache_lock); 1232 return (sp); 1233 } 1234 } 1235 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1236 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1237 if (KMEM_SLAB_MEMBER(sp, buf)) { 1238 mutex_exit(&cp->cache_lock); 1239 return (sp); 1240 } 1241 } 1242 mutex_exit(&cp->cache_lock); 1243 1244 return (NULL); 1245 } 1246 1247 static void 1248 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1249 { 1250 kmem_buftag_t *btp = NULL; 1251 kmem_bufctl_t *bcp = NULL; 1252 kmem_cache_t *cp = cparg; 1253 kmem_slab_t *sp; 1254 uint64_t *off; 1255 void *buf = bufarg; 1256 1257 kmem_logging = 0; /* stop logging when a bad thing happens */ 1258 1259 kmem_panic_info.kmp_timestamp = gethrtime(); 1260 1261 sp = kmem_findslab(cp, buf); 1262 if (sp == NULL) { 1263 for (cp = list_tail(&kmem_caches); cp != NULL; 1264 cp = list_prev(&kmem_caches, cp)) { 1265 if ((sp = kmem_findslab(cp, buf)) != NULL) 1266 break; 1267 } 1268 } 1269 1270 if (sp == NULL) { 1271 cp = NULL; 1272 error = KMERR_BADADDR; 1273 } else { 1274 if (cp != cparg) 1275 error = KMERR_BADCACHE; 1276 else 1277 buf = (char *)bufarg - ((uintptr_t)bufarg - 1278 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1279 if (buf != bufarg) 1280 error = KMERR_BADBASE; 1281 if (cp->cache_flags & KMF_BUFTAG) 1282 btp = KMEM_BUFTAG(cp, buf); 1283 if (cp->cache_flags & KMF_HASH) { 1284 mutex_enter(&cp->cache_lock); 1285 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1286 if (bcp->bc_addr == buf) 1287 break; 1288 mutex_exit(&cp->cache_lock); 1289 if (bcp == NULL && btp != NULL) 1290 bcp = btp->bt_bufctl; 1291 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1292 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1293 bcp->bc_addr != buf) { 1294 error = KMERR_BADBUFCTL; 1295 bcp = NULL; 1296 } 1297 } 1298 } 1299 1300 kmem_panic_info.kmp_error = error; 1301 kmem_panic_info.kmp_buffer = bufarg; 1302 kmem_panic_info.kmp_realbuf = buf; 1303 kmem_panic_info.kmp_cache = cparg; 1304 kmem_panic_info.kmp_realcache = cp; 1305 kmem_panic_info.kmp_slab = sp; 1306 kmem_panic_info.kmp_bufctl = bcp; 1307 1308 printf("kernel memory allocator: "); 1309 1310 switch (error) { 1311 1312 case KMERR_MODIFIED: 1313 printf("buffer modified after being freed\n"); 1314 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1315 if (off == NULL) /* shouldn't happen */ 1316 off = buf; 1317 printf("modification occurred at offset 0x%lx " 1318 "(0x%llx replaced by 0x%llx)\n", 1319 (uintptr_t)off - (uintptr_t)buf, 1320 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1321 break; 1322 1323 case KMERR_REDZONE: 1324 printf("redzone violation: write past end of buffer\n"); 1325 break; 1326 1327 case KMERR_BADADDR: 1328 printf("invalid free: buffer not in cache\n"); 1329 break; 1330 1331 case KMERR_DUPFREE: 1332 printf("duplicate free: buffer freed twice\n"); 1333 break; 1334 1335 case KMERR_BADBUFTAG: 1336 printf("boundary tag corrupted\n"); 1337 printf("bcp ^ bxstat = %lx, should be %lx\n", 1338 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1339 KMEM_BUFTAG_FREE); 1340 break; 1341 1342 case KMERR_BADBUFCTL: 1343 printf("bufctl corrupted\n"); 1344 break; 1345 1346 case KMERR_BADCACHE: 1347 printf("buffer freed to wrong cache\n"); 1348 printf("buffer was allocated from %s,\n", cp->cache_name); 1349 printf("caller attempting free to %s.\n", cparg->cache_name); 1350 break; 1351 1352 case KMERR_BADSIZE: 1353 printf("bad free: free size (%u) != alloc size (%u)\n", 1354 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1355 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1356 break; 1357 1358 case KMERR_BADBASE: 1359 printf("bad free: free address (%p) != alloc address (%p)\n", 1360 bufarg, buf); 1361 break; 1362 } 1363 1364 printf("buffer=%p bufctl=%p cache: %s\n", 1365 bufarg, (void *)bcp, cparg->cache_name); 1366 1367 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1368 error != KMERR_BADBUFCTL) { 1369 int d; 1370 timestruc_t ts; 1371 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1372 1373 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1374 printf("previous transaction on buffer %p:\n", buf); 1375 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1376 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1377 (void *)sp, cp->cache_name); 1378 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1379 ulong_t off; 1380 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1381 printf("%s+%lx\n", sym ? sym : "?", off); 1382 } 1383 } 1384 if (kmem_panic > 0) 1385 panic("kernel heap corruption detected"); 1386 if (kmem_panic == 0) 1387 debug_enter(NULL); 1388 kmem_logging = 1; /* resume logging */ 1389 } 1390 1391 static kmem_log_header_t * 1392 kmem_log_init(size_t logsize) 1393 { 1394 kmem_log_header_t *lhp; 1395 int nchunks = 4 * max_ncpus; 1396 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1397 int i; 1398 1399 /* 1400 * Make sure that lhp->lh_cpu[] is nicely aligned 1401 * to prevent false sharing of cache lines. 1402 */ 1403 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1404 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1405 NULL, NULL, VM_SLEEP); 1406 bzero(lhp, lhsize); 1407 1408 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1409 lhp->lh_nchunks = nchunks; 1410 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1411 lhp->lh_base = vmem_alloc(kmem_log_arena, 1412 lhp->lh_chunksize * nchunks, VM_SLEEP); 1413 lhp->lh_free = vmem_alloc(kmem_log_arena, 1414 nchunks * sizeof (int), VM_SLEEP); 1415 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1416 1417 for (i = 0; i < max_ncpus; i++) { 1418 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1419 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1420 clhp->clh_chunk = i; 1421 } 1422 1423 for (i = max_ncpus; i < nchunks; i++) 1424 lhp->lh_free[i] = i; 1425 1426 lhp->lh_head = max_ncpus; 1427 lhp->lh_tail = 0; 1428 1429 return (lhp); 1430 } 1431 1432 static void * 1433 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1434 { 1435 void *logspace; 1436 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1437 1438 if (lhp == NULL || kmem_logging == 0 || panicstr) 1439 return (NULL); 1440 1441 mutex_enter(&clhp->clh_lock); 1442 clhp->clh_hits++; 1443 if (size > clhp->clh_avail) { 1444 mutex_enter(&lhp->lh_lock); 1445 lhp->lh_hits++; 1446 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1447 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1448 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1449 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1450 clhp->clh_current = lhp->lh_base + 1451 clhp->clh_chunk * lhp->lh_chunksize; 1452 clhp->clh_avail = lhp->lh_chunksize; 1453 if (size > lhp->lh_chunksize) 1454 size = lhp->lh_chunksize; 1455 mutex_exit(&lhp->lh_lock); 1456 } 1457 logspace = clhp->clh_current; 1458 clhp->clh_current += size; 1459 clhp->clh_avail -= size; 1460 bcopy(data, logspace, size); 1461 mutex_exit(&clhp->clh_lock); 1462 return (logspace); 1463 } 1464 1465 #define KMEM_AUDIT(lp, cp, bcp) \ 1466 { \ 1467 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1468 _bcp->bc_timestamp = gethrtime(); \ 1469 _bcp->bc_thread = curthread; \ 1470 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1471 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1472 } 1473 1474 static void 1475 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1476 kmem_slab_t *sp, void *addr) 1477 { 1478 kmem_bufctl_audit_t bca; 1479 1480 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1481 bca.bc_addr = addr; 1482 bca.bc_slab = sp; 1483 bca.bc_cache = cp; 1484 KMEM_AUDIT(lp, cp, &bca); 1485 } 1486 1487 /* 1488 * Create a new slab for cache cp. 1489 */ 1490 static kmem_slab_t * 1491 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1492 { 1493 size_t slabsize = cp->cache_slabsize; 1494 size_t chunksize = cp->cache_chunksize; 1495 int cache_flags = cp->cache_flags; 1496 size_t color, chunks; 1497 char *buf, *slab; 1498 kmem_slab_t *sp; 1499 kmem_bufctl_t *bcp; 1500 vmem_t *vmp = cp->cache_arena; 1501 1502 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1503 1504 color = cp->cache_color + cp->cache_align; 1505 if (color > cp->cache_maxcolor) 1506 color = cp->cache_mincolor; 1507 cp->cache_color = color; 1508 1509 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1510 1511 if (slab == NULL) 1512 goto vmem_alloc_failure; 1513 1514 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1515 1516 /* 1517 * Reverify what was already checked in kmem_cache_set_move(), since the 1518 * consolidator depends (for correctness) on slabs being initialized 1519 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1520 * clients to distinguish uninitialized memory from known objects). 1521 */ 1522 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1523 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1524 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1525 1526 if (cache_flags & KMF_HASH) { 1527 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1528 goto slab_alloc_failure; 1529 chunks = (slabsize - color) / chunksize; 1530 } else { 1531 sp = KMEM_SLAB(cp, slab); 1532 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1533 } 1534 1535 sp->slab_cache = cp; 1536 sp->slab_head = NULL; 1537 sp->slab_refcnt = 0; 1538 sp->slab_base = buf = slab + color; 1539 sp->slab_chunks = chunks; 1540 sp->slab_stuck_offset = (uint32_t)-1; 1541 sp->slab_later_count = 0; 1542 sp->slab_flags = 0; 1543 1544 ASSERT(chunks > 0); 1545 while (chunks-- != 0) { 1546 if (cache_flags & KMF_HASH) { 1547 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1548 if (bcp == NULL) 1549 goto bufctl_alloc_failure; 1550 if (cache_flags & KMF_AUDIT) { 1551 kmem_bufctl_audit_t *bcap = 1552 (kmem_bufctl_audit_t *)bcp; 1553 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1554 bcap->bc_cache = cp; 1555 } 1556 bcp->bc_addr = buf; 1557 bcp->bc_slab = sp; 1558 } else { 1559 bcp = KMEM_BUFCTL(cp, buf); 1560 } 1561 if (cache_flags & KMF_BUFTAG) { 1562 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1563 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1564 btp->bt_bufctl = bcp; 1565 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1566 if (cache_flags & KMF_DEADBEEF) { 1567 copy_pattern(KMEM_FREE_PATTERN, buf, 1568 cp->cache_verify); 1569 } 1570 } 1571 bcp->bc_next = sp->slab_head; 1572 sp->slab_head = bcp; 1573 buf += chunksize; 1574 } 1575 1576 kmem_log_event(kmem_slab_log, cp, sp, slab); 1577 1578 return (sp); 1579 1580 bufctl_alloc_failure: 1581 1582 while ((bcp = sp->slab_head) != NULL) { 1583 sp->slab_head = bcp->bc_next; 1584 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1585 } 1586 kmem_cache_free(kmem_slab_cache, sp); 1587 1588 slab_alloc_failure: 1589 1590 vmem_free(vmp, slab, slabsize); 1591 1592 vmem_alloc_failure: 1593 1594 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1595 atomic_add_64(&cp->cache_alloc_fail, 1); 1596 1597 return (NULL); 1598 } 1599 1600 /* 1601 * Destroy a slab. 1602 */ 1603 static void 1604 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1605 { 1606 vmem_t *vmp = cp->cache_arena; 1607 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1608 1609 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1610 ASSERT(sp->slab_refcnt == 0); 1611 1612 if (cp->cache_flags & KMF_HASH) { 1613 kmem_bufctl_t *bcp; 1614 while ((bcp = sp->slab_head) != NULL) { 1615 sp->slab_head = bcp->bc_next; 1616 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1617 } 1618 kmem_cache_free(kmem_slab_cache, sp); 1619 } 1620 vmem_free(vmp, slab, cp->cache_slabsize); 1621 } 1622 1623 static void * 1624 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp) 1625 { 1626 kmem_bufctl_t *bcp, **hash_bucket; 1627 void *buf; 1628 1629 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1630 /* 1631 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1632 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1633 * slab is newly created (sp->slab_refcnt == 0). 1634 */ 1635 ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) && 1636 (sp == avl_first(&cp->cache_partial_slabs)))); 1637 ASSERT(sp->slab_cache == cp); 1638 1639 cp->cache_slab_alloc++; 1640 cp->cache_bufslab--; 1641 sp->slab_refcnt++; 1642 1643 bcp = sp->slab_head; 1644 if ((sp->slab_head = bcp->bc_next) == NULL) { 1645 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1646 if (sp->slab_refcnt == 1) { 1647 ASSERT(sp->slab_chunks == 1); 1648 } else { 1649 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1650 avl_remove(&cp->cache_partial_slabs, sp); 1651 sp->slab_later_count = 0; /* clear history */ 1652 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1653 sp->slab_stuck_offset = (uint32_t)-1; 1654 } 1655 list_insert_head(&cp->cache_complete_slabs, sp); 1656 cp->cache_complete_slab_count++; 1657 } else { 1658 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1659 if (sp->slab_refcnt == 1) { 1660 avl_add(&cp->cache_partial_slabs, sp); 1661 } else { 1662 /* 1663 * The slab is now more allocated than it was, so the 1664 * order remains unchanged. 1665 */ 1666 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1667 } 1668 } 1669 1670 if (cp->cache_flags & KMF_HASH) { 1671 /* 1672 * Add buffer to allocated-address hash table. 1673 */ 1674 buf = bcp->bc_addr; 1675 hash_bucket = KMEM_HASH(cp, buf); 1676 bcp->bc_next = *hash_bucket; 1677 *hash_bucket = bcp; 1678 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1679 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1680 } 1681 } else { 1682 buf = KMEM_BUF(cp, bcp); 1683 } 1684 1685 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1686 return (buf); 1687 } 1688 1689 /* 1690 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1691 */ 1692 static void * 1693 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1694 { 1695 kmem_slab_t *sp; 1696 void *buf; 1697 1698 mutex_enter(&cp->cache_lock); 1699 sp = avl_first(&cp->cache_partial_slabs); 1700 if (sp == NULL) { 1701 ASSERT(cp->cache_bufslab == 0); 1702 1703 /* 1704 * The freelist is empty. Create a new slab. 1705 */ 1706 mutex_exit(&cp->cache_lock); 1707 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1708 return (NULL); 1709 } 1710 mutex_enter(&cp->cache_lock); 1711 cp->cache_slab_create++; 1712 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1713 cp->cache_bufmax = cp->cache_buftotal; 1714 cp->cache_bufslab += sp->slab_chunks; 1715 } 1716 1717 buf = kmem_slab_alloc_impl(cp, sp); 1718 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1719 (cp->cache_complete_slab_count + 1720 avl_numnodes(&cp->cache_partial_slabs) + 1721 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1722 mutex_exit(&cp->cache_lock); 1723 1724 return (buf); 1725 } 1726 1727 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1728 1729 /* 1730 * Free a raw (unconstructed) buffer to cp's slab layer. 