1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Kernel memory allocator, as described in the following two papers: 30 * 31 * Jeff Bonwick, 32 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 33 * Proceedings of the Summer 1994 Usenix Conference. 34 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 35 * 36 * Jeff Bonwick and Jonathan Adams, 37 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 38 * Arbitrary Resources. 39 * Proceedings of the 2001 Usenix Conference. 40 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 41 */ 42 43 #include <sys/kmem_impl.h> 44 #include <sys/vmem_impl.h> 45 #include <sys/param.h> 46 #include <sys/sysmacros.h> 47 #include <sys/vm.h> 48 #include <sys/proc.h> 49 #include <sys/tuneable.h> 50 #include <sys/systm.h> 51 #include <sys/cmn_err.h> 52 #include <sys/debug.h> 53 #include <sys/mutex.h> 54 #include <sys/bitmap.h> 55 #include <sys/atomic.h> 56 #include <sys/kobj.h> 57 #include <sys/disp.h> 58 #include <vm/seg_kmem.h> 59 #include <sys/log.h> 60 #include <sys/callb.h> 61 #include <sys/taskq.h> 62 #include <sys/modctl.h> 63 #include <sys/reboot.h> 64 #include <sys/id32.h> 65 #include <sys/zone.h> 66 67 extern void streams_msg_init(void); 68 extern int segkp_fromheap; 69 extern void segkp_cache_free(void); 70 71 struct kmem_cache_kstat { 72 kstat_named_t kmc_buf_size; 73 kstat_named_t kmc_align; 74 kstat_named_t kmc_chunk_size; 75 kstat_named_t kmc_slab_size; 76 kstat_named_t kmc_alloc; 77 kstat_named_t kmc_alloc_fail; 78 kstat_named_t kmc_free; 79 kstat_named_t kmc_depot_alloc; 80 kstat_named_t kmc_depot_free; 81 kstat_named_t kmc_depot_contention; 82 kstat_named_t kmc_slab_alloc; 83 kstat_named_t kmc_slab_free; 84 kstat_named_t kmc_buf_constructed; 85 kstat_named_t kmc_buf_avail; 86 kstat_named_t kmc_buf_inuse; 87 kstat_named_t kmc_buf_total; 88 kstat_named_t kmc_buf_max; 89 kstat_named_t kmc_slab_create; 90 kstat_named_t kmc_slab_destroy; 91 kstat_named_t kmc_vmem_source; 92 kstat_named_t kmc_hash_size; 93 kstat_named_t kmc_hash_lookup_depth; 94 kstat_named_t kmc_hash_rescale; 95 kstat_named_t kmc_full_magazines; 96 kstat_named_t kmc_empty_magazines; 97 kstat_named_t kmc_magazine_size; 98 } kmem_cache_kstat = { 99 { "buf_size", KSTAT_DATA_UINT64 }, 100 { "align", KSTAT_DATA_UINT64 }, 101 { "chunk_size", KSTAT_DATA_UINT64 }, 102 { "slab_size", KSTAT_DATA_UINT64 }, 103 { "alloc", KSTAT_DATA_UINT64 }, 104 { "alloc_fail", KSTAT_DATA_UINT64 }, 105 { "free", KSTAT_DATA_UINT64 }, 106 { "depot_alloc", KSTAT_DATA_UINT64 }, 107 { "depot_free", KSTAT_DATA_UINT64 }, 108 { "depot_contention", KSTAT_DATA_UINT64 }, 109 { "slab_alloc", KSTAT_DATA_UINT64 }, 110 { "slab_free", KSTAT_DATA_UINT64 }, 111 { "buf_constructed", KSTAT_DATA_UINT64 }, 112 { "buf_avail", KSTAT_DATA_UINT64 }, 113 { "buf_inuse", KSTAT_DATA_UINT64 }, 114 { "buf_total", KSTAT_DATA_UINT64 }, 115 { "buf_max", KSTAT_DATA_UINT64 }, 116 { "slab_create", KSTAT_DATA_UINT64 }, 117 { "slab_destroy", KSTAT_DATA_UINT64 }, 118 { "vmem_source", KSTAT_DATA_UINT64 }, 119 { "hash_size", KSTAT_DATA_UINT64 }, 120 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 121 { "hash_rescale", KSTAT_DATA_UINT64 }, 122 { "full_magazines", KSTAT_DATA_UINT64 }, 123 { "empty_magazines", KSTAT_DATA_UINT64 }, 124 { "magazine_size", KSTAT_DATA_UINT64 }, 125 }; 126 127 static kmutex_t kmem_cache_kstat_lock; 128 129 /* 130 * The default set of caches to back kmem_alloc(). 131 * These sizes should be reevaluated periodically. 132 * 133 * We want allocations that are multiples of the coherency granularity 134 * (64 bytes) to be satisfied from a cache which is a multiple of 64 135 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 136 * the next kmem_cache_size greater than or equal to it must be a 137 * multiple of 64. 138 */ 139 static const int kmem_alloc_sizes[] = { 140 1 * 8, 141 2 * 8, 142 3 * 8, 143 4 * 8, 5 * 8, 6 * 8, 7 * 8, 144 4 * 16, 5 * 16, 6 * 16, 7 * 16, 145 4 * 32, 5 * 32, 6 * 32, 7 * 32, 146 4 * 64, 5 * 64, 6 * 64, 7 * 64, 147 4 * 128, 5 * 128, 6 * 128, 7 * 128, 148 P2ALIGN(8192 / 7, 64), 149 P2ALIGN(8192 / 6, 64), 150 P2ALIGN(8192 / 5, 64), 151 P2ALIGN(8192 / 4, 64), 152 P2ALIGN(8192 / 3, 64), 153 P2ALIGN(8192 / 2, 64), 154 P2ALIGN(8192 / 1, 64), 155 4096 * 3, 156 8192 * 2, 157 8192 * 3, 158 8192 * 4, 159 }; 160 161 #define KMEM_MAXBUF 32768 162 163 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 164 165 static kmem_magtype_t kmem_magtype[] = { 166 { 1, 8, 3200, 65536 }, 167 { 3, 16, 256, 32768 }, 168 { 7, 32, 64, 16384 }, 169 { 15, 64, 0, 8192 }, 170 { 31, 64, 0, 4096 }, 171 { 47, 64, 0, 2048 }, 172 { 63, 64, 0, 1024 }, 173 { 95, 64, 0, 512 }, 174 { 143, 64, 0, 0 }, 175 }; 176 177 static uint32_t kmem_reaping; 178 static uint32_t kmem_reaping_idspace; 179 180 /* 181 * kmem tunables 182 */ 183 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 184 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 185 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 186 int kmem_panic = 1; /* whether to panic on error */ 187 int kmem_logging = 1; /* kmem_log_enter() override */ 188 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 189 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 190 size_t kmem_content_log_size; /* content log size [2% of memory] */ 191 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 192 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 193 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 194 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 195 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 196 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 197 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 198 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 199 200 #ifdef DEBUG 201 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 202 #else 203 int kmem_flags = 0; 204 #endif 205 int kmem_ready; 206 207 static kmem_cache_t *kmem_slab_cache; 208 static kmem_cache_t *kmem_bufctl_cache; 209 static kmem_cache_t *kmem_bufctl_audit_cache; 210 211 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 212 kmem_cache_t kmem_null_cache; 213 214 static taskq_t *kmem_taskq; 215 static kmutex_t kmem_flags_lock; 216 static vmem_t *kmem_metadata_arena; 217 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 218 static vmem_t *kmem_cache_arena; 219 static vmem_t *kmem_hash_arena; 220 static vmem_t *kmem_log_arena; 221 static vmem_t *kmem_oversize_arena; 222 static vmem_t *kmem_va_arena; 223 static vmem_t *kmem_default_arena; 224 static vmem_t *kmem_firewall_va_arena; 225 static vmem_t *kmem_firewall_arena; 226 227 kmem_log_header_t *kmem_transaction_log; 228 kmem_log_header_t *kmem_content_log; 229 kmem_log_header_t *kmem_failure_log; 230 kmem_log_header_t *kmem_slab_log; 231 232 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 233 234 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 235 if ((count) > 0) { \ 236 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 237 pc_t *_e; \ 238 /* memmove() the old entries down one notch */ \ 239 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 240 *_e = *(_e - 1); \ 241 *_s = (uintptr_t)(caller); \ 242 } 243 244 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 245 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 246 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 247 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 248 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 249 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 250 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 251 #define KMERR_BADSIZE 7 /* alloc size != free size */ 252 #define KMERR_BADBASE 8 /* buffer base address wrong */ 253 254 struct { 255 hrtime_t kmp_timestamp; /* timestamp of panic */ 256 int kmp_error; /* type of kmem error */ 257 void *kmp_buffer; /* buffer that induced panic */ 258 void *kmp_realbuf; /* real start address for buffer */ 259 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 260 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 261 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 262 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 263 } kmem_panic_info; 264 265 266 static void 267 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 268 { 269 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 270 uint64_t *buf = buf_arg; 271 272 while (buf < bufend) 273 *buf++ = pattern; 274 } 275 276 static void * 277 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 278 { 279 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 280 uint64_t *buf; 281 282 for (buf = buf_arg; buf < bufend; buf++) 283 if (*buf != pattern) 284 return (buf); 285 return (NULL); 286 } 287 288 static void * 289 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 290 { 291 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 292 uint64_t *buf; 293 294 for (buf = buf_arg; buf < bufend; buf++) { 295 if (*buf != old) { 296 copy_pattern(old, buf_arg, 297 (char *)buf - (char *)buf_arg); 298 return (buf); 299 } 300 *buf = new; 301 } 302 303 return (NULL); 304 } 305 306 static void 307 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 308 { 309 kmem_cache_t *cp; 310 311 mutex_enter(&kmem_cache_lock); 312 for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache; 313 cp = cp->cache_next) 314 if (tq != NULL) 315 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 316 tqflag); 317 else 318 func(cp); 319 mutex_exit(&kmem_cache_lock); 320 } 321 322 static void 323 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 324 { 325 kmem_cache_t *cp; 326 327 mutex_enter(&kmem_cache_lock); 328 for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache; 329 cp = cp->cache_next) { 330 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 331 continue; 332 if (tq != NULL) 333 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 334 tqflag); 335 else 336 func(cp); 337 } 338 mutex_exit(&kmem_cache_lock); 339 } 340 341 /* 342 * Debugging support. Given a buffer address, find its slab. 343 */ 344 static kmem_slab_t * 345 kmem_findslab(kmem_cache_t *cp, void *buf) 346 { 347 kmem_slab_t *sp; 348 349 mutex_enter(&cp->cache_lock); 350 for (sp = cp->cache_nullslab.slab_next; 351 sp != &cp->cache_nullslab; sp = sp->slab_next) { 352 if (KMEM_SLAB_MEMBER(sp, buf)) { 353 mutex_exit(&cp->cache_lock); 354 return (sp); 355 } 356 } 357 mutex_exit(&cp->cache_lock); 358 359 return (NULL); 360 } 361 362 static void 363 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 364 { 365 kmem_buftag_t *btp = NULL; 366 kmem_bufctl_t *bcp = NULL; 367 kmem_cache_t *cp = cparg; 368 kmem_slab_t *sp; 369 uint64_t *off; 370 void *buf = bufarg; 371 372 kmem_logging = 0; /* stop logging when a bad thing happens */ 373 374 kmem_panic_info.kmp_timestamp = gethrtime(); 375 376 sp = kmem_findslab(cp, buf); 377 if (sp == NULL) { 378 for (cp = kmem_null_cache.cache_prev; cp != &kmem_null_cache; 379 cp = cp->cache_prev) { 380 if ((sp = kmem_findslab(cp, buf)) != NULL) 381 break; 382 } 383 } 384 385 if (sp == NULL) { 386 cp = NULL; 387 error = KMERR_BADADDR; 388 } else { 389 if (cp != cparg) 390 error = KMERR_BADCACHE; 391 else 392 buf = (char *)bufarg - ((uintptr_t)bufarg - 393 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 394 if (buf != bufarg) 395 error = KMERR_BADBASE; 396 if (cp->cache_flags & KMF_BUFTAG) 397 btp = KMEM_BUFTAG(cp, buf); 398 if (cp->cache_flags & KMF_HASH) { 399 mutex_enter(&cp->cache_lock); 400 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 401 if (bcp->bc_addr == buf) 402 break; 403 mutex_exit(&cp->cache_lock); 404 if (bcp == NULL && btp != NULL) 405 bcp = btp->bt_bufctl; 406 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 407 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 408 bcp->bc_addr != buf) { 409 error = KMERR_BADBUFCTL; 410 bcp = NULL; 411 } 412 } 413 } 414 415 kmem_panic_info.kmp_error = error; 416 kmem_panic_info.kmp_buffer = bufarg; 417 kmem_panic_info.kmp_realbuf = buf; 418 kmem_panic_info.kmp_cache = cparg; 419 kmem_panic_info.kmp_realcache = cp; 420 kmem_panic_info.kmp_slab = sp; 421 kmem_panic_info.kmp_bufctl = bcp; 422 423 printf("kernel memory allocator: "); 424 425 switch (error) { 426 427 case KMERR_MODIFIED: 428 printf("buffer modified after being freed\n"); 429 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 430 if (off == NULL) /* shouldn't happen */ 431 off = buf; 432 printf("modification occurred at offset 0x%lx " 433 "(0x%llx replaced by 0x%llx)\n", 434 (uintptr_t)off - (uintptr_t)buf, 435 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 436 break; 437 438 case KMERR_REDZONE: 439 printf("redzone violation: write past end of buffer\n"); 440 break; 441 442 case KMERR_BADADDR: 443 printf("invalid free: buffer not in cache\n"); 444 break; 445 446 case KMERR_DUPFREE: 447 printf("duplicate free: buffer freed twice\n"); 448 break; 449 450 case KMERR_BADBUFTAG: 451 printf("boundary tag corrupted\n"); 452 printf("bcp ^ bxstat = %lx, should be %lx\n", 453 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 454 KMEM_BUFTAG_FREE); 455 break; 456 457 case KMERR_BADBUFCTL: 458 printf("bufctl corrupted\n"); 459 break; 460 461 case KMERR_BADCACHE: 462 printf("buffer freed to wrong cache\n"); 463 printf("buffer was allocated from %s,\n", cp->cache_name); 464 printf("caller attempting free to %s.\n", cparg->cache_name); 465 break; 466 467 case KMERR_BADSIZE: 468 printf("bad free: free size (%u) != alloc size (%u)\n", 469 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 470 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 471 break; 472 473 case KMERR_BADBASE: 474 printf("bad free: free address (%p) != alloc address (%p)\n", 475 bufarg, buf); 476 break; 477 } 478 479 printf("buffer=%p bufctl=%p cache: %s\n", 480 bufarg, (void *)bcp, cparg->cache_name); 481 482 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 483 error != KMERR_BADBUFCTL) { 484 int d; 485 timestruc_t ts; 486 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 487 488 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 489 printf("previous transaction on buffer %p:\n", buf); 490 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 491 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 492 (void *)sp, cp->cache_name); 493 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 494 ulong_t off; 495 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 496 printf("%s+%lx\n", sym ? sym : "?", off); 497 } 498 } 499 if (kmem_panic > 0) 500 panic("kernel heap corruption detected"); 501 if (kmem_panic == 0) 502 debug_enter(NULL); 503 kmem_logging = 1; /* resume logging */ 504 } 505 506 static kmem_log_header_t * 507 kmem_log_init(size_t logsize) 508 { 509 kmem_log_header_t *lhp; 510 int nchunks = 4 * max_ncpus; 511 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 512 int i; 513 514 /* 515 * Make sure that lhp->lh_cpu[] is nicely aligned 516 * to prevent false sharing of cache lines. 517 */ 518 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 519 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 520 NULL, NULL, VM_SLEEP); 521 bzero(lhp, lhsize); 522 523 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 524 lhp->lh_nchunks = nchunks; 525 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 526 lhp->lh_base = vmem_alloc(kmem_log_arena, 527 lhp->lh_chunksize * nchunks, VM_SLEEP); 528 lhp->lh_free = vmem_alloc(kmem_log_arena, 529 nchunks * sizeof (int), VM_SLEEP); 530 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 531 532 for (i = 0; i < max_ncpus; i++) { 533 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 534 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 535 clhp->clh_chunk = i; 536 } 537 538 for (i = max_ncpus; i < nchunks; i++) 539 lhp->lh_free[i] = i; 540 541 lhp->lh_head = max_ncpus; 542 lhp->lh_tail = 0; 543 544 return (lhp); 545 } 546 547 static void * 548 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 549 { 550 void *logspace; 551 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 552 553 if (lhp == NULL || kmem_logging == 0 || panicstr) 554 return (NULL); 555 556 mutex_enter(&clhp->clh_lock); 557 clhp->clh_hits++; 558 if (size > clhp->clh_avail) { 559 mutex_enter(&lhp->lh_lock); 560 lhp->lh_hits++; 561 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 562 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 563 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 564 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 565 clhp->clh_current = lhp->lh_base + 566 clhp->clh_chunk * lhp->lh_chunksize; 567 clhp->clh_avail = lhp->lh_chunksize; 568 if (size > lhp->lh_chunksize) 569 size = lhp->lh_chunksize; 570 mutex_exit(&lhp->lh_lock); 571 } 572 logspace = clhp->clh_current; 573 clhp->clh_current += size; 574 clhp->clh_avail -= size; 575 bcopy(data, logspace, size); 576 mutex_exit(&clhp->clh_lock); 577 return (logspace); 578 } 579 580 #define KMEM_AUDIT(lp, cp, bcp) \ 581 { \ 582 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 583 _bcp->bc_timestamp = gethrtime(); \ 584 _bcp->bc_thread = curthread; \ 585 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 586 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 587 } 588 589 static void 590 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 591 kmem_slab_t *sp, void *addr) 592 { 593 kmem_bufctl_audit_t bca; 594 595 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 596 bca.bc_addr = addr; 597 bca.bc_slab = sp; 598 bca.bc_cache = cp; 599 KMEM_AUDIT(lp, cp, &bca); 600 } 601 602 /* 603 * Create a new slab for cache cp. 604 */ 605 static kmem_slab_t * 606 kmem_slab_create(kmem_cache_t *cp, int kmflag) 607 { 608 size_t slabsize = cp->cache_slabsize; 609 size_t chunksize = cp->cache_chunksize; 610 int cache_flags = cp->cache_flags; 611 size_t color, chunks; 612 char *buf, *slab; 613 kmem_slab_t *sp; 614 kmem_bufctl_t *bcp; 615 vmem_t *vmp = cp->cache_arena; 616 617 color = cp->cache_color + cp->cache_align; 618 if (color > cp->cache_maxcolor) 619 color = cp->cache_mincolor; 620 cp->cache_color = color; 621 622 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 623 624 if (slab == NULL) 625 goto vmem_alloc_failure; 626 627 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 628 629 if (!