1731 */ 1732 static void 1733 kmem_slab_free(kmem_cache_t *cp, void *buf) 1734 { 1735 kmem_slab_t *sp; 1736 kmem_bufctl_t *bcp, **prev_bcpp; 1737 1738 ASSERT(buf != NULL); 1739 1740 mutex_enter(&cp->cache_lock); 1741 cp->cache_slab_free++; 1742 1743 if (cp->cache_flags & KMF_HASH) { 1744 /* 1745 * Look up buffer in allocated-address hash table. 1746 */ 1747 prev_bcpp = KMEM_HASH(cp, buf); 1748 while ((bcp = *prev_bcpp) != NULL) { 1749 if (bcp->bc_addr == buf) { 1750 *prev_bcpp = bcp->bc_next; 1751 sp = bcp->bc_slab; 1752 break; 1753 } 1754 cp->cache_lookup_depth++; 1755 prev_bcpp = &bcp->bc_next; 1756 } 1757 } else { 1758 bcp = KMEM_BUFCTL(cp, buf); 1759 sp = KMEM_SLAB(cp, buf); 1760 } 1761 1762 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1763 mutex_exit(&cp->cache_lock); 1764 kmem_error(KMERR_BADADDR, cp, buf); 1765 return; 1766 } 1767 1768 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1769 /* 1770 * If this is the buffer that prevented the consolidator from 1771 * clearing the slab, we can reset the slab flags now that the 1772 * buffer is freed. (It makes sense to do this in 1773 * kmem_cache_free(), where the client gives up ownership of the 1774 * buffer, but on the hot path the test is too expensive.) 1775 */ 1776 kmem_slab_move_yes(cp, sp, buf); 1777 } 1778 1779 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1780 if (cp->cache_flags & KMF_CONTENTS) 1781 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1782 kmem_log_enter(kmem_content_log, buf, 1783 cp->cache_contents); 1784 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1785 } 1786 1787 bcp->bc_next = sp->slab_head; 1788 sp->slab_head = bcp; 1789 1790 cp->cache_bufslab++; 1791 ASSERT(sp->slab_refcnt >= 1); 1792 1793 if (--sp->slab_refcnt == 0) { 1794 /* 1795 * There are no outstanding allocations from this slab, 1796 * so we can reclaim the memory. 1797 */ 1798 if (sp->slab_chunks == 1) { 1799 list_remove(&cp->cache_complete_slabs, sp); 1800 cp->cache_complete_slab_count--; 1801 } else { 1802 avl_remove(&cp->cache_partial_slabs, sp); 1803 } 1804 1805 cp->cache_buftotal -= sp->slab_chunks; 1806 cp->cache_bufslab -= sp->slab_chunks; 1807 /* 1808 * Defer releasing the slab to the virtual memory subsystem 1809 * while there is a pending move callback, since we guarantee 1810 * that buffers passed to the move callback have only been 1811 * touched by kmem or by the client itself. Since the memory 1812 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1813 * set at least one of the two lowest order bits, the client can 1814 * test those bits in the move callback to determine whether or 1815 * not it knows about the buffer (assuming that the client also 1816 * sets one of those low order bits whenever it frees a buffer). 1817 */ 1818 if (cp->cache_defrag == NULL || 1819 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1820 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1821 cp->cache_slab_destroy++; 1822 mutex_exit(&cp->cache_lock); 1823 kmem_slab_destroy(cp, sp); 1824 } else { 1825 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1826 /* 1827 * Slabs are inserted at both ends of the deadlist to 1828 * distinguish between slabs freed while move callbacks 1829 * are pending (list head) and a slab freed while the 1830 * lock is dropped in kmem_move_buffers() (list tail) so 1831 * that in both cases slab_destroy() is called from the 1832 * right context. 1833 */ 1834 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1835 list_insert_tail(deadlist, sp); 1836 } else { 1837 list_insert_head(deadlist, sp); 1838 } 1839 cp->cache_defrag->kmd_deadcount++; 1840 mutex_exit(&cp->cache_lock); 1841 } 1842 return; 1843 } 1844 1845 if (bcp->bc_next == NULL) { 1846 /* Transition the slab from completely allocated to partial. */ 1847 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1848 ASSERT(sp->slab_chunks > 1); 1849 list_remove(&cp->cache_complete_slabs, sp); 1850 cp->cache_complete_slab_count--; 1851 avl_add(&cp->cache_partial_slabs, sp); 1852 } else { 1853 #ifdef DEBUG 1854 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1855 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1856 } else { 1857 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1858 } 1859 #else 1860 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1861 #endif 1862 } 1863 1864 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1865 (cp->cache_complete_slab_count + 1866 avl_numnodes(&cp->cache_partial_slabs) + 1867 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1868 mutex_exit(&cp->cache_lock); 1869 } 1870 1871 /* 1872 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1873 */ 1874 static int 1875 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1876 caddr_t caller) 1877 { 1878 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1879 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1880 uint32_t mtbf; 1881 1882 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1883 kmem_error(KMERR_BADBUFTAG, cp, buf); 1884 return (-1); 1885 } 1886 1887 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1888 1889 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1890 kmem_error(KMERR_BADBUFCTL, cp, buf); 1891 return (-1); 1892 } 1893 1894 if (cp->cache_flags & KMF_DEADBEEF) { 1895 if (!construct && (cp->cache_flags & KMF_LITE)) { 1896 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1897 kmem_error(KMERR_MODIFIED, cp, buf); 1898 return (-1); 1899 } 1900 if (cp->cache_constructor != NULL) 1901 *(uint64_t *)buf = btp->bt_redzone; 1902 else 1903 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1904 } else { 1905 construct = 1; 1906 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1907 KMEM_UNINITIALIZED_PATTERN, buf, 1908 cp->cache_verify)) { 1909 kmem_error(KMERR_MODIFIED, cp, buf); 1910 return (-1); 1911 } 1912 } 1913 } 1914 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1915 1916 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1917 gethrtime() % mtbf == 0 && 1918 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1919 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1920 if (!construct && cp->cache_destructor != NULL) 1921 cp->cache_destructor(buf, cp->cache_private); 1922 } else { 1923 mtbf = 0; 1924 } 1925 1926 if (mtbf || (construct && cp->cache_constructor != NULL && 1927 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1928 atomic_add_64(&cp->cache_alloc_fail, 1); 1929 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1930 if (cp->cache_flags & KMF_DEADBEEF) 1931 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1932 kmem_slab_free(cp, buf); 1933 return (1); 1934 } 1935 1936 if (cp->cache_flags & KMF_AUDIT) { 1937 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1938 } 1939 1940 if ((cp->cache_flags & KMF_LITE) && 1941 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1942 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1943 } 1944 1945 return (0); 1946 } 1947 1948 static int 1949 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1950 { 1951 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1952 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1953 kmem_slab_t *sp; 1954 1955 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1956 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1957 kmem_error(KMERR_DUPFREE, cp, buf); 1958 return (-1); 1959 } 1960 sp = kmem_findslab(cp, buf); 1961 if (sp == NULL || sp->slab_cache != cp) 1962 kmem_error(KMERR_BADADDR, cp, buf); 1963 else 1964 kmem_error(KMERR_REDZONE, cp, buf); 1965 return (-1); 1966 } 1967 1968 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1969 1970 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1971 kmem_error(KMERR_BADBUFCTL, cp, buf); 1972 return (-1); 1973 } 1974 1975 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1976 kmem_error(KMERR_REDZONE, cp, buf); 1977 return (-1); 1978 } 1979 1980 if (cp->cache_flags & KMF_AUDIT) { 1981 if (cp->cache_flags & KMF_CONTENTS) 1982 bcp->bc_contents = kmem_log_enter(kmem_content_log, 1983 buf, cp->cache_contents); 1984 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1985 } 1986 1987 if ((cp->cache_flags & KMF_LITE) && 1988 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1989 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1990 } 1991 1992 if (cp->cache_flags & KMF_DEADBEEF) { 1993 if (cp->cache_flags & KMF_LITE) 1994 btp->bt_redzone = *(uint64_t *)buf; 1995 else if (cp->cache_destructor != NULL) 1996 cp->cache_destructor(buf, cp->cache_private); 1997 1998 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1999 } 2000 2001 return (0); 2002 } 2003 2004 /* 2005 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2006 */ 2007 static void 2008 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2009 { 2010 int round; 2011 2012 ASSERT(!list_link_active(&cp->cache_link) || 2013 taskq_member(kmem_taskq, curthread)); 2014 2015 for (round = 0; round < nrounds; round++) { 2016 void *buf = mp->mag_round[round]; 2017 2018 if (cp->cache_flags & KMF_DEADBEEF) { 2019 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2020 cp->cache_verify) != NULL) { 2021 kmem_error(KMERR_MODIFIED, cp, buf); 2022 continue; 2023 } 2024 if ((cp->cache_flags & KMF_LITE) && 2025 cp->cache_destructor != NULL) { 2026 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2027 *(uint64_t *)buf = btp->bt_redzone; 2028 cp->cache_destructor(buf, cp->cache_private); 2029 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2030 } 2031 } else if (cp->cache_destructor != NULL) { 2032 cp->cache_destructor(buf, cp->cache_private); 2033 } 2034 2035 kmem_slab_free(cp, buf); 2036 } 2037 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2038 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2039 } 2040 2041 /* 2042 * Allocate a magazine from the depot. 2043 */ 2044 static kmem_magazine_t * 2045 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2046 { 2047 kmem_magazine_t *mp; 2048 2049 /* 2050 * If we can't get the depot lock without contention, 2051 * update our contention count. We use the depot 2052 * contention rate to determine whether we need to 2053 * increase the magazine size for better scalability. 2054 */ 2055 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2056 mutex_enter(&cp->cache_depot_lock); 2057 cp->cache_depot_contention++; 2058 } 2059 2060 if ((mp = mlp->ml_list) != NULL) { 2061 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2062 mlp->ml_list = mp->mag_next; 2063 if (--mlp->ml_total < mlp->ml_min) 2064 mlp->ml_min = mlp->ml_total; 2065 mlp->ml_alloc++; 2066 } 2067 2068 mutex_exit(&cp->cache_depot_lock); 2069 2070 return (mp); 2071 } 2072 2073 /* 2074 * Free a magazine to the depot. 2075 */ 2076 static void 2077 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2078 { 2079 mutex_enter(&cp->cache_depot_lock); 2080 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2081 mp->mag_next = mlp->ml_list; 2082 mlp->ml_list = mp; 2083 mlp->ml_total++; 2084 mutex_exit(&cp->cache_depot_lock); 2085 } 2086 2087 /* 2088 * Update the working set statistics for cp's depot. 2089 */ 2090 static void 2091 kmem_depot_ws_update(kmem_cache_t *cp) 2092 { 2093 mutex_enter(&cp->cache_depot_lock); 2094 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2095 cp->cache_full.ml_min = cp->cache_full.ml_total; 2096 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2097 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2098 mutex_exit(&cp->cache_depot_lock); 2099 } 2100 2101 /* 2102 * Reap all magazines that have fallen out of the depot's working set. 2103 */ 2104 static void 2105 kmem_depot_ws_reap(kmem_cache_t *cp) 2106 { 2107 long reap; 2108 kmem_magazine_t *mp; 2109 2110 ASSERT(!list_link_active(&cp->cache_link) || 2111 taskq_member(kmem_taskq, curthread)); 2112 2113 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2114 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2115 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2116 2117 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2118 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2119 kmem_magazine_destroy(cp, mp, 0); 2120 } 2121 2122 static void 2123 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2124 { 2125 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2126 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2127 ASSERT(ccp->cc_magsize > 0); 2128 2129 ccp->cc_ploaded = ccp->cc_loaded; 2130 ccp->cc_prounds = ccp->cc_rounds; 2131 ccp->cc_loaded = mp; 2132 ccp->cc_rounds = rounds; 2133 } 2134 2135 /* 2136 * Allocate a constructed object from cache cp. 2137 */ 2138 void * 2139 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2140 { 2141 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2142 kmem_magazine_t *fmp; 2143 void *buf; 2144 2145 mutex_enter(&ccp->cc_lock); 2146 for (;;) { 2147 /* 2148 * If there's an object available in the current CPU's 2149 * loaded magazine, just take it and return. 2150 */ 2151 if (ccp->cc_rounds > 0) { 2152 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2153 ccp->cc_alloc++; 2154 mutex_exit(&ccp->cc_lock); 2155 if ((ccp->cc_flags & KMF_BUFTAG) && 2156 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2157 caller()) != 0) { 2158 if (kmflag & KM_NOSLEEP) 2159 return (NULL); 2160 mutex_enter(&ccp->cc_lock); 2161 continue; 2162 } 2163 return (buf); 2164 } 2165 2166 /* 2167 * The loaded magazine is empty. If the previously loaded 2168 * magazine was full, exchange them and try again. 2169 */ 2170 if (ccp->cc_prounds > 0) { 2171 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2172 continue; 2173 } 2174 2175 /* 2176 * If the magazine layer is disabled, break out now. 2177 */ 2178 if (ccp->cc_magsize == 0) 2179 break; 2180 2181 /* 2182 * Try to get a full magazine from the depot. 2183 */ 2184 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2185 if (fmp != NULL) { 2186 if (ccp->cc_ploaded != NULL) 2187 kmem_depot_free(cp, &cp->cache_empty, 2188 ccp->cc_ploaded); 2189 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2190 continue; 2191 } 2192 2193 /* 2194 * There are no full magazines in the depot, 2195 * so fall through to the slab layer. 2196 */ 2197 break; 2198 } 2199 mutex_exit(&ccp->cc_lock); 2200 2201 /* 2202 * We couldn't allocate a constructed object from the magazine layer, 2203 * so get a raw buffer from the slab layer and apply its constructor. 