(cp->cache_cflags & KMC_NOTOUCH)) 630 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 631 632 if (cache_flags & KMF_HASH) { 633 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 634 goto slab_alloc_failure; 635 chunks = (slabsize - color) / chunksize; 636 } else { 637 sp = KMEM_SLAB(cp, slab); 638 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 639 } 640 641 sp->slab_cache = cp; 642 sp->slab_head = NULL; 643 sp->slab_refcnt = 0; 644 sp->slab_base = buf = slab + color; 645 sp->slab_chunks = chunks; 646 647 ASSERT(chunks > 0); 648 while (chunks-- != 0) { 649 if (cache_flags & KMF_HASH) { 650 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 651 if (bcp == NULL) 652 goto bufctl_alloc_failure; 653 if (cache_flags & KMF_AUDIT) { 654 kmem_bufctl_audit_t *bcap = 655 (kmem_bufctl_audit_t *)bcp; 656 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 657 bcap->bc_cache = cp; 658 } 659 bcp->bc_addr = buf; 660 bcp->bc_slab = sp; 661 } else { 662 bcp = KMEM_BUFCTL(cp, buf); 663 } 664 if (cache_flags & KMF_BUFTAG) { 665 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 666 btp->bt_redzone = KMEM_REDZONE_PATTERN; 667 btp->bt_bufctl = bcp; 668 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 669 if (cache_flags & KMF_DEADBEEF) { 670 copy_pattern(KMEM_FREE_PATTERN, buf, 671 cp->cache_verify); 672 } 673 } 674 bcp->bc_next = sp->slab_head; 675 sp->slab_head = bcp; 676 buf += chunksize; 677 } 678 679 kmem_log_event(kmem_slab_log, cp, sp, slab); 680 681 return (sp); 682 683 bufctl_alloc_failure: 684 685 while ((bcp = sp->slab_head) != NULL) { 686 sp->slab_head = bcp->bc_next; 687 kmem_cache_free(cp->cache_bufctl_cache, bcp); 688 } 689 kmem_cache_free(kmem_slab_cache, sp); 690 691 slab_alloc_failure: 692 693 vmem_free(vmp, slab, slabsize); 694 695 vmem_alloc_failure: 696 697 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 698 atomic_add_64(&cp->cache_alloc_fail, 1); 699 700 return (NULL); 701 } 702 703 /* 704 * Destroy a slab. 705 */ 706 static void 707 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 708 { 709 vmem_t *vmp = cp->cache_arena; 710 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 711 712 if (cp->cache_flags & KMF_HASH) { 713 kmem_bufctl_t *bcp; 714 while ((bcp = sp->slab_head) != NULL) { 715 sp->slab_head = bcp->bc_next; 716 kmem_cache_free(cp->cache_bufctl_cache, bcp); 717 } 718 kmem_cache_free(kmem_slab_cache, sp); 719 } 720 vmem_free(vmp, slab, cp->cache_slabsize); 721 } 722 723 /* 724 * Allocate a raw (unconstructed) buffer from cp's slab layer. 725 */ 726 static void * 727 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 728 { 729 kmem_bufctl_t *bcp, **hash_bucket; 730 kmem_slab_t *sp; 731 void *buf; 732 733 mutex_enter(&cp->cache_lock); 734 cp->cache_slab_alloc++; 735 sp = cp->cache_freelist; 736 ASSERT(sp->slab_cache == cp); 737 if (sp->slab_head == NULL) { 738 /* 739 * The freelist is empty. Create a new slab. 740 */ 741 mutex_exit(&cp->cache_lock); 742 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) 743 return (NULL); 744 mutex_enter(&cp->cache_lock); 745 cp->cache_slab_create++; 746 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 747 cp->cache_bufmax = cp->cache_buftotal; 748 sp->slab_next = cp->cache_freelist; 749 sp->slab_prev = cp->cache_freelist->slab_prev; 750 sp->slab_next->slab_prev = sp; 751 sp->slab_prev->slab_next = sp; 752 cp->cache_freelist = sp; 753 } 754 755 sp->slab_refcnt++; 756 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 757 758 /* 759 * If we're taking the last buffer in the slab, 760 * remove the slab from the cache's freelist. 761 */ 762 bcp = sp->slab_head; 763 if ((sp->slab_head = bcp->bc_next) == NULL) { 764 cp->cache_freelist = sp->slab_next; 765 ASSERT(sp->slab_refcnt == sp->slab_chunks); 766 } 767 768 if (cp->cache_flags & KMF_HASH) { 769 /* 770 * Add buffer to allocated-address hash table. 771 */ 772 buf = bcp->bc_addr; 773 hash_bucket = KMEM_HASH(cp, buf); 774 bcp->bc_next = *hash_bucket; 775 *hash_bucket = bcp; 776 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 777 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 778 } 779 } else { 780 buf = KMEM_BUF(cp, bcp); 781 } 782 783 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 784 785 mutex_exit(&cp->cache_lock); 786 787 return (buf); 788 } 789 790 /* 791 * Free a raw (unconstructed) buffer to cp's slab layer. 792 */ 793 static void 794 kmem_slab_free(kmem_cache_t *cp, void *buf) 795 { 796 kmem_slab_t *sp; 797 kmem_bufctl_t *bcp, **prev_bcpp; 798 799 ASSERT(buf != NULL); 800 801 mutex_enter(&cp->cache_lock); 802 cp->cache_slab_free++; 803 804 if (cp->cache_flags & KMF_HASH) { 805 /* 806 * Look up buffer in allocated-address hash table. 807 */ 808 prev_bcpp = KMEM_HASH(cp, buf); 809 while ((bcp = *prev_bcpp) != NULL) { 810 if (bcp->bc_addr == buf) { 811 *prev_bcpp = bcp->bc_next; 812 sp = bcp->bc_slab; 813 break; 814 } 815 cp->cache_lookup_depth++; 816 prev_bcpp = &bcp->bc_next; 817 } 818 } else { 819 bcp = KMEM_BUFCTL(cp, buf); 820 sp = KMEM_SLAB(cp, buf); 821 } 822 823 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 824 mutex_exit(&cp->cache_lock); 825 kmem_error(KMERR_BADADDR, cp, buf); 826 return; 827 } 828 829 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 830 if (cp->cache_flags & KMF_CONTENTS) 831 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 832 kmem_log_enter(kmem_content_log, buf, 833 cp->cache_contents); 834 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 835 } 836 837 /* 838 * If this slab isn't currently on the freelist, put it there. 839 */ 840 if (sp->slab_head == NULL) { 841 ASSERT(sp->slab_refcnt == sp->slab_chunks); 842 ASSERT(cp->cache_freelist != sp); 843 sp->slab_next->slab_prev = sp->slab_prev; 844 sp->slab_prev->slab_next = sp->slab_next; 845 sp->slab_next = cp->cache_freelist; 846 sp->slab_prev = cp->cache_freelist->slab_prev; 847 sp->slab_next->slab_prev = sp; 848 sp->slab_prev->slab_next = sp; 849 cp->cache_freelist = sp; 850 } 851 852 bcp->bc_next = sp->slab_head; 853 sp->slab_head = bcp; 854 855 ASSERT(sp->slab_refcnt >= 1); 856 if (--sp->slab_refcnt == 0) { 857 /* 858 * There are no outstanding allocations from this slab, 859 * so we can reclaim the memory. 860 */ 861 sp->slab_next->slab_prev = sp->slab_prev; 862 sp->slab_prev->slab_next = sp->slab_next; 863 if (sp == cp->cache_freelist) 864 cp->cache_freelist = sp->slab_next; 865 cp->cache_slab_destroy++; 866 cp->cache_buftotal -= sp->slab_chunks; 867 mutex_exit(&cp->cache_lock); 868 kmem_slab_destroy(cp, sp); 869 return; 870 } 871 mutex_exit(&cp->cache_lock); 872 } 873 874 static int 875 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 876 caddr_t caller) 877 { 878 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 879 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 880 uint32_t mtbf; 881 882 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 883 kmem_error(KMERR_BADBUFTAG, cp, buf); 884 return (-1); 885 } 886 887 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 888 889 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 890 kmem_error(KMERR_BADBUFCTL, cp, buf); 891 return (-1); 892 } 893 894 if (cp->cache_flags & KMF_DEADBEEF) { 895 if (!construct && (cp->cache_flags & KMF_LITE)) { 896 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 897 kmem_error(KMERR_MODIFIED, cp, buf); 898 return (-1); 899 } 900 if (cp->cache_constructor != NULL) 901 *(uint64_t *)buf = btp->bt_redzone; 902 else 903 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 904 } else { 905 construct = 1; 906 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 907 KMEM_UNINITIALIZED_PATTERN, buf, 908 cp->cache_verify)) { 909 kmem_error(KMERR_MODIFIED, cp, buf); 910 return (-1); 911 } 912 } 913 } 914 btp->bt_redzone = KMEM_REDZONE_PATTERN; 915 916 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 917 gethrtime() % mtbf == 0 && 918 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 919 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 920 if (!construct && cp->cache_destructor != NULL) 921 cp->cache_destructor(buf, cp->cache_private); 922 } else { 923 mtbf = 0; 924 } 925 926 if (mtbf || (construct && cp->cache_constructor != NULL && 927 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 928 atomic_add_64(&cp->cache_alloc_fail, 1); 929 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 930 if (cp->cache_flags & KMF_DEADBEEF) 931 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 932 kmem_slab_free(cp, buf); 933 return (-1); 934 } 935 936 if (cp->cache_flags & KMF_AUDIT) { 937 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 938 } 939 940 if ((cp->cache_flags & KMF_LITE) && 941 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 942 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 943 } 944 945 return (0); 946 } 947 948 static int 949 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 950 { 951 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 952 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 953 kmem_slab_t *sp; 954 955 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 956 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 957 kmem_error(KMERR_DUPFREE, cp, buf); 958 return (-1); 959 } 960 sp = kmem_findslab(cp, buf); 961 if (sp == NULL || sp->slab_cache != cp) 962 kmem_error(KMERR_BADADDR, cp, buf); 963 else 964 kmem_error(KMERR_REDZONE, cp, buf); 965 return (-1); 966 } 967 968 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 969 970 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 971 kmem_error(KMERR_BADBUFCTL, cp, buf); 972 return (-1); 973 } 974 975 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 976 kmem_error(KMERR_REDZONE, cp, buf); 977 return (-1); 978 } 979 980 if (cp->cache_flags & KMF_AUDIT) { 981 if (cp->cache_flags & KMF_CONTENTS) 982 bcp->bc_contents = kmem_log_enter(kmem_content_log, 983 buf, cp->cache_contents); 984 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 985 } 986 987 if ((cp->cache_flags & KMF_LITE) && 988 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 989 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 990 } 991 992 if (cp->cache_flags & KMF_DEADBEEF) { 993 if (cp->cache_flags & KMF_LITE) 994 btp->bt_redzone = *(uint64_t *)buf; 995 else if (cp->cache_destructor != NULL) 996 cp->cache_destructor(buf, cp->cache_private); 997 998 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 999 } 1000 1001 return (0); 1002 } 1003 1004 /* 1005 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1006 */ 1007 static void 1008 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 1009 { 1010 int round; 1011 1012 ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); 1013 1014 for (round = 0; round < nrounds; round++) { 1015 void *buf = mp->mag_round[round]; 1016 1017 if (cp->cache_flags & KMF_DEADBEEF) { 1018 if (verify_pattern(KMEM_FREE_PATTERN, buf, 1019 cp->cache_verify) != NULL) { 1020 kmem_error(KMERR_MODIFIED, cp, buf); 1021 continue; 1022 } 1023 if ((cp->cache_flags & KMF_LITE) && 1024 cp->cache_destructor != NULL) { 1025 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1026 *(uint64_t *)buf = btp->bt_redzone; 1027 cp->cache_destructor(buf, cp->cache_private); 1028 *(uint64_t *)buf = KMEM_FREE_PATTERN; 1029 } 1030 } else if (cp->cache_destructor != NULL) { 1031 cp->cache_destructor(buf, cp->cache_private); 1032 } 1033 1034 kmem_slab_free(cp, buf); 1035 } 1036 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 1037 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 1038 } 1039 1040 /* 1041 * Allocate a magazine from the depot. 1042 */ 1043 static kmem_magazine_t * 1044 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 1045 { 1046 kmem_magazine_t *mp; 1047 1048 /* 1049 * If we can't get the depot lock without contention, 1050 * update our contention count. We use the depot 1051 * contention rate to determine whether we need to 1052 * increase the magazine size for better scalability. 1053 */ 1054 if (!mutex_tryenter(&cp->cache_depot_lock)) { 1055 mutex_enter(&cp->cache_depot_lock); 1056 cp->cache_depot_contention++; 1057 } 1058 1059 if ((mp = mlp->ml_list) != NULL) { 1060 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 1061 mlp->ml_list = mp->mag_next; 1062 if (--mlp->ml_total < mlp->ml_min) 1063 mlp->ml_min = mlp->ml_total; 1064 mlp->ml_alloc++; 1065 } 1066 1067 mutex_exit(&cp->cache_depot_lock); 1068 1069 return (mp); 1070 } 1071 1072 /* 1073 * Free a magazine to the depot. 1074 */ 1075 static void 1076 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 1077 { 1078 mutex_enter(&cp->cache_depot_lock); 1079 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 1080 mp->mag_next = mlp->ml_list; 1081 mlp->ml_list = mp; 1082 mlp->ml_total++; 1083 mutex_exit(&cp->cache_depot_lock); 1084 } 1085 1086 /* 1087 * Update the working set statistics for cp's depot. 1088 */ 1089 static void 1090 kmem_depot_ws_update(kmem_cache_t *cp) 1091 { 1092 mutex_enter(&cp->cache_depot_lock); 1093 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1094 cp->cache_full.ml_min = cp->cache_full.ml_total; 1095 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1096 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1097 mutex_exit(&cp->cache_depot_lock); 1098 } 1099 1100 /* 1101 * Reap all magazines that have fallen out of the depot's working set. 1102 */ 1103 static void 1104 kmem_depot_ws_reap(kmem_cache_t *cp) 1105 { 1106 long reap; 1107 kmem_magazine_t *mp; 1108 1109 ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); 1110 1111 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1112 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 1113 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1114 1115 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1116 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1117 kmem_magazine_destroy(cp, mp, 0); 1118 } 1119 1120 static void 1121 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 1122 { 1123 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1124 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1125 ASSERT(ccp->cc_magsize > 0); 1126 1127 ccp->cc_ploaded = ccp->cc_loaded; 1128 ccp->cc_prounds = ccp->cc_rounds; 1129 ccp->cc_loaded = mp; 1130 ccp->cc_rounds = rounds; 1131 } 1132 1133 /* 1134 * Allocate a constructed object from cache cp. 1135 */ 1136 void * 1137 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 1138 { 1139 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 1140 kmem_magazine_t *fmp; 1141 void *buf; 1142 1143 mutex_enter(&ccp->cc_lock); 1144 for (;;) { 1145 /* 1146 * If there's an object available in the current CPU's 1147 * loaded magazine, just take it and return. 1148 */ 1149 if (ccp->cc_rounds > 0) { 1150 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1151 ccp->cc_alloc++; 1152 mutex_exit(&ccp->cc_lock); 1153 if ((ccp->cc_flags & KMF_BUFTAG) && 1154 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 1155 caller()) == -1) { 1156 if (kmflag & KM_NOSLEEP) 1157 return (NULL); 1158 mutex_enter(&ccp->cc_lock); 1159 continue; 1160 } 1161 return (buf); 1162 } 1163 1164 /* 1165 * The loaded magazine is empty. If the previously loaded 1166 * magazine was full, exchange them and try again. 1167 */ 1168 if (ccp->cc_prounds > 0) { 1169 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1170 continue; 1171 } 1172 1173 /* 1174 * If the magazine layer is disabled, break out now. 1175 */ 1176 if (ccp->cc_magsize == 0) 1177 break; 1178 1179 /* 1180 * Try to get a full magazine from the depot. 1181 */ 1182 fmp = kmem_depot_alloc(cp, &cp->cache_full); 1183 if (fmp != NULL) { 1184 if (ccp->cc_ploaded != NULL) 1185 kmem_depot_free(cp, &cp->cache_empty, 1186 ccp->cc_ploaded); 1187 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1188 continue; 1189 } 1190 1191 /* 1192 * There are no full magazines in the depot, 1193 * so fall through to the slab layer. 1194 */ 1195 break; 1196 } 1197 mutex_exit(&ccp->cc_lock); 1198 1199 /* 1200 * We couldn't allocate a constructed object from the magazine layer, 1201 * so get a raw buffer from the slab layer and apply its constructor. 1202 */ 1203 buf = kmem_slab_alloc(cp, kmflag); 1204 1205 if (buf == NULL) 1206 return (NULL); 1207 1208 if (cp->cache_flags & KMF_BUFTAG) { 1209 /* 1210 * Make kmem_cache_alloc_debug() apply the constructor for us. 1211 */ 1212 if (kmem_cache_alloc_debug(cp, buf, kmflag, 1, 1213 caller()) == -1) { 1214 if (kmflag & KM_NOSLEEP) 1215 return (NULL); 1216 /* 1217 * kmem_cache_alloc_debug() detected corruption 1218 * but didn't panic (kmem_panic <= 0). Try again. 1219 */ 1220 return (kmem_cache_alloc(cp, kmflag)); 1221 } 1222 return (buf); 1223 } 1224 1225 if (cp->cache_constructor != NULL && 1226 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 1227 atomic_add_64(&cp->cache_alloc_fail, 1); 1228 kmem_slab_free(cp, buf); 1229 return (NULL); 1230 } 1231 1232 return (buf); 1233 } 1234 1235 /* 1236 * Free a constructed object to cache cp. 1237 */ 1238 void 1239 kmem_cache_free(kmem_cache_t *cp, void *buf) 1240 { 1241 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 1242 kmem_magazine_t *emp; 1243 kmem_magtype_t *mtp; 1244 1245 if (ccp->cc_flags & KMF_BUFTAG) 1246 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 1247 return; 1248 1249 mutex_enter(&ccp->cc_lock); 1250 for (;;) { 1251 /* 1252 * If there's a slot available in the current CPU's 1253 * loaded magazine, just put the object there and return. 1254 */ 1255 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 1256 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 1257 ccp->cc_free++; 1258 mutex_exit(&ccp->cc_lock); 1259 return; 1260 } 1261 1262 /* 1263 * The loaded magazine is full. If the previously loaded 1264 * magazine was empty, exchange them and try again. 1265 */ 1266 if (ccp->cc_prounds == 0) { 1267 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1268 continue; 1269 } 1270 1271 /* 1272 * If the magazine layer is disabled, break out now. 1273 */ 1274 if (ccp->cc_magsize == 0) 1275 break; 1276 1277 /* 1278 * Try to get an empty magazine from the depot. 1279 */ 1280 emp = kmem_depot_alloc(cp, &cp->cache_empty); 1281 if (emp != NULL) { 1282 if (ccp->cc_ploaded != NULL) 1283 kmem_depot_free(cp, &cp->cache_full, 1284 ccp->cc_ploaded); 1285 kmem_cpu_reload(ccp, emp, 0); 1286 continue; 1287 } 1288 1289 /* 1290 * There are no empty magazines in the depot, 1291 * so try to allocate a new one. We must drop all locks 1292 * across kmem_cache_alloc() because lower layers may 1293 * attempt to allocate from this cache. 1294 */ 1295 mtp = cp->cache_magtype; 1296 mutex_exit(&ccp->cc_lock); 1297 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 1298 mutex_enter(&ccp->cc_lock); 1299 1300 if (emp != NULL) { 1301 /* 1302 * We successfully allocated an empty magazine. 1303 * However, we had to drop ccp->cc_lock to do it, 1304 * so the cache's magazine size may have changed. 1305 * If so, free the magazine and try again. 1306 */ 1307 if (ccp->cc_magsize != mtp->mt_magsize) { 1308 mutex_exit(&ccp->cc_lock); 1309 kmem_cache_free(mtp->mt_cache, emp); 1310 mutex_enter(&ccp->cc_lock); 1311 continue; 1312 } 1313 1314 /* 1315 * We got a magazine of the right size. Add it to 1316 * the depot and try the whole dance again. 