2204 */ 2205 buf = kmem_slab_alloc(cp, kmflag); 2206 2207 if (buf == NULL) 2208 return (NULL); 2209 2210 if (cp->cache_flags & KMF_BUFTAG) { 2211 /* 2212 * Make kmem_cache_alloc_debug() apply the constructor for us. 2213 */ 2214 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2215 if (rc != 0) { 2216 if (kmflag & KM_NOSLEEP) 2217 return (NULL); 2218 /* 2219 * kmem_cache_alloc_debug() detected corruption 2220 * but didn't panic (kmem_panic <= 0). We should not be 2221 * here because the constructor failed (indicated by a 2222 * return code of 1). Try again. 2223 */ 2224 ASSERT(rc == -1); 2225 return (kmem_cache_alloc(cp, kmflag)); 2226 } 2227 return (buf); 2228 } 2229 2230 if (cp->cache_constructor != NULL && 2231 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2232 atomic_add_64(&cp->cache_alloc_fail, 1); 2233 kmem_slab_free(cp, buf); 2234 return (NULL); 2235 } 2236 2237 return (buf); 2238 } 2239 2240 /* 2241 * The freed argument tells whether or not kmem_cache_free_debug() has already 2242 * been called so that we can avoid the duplicate free error. For example, a 2243 * buffer on a magazine has already been freed by the client but is still 2244 * constructed. 2245 */ 2246 static void 2247 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2248 { 2249 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2250 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2251 return; 2252 2253 /* 2254 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2255 * kmem_cache_free_debug() will have already applied the destructor. 2256 */ 2257 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2258 cp->cache_destructor != NULL) { 2259 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2260 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2261 *(uint64_t *)buf = btp->bt_redzone; 2262 cp->cache_destructor(buf, cp->cache_private); 2263 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2264 } else { 2265 cp->cache_destructor(buf, cp->cache_private); 2266 } 2267 } 2268 2269 kmem_slab_free(cp, buf); 2270 } 2271 2272 /* 2273 * Free a constructed object to cache cp. 2274 */ 2275 void 2276 kmem_cache_free(kmem_cache_t *cp, void *buf) 2277 { 2278 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2279 kmem_magazine_t *emp; 2280 kmem_magtype_t *mtp; 2281 2282 /* 2283 * The client must not free either of the buffers passed to the move 2284 * callback function. 2285 */ 2286 ASSERT(cp->cache_defrag == NULL || 2287 cp->cache_defrag->kmd_thread != curthread || 2288 (buf != cp->cache_defrag->kmd_from_buf && 2289 buf != cp->cache_defrag->kmd_to_buf)); 2290 2291 if (ccp->cc_flags & KMF_BUFTAG) 2292 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2293 return; 2294 2295 mutex_enter(&ccp->cc_lock); 2296 for (;;) { 2297 /* 2298 * If there's a slot available in the current CPU's 2299 * loaded magazine, just put the object there and return. 2300 */ 2301 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2302 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2303 ccp->cc_free++; 2304 mutex_exit(&ccp->cc_lock); 2305 return; 2306 } 2307 2308 /* 2309 * The loaded magazine is full. If the previously loaded 2310 * magazine was empty, exchange them and try again. 2311 */ 2312 if (ccp->cc_prounds == 0) { 2313 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2314 continue; 2315 } 2316 2317 /* 2318 * If the magazine layer is disabled, break out now. 2319 */ 2320 if (ccp->cc_magsize == 0) 2321 break; 2322 2323 /* 2324 * Try to get an empty magazine from the depot. 2325 */ 2326 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2327 if (emp != NULL) { 2328 if (ccp->cc_ploaded != NULL) 2329 kmem_depot_free(cp, &cp->cache_full, 2330 ccp->cc_ploaded); 2331 kmem_cpu_reload(ccp, emp, 0); 2332 continue; 2333 } 2334 2335 /* 2336 * There are no empty magazines in the depot, 2337 * so try to allocate a new one. We must drop all locks 2338 * across kmem_cache_alloc() because lower layers may 2339 * attempt to allocate from this cache. 2340 */ 2341 mtp = cp->cache_magtype; 2342 mutex_exit(&ccp->cc_lock); 2343 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2344 mutex_enter(&ccp->cc_lock); 2345 2346 if (emp != NULL) { 2347 /* 2348 * We successfully allocated an empty magazine. 2349 * However, we had to drop ccp->cc_lock to do it, 2350 * so the cache's magazine size may have changed. 2351 * If so, free the magazine and try again. 2352 */ 2353 if (ccp->cc_magsize != mtp->mt_magsize) { 2354 mutex_exit(&ccp->cc_lock); 2355 kmem_cache_free(mtp->mt_cache, emp); 2356 mutex_enter(&ccp->cc_lock); 2357 continue; 2358 } 2359 2360 /* 2361 * We got a magazine of the right size. Add it to 2362 * the depot and try the whole dance again. 2363 */ 2364 kmem_depot_free(cp, &cp->cache_empty, emp); 2365 continue; 2366 } 2367 2368 /* 2369 * We couldn't allocate an empty magazine, 2370 * so fall through to the slab layer. 2371 */ 2372 break; 2373 } 2374 mutex_exit(&ccp->cc_lock); 2375 2376 /* 2377 * We couldn't free our constructed object to the magazine layer, 2378 * so apply its destructor and free it to the slab layer. 2379 */ 2380 kmem_slab_free_constructed(cp, buf, B_TRUE); 2381 } 2382 2383 void * 2384 kmem_zalloc(size_t size, int kmflag) 2385 { 2386 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2387 void *buf; 2388 2389 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2390 kmem_cache_t *cp = kmem_alloc_table[index]; 2391 buf = kmem_cache_alloc(cp, kmflag); 2392 if (buf != NULL) { 2393 if (cp->cache_flags & KMF_BUFTAG) { 2394 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2395 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2396 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2397 2398 if (cp->cache_flags & KMF_LITE) { 2399 KMEM_BUFTAG_LITE_ENTER(btp, 2400 kmem_lite_count, caller()); 2401 } 2402 } 2403 bzero(buf, size); 2404 } 2405 } else { 2406 buf = kmem_alloc(size, kmflag); 2407 if (buf != NULL) 2408 bzero(buf, size); 2409 } 2410 return (buf); 2411 } 2412 2413 void * 2414 kmem_alloc(size_t size, int kmflag) 2415 { 2416 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2417 void *buf; 2418 2419 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2420 kmem_cache_t *cp = kmem_alloc_table[index]; 2421 buf = kmem_cache_alloc(cp, kmflag); 2422 if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { 2423 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2424 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2425 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2426 2427 if (cp->cache_flags & KMF_LITE) { 2428 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2429 caller()); 2430 } 2431 } 2432 return (buf); 2433 } 2434 if (size == 0) 2435 return (NULL); 2436 buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); 2437 if (buf == NULL) 2438 kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); 2439 return (buf); 2440 } 2441 2442 void 2443 kmem_free(void *buf, size_t size) 2444 { 2445 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2446 2447 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2448 kmem_cache_t *cp = kmem_alloc_table[index]; 2449 if (cp->cache_flags & KMF_BUFTAG) { 2450 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2451 uint32_t *ip = (uint32_t *)btp; 2452 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2453 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2454 kmem_error(KMERR_DUPFREE, cp, buf); 2455 return; 2456 } 2457 if (KMEM_SIZE_VALID(ip[1])) { 2458 ip[0] = KMEM_SIZE_ENCODE(size); 2459 kmem_error(KMERR_BADSIZE, cp, buf); 2460 } else { 2461 kmem_error(KMERR_REDZONE, cp, buf); 2462 } 2463 return; 2464 } 2465 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2466 kmem_error(KMERR_REDZONE, cp, buf); 2467 return; 2468 } 2469 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2470 if (cp->cache_flags & KMF_LITE) { 2471 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2472 caller()); 2473 } 2474 } 2475 kmem_cache_free(cp, buf); 2476 } else { 2477 if (buf == NULL && size == 0) 2478 return; 2479 vmem_free(kmem_oversize_arena, buf, size); 2480 } 2481 } 2482 2483 void * 2484 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2485 { 2486 size_t realsize = size + vmp->vm_quantum; 2487 void *addr; 2488 2489 /* 2490 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2491 * vm_quantum will cause integer wraparound. Check for this, and 2492 * blow off the firewall page in this case. Note that such a 2493 * giant allocation (the entire kernel address space) can never 2494 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2495 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2496 * corresponding check in kmem_firewall_va_free(). 2497 */ 2498 if (realsize < size) 2499 realsize = size; 2500 2501 /* 2502 * While boot still owns resource management, make sure that this 2503 * redzone virtual address allocation is properly accounted for in 2504 * OBPs "virtual-memory" "available" lists because we're 2505 * effectively claiming them for a red zone. If we don't do this, 2506 * the available lists become too fragmented and too large for the 2507 * current boot/kernel memory list interface. 2508 */ 2509 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2510 2511 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2512 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2513 2514 return (addr); 2515 } 2516 2517 void 2518 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2519 { 2520 ASSERT((kvseg.s_base == NULL ? 2521 va_to_pfn((char *)addr + size) : 2522 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2523 2524 vmem_free(vmp, addr, size + vmp->vm_quantum); 2525 } 2526 2527 /* 2528 * Try to allocate at least `size' bytes of memory without sleeping or 2529 * panicking. Return actual allocated size in `asize'. If allocation failed, 2530 * try final allocation with sleep or panic allowed. 2531 */ 2532 void * 2533 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2534 { 2535 void *p; 2536 2537 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2538 do { 2539 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2540 if (p != NULL) 2541 return (p); 2542 *asize += KMEM_ALIGN; 2543 } while (*asize <= PAGESIZE); 2544 2545 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2546 return (kmem_alloc(*asize, kmflag)); 2547 } 2548 2549 /* 2550 * Reclaim all unused memory from a cache. 2551 */ 2552 static void 2553 kmem_cache_reap(kmem_cache_t *cp) 2554 { 2555 ASSERT(taskq_member(kmem_taskq, curthread)); 2556 2557 /* 2558 * Ask the cache's owner to free some memory if possible. 2559 * The idea is to handle things like the inode cache, which 2560 * typically sits on a bunch of memory that it doesn't truly 2561 * *need*. Reclaim policy is entirely up to the owner; this 2562 * callback is just an advisory plea for help. 2563 */ 2564 if (cp->cache_reclaim != NULL) { 2565 long delta; 2566 2567 /* 2568 * Reclaimed memory should be reapable (not included in the 2569 * depot's working set). 2570 */ 2571 delta = cp->cache_full.ml_total; 2572 cp->cache_reclaim(cp->cache_private); 2573 delta = cp->cache_full.ml_total - delta; 2574 if (delta > 0) { 2575 mutex_enter(&cp->cache_depot_lock); 2576 cp->cache_full.ml_reaplimit += delta; 2577 cp->cache_full.ml_min += delta; 2578 mutex_exit(&cp->cache_depot_lock); 2579 } 2580 } 2581 2582 kmem_depot_ws_reap(cp); 2583 2584 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 2585 kmem_cache_defrag(cp); 2586 } 2587 } 2588 2589 static void 2590 kmem_reap_timeout(void *flag_arg) 2591 { 2592 uint32_t *flag = (uint32_t *)flag_arg; 2593 2594 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2595 *flag = 0; 2596 } 2597 2598 static void 2599 kmem_reap_done(void *flag) 2600 { 2601 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 2602 } 2603 2604 static void 2605 kmem_reap_start(void *flag) 2606 { 2607 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2608 2609 if (flag == &kmem_reaping) { 2610 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2611 /* 2612 * if we have segkp under heap, reap segkp cache. 2613 */ 2614 if (segkp_fromheap) 2615 segkp_cache_free(); 2616 } 2617 else 2618 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2619 2620 /* 2621 * We use taskq_dispatch() to schedule a timeout to clear 2622 * the flag so that kmem_reap() becomes self-throttling: 2623 * we won't reap again until the current reap completes *and* 2624 * at least kmem_reap_interval ticks have elapsed. 2625 */ 2626 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 2627 kmem_reap_done(flag); 2628 } 2629 2630 static void 2631 kmem_reap_common(void *flag_arg) 2632 { 2633 uint32_t *flag = (uint32_t *)flag_arg; 2634 2635 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 2636 cas32(flag, 0, 1) != 0) 2637 return; 2638 2639 /* 2640 * It may not be kosher to do memory allocation when a reap is called 2641 * is called (for example, if vmem_populate() is in the call chain). 2642 * So we start the reap going with a TQ_NOALLOC dispatch. If the 2643 * dispatch fails, we reset the flag, and the next reap will try again. 2644 */ 2645 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 2646 *flag = 0; 2647 } 2648 2649 /* 2650 * Reclaim all unused memory from all caches. Called from the VM system 2651 * when memory gets tight. 2652 */ 2653 void 2654 kmem_reap(void) 2655 { 2656 kmem_reap_common(&kmem_reaping); 2657 } 2658 2659 /* 2660 * Reclaim all unused memory from identifier arenas, called when a vmem 2661 * arena not back by memory is exhausted. Since reaping memory-backed caches 2662 * cannot help with identifier exhaustion, we avoid both a large amount of 2663 * work and unwanted side-effects from reclaim callbacks. 2664 */ 2665 void 2666 kmem_reap_idspace(void) 2667 { 2668 kmem_reap_common(&kmem_reaping_idspace); 2669 } 2670 2671 /* 2672 * Purge all magazines from a cache and set its magazine limit to zero. 2673 * All calls are serialized by the kmem_taskq lock, except for the final 2674 * call from kmem_cache_destroy(). 2675 */ 2676 static void 2677 kmem_cache_magazine_purge(kmem_cache_t *cp) 2678 { 2679 kmem_cpu_cache_t *ccp; 2680 kmem_magazine_t *mp, *pmp; 2681 int rounds, prounds, cpu_seqid; 2682 2683 ASSERT(!list_link_active(&cp->cache_link) || 2684 taskq_member(kmem_taskq, curthread)); 2685 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 2686 2687 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2688 ccp = &cp->cache_cpu[cpu_seqid]; 2689 2690 mutex_enter(&ccp->cc_lock); 2691 mp = ccp->cc_loaded; 2692 pmp = ccp->cc_ploaded; 2693 rounds = ccp->cc_rounds; 2694 prounds = ccp->cc_prounds; 2695 ccp->cc_loaded = NULL; 2696 ccp->cc_ploaded = NULL; 2697 ccp->cc_rounds = -1; 2698 ccp->cc_prounds = -1; 2699 ccp->cc_magsize = 0; 2700 mutex_exit(&ccp->cc_lock); 2701 2702 if (mp) 2703 kmem_magazine_destroy(cp, mp, rounds); 2704 if (pmp) 2705 kmem_magazine_destroy(cp, pmp, prounds); 2706 } 2707 2708 /* 2709 * Updating the working set statistics twice in a row has the 2710 * effect of setting the working set size to zero, so everything 2711 * is eligible for reaping. 