1317 */ 1318 kmem_depot_free(cp, &cp->cache_empty, emp); 1319 continue; 1320 } 1321 1322 /* 1323 * We couldn't allocate an empty magazine, 1324 * so fall through to the slab layer. 1325 */ 1326 break; 1327 } 1328 mutex_exit(&ccp->cc_lock); 1329 1330 /* 1331 * We couldn't free our constructed object to the magazine layer, 1332 * so apply its destructor and free it to the slab layer. 1333 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 1334 * kmem_cache_free_debug() will have already applied the destructor. 1335 */ 1336 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 1337 cp->cache_destructor != NULL) { 1338 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 1339 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1340 *(uint64_t *)buf = btp->bt_redzone; 1341 cp->cache_destructor(buf, cp->cache_private); 1342 *(uint64_t *)buf = KMEM_FREE_PATTERN; 1343 } else { 1344 cp->cache_destructor(buf, cp->cache_private); 1345 } 1346 } 1347 1348 kmem_slab_free(cp, buf); 1349 } 1350 1351 void * 1352 kmem_zalloc(size_t size, int kmflag) 1353 { 1354 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 1355 void *buf; 1356 1357 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 1358 kmem_cache_t *cp = kmem_alloc_table[index]; 1359 buf = kmem_cache_alloc(cp, kmflag); 1360 if (buf != NULL) { 1361 if (cp->cache_flags & KMF_BUFTAG) { 1362 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1363 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 1364 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 1365 1366 if (cp->cache_flags & KMF_LITE) { 1367 KMEM_BUFTAG_LITE_ENTER(btp, 1368 kmem_lite_count, caller()); 1369 } 1370 } 1371 bzero(buf, size); 1372 } 1373 } else { 1374 buf = kmem_alloc(size, kmflag); 1375 if (buf != NULL) 1376 bzero(buf, size); 1377 } 1378 return (buf); 1379 } 1380 1381 void * 1382 kmem_alloc(size_t size, int kmflag) 1383 { 1384 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 1385 void *buf; 1386 1387 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 1388 kmem_cache_t *cp = kmem_alloc_table[index]; 1389 buf = kmem_cache_alloc(cp, kmflag); 1390 if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { 1391 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1392 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 1393 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 1394 1395 if (cp->cache_flags & KMF_LITE) { 1396 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 1397 caller()); 1398 } 1399 } 1400 return (buf); 1401 } 1402 if (size == 0) 1403 return (NULL); 1404 buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); 1405 if (buf == NULL) 1406 kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); 1407 return (buf); 1408 } 1409 1410 void 1411 kmem_free(void *buf, size_t size) 1412 { 1413 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 1414 1415 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 1416 kmem_cache_t *cp = kmem_alloc_table[index]; 1417 if (cp->cache_flags & KMF_BUFTAG) { 1418 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1419 uint32_t *ip = (uint32_t *)btp; 1420 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 1421 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 1422 kmem_error(KMERR_DUPFREE, cp, buf); 1423 return; 1424 } 1425 if (KMEM_SIZE_VALID(ip[1])) { 1426 ip[0] = KMEM_SIZE_ENCODE(size); 1427 kmem_error(KMERR_BADSIZE, cp, buf); 1428 } else { 1429 kmem_error(KMERR_REDZONE, cp, buf); 1430 } 1431 return; 1432 } 1433 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 1434 kmem_error(KMERR_REDZONE, cp, buf); 1435 return; 1436 } 1437 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1438 if (cp->cache_flags & KMF_LITE) { 1439 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 1440 caller()); 1441 } 1442 } 1443 kmem_cache_free(cp, buf); 1444 } else { 1445 if (buf == NULL && size == 0) 1446 return; 1447 vmem_free(kmem_oversize_arena, buf, size); 1448 } 1449 } 1450 1451 void * 1452 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 1453 { 1454 size_t realsize = size + vmp->vm_quantum; 1455 void *addr; 1456 1457 /* 1458 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 1459 * vm_quantum will cause integer wraparound. Check for this, and 1460 * blow off the firewall page in this case. Note that such a 1461 * giant allocation (the entire kernel address space) can never 1462 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 1463 * or sleep forever (VM_SLEEP). Thus, there is no need for a 1464 * corresponding check in kmem_firewall_va_free(). 1465 */ 1466 if (realsize < size) 1467 realsize = size; 1468 1469 /* 1470 * While boot still owns resource management, make sure that this 1471 * redzone virtual address allocation is properly accounted for in 1472 * OBPs "virtual-memory" "available" lists because we're 1473 * effectively claiming them for a red zone. If we don't do this, 1474 * the available lists become too fragmented and too large for the 1475 * current boot/kernel memory list interface. 1476 */ 1477 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 1478 1479 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 1480 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 1481 1482 return (addr); 1483 } 1484 1485 void 1486 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 1487 { 1488 ASSERT((kvseg.s_base == NULL ? 1489 va_to_pfn((char *)addr + size) : 1490 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 1491 1492 vmem_free(vmp, addr, size + vmp->vm_quantum); 1493 } 1494 1495 /* 1496 * Try to allocate at least `size' bytes of memory without sleeping or 1497 * panicking. Return actual allocated size in `asize'. If allocation failed, 1498 * try final allocation with sleep or panic allowed. 1499 */ 1500 void * 1501 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 1502 { 1503 void *p; 1504 1505 *asize = P2ROUNDUP(size, KMEM_ALIGN); 1506 do { 1507 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 1508 if (p != NULL) 1509 return (p); 1510 *asize += KMEM_ALIGN; 1511 } while (*asize <= PAGESIZE); 1512 1513 *asize = P2ROUNDUP(size, KMEM_ALIGN); 1514 return (kmem_alloc(*asize, kmflag)); 1515 } 1516 1517 /* 1518 * Reclaim all unused memory from a cache. 1519 */ 1520 static void 1521 kmem_cache_reap(kmem_cache_t *cp) 1522 { 1523 /* 1524 * Ask the cache's owner to free some memory if possible. 1525 * The idea is to handle things like the inode cache, which 1526 * typically sits on a bunch of memory that it doesn't truly 1527 * *need*. Reclaim policy is entirely up to the owner; this 1528 * callback is just an advisory plea for help. 1529 */ 1530 if (cp->cache_reclaim != NULL) 1531 cp->cache_reclaim(cp->cache_private); 1532 1533 kmem_depot_ws_reap(cp); 1534 } 1535 1536 static void 1537 kmem_reap_timeout(void *flag_arg) 1538 { 1539 uint32_t *flag = (uint32_t *)flag_arg; 1540 1541 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 1542 *flag = 0; 1543 } 1544 1545 static void 1546 kmem_reap_done(void *flag) 1547 { 1548 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 1549 } 1550 1551 static void 1552 kmem_reap_start(void *flag) 1553 { 1554 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 1555 1556 if (flag == &kmem_reaping) { 1557 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 1558 /* 1559 * if we have segkp under heap, reap segkp cache. 1560 */ 1561 if (segkp_fromheap) 1562 segkp_cache_free(); 1563 } 1564 else 1565 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 1566 1567 /* 1568 * We use taskq_dispatch() to schedule a timeout to clear 1569 * the flag so that kmem_reap() becomes self-throttling: 1570 * we won't reap again until the current reap completes *and* 1571 * at least kmem_reap_interval ticks have elapsed. 1572 */ 1573 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 1574 kmem_reap_done(flag); 1575 } 1576 1577 static void 1578 kmem_reap_common(void *flag_arg) 1579 { 1580 uint32_t *flag = (uint32_t *)flag_arg; 1581 1582 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 1583 cas32(flag, 0, 1) != 0) 1584 return; 1585 1586 /* 1587 * It may not be kosher to do memory allocation when a reap is called 1588 * is called (for example, if vmem_populate() is in the call chain). 1589 * So we start the reap going with a TQ_NOALLOC dispatch. If the 1590 * dispatch fails, we reset the flag, and the next reap will try again. 1591 */ 1592 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 1593 *flag = 0; 1594 } 1595 1596 /* 1597 * Reclaim all unused memory from all caches. Called from the VM system 1598 * when memory gets tight. 1599 */ 1600 void 1601 kmem_reap(void) 1602 { 1603 kmem_reap_common(&kmem_reaping); 1604 } 1605 1606 /* 1607 * Reclaim all unused memory from identifier arenas, called when a vmem 1608 * arena not back by memory is exhausted. Since reaping memory-backed caches 1609 * cannot help with identifier exhaustion, we avoid both a large amount of 1610 * work and unwanted side-effects from reclaim callbacks. 1611 */ 1612 void 1613 kmem_reap_idspace(void) 1614 { 1615 kmem_reap_common(&kmem_reaping_idspace); 1616 } 1617 1618 /* 1619 * Purge all magazines from a cache and set its magazine limit to zero. 1620 * All calls are serialized by the kmem_taskq lock, except for the final 1621 * call from kmem_cache_destroy(). 1622 */ 1623 static void 1624 kmem_cache_magazine_purge(kmem_cache_t *cp) 1625 { 1626 kmem_cpu_cache_t *ccp; 1627 kmem_magazine_t *mp, *pmp; 1628 int rounds, prounds, cpu_seqid; 1629 1630 ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); 1631 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1632 1633 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 1634 ccp = &cp->cache_cpu[cpu_seqid]; 1635 1636 mutex_enter(&ccp->cc_lock); 1637 mp = ccp->cc_loaded; 1638 pmp = ccp->cc_ploaded; 1639 rounds = ccp->cc_rounds; 1640 prounds = ccp->cc_prounds; 1641 ccp->cc_loaded = NULL; 1642 ccp->cc_ploaded = NULL; 1643 ccp->cc_rounds = -1; 1644 ccp->cc_prounds = -1; 1645 ccp->cc_magsize = 0; 1646 mutex_exit(&ccp->cc_lock); 1647 1648 if (mp) 1649 kmem_magazine_destroy(cp, mp, rounds); 1650 if (pmp) 1651 kmem_magazine_destroy(cp, pmp, prounds); 1652 } 1653 1654 /* 1655 * Updating the working set statistics twice in a row has the 1656 * effect of setting the working set size to zero, so everything 1657 * is eligible for reaping. 1658 */ 1659 kmem_depot_ws_update(cp); 1660 kmem_depot_ws_update(cp); 1661 1662 kmem_depot_ws_reap(cp); 1663 } 1664 1665 /* 1666 * Enable per-cpu magazines on a cache. 1667 */ 1668 static void 1669 kmem_cache_magazine_enable(kmem_cache_t *cp) 1670 { 1671 int cpu_seqid; 1672 1673 if (cp->cache_flags & KMF_NOMAGAZINE) 1674 return; 1675 1676 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 1677 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 1678 mutex_enter(&ccp->cc_lock); 1679 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 1680 mutex_exit(&ccp->cc_lock); 1681 } 1682 1683 } 1684 1685 /* 1686 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 1687 * for explanation of the back-to-back kmem_depot_ws_update() calls. 1688 */ 1689 void 1690 kmem_cache_reap_now(kmem_cache_t *cp) 1691 { 1692 kmem_depot_ws_update(cp); 1693 kmem_depot_ws_update(cp); 1694 1695 (void) taskq_dispatch(kmem_taskq, 1696 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 1697 taskq_wait(kmem_taskq); 1698 } 1699 1700 /* 1701 * Recompute a cache's magazine size. The trade-off is that larger magazines 1702 * provide a higher transfer rate with the depot, while smaller magazines 1703 * reduce memory consumption. Magazine resizing is an expensive operation; 1704 * it should not be done frequently. 1705 * 1706 * Changes to the magazine size are serialized by the kmem_taskq lock. 1707 * 1708 * Note: at present this only grows the magazine size. It might be useful 1709 * to allow shrinkage too. 1710 */ 1711 static void 1712 kmem_cache_magazine_resize(kmem_cache_t *cp) 1713 { 1714 kmem_magtype_t *mtp = cp->cache_magtype; 1715 1716 ASSERT(taskq_member(kmem_taskq, curthread)); 1717 1718 if (cp->cache_chunksize < mtp->mt_maxbuf) { 1719 kmem_cache_magazine_purge(cp); 1720 mutex_enter(&cp->cache_depot_lock); 1721 cp->cache_magtype = ++mtp; 1722 cp->cache_depot_contention_prev = 1723 cp->cache_depot_contention + INT_MAX; 1724 mutex_exit(&cp->cache_depot_lock); 1725 kmem_cache_magazine_enable(cp); 1726 } 1727 } 1728 1729 /* 1730 * Rescale a cache's hash table, so that the table size is roughly the 1731 * cache size. We want the average lookup time to be extremely small. 1732 */ 1733 static void 1734 kmem_hash_rescale(kmem_cache_t *cp) 1735 { 1736 kmem_bufctl_t **old_table, **new_table, *bcp; 1737 size_t old_size, new_size, h; 1738 1739 ASSERT(taskq_member(kmem_taskq, curthread)); 1740 1741 new_size = MAX(KMEM_HASH_INITIAL, 1742 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 1743 old_size = cp->cache_hash_mask + 1; 1744 1745 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 1746 return; 1747 1748 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 1749 VM_NOSLEEP); 1750 if (new_table == NULL) 1751 return; 1752 bzero(new_table, new_size * sizeof (void *)); 1753 1754 mutex_enter(&cp->cache_lock); 1755 1756 old_size = cp->cache_hash_mask + 1; 1757 old_table = cp->cache_hash_table; 1758 1759 cp->cache_hash_mask = new_size - 1; 1760 cp->cache_hash_table = new_table; 1761 cp->cache_rescale++; 1762 1763 for (h = 0; h < old_size; h++) { 1764 bcp = old_table[h]; 1765 while (bcp != NULL) { 1766 void *addr = bcp->bc_addr; 1767 kmem_bufctl_t *next_bcp = bcp->bc_next; 1768 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 1769 bcp->bc_next = *hash_bucket; 1770 *hash_bucket = bcp; 1771 bcp = next_bcp; 1772 } 1773 } 1774 1775 mutex_exit(&cp->cache_lock); 1776 1777 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 1778 } 1779 1780 /* 1781 * Perform periodic maintenance on a cache: hash rescaling, 1782 * depot working-set update, and magazine resizing. 1783 */ 1784 static void 1785 kmem_cache_update(kmem_cache_t *cp) 1786 { 1787 int need_hash_rescale = 0; 1788 int need_magazine_resize = 0; 1789 1790 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 1791 1792 /* 1793 * If the cache has become much larger or smaller than its hash table, 1794 * fire off a request to rescale the hash table. 1795 */ 1796 mutex_enter(&cp->cache_lock); 1797 1798 if ((cp->cache_flags & KMF_HASH) && 1799 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 1800 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 1801 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 1802 need_hash_rescale = 1; 1803 1804 mutex_exit(&cp->cache_lock); 1805 1806 /* 1807 * Update the depot working set statistics. 1808 */ 1809 kmem_depot_ws_update(cp); 1810 1811 /* 1812 * If there's a lot of contention in the depot, 1813 * increase the magazine size. 1814 */ 1815 mutex_enter(&cp->cache_depot_lock); 1816 1817 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 1818 (int)(cp->cache_depot_contention - 1819 cp->cache_depot_contention_prev) > kmem_depot_contention) 1820 need_magazine_resize = 1; 1821 1822 cp->cache_depot_contention_prev = cp->cache_depot_contention; 1823 1824 mutex_exit(&cp->cache_depot_lock); 1825 1826 if (need_hash_rescale) 1827 (void) taskq_dispatch(kmem_taskq, 1828 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 1829 1830 if (need_magazine_resize) 1831 (void) taskq_dispatch(kmem_taskq, 1832 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 1833 } 1834 1835 static void 1836 kmem_update_timeout(void *dummy) 1837 { 1838 static void kmem_update(void *); 1839 1840 (void) timeout(kmem_update, dummy, kmem_reap_interval); 1841 } 1842 1843 static void 1844 kmem_update(void *dummy) 1845 { 1846 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 1847 1848 /* 1849 * We use taskq_dispatch() to reschedule the timeout so that 1850 * kmem_update() becomes self-throttling: it won't schedule 1851 * new tasks until all previous tasks have completed. 1852 */ 1853 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 1854 kmem_update_timeout(NULL); 1855 } 1856 1857 static int 1858 kmem_cache_kstat_update(kstat_t *ksp, int rw) 1859 { 1860 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 1861 kmem_cache_t *cp = ksp->ks_private; 1862 kmem_slab_t *sp; 1863 uint64_t cpu_buf_avail; 1864 uint64_t buf_avail = 0; 1865 int cpu_seqid; 1866 1867 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 1868 1869 if (rw == KSTAT_WRITE) 1870 return (EACCES); 1871 1872 mutex_enter(&cp->cache_lock); 1873 1874 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 1875 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 1876 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 1877 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 1878 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 1879 1880 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 1881 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 1882 1883 mutex_enter(&ccp->cc_lock); 1884 1885 cpu_buf_avail = 0; 1886 if (ccp->cc_rounds > 0) 1887 cpu_buf_avail += ccp->cc_rounds; 1888 if (ccp->cc_prounds > 0) 1889 cpu_buf_avail += ccp->cc_prounds; 1890 1891 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 1892 kmcp->kmc_free.value.ui64 += ccp->cc_free; 1893 buf_avail += cpu_buf_avail; 1894 1895 mutex_exit(&ccp->cc_lock); 1896 } 1897 1898 mutex_enter(&cp->cache_depot_lock); 1899 1900 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 1901 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 1902 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 1903 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 1904 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 1905 kmcp->kmc_magazine_size.value.ui64 = 1906 (cp->cache_flags & KMF_NOMAGAZINE) ? 1907 0 : cp->cache_magtype->mt_magsize; 1908 1909 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 1910 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 1911 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 1912 1913 mutex_exit(&cp->cache_depot_lock); 1914 1915 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 1916 kmcp->kmc_align.value.ui64 = cp->cache_align; 1917 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 1918 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 1919 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 1920 for (sp = cp->cache_freelist; sp != &cp->cache_nullslab; 1921 sp = sp->slab_next) 1922 buf_avail += sp->slab_chunks - sp->slab_refcnt; 1923 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 1924 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 1925 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 1926 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 1927 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 1928 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 1929 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 1930 cp->cache_hash_mask + 1 : 0; 1931 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 1932 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 1933 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 1934 1935 mutex_exit(&cp->cache_lock); 1936 return (0); 1937 } 1938 1939 /* 1940 * Return a named statistic about a particular cache. 