2712 */ 2713 kmem_depot_ws_update(cp); 2714 kmem_depot_ws_update(cp); 2715 2716 kmem_depot_ws_reap(cp); 2717 } 2718 2719 /* 2720 * Enable per-cpu magazines on a cache. 2721 */ 2722 static void 2723 kmem_cache_magazine_enable(kmem_cache_t *cp) 2724 { 2725 int cpu_seqid; 2726 2727 if (cp->cache_flags & KMF_NOMAGAZINE) 2728 return; 2729 2730 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2731 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2732 mutex_enter(&ccp->cc_lock); 2733 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2734 mutex_exit(&ccp->cc_lock); 2735 } 2736 2737 } 2738 2739 /* 2740 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 2741 * for explanation of the back-to-back kmem_depot_ws_update() calls. 2742 */ 2743 void 2744 kmem_cache_reap_now(kmem_cache_t *cp) 2745 { 2746 ASSERT(list_link_active(&cp->cache_link)); 2747 2748 kmem_depot_ws_update(cp); 2749 kmem_depot_ws_update(cp); 2750 2751 (void) taskq_dispatch(kmem_taskq, 2752 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 2753 taskq_wait(kmem_taskq); 2754 } 2755 2756 /* 2757 * Recompute a cache's magazine size. The trade-off is that larger magazines 2758 * provide a higher transfer rate with the depot, while smaller magazines 2759 * reduce memory consumption. Magazine resizing is an expensive operation; 2760 * it should not be done frequently. 2761 * 2762 * Changes to the magazine size are serialized by the kmem_taskq lock. 2763 * 2764 * Note: at present this only grows the magazine size. It might be useful 2765 * to allow shrinkage too. 2766 */ 2767 static void 2768 kmem_cache_magazine_resize(kmem_cache_t *cp) 2769 { 2770 kmem_magtype_t *mtp = cp->cache_magtype; 2771 2772 ASSERT(taskq_member(kmem_taskq, curthread)); 2773 2774 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2775 kmem_cache_magazine_purge(cp); 2776 mutex_enter(&cp->cache_depot_lock); 2777 cp->cache_magtype = ++mtp; 2778 cp->cache_depot_contention_prev = 2779 cp->cache_depot_contention + INT_MAX; 2780 mutex_exit(&cp->cache_depot_lock); 2781 kmem_cache_magazine_enable(cp); 2782 } 2783 } 2784 2785 /* 2786 * Rescale a cache's hash table, so that the table size is roughly the 2787 * cache size. We want the average lookup time to be extremely small. 2788 */ 2789 static void 2790 kmem_hash_rescale(kmem_cache_t *cp) 2791 { 2792 kmem_bufctl_t **old_table, **new_table, *bcp; 2793 size_t old_size, new_size, h; 2794 2795 ASSERT(taskq_member(kmem_taskq, curthread)); 2796 2797 new_size = MAX(KMEM_HASH_INITIAL, 2798 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2799 old_size = cp->cache_hash_mask + 1; 2800 2801 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2802 return; 2803 2804 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 2805 VM_NOSLEEP); 2806 if (new_table == NULL) 2807 return; 2808 bzero(new_table, new_size * sizeof (void *)); 2809 2810 mutex_enter(&cp->cache_lock); 2811 2812 old_size = cp->cache_hash_mask + 1; 2813 old_table = cp->cache_hash_table; 2814 2815 cp->cache_hash_mask = new_size - 1; 2816 cp->cache_hash_table = new_table; 2817 cp->cache_rescale++; 2818 2819 for (h = 0; h < old_size; h++) { 2820 bcp = old_table[h]; 2821 while (bcp != NULL) { 2822 void *addr = bcp->bc_addr; 2823 kmem_bufctl_t *next_bcp = bcp->bc_next; 2824 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 2825 bcp->bc_next = *hash_bucket; 2826 *hash_bucket = bcp; 2827 bcp = next_bcp; 2828 } 2829 } 2830 2831 mutex_exit(&cp->cache_lock); 2832 2833 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 2834 } 2835 2836 /* 2837 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 2838 * update, magazine resizing, and slab consolidation. 2839 */ 2840 static void 2841 kmem_cache_update(kmem_cache_t *cp) 2842 { 2843 int need_hash_rescale = 0; 2844 int need_magazine_resize = 0; 2845 2846 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 2847 2848 /* 2849 * If the cache has become much larger or smaller than its hash table, 2850 * fire off a request to rescale the hash table. 2851 */ 2852 mutex_enter(&cp->cache_lock); 2853 2854 if ((cp->cache_flags & KMF_HASH) && 2855 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2856 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2857 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 2858 need_hash_rescale = 1; 2859 2860 mutex_exit(&cp->cache_lock); 2861 2862 /* 2863 * Update the depot working set statistics. 2864 */ 2865 kmem_depot_ws_update(cp); 2866 2867 /* 2868 * If there's a lot of contention in the depot, 2869 * increase the magazine size. 2870 */ 2871 mutex_enter(&cp->cache_depot_lock); 2872 2873 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2874 (int)(cp->cache_depot_contention - 2875 cp->cache_depot_contention_prev) > kmem_depot_contention) 2876 need_magazine_resize = 1; 2877 2878 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2879 2880 mutex_exit(&cp->cache_depot_lock); 2881 2882 if (need_hash_rescale) 2883 (void) taskq_dispatch(kmem_taskq, 2884 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 2885 2886 if (need_magazine_resize) 2887 (void) taskq_dispatch(kmem_taskq, 2888 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 2889 2890 if (cp->cache_defrag != NULL) 2891 (void) taskq_dispatch(kmem_taskq, 2892 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 2893 } 2894 2895 static void 2896 kmem_update_timeout(void *dummy) 2897 { 2898 static void kmem_update(void *); 2899 2900 (void) timeout(kmem_update, dummy, kmem_reap_interval); 2901 } 2902 2903 static void 2904 kmem_update(void *dummy) 2905 { 2906 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 2907 2908 /* 2909 * We use taskq_dispatch() to reschedule the timeout so that 2910 * kmem_update() becomes self-throttling: it won't schedule 2911 * new tasks until all previous tasks have completed. 2912 */ 2913 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 2914 kmem_update_timeout(NULL); 2915 } 2916 2917 static int 2918 kmem_cache_kstat_update(kstat_t *ksp, int rw) 2919 { 2920 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 2921 kmem_cache_t *cp = ksp->ks_private; 2922 uint64_t cpu_buf_avail; 2923 uint64_t buf_avail = 0; 2924 int cpu_seqid; 2925 2926 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 2927 2928 if (rw == KSTAT_WRITE) 2929 return (EACCES); 2930 2931 mutex_enter(&cp->cache_lock); 2932 2933 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 2934 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 2935 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 2936 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 2937 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 2938 2939 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2940 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2941 2942 mutex_enter(&ccp->cc_lock); 2943 2944 cpu_buf_avail = 0; 2945 if (ccp->cc_rounds > 0) 2946 cpu_buf_avail += ccp->cc_rounds; 2947 if (ccp->cc_prounds > 0) 2948 cpu_buf_avail += ccp->cc_prounds; 2949 2950 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 2951 kmcp->kmc_free.value.ui64 += ccp->cc_free; 2952 buf_avail += cpu_buf_avail; 2953 2954 mutex_exit(&ccp->cc_lock); 2955 } 2956 2957 mutex_enter(&cp->cache_depot_lock); 2958 2959 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 2960 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 2961 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 2962 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 2963 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 2964 kmcp->kmc_magazine_size.value.ui64 = 2965 (cp->cache_flags & KMF_NOMAGAZINE) ? 2966 0 : cp->cache_magtype->mt_magsize; 2967 2968 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 2969 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 2970 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 2971 2972 mutex_exit(&cp->cache_depot_lock); 2973 2974 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 2975 kmcp->kmc_align.value.ui64 = cp->cache_align; 2976 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 2977 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 2978 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 2979 buf_avail += cp->cache_bufslab; 2980 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 2981 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 2982 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 2983 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 2984 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 2985 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 2986 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 2987 cp->cache_hash_mask + 1 : 0; 2988 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 2989 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 2990 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 2991 2992 if (cp->cache_defrag == NULL) { 2993 kmcp->kmc_move_callbacks.value.ui64 = 0; 2994 kmcp->kmc_move_yes.value.ui64 = 0; 2995 kmcp->kmc_move_no.value.ui64 = 0; 2996 kmcp->kmc_move_later.value.ui64 = 0; 2997 kmcp->kmc_move_dont_need.value.ui64 = 0; 2998 kmcp->kmc_move_dont_know.value.ui64 = 0; 2999 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3000 } else { 3001 kmem_defrag_t *kd = cp->cache_defrag; 3002 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3003 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3004 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3005 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3006 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3007 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3008 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3009 } 3010 3011 mutex_exit(&cp->cache_lock); 3012 return (0); 3013 } 3014 3015 /* 3016 * Return a named statistic about a particular cache. 3017 * This shouldn't be called very often, so it's currently designed for 3018 * simplicity (leverages existing kstat support) rather than efficiency. 3019 */ 3020 uint64_t 3021 kmem_cache_stat(kmem_cache_t *cp, char *name) 3022 { 3023 int i; 3024 kstat_t *ksp = cp->cache_kstat; 3025 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3026 uint64_t value = 0; 3027 3028 if (ksp != NULL) { 3029 mutex_enter(&kmem_cache_kstat_lock); 3030 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3031 for (i = 0; i < ksp->ks_ndata; i++) { 3032 if (strcmp(knp[i].name, name) == 0) { 3033 value = knp[i].value.ui64; 3034 break; 3035 } 3036 } 3037 mutex_exit(&kmem_cache_kstat_lock); 3038 } 3039 return (value); 3040 } 3041 3042 /* 3043 * Return an estimate of currently available kernel heap memory. 3044 * On 32-bit systems, physical memory may exceed virtual memory, 3045 * we just truncate the result at 1GB. 3046 */ 3047 size_t 3048 kmem_avail(void) 3049 { 3050 spgcnt_t rmem = availrmem - tune.t_minarmem; 3051 spgcnt_t fmem = freemem - minfree; 3052 3053 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3054 1 << (30 - PAGESHIFT)))); 3055 } 3056 3057 /* 3058 * Return the maximum amount of memory that is (in theory) allocatable 3059 * from the heap. This may be used as an estimate only since there 3060 * is no guarentee this space will still be available when an allocation 3061 * request is made, nor that the space may be allocated in one big request 3062 * due to kernel heap fragmentation. 3063 */ 3064 size_t 3065 kmem_maxavail(void) 3066 { 3067 spgcnt_t pmem = availrmem - tune.t_minarmem; 3068 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3069 3070 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3071 } 3072 3073 /* 3074 * Indicate whether memory-intensive kmem debugging is enabled. 3075 */ 3076 int 3077 kmem_debugging(void) 3078 { 3079 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3080 } 3081 3082 /* binning function, sorts finely at the two extremes */ 3083 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3084 ((((sp)->slab_refcnt <= (binshift)) || \ 3085 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3086 ? -(sp)->slab_refcnt \ 3087 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3088 3089 /* 3090 * Minimizing the number of partial slabs on the freelist minimizes 3091 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3092 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3093 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3094 * the most-used slabs at the front of the list where they have the best chance 3095 * of being completely allocated, and the least-used slabs at a safe distance 3096 * from the front to improve the odds that the few remaining buffers will all be 3097 * freed before another allocation can tie up the slab. For that reason a slab 3098 * with a higher slab_refcnt sorts less than than a slab with a lower 3099 * slab_refcnt. 3100 * 3101 * However, if a slab has at least one buffer that is deemed unfreeable, we 3102 * would rather have that slab at the front of the list regardless of 3103 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3104 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3105 * callback, the slab is marked unfreeable for as long as it remains on the 3106 * freelist. 3107 */ 3108 static int 3109 kmem_partial_slab_cmp(const void *p0, const void *p1) 3110 { 3111 const kmem_cache_t *cp; 3112 const kmem_slab_t *s0 = p0; 3113 const kmem_slab_t *s1 = p1; 3114 int w0, w1; 3115 size_t binshift; 3116 3117 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3118 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3119 ASSERT(s0->slab_cache == s1->slab_cache); 3120 cp = s1->slab_cache; 3121 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3122 binshift = cp->cache_partial_binshift; 3123 3124 /* weight of first slab */ 3125 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3126 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3127 w0 -= cp->cache_maxchunks; 3128 } 3129 3130 /* weight of second slab */ 3131 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3132 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3133 w1 -= cp->cache_maxchunks; 3134 } 3135 3136 if (w0 < w1) 3137 return (-1); 3138 if (w0 > w1) 3139 return (1); 3140 3141 /* compare pointer values */ 3142 if ((uintptr_t)s0 < (uintptr_t)s1) 3143 return (-1); 3144 if ((uintptr_t)s0 > (uintptr_t)s1) 3145 return (1); 3146 3147 return (0); 3148 } 3149 3150 static void 3151 kmem_check_destructor(kmem_cache_t *cp) 3152 { 3153 void *buf; 3154 3155 if (cp->cache_destructor == NULL) 3156 return; 3157 3158 /* 3159 * Assert that it is valid to call the destructor on a newly constructed 3160 * object without any intervening client code using the object. 