1941 * This shouldn't be called very often, so it's currently designed for 1942 * simplicity (leverages existing kstat support) rather than efficiency. 1943 */ 1944 uint64_t 1945 kmem_cache_stat(kmem_cache_t *cp, char *name) 1946 { 1947 int i; 1948 kstat_t *ksp = cp->cache_kstat; 1949 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 1950 uint64_t value = 0; 1951 1952 if (ksp != NULL) { 1953 mutex_enter(&kmem_cache_kstat_lock); 1954 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 1955 for (i = 0; i < ksp->ks_ndata; i++) { 1956 if (strcmp(knp[i].name, name) == 0) { 1957 value = knp[i].value.ui64; 1958 break; 1959 } 1960 } 1961 mutex_exit(&kmem_cache_kstat_lock); 1962 } 1963 return (value); 1964 } 1965 1966 /* 1967 * Return an estimate of currently available kernel heap memory. 1968 * On 32-bit systems, physical memory may exceed virtual memory, 1969 * we just truncate the result at 1GB. 1970 */ 1971 size_t 1972 kmem_avail(void) 1973 { 1974 spgcnt_t rmem = availrmem - tune.t_minarmem; 1975 spgcnt_t fmem = freemem - minfree; 1976 1977 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 1978 1 << (30 - PAGESHIFT)))); 1979 } 1980 1981 /* 1982 * Return the maximum amount of memory that is (in theory) allocatable 1983 * from the heap. This may be used as an estimate only since there 1984 * is no guarentee this space will still be available when an allocation 1985 * request is made, nor that the space may be allocated in one big request 1986 * due to kernel heap fragmentation. 1987 */ 1988 size_t 1989 kmem_maxavail(void) 1990 { 1991 spgcnt_t pmem = availrmem - tune.t_minarmem; 1992 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 1993 1994 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 1995 } 1996 1997 /* 1998 * Indicate whether memory-intensive kmem debugging is enabled. 1999 */ 2000 int 2001 kmem_debugging(void) 2002 { 2003 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 2004 } 2005 2006 kmem_cache_t * 2007 kmem_cache_create( 2008 char *name, /* descriptive name for this cache */ 2009 size_t bufsize, /* size of the objects it manages */ 2010 size_t align, /* required object alignment */ 2011 int (*constructor)(void *, void *, int), /* object constructor */ 2012 void (*destructor)(void *, void *), /* object destructor */ 2013 void (*reclaim)(void *), /* memory reclaim callback */ 2014 void *private, /* pass-thru arg for constr/destr/reclaim */ 2015 vmem_t *vmp, /* vmem source for slab allocation */ 2016 int cflags) /* cache creation flags */ 2017 { 2018 int cpu_seqid; 2019 size_t chunksize; 2020 kmem_cache_t *cp, *cnext, *cprev; 2021 kmem_magtype_t *mtp; 2022 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 2023 2024 #ifdef DEBUG 2025 /* 2026 * Cache names should conform to the rules for valid C identifiers 2027 */ 2028 if (!strident_valid(name)) { 2029 cmn_err(CE_CONT, 2030 "kmem_cache_create: '%s' is an invalid cache name\n" 2031 "cache names must conform to the rules for " 2032 "C identifiers\n", name); 2033 } 2034 #endif /* DEBUG */ 2035 2036 if (vmp == NULL) 2037 vmp = kmem_default_arena; 2038 2039 /* 2040 * If this kmem cache has an identifier vmem arena as its source, mark 2041 * it such to allow kmem_reap_idspace(). 2042 */ 2043 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 2044 if (vmp->vm_cflags & VMC_IDENTIFIER) 2045 cflags |= KMC_IDENTIFIER; 2046 2047 /* 2048 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 2049 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 2050 * false sharing of per-CPU data. 2051 */ 2052 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 2053 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 2054 bzero(cp, csize); 2055 2056 if (align == 0) 2057 align = KMEM_ALIGN; 2058 2059 /* 2060 * If we're not at least KMEM_ALIGN aligned, we can't use free 2061 * memory to hold bufctl information (because we can't safely 2062 * perform word loads and stores on it). 2063 */ 2064 if (align < KMEM_ALIGN) 2065 cflags |= KMC_NOTOUCH; 2066 2067 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 2068 panic("kmem_cache_create: bad alignment %lu", align); 2069 2070 mutex_enter(&kmem_flags_lock); 2071 if (kmem_flags & KMF_RANDOMIZE) 2072 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 2073 KMF_RANDOMIZE; 2074 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 2075 mutex_exit(&kmem_flags_lock); 2076 2077 /* 2078 * Make sure all the various flags are reasonable. 2079 */ 2080 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 2081 2082 if (cp->cache_flags & KMF_LITE) { 2083 if (bufsize >= kmem_lite_minsize && 2084 align <= kmem_lite_maxalign && 2085 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 2086 cp->cache_flags |= KMF_BUFTAG; 2087 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 2088 } else { 2089 cp->cache_flags &= ~KMF_DEBUG; 2090 } 2091 } 2092 2093 if (cp->cache_flags & KMF_DEADBEEF) 2094 cp->cache_flags |= KMF_REDZONE; 2095 2096 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 2097 cp->cache_flags |= KMF_NOMAGAZINE; 2098 2099 if (cflags & KMC_NODEBUG) 2100 cp->cache_flags &= ~KMF_DEBUG; 2101 2102 if (cflags & KMC_NOTOUCH) 2103 cp->cache_flags &= ~KMF_TOUCH; 2104 2105 if (cflags & KMC_NOHASH) 2106 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 2107 2108 if (cflags & KMC_NOMAGAZINE) 2109 cp->cache_flags |= KMF_NOMAGAZINE; 2110 2111 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 2112 cp->cache_flags |= KMF_REDZONE; 2113 2114 if (!(cp->cache_flags & KMF_AUDIT)) 2115 cp->cache_flags &= ~KMF_CONTENTS; 2116 2117 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 2118 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 2119 cp->cache_flags |= KMF_FIREWALL; 2120 2121 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 2122 cp->cache_flags &= ~KMF_FIREWALL; 2123 2124 if (cp->cache_flags & KMF_FIREWALL) { 2125 cp->cache_flags &= ~KMF_BUFTAG; 2126 cp->cache_flags |= KMF_NOMAGAZINE; 2127 ASSERT(vmp == kmem_default_arena); 2128 vmp = kmem_firewall_arena; 2129 } 2130 2131 /* 2132 * Set cache properties. 2133 */ 2134 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 2135 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN); 2136 cp->cache_bufsize = bufsize; 2137 cp->cache_align = align; 2138 cp->cache_constructor = constructor; 2139 cp->cache_destructor = destructor; 2140 cp->cache_reclaim = reclaim; 2141 cp->cache_private = private; 2142 cp->cache_arena = vmp; 2143 cp->cache_cflags = cflags; 2144 2145 /* 2146 * Determine the chunk size. 2147 */ 2148 chunksize = bufsize; 2149 2150 if (align >= KMEM_ALIGN) { 2151 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 2152 cp->cache_bufctl = chunksize - KMEM_ALIGN; 2153 } 2154 2155 if (cp->cache_flags & KMF_BUFTAG) { 2156 cp->cache_bufctl = chunksize; 2157 cp->cache_buftag = chunksize; 2158 if (cp->cache_flags & KMF_LITE) 2159 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 2160 else 2161 chunksize += sizeof (kmem_buftag_t); 2162 } 2163 2164 if (cp->cache_flags & KMF_DEADBEEF) { 2165 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 2166 if (cp->cache_flags & KMF_LITE) 2167 cp->cache_verify = sizeof (uint64_t); 2168 } 2169 2170 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 2171 2172 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2173 2174 /* 2175 * Now that we know the chunk size, determine the optimal slab size. 2176 */ 2177 if (vmp == kmem_firewall_arena) { 2178 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2179 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2180 cp->cache_maxcolor = cp->cache_mincolor; 2181 cp->cache_flags |= KMF_HASH; 2182 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 2183 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 2184 !(cp->cache_flags & KMF_AUDIT) && 2185 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 2186 cp->cache_slabsize = vmp->vm_quantum; 2187 cp->cache_mincolor = 0; 2188 cp->cache_maxcolor = 2189 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 2190 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 2191 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 2192 } else { 2193 size_t chunks, bestfit, waste, slabsize; 2194 size_t minwaste = LONG_MAX; 2195 2196 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 2197 slabsize = P2ROUNDUP(chunksize * chunks, 2198 vmp->vm_quantum); 2199 chunks = slabsize / chunksize; 2200 waste = (slabsize % chunksize) / chunks; 2201 if (waste < minwaste) { 2202 minwaste = waste; 2203 bestfit = slabsize; 2204 } 2205 } 2206 if (cflags & KMC_QCACHE) 2207 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 2208 cp->cache_slabsize = bestfit; 2209 cp->cache_mincolor = 0; 2210 cp->cache_maxcolor = bestfit % chunksize; 2211 cp->cache_flags |= KMF_HASH; 2212 } 2213 2214 if (cp->cache_flags & KMF_HASH) { 2215 ASSERT(!