3161 * Allocate from the slab layer to ensure that the client has not 3162 * touched the buffer. 3163 */ 3164 buf = kmem_slab_alloc(cp, KM_NOSLEEP); 3165 if (buf == NULL) 3166 return; 3167 3168 if (cp->cache_flags & KMF_BUFTAG) { 3169 if (kmem_cache_alloc_debug(cp, buf, KM_NOSLEEP, 1, 3170 caller()) != 0) 3171 return; 3172 } else if (cp->cache_constructor != NULL && 3173 cp->cache_constructor(buf, cp->cache_private, KM_NOSLEEP) != 0) { 3174 atomic_add_64(&cp->cache_alloc_fail, 1); 3175 kmem_slab_free(cp, buf); 3176 return; 3177 } 3178 3179 kmem_slab_free_constructed(cp, buf, B_FALSE); 3180 } 3181 3182 /* 3183 * It must be valid to call the destructor (if any) on a newly created object. 3184 * That is, the constructor (if any) must leave the object in a valid state for 3185 * the destructor. 3186 */ 3187 kmem_cache_t * 3188 kmem_cache_create( 3189 char *name, /* descriptive name for this cache */ 3190 size_t bufsize, /* size of the objects it manages */ 3191 size_t align, /* required object alignment */ 3192 int (*constructor)(void *, void *, int), /* object constructor */ 3193 void (*destructor)(void *, void *), /* object destructor */ 3194 void (*reclaim)(void *), /* memory reclaim callback */ 3195 void *private, /* pass-thru arg for constr/destr/reclaim */ 3196 vmem_t *vmp, /* vmem source for slab allocation */ 3197 int cflags) /* cache creation flags */ 3198 { 3199 int cpu_seqid; 3200 size_t chunksize; 3201 kmem_cache_t *cp; 3202 kmem_magtype_t *mtp; 3203 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3204 3205 #ifdef DEBUG 3206 /* 3207 * Cache names should conform to the rules for valid C identifiers 3208 */ 3209 if (!strident_valid(name)) { 3210 cmn_err(CE_CONT, 3211 "kmem_cache_create: '%s' is an invalid cache name\n" 3212 "cache names must conform to the rules for " 3213 "C identifiers\n", name); 3214 } 3215 #endif /* DEBUG */ 3216 3217 if (vmp == NULL) 3218 vmp = kmem_default_arena; 3219 3220 /* 3221 * If this kmem cache has an identifier vmem arena as its source, mark 3222 * it such to allow kmem_reap_idspace(). 3223 */ 3224 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3225 if (vmp->vm_cflags & VMC_IDENTIFIER) 3226 cflags |= KMC_IDENTIFIER; 3227 3228 /* 3229 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3230 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3231 * false sharing of per-CPU data. 3232 */ 3233 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3234 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3235 bzero(cp, csize); 3236 list_link_init(&cp->cache_link); 3237 3238 if (align == 0) 3239 align = KMEM_ALIGN; 3240 3241 /* 3242 * If we're not at least KMEM_ALIGN aligned, we can't use free 3243 * memory to hold bufctl information (because we can't safely 3244 * perform word loads and stores on it). 3245 */ 3246 if (align < KMEM_ALIGN) 3247 cflags |= KMC_NOTOUCH; 3248 3249 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 3250 panic("kmem_cache_create: bad alignment %lu", align); 3251 3252 mutex_enter(&kmem_flags_lock); 3253 if (kmem_flags & KMF_RANDOMIZE) 3254 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3255 KMF_RANDOMIZE; 3256 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3257 mutex_exit(&kmem_flags_lock); 3258 3259 /* 3260 * Make sure all the various flags are reasonable. 3261 */ 3262 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3263 3264 if (cp->cache_flags & KMF_LITE) { 3265 if (bufsize >= kmem_lite_minsize && 3266 align <= kmem_lite_maxalign && 3267 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3268 cp->cache_flags |= KMF_BUFTAG; 3269 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3270 } else { 3271 cp->cache_flags &= ~KMF_DEBUG; 3272 } 3273 } 3274 3275 if (cp->cache_flags & KMF_DEADBEEF) 3276 cp->cache_flags |= KMF_REDZONE; 3277 3278 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3279 cp->cache_flags |= KMF_NOMAGAZINE; 3280 3281 if (cflags & KMC_NODEBUG) 3282 cp->cache_flags &= ~KMF_DEBUG; 3283 3284 if (cflags & KMC_NOTOUCH) 3285 cp->cache_flags &= ~KMF_TOUCH; 3286 3287 if (cflags & KMC_NOHASH) 3288 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3289 3290 if (cflags & KMC_NOMAGAZINE) 3291 cp->cache_flags |= KMF_NOMAGAZINE; 3292 3293 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3294 cp->cache_flags |= KMF_REDZONE; 3295 3296 if (!(cp->cache_flags & KMF_AUDIT)) 3297 cp->cache_flags &= ~KMF_CONTENTS; 3298 3299 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3300 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3301 cp->cache_flags |= KMF_FIREWALL; 3302 3303 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3304 cp->cache_flags &= ~KMF_FIREWALL; 3305 3306 if (cp->cache_flags & KMF_FIREWALL) { 3307 cp->cache_flags &= ~KMF_BUFTAG; 3308 cp->cache_flags |= KMF_NOMAGAZINE; 3309 ASSERT(vmp == kmem_default_arena); 3310 vmp = kmem_firewall_arena; 3311 } 3312 3313 /* 3314 * Set cache properties. 3315 */ 3316 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3317 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3318 cp->cache_bufsize = bufsize; 3319 cp->cache_align = align; 3320 cp->cache_constructor = constructor; 3321 cp->cache_destructor = destructor; 3322 cp->cache_reclaim = reclaim; 3323 cp->cache_private = private; 3324 cp->cache_arena = vmp; 3325 cp->cache_cflags = cflags; 3326 3327 /* 3328 * Determine the chunk size. 3329 */ 3330 chunksize = bufsize; 3331 3332 if (align >= KMEM_ALIGN) { 3333 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3334 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3335 } 3336 3337 if (cp->cache_flags & KMF_BUFTAG) { 3338 cp->cache_bufctl = chunksize; 3339 cp->cache_buftag = chunksize; 3340 if (cp->cache_flags & KMF_LITE) 3341 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3342 else 3343 chunksize += sizeof (kmem_buftag_t); 3344 } 3345 3346 if (cp->cache_flags & KMF_DEADBEEF) { 3347 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3348 if (cp->cache_flags & KMF_LITE) 3349 cp->cache_verify = sizeof (uint64_t); 3350 } 3351 3352 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3353 3354 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3355 3356 /* 3357 * Now that we know the chunk size, determine the optimal slab size. 3358 */ 3359 if (vmp == kmem_firewall_arena) { 3360 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3361 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3362 cp->cache_maxcolor = cp->cache_mincolor; 3363 cp->cache_flags |= KMF_HASH; 3364 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3365 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3366 !(cp->cache_flags & KMF_AUDIT) && 3367 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3368 cp->cache_slabsize = vmp->vm_quantum; 3369 cp->cache_mincolor = 0; 3370 cp->cache_maxcolor = 3371 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3372 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3373 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3374 } else { 3375 size_t chunks, bestfit, waste, slabsize; 3376 size_t minwaste = LONG_MAX; 3377 3378 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3379 slabsize = P2ROUNDUP(chunksize * chunks, 3380 vmp->vm_quantum); 3381 chunks = slabsize / chunksize; 3382 waste = (slabsize % chunksize) / chunks; 3383 if (waste < minwaste) { 3384 minwaste = waste; 3385 bestfit = slabsize; 3386 } 3387 } 3388 if (cflags & KMC_QCACHE) 3389 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3390 cp->cache_slabsize = bestfit; 3391 cp->cache_mincolor = 0; 3392 cp->cache_maxcolor = bestfit % chunksize; 3393 cp->cache_flags |= KMF_HASH; 3394 } 3395 3396 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3397 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3398 3399 if (cp->cache_flags & KMF_HASH) { 3400 ASSERT(!(cflags & KMC_NOHASH)); 3401 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3402 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3403 } 3404 3405 if (cp->cache_maxcolor >= vmp->vm_quantum) 3406 cp->cache_maxcolor = vmp->vm_quantum - 1; 3407 3408 cp->cache_color = cp->cache_mincolor; 3409 3410 /* 3411 * Initialize the rest of the slab layer. 3412 */ 3413 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3414 3415 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3416 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3417 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3418 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3419 /* reuse partial slab AVL linkage for complete slab list linkage */ 3420 list_create(&cp->cache_complete_slabs, 3421 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3422 3423 if (cp->cache_flags & KMF_HASH) { 3424 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3425 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3426 bzero(cp->cache_hash_table, 3427 KMEM_HASH_INITIAL * sizeof (void *)); 3428 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3429 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3430 } 3431 3432 /* 3433 * Initialize the depot. 3434 */ 3435 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3436 3437 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3438 continue; 3439 3440 cp->cache_magtype = mtp; 3441 3442 /* 3443 * Initialize the CPU layer. 3444 */ 3445 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3446 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3447 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3448 ccp->cc_flags = cp->cache_flags; 3449 ccp->cc_rounds = -1; 3450 ccp->cc_prounds = -1; 3451 } 3452 3453 /* 3454 * Create the cache's kstats. 3455 */ 3456 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3457 "kmem_cache", KSTAT_TYPE_NAMED, 3458 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3459 KSTAT_FLAG_VIRTUAL)) != NULL) { 3460 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3461 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3462 cp->cache_kstat->ks_private = cp; 3463 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3464 kstat_install(cp->cache_kstat); 3465 } 3466 3467 /* 3468 * Add the cache to the global list. This makes it visible 3469 * to kmem_update(), so the cache must be ready for business. 3470 */ 3471 mutex_enter(&kmem_cache_lock); 3472 list_insert_tail(&kmem_caches, cp); 3473 mutex_exit(&kmem_cache_lock); 3474 3475 if (kmem_ready) 3476 kmem_cache_magazine_enable(cp); 3477 3478 if (kmem_mp_init_done && cp->cache_destructor != NULL) { 3479 kmem_check_destructor(cp); 3480 } 3481 3482 return (cp); 3483 } 3484 3485 static int 3486 kmem_move_cmp(const void *buf, const void *p) 3487 { 3488 const kmem_move_t *kmm = p; 3489 uintptr_t v1 = (uintptr_t)buf; 3490 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3491 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3492 } 3493 3494 static void 3495 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3496 { 3497 kmd->kmd_reclaim_numer = 1; 3498 } 3499 3500 /* 3501 * Initially, when choosing candidate slabs for buffers to move, we want to be 3502 * very selective and take only slabs that are less than 3503 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3504 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3505 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3506 * longer fragmented. 3507 */ 3508 static void 3509 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3510 { 3511 if (direction > 0) { 3512 /* make it easier to find a candidate slab */ 3513 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3514 kmd->kmd_reclaim_numer++; 3515 } 3516 } else { 3517 /* be more selective */ 3518 if (kmd->kmd_reclaim_numer > 1) { 3519 kmd->kmd_reclaim_numer--; 3520 } 3521 } 3522 } 3523 3524 void 3525 kmem_cache_set_move(kmem_cache_t *cp, 3526 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3527 { 3528 kmem_defrag_t *defrag; 3529 3530 ASSERT(move != NULL); 3531 /* 3532 * The consolidator does not support NOTOUCH caches because kmem cannot 3533 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3534 * a low order bit usable by clients to distinguish uninitialized memory 3535 * from known objects (see kmem_slab_create). 3536 */ 3537 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3538 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3539 3540 /* 3541 * We should not be holding anyone's cache lock when calling 3542 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3543 * lock. 3544 */ 3545 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3546 3547 mutex_enter(&cp->cache_lock); 3548 3549 if (KMEM_IS_MOVABLE(cp)) { 3550 if (cp->cache_move == NULL) { 3551 /* 3552 * We want to assert that the client has not allocated 3553 * any objects from this cache before setting a move 3554 * callback function. However, it's possible that 3555 * kmem_check_destructor() has created a slab between 3556 * the time that the client called kmem_cache_create() 3557 * and this call to kmem_cache_set_move(). Currently 3558 * there are no correctness issues involved; the client 3559 * could allocate many objects before setting a 3560 * callback, but we want to enforce the rule anyway to 3561 * allow the greatest flexibility for the consolidator 3562 * in the future. 3563 * 3564 * It's possible that kmem_check_destructor() can be 3565 * called twice for the same cache. 3566 */ 3567 ASSERT(cp->cache_slab_alloc <= 2); 3568 3569 cp->cache_defrag = defrag; 3570 defrag = NULL; /* nothing to free */ 3571 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 3572 avl_create(&cp->cache_defrag->kmd_moves_pending, 3573 kmem_move_cmp, sizeof (kmem_move_t), 3574 offsetof(kmem_move_t, kmm_entry)); 3575 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3576 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3577 /* reuse the slab's AVL linkage for deadlist linkage */ 3578 list_create(&cp->cache_defrag->kmd_deadlist, 3579 sizeof (kmem_slab_t), 3580 offsetof(kmem_slab_t, slab_link)); 3581 kmem_reset_reclaim_threshold(cp->cache_defrag); 3582 } 3583 cp->cache_move = move; 3584 } 3585 3586 mutex_exit(&cp->cache_lock); 3587 3588 if (defrag != NULL) { 3589 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 3590 } 3591 } 3592 3593 void 3594 kmem_cache_destroy(kmem_cache_t *cp) 3595 { 3596 int cpu_seqid; 3597 3598 /* 3599 * Remove the cache from the global cache list so that no one else 3600 * can schedule tasks on its behalf, wait for any pending tasks to 3601 * complete, purge the cache, and then destroy it. 3602 */ 3603 mutex_enter(&kmem_cache_lock); 3604 list_remove(&kmem_caches, cp); 3605 mutex_exit(&kmem_cache_lock); 3606 3607 if (kmem_taskq != NULL) 3608 taskq_wait(kmem_taskq); 3609 if (kmem_move_taskq != NULL) 3610 taskq_wait(kmem_move_taskq); 3611 3612 kmem_cache_magazine_purge(cp); 3613 3614 mutex_enter(&cp->cache_lock); 3615 if (cp->cache_buftotal != 0) 3616 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 3617 cp->cache_name, (void *)cp); 3618 if (cp->cache_defrag != NULL) { 3619 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 3620 list_destroy(&cp->cache_defrag->kmd_deadlist); 3621 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 3622 cp->cache_defrag = NULL; 3623 } 3624 /* 3625 * The cache is now dead. There should be no further activity. We 3626 * enforce this by setting land mines in the constructor, destructor, 3627 * reclaim, and move routines that induce a kernel text fault if 3628 * invoked. 3629 */ 3630 cp->cache_constructor = (int (*)(void *, void *, int))1; 3631 cp->cache_destructor = (void (*)(void *, void *))2; 3632 cp->cache_reclaim = (void (*)(void *))3; 3633 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 3634 mutex_exit(&cp->cache_lock); 3635 3636 kstat_delete(cp->cache_kstat); 3637 3638 if (cp->cache_hash_table != NULL) 3639 vmem_free(kmem_hash_arena, cp->cache_hash_table, 3640 (cp->cache_hash_mask + 1) * sizeof (void *)); 3641 3642 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 3643 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 3644 3645 mutex_destroy(&cp->cache_depot_lock); 3646 mutex_destroy(&cp->cache_lock); 3647 3648 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 3649 } 3650 3651 /*ARGSUSED*/ 3652 static int 3653 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 3654 { 3655 ASSERT(MUTEX_HELD(&cpu_lock)); 3656 if (what == CPU_UNCONFIG) { 3657 kmem_cache_applyall(kmem_cache_magazine_purge, 3658 kmem_taskq, TQ_SLEEP); 3659 kmem_cache_applyall(kmem_cache_magazine_enable, 3660 kmem_taskq, TQ_SLEEP); 3661 } 3662 return (0); 3663 } 3664 3665 static void 3666 kmem_cache_init(int pass, int use_large_pages) 3667 { 3668 int i; 3669 size_t size; 3670 kmem_cache_t *cp; 3671 kmem_magtype_t *mtp; 3672 char name[KMEM_CACHE_NAMELEN + 1]; 3673 3674 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 3675 mtp = &kmem_magtype[i]; 3676 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 3677 mtp->mt_cache = kmem_cache_create(name, 3678 (mtp->mt_magsize + 1) * sizeof (void *), 3679 mtp->mt_align, NULL, NULL, NULL, NULL, 3680 kmem_msb_arena, KMC_NOHASH); 3681 } 3682 3683 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 3684 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 3685 kmem_msb_arena, KMC_NOHASH); 3686 3687 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 3688 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3689 kmem_msb_arena, KMC_NOHASH); 3690 3691 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 3692 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 3693 kmem_msb_arena, KMC_NOHASH); 3694 3695 if (pass == 2) { 3696 kmem_va_arena = vmem_create("kmem_va", 3697 NULL, 0, PAGESIZE, 3698 vmem_alloc, vmem_free, heap_arena, 3699 8 * PAGESIZE, VM_SLEEP); 3700 3701 if (use_large_pages) { 3702 kmem_default_arena = vmem_xcreate("kmem_default", 3703 NULL, 0, PAGESIZE, 3704 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 3705 0, VM_SLEEP); 3706 } else { 3707 kmem_default_arena = vmem_create("kmem_default", 3708 NULL, 0, PAGESIZE, 3709 segkmem_alloc, segkmem_free, kmem_va_arena, 3710 0, VM_SLEEP); 3711 } 3712 } else { 3713 /* 3714 * During the first pass, the kmem_alloc_* caches 3715 * are treated as metadata. 3716 */ 3717 kmem_default_arena = kmem_msb_arena; 3718 } 3719 3720 /* 3721 * Set up the default caches to back kmem_alloc() 3722 */ 3723 size = KMEM_ALIGN; 3724 for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) { 3725 size_t align = KMEM_ALIGN; 3726 size_t cache_size = kmem_alloc_sizes[i]; 3727 /* 3728 * If they allocate a multiple of the coherency granularity, 3729 * they get a coherency-granularity-aligned address. 3730 */ 3731 if (IS_P2ALIGNED(cache_size, 64)) 3732 align = 64; 3733 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 3734 align = PAGESIZE; 3735 (void) sprintf(name, "kmem_alloc_%lu", cache_size); 3736 cp = kmem_cache_create(name, cache_size, align, 3737 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 3738 while (size <= cache_size) { 3739 kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp; 3740 size += KMEM_ALIGN; 3741 } 3742 } 3743 } 3744 3745 void 3746 kmem_init(void) 3747 { 3748 kmem_cache_t *cp; 3749 int old_kmem_flags = kmem_flags; 3750 int use_large_pages = 0; 3751 size_t maxverify, minfirewall; 3752 3753 kstat_init(); 3754 3755 /* 3756 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 3757 */ 3758 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 3759 kmem_flags = 0; 3760 3761 /* 3762 * Don't do firewalled allocations if the heap is less than 1TB 3763 * (i.e. on a 32-bit kernel) 3764 * The resulting VM_NEXTFIT allocations would create too much 3765 * fragmentation in a small heap. 3766 */ 3767 #if defined(_LP64) 3768 maxverify = minfirewall = PAGESIZE / 2; 3769 #else 3770 maxverify = minfirewall = ULONG_MAX; 3771 #endif 3772 3773 /* LINTED */ 3774 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 3775 3776 list_create(&kmem_caches, sizeof (kmem_cache_t), 3777 offsetof(kmem_cache_t, cache_link)); 3778 3779 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 3780 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 3781 VM_SLEEP | VMC_NO_QCACHE); 3782 3783 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 3784 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 3785 VM_SLEEP); 3786 3787 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 3788 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3789 3790 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 3791 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3792 3793 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 3794 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3795 3796 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 3797 NULL, 0, PAGESIZE, 3798 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 3799 0, VM_SLEEP); 3800 3801 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 3802 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); 3803 3804 /* temporary oversize arena for mod_read_system_file */ 3805 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 3806 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3807 3808 kmem_reap_interval = 15 * hz; 3809 3810 /* 3811 * Read /etc/system. This is a chicken-and-egg problem because 3812 * kmem_flags may be set in /etc/system, but mod_read_system_file() 3813 * needs to use the allocator. The simplest solution is to create 3814 * all the standard kmem caches, read /etc/system, destroy all the 3815 * caches we just created, and then create them all again in light 3816 * of the (possibly) new kmem_flags and other kmem tunables. 3817 */ 3818 kmem_cache_init(1, 0); 3819 3820 mod_read_system_file(boothowto & RB_ASKNAME); 3821 3822 while ((cp = list_tail(&kmem_caches)) != NULL) 3823 kmem_cache_destroy(cp); 3824 3825 vmem_destroy(kmem_oversize_arena); 3826 3827 if (old_kmem_flags & KMF_STICKY) 3828 kmem_flags = old_kmem_flags; 3829 3830 if (!(kmem_flags & KMF_AUDIT)) 3831 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 3832 3833 if (kmem_maxverify == 0) 3834 kmem_maxverify = maxverify; 3835 3836 if (kmem_minfirewall == 0) 3837 kmem_minfirewall = minfirewall; 3838 3839 /* 3840 * give segkmem a chance to figure out if we are using large pages 3841 * for the kernel heap 3842 */ 3843 use_large_pages = segkmem_lpsetup(); 3844 3845 /* 3846 * To protect against corruption, we keep the actual number of callers 3847 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 3848 * to 16, since the overhead for small buffers quickly gets out of 3849 * hand. 3850 * 3851 * The real limit would depend on the needs of the largest KMC_NOHASH 3852 * cache. 3853 */ 3854 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 3855 kmem_lite_pcs = kmem_lite_count; 3856 3857 /* 3858 * Normally, we firewall oversized allocations when possible, but 3859 * if we are using large pages for kernel memory, and we don't have 3860 * any non-LITE debugging flags set, we want to allocate oversized 3861 * buffers from large pages, and so skip the firewalling. 3862 */ 3863 if (use_large_pages && 3864 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 3865 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 3866 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 3867 0, VM_SLEEP); 3868 } else { 3869 kmem_oversize_arena = vmem_create("kmem_oversize", 3870 NULL, 0, PAGESIZE, 3871 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 3872 kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); 3873 } 3874 3875 kmem_cache_init(2, use_large_pages); 3876 3877 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 3878 if (kmem_transaction_log_size == 0) 3879 kmem_transaction_log_size = kmem_maxavail() / 50; 3880 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 3881 } 3882 3883 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 3884 if (kmem_content_log_size == 0) 3885 kmem_content_log_size = kmem_maxavail() / 50; 3886 kmem_content_log = kmem_log_init(kmem_content_log_size); 3887 } 3888 3889 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 3890 3891 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 3892 3893 /* 3894 * Initialize STREAMS message caches so allocb() is available. 3895 * This allows us to initialize the logging framework (cmn_err(9F), 3896 * strlog(9F), etc) so we can start recording messages. 3897 */ 3898 streams_msg_init(); 3899 3900 /* 3901 * Initialize the ZSD framework in Zones so modules loaded henceforth 3902 * can register their callbacks. 3903 */ 3904 zone_zsd_init(); 3905 3906 log_init(); 3907 taskq_init(); 3908 3909 /* 3910 * Warn about invalid or dangerous values of kmem_flags. 3911 * Always warn about unsupported values. 3912 */ 3913 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 3914 KMF_CONTENTS | KMF_LITE)) != 0) || 3915 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 3916 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 3917 "See the Solaris Tunable Parameters Reference Manual.", 3918 kmem_flags); 3919 3920 #ifdef DEBUG 3921 if ((kmem_flags & KMF_DEBUG) == 0) 3922 cmn_err(CE_NOTE, "kmem debugging disabled."); 3923 #else 3924 /* 3925 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 3926 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 3927 * if KMF_AUDIT is set). We should warn the user about the performance 3928 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 3929 * isn't set (since that disables AUDIT). 3930 */ 3931 if (!(kmem_flags & KMF_LITE) && 3932 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 3933 cmn_err(CE_WARN, "High-overhead kmem debugging features " 3934 "enabled (kmem_flags = 0x%x). Performance degradation " 3935 "and large memory overhead possible. See the Solaris " 3936 "Tunable Parameters Reference Manual.", kmem_flags); 3937 #endif /* not DEBUG */ 3938 3939 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 3940 3941 kmem_ready = 1; 3942 3943 /* 3944 * Initialize the platform-specific aligned/DMA memory allocator. 3945 */ 3946 ka_init(); 3947 3948 /* 3949 * Initialize 32-bit ID cache. 3950 */ 3951 id32_init(); 3952 3953 /* 3954 * Initialize the networking stack so modules loaded can 3955 * register their callbacks. 3956 */ 3957 netstack_init(); 3958 } 3959 3960 static void 3961 kmem_move_init(void) 3962 { 3963 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 3964 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 3965 kmem_msb_arena, KMC_NOHASH); 3966 kmem_move_cache = kmem_cache_create("kmem_move_cache", 3967 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 3968 kmem_msb_arena, KMC_NOHASH); 3969 3970 /* 3971 * kmem guarantees that move callbacks are sequential and that even 3972 * across multiple caches no two moves ever execute simultaneously. 3973 * Move callbacks are processed on a separate taskq so that client code 3974 * does not interfere with internal maintenance tasks. 3975 */ 3976 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 3977 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 3978 } 3979 3980 void 3981 kmem_thread_init(void) 3982 { 3983 kmem_move_init(); 3984 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 3985 300, INT_MAX, TASKQ_PREPOPULATE); 3986 } 3987 3988 void 3989 kmem_mp_init(void) 3990 { 3991 mutex_enter(&cpu_lock); 3992 register_cpu_setup_func(kmem_cpu_setup, NULL); 3993 mutex_exit(&cpu_lock); 3994 3995 kmem_update_timeout(NULL); 3996 3997 kmem_mp_init_done = B_TRUE; 3998 /* 3999 * Defer checking destructors until now to avoid constructor 4000 * dependencies during startup. 4001 */ 4002 kmem_cache_applyall(kmem_check_destructor, NULL, 0); 4003 } 4004 4005 /* 4006 * Return the slab of the allocated buffer, or NULL if the buffer is not 4007 * allocated. This function may be called with a known slab address to determine 4008 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4009 * an allocated buffer's slab. 4010 */ 4011 static kmem_slab_t * 4012 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4013 { 4014 kmem_bufctl_t *bcp, *bufbcp; 4015 4016 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4017 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4018 4019 if (cp->cache_flags & KMF_HASH) { 4020 for (bcp = *KMEM_HASH(cp, buf); 4021 (bcp != NULL) && (bcp->bc_addr != buf); 4022 bcp = bcp->bc_next) { 4023 continue; 4024 } 4025 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4026 return (bcp == NULL ? NULL : bcp->bc_slab); 4027 } 4028 4029 if (sp == NULL) { 4030 sp = KMEM_SLAB(cp, buf); 4031 } 4032 bufbcp = KMEM_BUFCTL(cp, buf); 4033 for (bcp = sp->slab_head; 4034 (bcp != NULL) && (bcp != bufbcp); 4035 bcp = bcp->bc_next) { 4036 continue; 4037 } 4038 return (bcp == NULL ? sp : NULL); 4039 } 4040 4041 static boolean_t 4042 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4043 { 4044 long refcnt; 4045 4046 ASSERT(cp->cache_defrag != NULL); 4047 4048 /* If we're desperate, we don't care if the client said NO. */ 4049 refcnt = sp->slab_refcnt; 4050 if (flags & KMM_DESPERATE) { 4051 return (refcnt < sp->slab_chunks); /* any partial */ 4052 } 4053 4054 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4055 return (B_FALSE); 4056 } 4057 4058 if (kmem_move_any_partial) { 4059 return (refcnt < sp->slab_chunks); 4060 } 4061 4062 if ((refcnt == 1) && (refcnt < sp->slab_chunks)) { 4063 return (B_TRUE); 4064 } 4065 4066 /* 4067 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4068 * slabs with a progressively higher percentage of used buffers can be 4069 * reclaimed until the cache as a whole is no longer fragmented. 4070 * 4071 * sp->slab_refcnt kmd_reclaim_numer 4072 * --------------- < ------------------ 4073 * sp->slab_chunks KMEM_VOID_FRACTION 4074 */ 4075 return ((refcnt * KMEM_VOID_FRACTION) < 4076 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4077 } 4078 4079 static void * 4080 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4081 void *tbuf) 4082 { 4083 int i; /* magazine round index */ 4084 4085 for (i = 0; i < n; i++) { 4086 if (buf == m->mag_round[i]) { 4087 if (cp->cache_flags & KMF_BUFTAG) { 4088 (void) kmem_cache_free_debug(cp, tbuf, 4089 caller()); 4090 } 4091 m->mag_round[i] = tbuf; 4092 return (buf); 4093 } 4094 } 4095 4096 return (NULL); 4097 } 4098 4099 /* 4100 * Hunt the magazine layer for the given buffer. If found, the buffer is 4101 * removed from the magazine layer and returned, otherwise NULL is returned. 4102 * The state of the returned buffer is freed and constructed. 4103 */ 4104 static void * 4105 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4106 { 4107 kmem_cpu_cache_t *ccp; 4108 kmem_magazine_t *m; 4109 int cpu_seqid; 4110 int n; /* magazine rounds */ 4111 void *tbuf; /* temporary swap buffer */ 4112 4113 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4114 4115 /* 4116 * Allocated a buffer to swap with the one we hope to pull out of a 4117 * magazine when found. 4118 */ 4119 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4120 if (tbuf == NULL) { 4121 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4122 return (NULL); 4123 } 4124 if (tbuf == buf) { 4125 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4126 if (cp->cache_flags & KMF_BUFTAG) { 4127 (void) kmem_cache_free_debug(cp, buf, caller()); 4128 } 4129 return (buf); 4130 } 4131 4132 /* Hunt the depot. */ 4133 mutex_enter(&cp->cache_depot_lock); 4134 n = cp->cache_magtype->mt_magsize; 4135 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4136 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4137 mutex_exit(&cp->cache_depot_lock); 4138 return (buf); 4139 } 4140 } 4141 mutex_exit(&cp->cache_depot_lock); 4142 4143 /* Hunt the per-CPU magazines. */ 4144 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4145 ccp = &cp->cache_cpu[cpu_seqid]; 4146 4147 mutex_enter(&ccp->cc_lock); 4148 m = ccp->cc_loaded; 4149 n = ccp->cc_rounds; 4150 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4151 mutex_exit(&ccp->cc_lock); 4152 return (buf); 4153 } 4154 m = ccp->cc_ploaded; 4155 n = ccp->cc_prounds; 4156 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4157 mutex_exit(&ccp->cc_lock); 4158 return (buf); 4159 } 4160 mutex_exit(&ccp->cc_lock); 4161 } 4162 4163 kmem_cache_free(cp, tbuf); 4164 return (NULL); 4165 } 4166 4167 /* 4168 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4169 * or when the buffer is freed. 4170 */ 4171 static void 4172 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4173 { 4174 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4175 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4176 4177 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4178 return; 4179 } 4180 4181 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4182 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4183 avl_remove(&cp->cache_partial_slabs, sp); 4184 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4185 sp->slab_stuck_offset = (uint32_t)-1; 4186 avl_add(&cp->cache_partial_slabs, sp); 4187 } 4188 } else { 4189 sp->slab_later_count = 0; 4190 sp->slab_stuck_offset = (uint32_t)-1; 4191 } 4192 } 4193 4194 static void 4195 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4196 { 4197 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4198 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4199 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4200 4201 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4202 return; 4203 } 4204 4205 avl_remove(&cp->cache_partial_slabs, sp); 4206 sp->slab_later_count = 0; 4207 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4208 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4209 avl_add(&cp->cache_partial_slabs, sp); 4210 } 4211 4212 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4213 4214 /* 4215 * The move callback takes two buffer addresses, the buffer to be moved, and a 4216 * newly allocated and constructed buffer selected by kmem as the destination. 4217 * It also takes the size of the buffer and an optional user argument specified 4218 * at cache creation time. kmem guarantees that the buffer to be moved has not 4219 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4220 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4221 * the client to safely determine whether or not it is still using the buffer. 4222 * The client must not free either of the buffers passed to the move callback, 4223 * since kmem wants to free them directly to the slab layer. The client response 4224 * tells kmem which of the two buffers to free: 4225 * 4226 * YES kmem frees the old buffer (the move was successful) 4227 * NO kmem frees the new buffer, marks the slab of the old buffer 4228 * non-reclaimable to avoid bothering the client again 4229 * LATER kmem frees the new buffer, increments slab_later_count 4230 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4231 * DONT_NEED kmem frees both the old buffer and the new buffer 4232 * 4233 * The pending callback argument now being processed contains both of the 4234 * buffers (old and new) passed to the move callback function, the slab of the 4235 * old buffer, and flags related to the move request, such as whether or not the 4236 * system was desperate for memory. 4237 */ 4238 static void 4239 kmem_move_buffer(kmem_move_t *callback) 4240 { 4241 kmem_cbrc_t response; 4242 kmem_slab_t *sp = callback->kmm_from_slab; 4243 kmem_cache_t *cp = sp->slab_cache; 4244 boolean_t free_on_slab; 4245 4246 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4247 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4248 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4249 4250 /* 4251 * The number of allocated buffers on the slab may have changed since we 4252 * last checked the slab's reclaimability (when the pending move was 4253 * enqueued), or the client may have responded NO when asked to move 4254 * another buffer on the same slab. 4255 */ 4256 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4257 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4258 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4259 kmem_move_stats.kms_notify_no_longer_reclaimable); 4260 kmem_slab_free(cp, callback->kmm_to_buf); 4261 kmem_move_end(cp, callback); 4262 return; 4263 } 4264 4265 /* 4266 * Hunting magazines is expensive, so we'll wait to do that until the 4267 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4268 * is cheap, so we might as well do that here in case we can avoid 4269 * bothering the client. 4270 */ 4271 mutex_enter(&cp->cache_lock); 4272 free_on_slab = (kmem_slab_allocated(cp, sp, 4273 callback->kmm_from_buf) == NULL); 4274 mutex_exit(&cp->cache_lock); 4275 4276 if (free_on_slab) { 4277 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4278 kmem_slab_free(cp, callback->kmm_to_buf); 4279 kmem_move_end(cp, callback); 4280 return; 4281 } 4282 4283 if (cp->cache_flags & KMF_BUFTAG) { 4284 /* 4285 * Make kmem_cache_alloc_debug() apply the constructor for us. 4286 */ 4287 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4288 KM_NOSLEEP, 1, caller()) != 0) { 4289 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4290 kmem_move_end(cp, callback); 4291 return; 4292 } 4293 } else if (cp->cache_constructor != NULL && 4294 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4295 KM_NOSLEEP) != 0) { 4296 atomic_add_64(&cp->cache_alloc_fail, 1); 4297 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4298 kmem_slab_free(cp, callback->kmm_to_buf); 4299 kmem_move_end(cp, callback); 4300 return; 4301 } 4302 4303 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4304 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4305 kmem_move_stats.kms_notify_callbacks); 4306 cp->cache_defrag->kmd_callbacks++; 4307 cp->cache_defrag->kmd_thread = curthread; 4308 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4309 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4310 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4311 callback); 4312 4313 response = cp->cache_move(callback->kmm_from_buf, 4314 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4315 4316 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4317 callback, kmem_cbrc_t, response); 4318 cp->cache_defrag->kmd_thread = NULL; 4319 cp->cache_defrag->kmd_from_buf = NULL; 4320 cp->cache_defrag->kmd_to_buf = NULL; 4321 4322 if (response == KMEM_CBRC_YES) { 4323 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4324 cp->cache_defrag->kmd_yes++; 4325 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4326 mutex_enter(&cp->cache_lock); 4327 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4328 mutex_exit(&cp->cache_lock); 4329 kmem_move_end(cp, callback); 4330 return; 4331 } 4332 4333 switch (response) { 4334 case KMEM_CBRC_NO: 4335 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4336 cp->cache_defrag->kmd_no++; 4337 mutex_enter(&cp->cache_lock); 4338 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4339 mutex_exit(&cp->cache_lock); 4340 break; 4341 case KMEM_CBRC_LATER: 4342 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4343 cp->cache_defrag->kmd_later++; 4344 mutex_enter(&cp->cache_lock); 4345 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4346 mutex_exit(&cp->cache_lock); 4347 break; 4348 } 4349 4350 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4351 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4352 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4353 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4354 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4355 callback->kmm_from_buf); 4356 } 4357 mutex_exit(&cp->cache_lock); 4358 break; 4359 case KMEM_CBRC_DONT_NEED: 4360 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4361 cp->cache_defrag->kmd_dont_need++; 4362 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4363 mutex_enter(&cp->cache_lock); 4364 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4365 mutex_exit(&cp->cache_lock); 4366 break; 4367 case KMEM_CBRC_DONT_KNOW: 4368 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4369 cp->cache_defrag->kmd_dont_know++; 4370 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4371 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4372 cp->cache_defrag->kmd_hunt_found++; 4373 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4374 B_TRUE); 4375 mutex_enter(&cp->cache_lock); 4376 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4377 mutex_exit(&cp->cache_lock); 4378 } 4379 break; 4380 default: 4381 panic("'%s' (%p) unexpected move callback response %d\n", 4382 cp->cache_name, (void *)cp, response); 4383 } 4384 4385 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4386 kmem_move_end(cp, callback); 4387 } 4388 4389 /* Return B_FALSE if there is insufficient memory for the move request. */ 4390 static boolean_t 4391 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4392 { 4393 void *to_buf; 4394 avl_index_t index; 4395 kmem_move_t *callback, *pending; 4396 4397 ASSERT(taskq_member(kmem_taskq, curthread)); 4398 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4399 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4400 4401 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4402 if (callback == NULL) { 4403 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4404 return (B_FALSE); 4405 } 4406 4407 callback->kmm_from_slab = sp; 4408 callback->kmm_from_buf = buf; 4409 callback->kmm_flags = flags; 4410 4411 mutex_enter(&cp->cache_lock); 4412 4413 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) { 4414 mutex_exit(&cp->cache_lock); 4415 kmem_cache_free(kmem_move_cache, callback); 4416 return (B_TRUE); /* there is no need for the move request */ 4417 } 4418 4419 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4420 if (pending != NULL) { 4421 /* 4422 * If the move is already pending and we're desperate now, 4423 * update the move flags. 4424 */ 4425 if (flags & KMM_DESPERATE) { 4426 pending->kmm_flags |= KMM_DESPERATE; 4427 } 4428 mutex_exit(&cp->cache_lock); 4429 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4430 kmem_cache_free(kmem_move_cache, callback); 4431 return (B_TRUE); 4432 } 4433 4434 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs)); 4435 callback->kmm_to_buf = to_buf; 4436 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4437 4438 mutex_exit(&cp->cache_lock); 4439 4440 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4441 callback, TQ_NOSLEEP)) { 4442 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail); 4443 mutex_enter(&cp->cache_lock); 4444 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4445 mutex_exit(&cp->cache_lock); 4446 kmem_slab_free(cp, to_buf); 4447 kmem_cache_free(kmem_move_cache, callback); 4448 return (B_FALSE); 4449 } 4450 4451 return (B_TRUE); 4452 } 4453 4454 static void 4455 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4456 { 4457 avl_index_t index; 4458 4459 ASSERT(cp->cache_defrag != NULL); 4460 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4461 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4462 4463 mutex_enter(&cp->cache_lock); 4464 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4465 callback->kmm_from_buf, &index) != NULL); 4466 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4467 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4468 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4469 kmem_slab_t *sp; 4470 4471 /* 4472 * The last pending move completed. Release all slabs from the 4473 * front of the dead list except for any slab at the tail that 4474 * needs to be released from the context of kmem_move_buffers(). 4475 * kmem deferred unmapping the buffers on these slabs in order 4476 * to guarantee that buffers passed to the move callback have 4477 * been touched only by kmem or by the client itself. 4478 */ 4479 while ((sp = list_remove_head(deadlist)) != NULL) { 4480 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4481 list_insert_tail(deadlist, sp); 4482 break; 4483 } 4484 cp->cache_defrag->kmd_deadcount--; 4485 cp->cache_slab_destroy++; 4486 mutex_exit(&cp->cache_lock); 4487 kmem_slab_destroy(cp, sp); 4488 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4489 mutex_enter(&cp->cache_lock); 4490 } 4491 } 4492 mutex_exit(&cp->cache_lock); 4493 kmem_cache_free(kmem_move_cache, callback); 4494 } 4495 4496 /* 4497 * Move buffers from least used slabs first by scanning backwards from the end 4498 * of the partial slab list. Scan at most max_scan candidate slabs and move 4499 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4500 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4501 * skip slabs with a ratio of allocated buffers at or above the current 4502 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4503 * scan is aborted) so that the caller can adjust the reclaimability threshold 4504 * depending on how many reclaimable slabs it finds. 4505 * 4506 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4507 * move request, since it is not valid for kmem_move_begin() to call 4508 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4509 */ 4510 static int 4511 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4512 int flags) 4513 { 4514 kmem_slab_t *sp; 4515 void *buf; 4516 int i, j; /* slab index, buffer index */ 4517 int s; /* reclaimable slabs */ 4518 int b; /* allocated (movable) buffers on reclaimable slab */ 4519 boolean_t success; 4520 int refcnt; 4521 int nomove; 4522 4523 ASSERT(taskq_member(kmem_taskq, curthread)); 4524 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4525 ASSERT(kmem_move_cache != NULL); 4526 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4527 ASSERT(avl_numnodes(&cp->cache_partial_slabs) > 1); 4528 4529 if (kmem_move_blocked) { 4530 return (0); 4531 } 4532 4533 if (kmem_move_fulltilt) { 4534 max_slabs = 0; 4535 flags |= KMM_DESPERATE; 4536 } 4537 4538 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4539 /* 4540 * Scan as many slabs as needed to find the desired number of 4541 * candidate slabs. 4542 */ 4543 max_scan = (size_t)-1; 4544 } 4545 4546 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4547 /* Find as many candidate slabs as possible. */ 4548 max_slabs = (size_t)-1; 4549 } 4550 4551 sp = avl_last(&cp->cache_partial_slabs); 4552 ASSERT(sp != NULL && KMEM_SLAB_IS_PARTIAL(sp)); 4553 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && 4554 (sp != avl_first(&cp->cache_partial_slabs)); 4555 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4556 4557 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4558 continue; 4559 } 4560 s++; 4561 4562 /* Look for allocated buffers to move. */ 4563 for (j = 0, b = 0, buf = sp->slab_base; 4564 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4565 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4566 4567 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4568 continue; 4569 } 4570 4571 b++; 4572 4573 /* 4574 * Prevent the slab from being destroyed while we drop 4575 * cache_lock and while the pending move is not yet 4576 * registered. Flag the pending move while 4577 * kmd_moves_pending may still be empty, since we can't 4578 * yet rely on a non-zero pending move count to prevent 4579 * the slab from being destroyed. 4580 */ 4581 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4582 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4583 /* 4584 * Recheck refcnt and nomove after reacquiring the lock, 4585 * since these control the order of partial slabs, and 4586 * we want to know if we can pick up the scan where we 4587 * left off. 4588 */ 4589 refcnt = sp->slab_refcnt; 4590 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 4591 mutex_exit(&cp->cache_lock); 4592 4593 success = kmem_move_begin(cp, sp, buf, flags); 4594 4595 /* 4596 * Now, before the lock is reacquired, kmem could 4597 * process all pending move requests and purge the 4598 * deadlist, so that upon reacquiring the lock, sp has 4599 * been remapped. Therefore, the KMEM_SLAB_MOVE_PENDING 4600 * flag causes the slab to be put at the end of the 4601 * deadlist and prevents it from being purged, since we 4602 * plan to destroy it here after reacquiring the lock. 4603 */ 4604 mutex_enter(&cp->cache_lock); 4605 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4606 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4607 4608 /* 4609 * Destroy the slab now if it was completely freed while 4610 * we dropped cache_lock. 4611 */ 4612 if (sp->slab_refcnt == 0) { 4613 list_t *deadlist = 4614 &cp->cache_defrag->kmd_deadlist; 4615 4616 ASSERT(!list_is_empty(deadlist)); 4617 ASSERT(list_link_active((list_node_t *) 4618 &sp->slab_link)); 4619 4620 list_remove(deadlist, sp); 4621 cp->cache_defrag->kmd_deadcount--; 4622 cp->cache_slab_destroy++; 4623 mutex_exit(&cp->cache_lock); 4624 kmem_slab_destroy(cp, sp); 4625 KMEM_STAT_ADD(kmem_move_stats. 4626 kms_dead_slabs_freed); 4627 KMEM_STAT_ADD(kmem_move_stats. 4628 kms_endscan_slab_destroyed); 4629 mutex_enter(&cp->cache_lock); 4630 /* 4631 * Since we can't pick up the scan where we left 4632 * off, abort the scan and say nothing about the 4633 * number of reclaimable slabs. 4634 */ 4635 return (-1); 4636 } 4637 4638 if (!success) { 4639 /* 4640 * Abort the scan if there is not enough memory 4641 * for the request and say nothing about the 4642 * number of reclaimable slabs. 4643 */ 4644 KMEM_STAT_ADD( 4645 kmem_move_stats.kms_endscan_nomem); 4646 return (-1); 4647 } 4648 4649 /* 4650 * The slab may have been completely allocated while the 4651 * lock was dropped. 4652 */ 4653 if (KMEM_SLAB_IS_ALL_USED(sp)) { 4654 KMEM_STAT_ADD( 4655 kmem_move_stats.kms_endscan_slab_all_used); 4656 return (-1); 4657 } 4658 4659 /* 4660 * The slab's position changed while the lock was 4661 * dropped, so we don't know where we are in the 4662 * sequence any more. 4663 */ 4664 if (sp->slab_refcnt != refcnt) { 4665 KMEM_STAT_ADD( 4666 kmem_move_stats.kms_endscan_refcnt_changed); 4667 return (-1); 4668 } 4669 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 4670 KMEM_STAT_ADD( 4671 kmem_move_stats.kms_endscan_nomove_changed); 4672 return (-1); 4673 } 4674 4675 /* 4676 * Generating a move request allocates a destination 4677 * buffer from the slab layer, bumping the first slab if 4678 * it is completely allocated. 4679 */ 4680 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 4681 if (sp == avl_first(&cp->cache_partial_slabs)) { 4682 goto end_scan; 4683 } 4684 } 4685 } 4686 end_scan: 4687 4688 KMEM_STAT_COND_ADD(sp == avl_first(&cp->cache_partial_slabs), 4689 kmem_move_stats.kms_endscan_freelist); 4690 4691 return (s); 4692 } 4693 4694 typedef struct kmem_move_notify_args { 4695 kmem_cache_t *kmna_cache; 4696 void *kmna_buf; 4697 } kmem_move_notify_args_t; 4698 4699 static void 4700 kmem_cache_move_notify_task(void *arg) 4701 { 4702 kmem_move_notify_args_t *args = arg; 4703 kmem_cache_t *cp = args->kmna_cache; 4704 void *buf = args->kmna_buf; 4705 kmem_slab_t *sp; 4706 4707 ASSERT(taskq_member(kmem_taskq, curthread)); 4708 ASSERT(list_link_active(&cp->cache_link)); 4709 4710 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4711 mutex_enter(&cp->cache_lock); 4712 sp = kmem_slab_allocated(cp, NULL, buf); 4713 4714 /* Ignore the notification if the buffer is no longer allocated. */ 4715 if (sp == NULL) { 4716 mutex_exit(&cp->cache_lock); 4717 return; 4718 } 4719 4720 /* Ignore the notification if there's no reason to move the buffer. */ 4721 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4722 /* 4723 * So far the notification is not ignored. Ignore the 4724 * notification if the slab is not marked by an earlier refusal 4725 * to move a buffer. 4726 */ 4727 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 4728 (sp->slab_later_count == 0)) { 4729 mutex_exit(&cp->cache_lock); 4730 return; 4731 } 4732 4733 kmem_slab_move_yes(cp, sp, buf); 4734 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4735 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4736 mutex_exit(&cp->cache_lock); 4737 /* see kmem_move_buffers() about dropping the lock */ 4738 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 4739 mutex_enter(&cp->cache_lock); 4740 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4741 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4742 if (sp->slab_refcnt == 0) { 4743 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4744 4745 ASSERT(!list_is_empty(deadlist)); 4746 ASSERT(list_link_active((list_node_t *) 4747 &sp->slab_link)); 4748 4749 list_remove(deadlist, sp); 4750 cp->cache_defrag->kmd_deadcount--; 4751 cp->cache_slab_destroy++; 4752 mutex_exit(&cp->cache_lock); 4753 kmem_slab_destroy(cp, sp); 4754 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4755 return; 4756 } 4757 } else { 4758 kmem_slab_move_yes(cp, sp, buf); 4759 } 4760 mutex_exit(&cp->cache_lock); 4761 } 4762 4763 void 4764 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 4765 { 4766 kmem_move_notify_args_t *args; 4767 4768 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 4769 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 4770 if (args != NULL) { 4771 args->kmna_cache = cp; 4772 args->kmna_buf = buf; 4773 if (!taskq_dispatch(kmem_taskq, 4774 (task_func_t *)kmem_cache_move_notify_task, args, 4775 TQ_NOSLEEP)) 4776 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4777 } 4778 } 4779 4780 static void 4781 kmem_cache_defrag(kmem_cache_t *cp) 4782 { 4783 size_t n; 4784 4785 ASSERT(cp->cache_defrag != NULL); 4786 4787 mutex_enter(&cp->cache_lock); 4788 n = avl_numnodes(&cp->cache_partial_slabs); 4789 if (n > 1) { 4790 /* kmem_move_buffers() drops and reacquires cache_lock */ 4791 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 4792 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 4793 } 4794 mutex_exit(&cp->cache_lock); 4795 } 4796 4797 /* Is this cache above the fragmentation threshold? */ 4798 static boolean_t 4799 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 4800 { 4801 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) 4802 return (B_FALSE); 4803 4804 /* 4805 * nfree kmem_frag_numer 4806 * ------------------ > --------------- 4807 * cp->cache_buftotal kmem_frag_denom 4808 */ 4809 return ((nfree * kmem_frag_denom) > 4810 (cp->cache_buftotal * kmem_frag_numer)); 4811 } 4812 4813 static boolean_t 4814 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 4815 { 4816 boolean_t fragmented; 4817 uint64_t nfree; 4818 4819 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4820 *doreap = B_FALSE; 4821 4822 if (!kmem_move_fulltilt && ((cp->cache_complete_slab_count + 4823 avl_numnodes(&cp->cache_partial_slabs)) < kmem_frag_minslabs)) 4824 return (B_FALSE); 4825 4826 nfree = cp->cache_bufslab; 4827 fragmented = kmem_cache_frag_threshold(cp, nfree); 4828 /* 4829 * Free buffers in the magazine layer appear allocated from the point of 4830 * view of the slab layer. We want to know if the slab layer would 4831 * appear fragmented if we included free buffers from magazines that 4832 * have fallen out of the working set. 4833 */ 4834 if (!fragmented) { 4835 long reap; 4836 4837 mutex_enter(&cp->cache_depot_lock); 4838 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 4839 reap = MIN(reap, cp->cache_full.ml_total); 4840 mutex_exit(&cp->cache_depot_lock); 4841 4842 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 4843 if (kmem_cache_frag_threshold(cp, nfree)) { 4844 *doreap = B_TRUE; 4845 } 4846 } 4847 4848 return (fragmented); 4849 } 4850 4851 /* Called periodically from kmem_taskq */ 4852 static void 4853 kmem_cache_scan(kmem_cache_t *cp) 4854 { 4855 boolean_t reap = B_FALSE; 4856 4857 ASSERT(taskq_member(kmem_taskq, curthread)); 4858 ASSERT(cp->cache_defrag != NULL); 4859 4860 mutex_enter(&cp->cache_lock); 4861 4862 if (kmem_cache_is_fragmented(cp, &reap)) { 4863 kmem_defrag_t *kmd = cp->cache_defrag; 4864 size_t slabs_found; 4865 4866 /* 4867 * Consolidate reclaimable slabs from the end of the partial 4868 * slab list (scan at most kmem_reclaim_scan_range slabs to find 4869 * reclaimable slabs). Keep track of how many candidate slabs we 4870 * looked for and how many we actually found so we can adjust 4871 * the definition of a candidate slab if we're having trouble 4872 * finding them. 4873 * 4874 * kmem_move_buffers() drops and reacquires cache_lock. 4875 */ 4876 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 4877 kmem_reclaim_max_slabs, 0); 4878 if (slabs_found >= 0) { 4879 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 4880 kmd->kmd_slabs_found += slabs_found; 4881 } 4882 4883 if (++kmd->kmd_scans >= kmem_reclaim_scan_range) { 4884 kmd->kmd_scans = 0; 4885 4886 /* 4887 * If we had difficulty finding candidate slabs in 4888 * previous scans, adjust the threshold so that 4889 * candidates are easier to find. 4890 */ 4891 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 4892 kmem_adjust_reclaim_threshold(kmd, -1); 4893 } else if ((kmd->kmd_slabs_found * 2) < 4894 kmd->kmd_slabs_sought) { 4895 kmem_adjust_reclaim_threshold(kmd, 1); 4896 } 4897 kmd->kmd_slabs_sought = 0; 4898 kmd->kmd_slabs_found = 0; 4899 } 4900 } else { 4901 kmem_reset_reclaim_threshold(cp->cache_defrag); 4902 #ifdef DEBUG 4903 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4904 /* 4905 * In a debug kernel we want the consolidator to 4906 * run occasionally even when there is plenty of 4907 * memory. 4908 */ 4909 uint32_t debug_rand; 4910 4911 (void) random_get_bytes((uint8_t *)&debug_rand, 4); 4912 if (!kmem_move_noreap && 4913 ((debug_rand % kmem_mtb_reap) == 0)) { 4914 mutex_exit(&cp->cache_lock); 4915 kmem_cache_reap(cp); 4916 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 4917 return; 4918 } else if ((debug_rand % kmem_mtb_move) == 0) { 4919 (void) kmem_move_buffers(cp, 4920 kmem_reclaim_scan_range, 1, 0); 4921 KMEM_STAT_ADD(kmem_move_stats. 4922 kms_debug_move_scans); 4923 } 4924 } 4925 #endif /* DEBUG */ 4926 } 4927 4928 mutex_exit(&cp->cache_lock); 4929 4930 if (reap) { 4931 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 4932 kmem_depot_ws_reap(cp); 4933 } 4934 } 4935