(cflags & KMC_NOHASH)); 2216 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 2217 kmem_bufctl_audit_cache : kmem_bufctl_cache; 2218 } 2219 2220 if (cp->cache_maxcolor >= vmp->vm_quantum) 2221 cp->cache_maxcolor = vmp->vm_quantum - 1; 2222 2223 cp->cache_color = cp->cache_mincolor; 2224 2225 /* 2226 * Initialize the rest of the slab layer. 2227 */ 2228 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 2229 2230 cp->cache_freelist = &cp->cache_nullslab; 2231 cp->cache_nullslab.slab_cache = cp; 2232 cp->cache_nullslab.slab_refcnt = -1; 2233 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2234 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2235 2236 if (cp->cache_flags & KMF_HASH) { 2237 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 2238 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 2239 bzero(cp->cache_hash_table, 2240 KMEM_HASH_INITIAL * sizeof (void *)); 2241 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 2242 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2243 } 2244 2245 /* 2246 * Initialize the depot. 2247 */ 2248 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 2249 2250 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2251 continue; 2252 2253 cp->cache_magtype = mtp; 2254 2255 /* 2256 * Initialize the CPU layer. 2257 */ 2258 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2259 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2260 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 2261 ccp->cc_flags = cp->cache_flags; 2262 ccp->cc_rounds = -1; 2263 ccp->cc_prounds = -1; 2264 } 2265 2266 /* 2267 * Create the cache's kstats. 2268 */ 2269 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 2270 "kmem_cache", KSTAT_TYPE_NAMED, 2271 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 2272 KSTAT_FLAG_VIRTUAL)) != NULL) { 2273 cp->cache_kstat->ks_data = &kmem_cache_kstat; 2274 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 2275 cp->cache_kstat->ks_private = cp; 2276 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 2277 kstat_install(cp->cache_kstat); 2278 } 2279 2280 /* 2281 * Add the cache to the global list. This makes it visible 2282 * to kmem_update(), so the cache must be ready for business. 2283 */ 2284 mutex_enter(&kmem_cache_lock); 2285 cp->cache_next = cnext = &kmem_null_cache; 2286 cp->cache_prev = cprev = kmem_null_cache.cache_prev; 2287 cnext->cache_prev = cp; 2288 cprev->cache_next = cp; 2289 mutex_exit(&kmem_cache_lock); 2290 2291 if (kmem_ready) 2292 kmem_cache_magazine_enable(cp); 2293 2294 return (cp); 2295 } 2296 2297 void 2298 kmem_cache_destroy(kmem_cache_t *cp) 2299 { 2300 int cpu_seqid; 2301 2302 /* 2303 * Remove the cache from the global cache list so that no one else 2304 * can schedule tasks on its behalf, wait for any pending tasks to 2305 * complete, purge the cache, and then destroy it. 2306 */ 2307 mutex_enter(&kmem_cache_lock); 2308 cp->cache_prev->cache_next = cp->cache_next; 2309 cp->cache_next->cache_prev = cp->cache_prev; 2310 cp->cache_prev = cp->cache_next = NULL; 2311 mutex_exit(&kmem_cache_lock); 2312 2313 if (kmem_taskq != NULL) 2314 taskq_wait(kmem_taskq); 2315 2316 kmem_cache_magazine_purge(cp); 2317 2318 mutex_enter(&cp->cache_lock); 2319 if (cp->cache_buftotal != 0) 2320 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 2321 cp->cache_name, (void *)cp); 2322 cp->cache_reclaim = NULL; 2323 /* 2324 * The cache is now dead. There should be no further activity. 2325 * We enforce this by setting land mines in the constructor and 2326 * destructor routines that induce a kernel text fault if invoked. 2327 */ 2328 cp->cache_constructor = (int (*)(void *, void *, int))1; 2329 cp->cache_destructor = (void (*)(void *, void *))2; 2330 mutex_exit(&cp->cache_lock); 2331 2332 kstat_delete(cp->cache_kstat); 2333 2334 if (cp->cache_hash_table != NULL) 2335 vmem_free(kmem_hash_arena, cp->cache_hash_table, 2336 (cp->cache_hash_mask + 1) * sizeof (void *)); 2337 2338 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 2339 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2340 2341 mutex_destroy(&cp->cache_depot_lock); 2342 mutex_destroy(&cp->cache_lock); 2343 2344 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 2345 } 2346 2347 /*ARGSUSED*/ 2348 static int 2349 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 2350 { 2351 ASSERT(MUTEX_HELD(&cpu_lock)); 2352 if (what == CPU_UNCONFIG) { 2353 kmem_cache_applyall(kmem_cache_magazine_purge, 2354 kmem_taskq, TQ_SLEEP); 2355 kmem_cache_applyall(kmem_cache_magazine_enable, 2356 kmem_taskq, TQ_SLEEP); 2357 } 2358 return (0); 2359 } 2360 2361 static void 2362 kmem_cache_init(int pass, int use_large_pages) 2363 { 2364 int i; 2365 size_t size; 2366 kmem_cache_t *cp; 2367 kmem_magtype_t *mtp; 2368 char name[KMEM_CACHE_NAMELEN + 1]; 2369 2370 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 2371 mtp = &kmem_magtype[i]; 2372 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 2373 mtp->mt_cache = kmem_cache_create(name, 2374 (mtp->mt_magsize + 1) * sizeof (void *), 2375 mtp->mt_align, NULL, NULL, NULL, NULL, 2376 kmem_msb_arena, KMC_NOHASH); 2377 } 2378 2379 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 2380 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 2381 kmem_msb_arena, KMC_NOHASH); 2382 2383 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 2384 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 2385 kmem_msb_arena, KMC_NOHASH); 2386 2387 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 2388 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 2389 kmem_msb_arena, KMC_NOHASH); 2390 2391 if (pass == 2) { 2392 kmem_va_arena = vmem_create("kmem_va", 2393 NULL, 0, PAGESIZE, 2394 vmem_alloc, vmem_free, heap_arena, 2395 8 * PAGESIZE, VM_SLEEP); 2396 2397 if (use_large_pages) { 2398 kmem_default_arena = vmem_xcreate("kmem_default", 2399 NULL, 0, PAGESIZE, 2400 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 2401 0, VM_SLEEP); 2402 } else { 2403 kmem_default_arena = vmem_create("kmem_default", 2404 NULL, 0, PAGESIZE, 2405 segkmem_alloc, segkmem_free, kmem_va_arena, 2406 0, VM_SLEEP); 2407 } 2408 } else { 2409 /* 2410 * During the first pass, the kmem_alloc_* caches 2411 * are treated as metadata. 2412 */ 2413 kmem_default_arena = kmem_msb_arena; 2414 } 2415 2416 /* 2417 * Set up the default caches to back kmem_alloc() 2418 */ 2419 size = KMEM_ALIGN; 2420 for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) { 2421 size_t align = KMEM_ALIGN; 2422 size_t cache_size = kmem_alloc_sizes[i]; 2423 /* 2424 * If they allocate a multiple of the coherency granularity, 2425 * they get a coherency-granularity-aligned address. 2426 */ 2427 if (IS_P2ALIGNED(cache_size, 64)) 2428 align = 64; 2429 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 2430 align = PAGESIZE; 2431 (void) sprintf(name, "kmem_alloc_%lu", cache_size); 2432 cp = kmem_cache_create(name, cache_size, align, 2433 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 2434 while (size <= cache_size) { 2435 kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp; 2436 size += KMEM_ALIGN; 2437 } 2438 } 2439 } 2440 2441 void 2442 kmem_init(void) 2443 { 2444 kmem_cache_t *cp; 2445 int old_kmem_flags = kmem_flags; 2446 int use_large_pages = 0; 2447 size_t maxverify, minfirewall; 2448 2449 kstat_init(); 2450 2451 /* 2452 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 2453 */ 2454 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 2455 kmem_flags = 0; 2456 2457 /* 2458 * Don't do firewalled allocations if the heap is less than 1TB 2459 * (i.e. on a 32-bit kernel) 2460 * The resulting VM_NEXTFIT allocations would create too much 2461 * fragmentation in a small heap. 2462 */ 2463 #if defined(_LP64) 2464 maxverify = minfirewall = PAGESIZE / 2; 2465 #else 2466 maxverify = minfirewall = ULONG_MAX; 2467 #endif 2468 2469 /* LINTED */ 2470 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 2471 2472 kmem_null_cache.cache_next = &kmem_null_cache; 2473 kmem_null_cache.cache_prev = &kmem_null_cache; 2474 2475 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 2476 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 2477 VM_SLEEP | VMC_NO_QCACHE); 2478 2479 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 2480 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 2481 VM_SLEEP); 2482 2483 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 2484 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 2485 2486 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 2487 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 2488 2489 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 2490 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 2491 2492 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 2493 NULL, 0, PAGESIZE, 2494 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 2495 0, VM_SLEEP); 2496 2497 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 2498 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); 2499 2500 /* temporary oversize arena for mod_read_system_file */ 2501 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 2502 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 2503 2504 kmem_null_cache.cache_next = &kmem_null_cache; 2505 kmem_null_cache.cache_prev = &kmem_null_cache; 2506 2507 kmem_reap_interval = 15 * hz; 2508 2509 /* 2510 * Read /etc/system. This is a chicken-and-egg problem because 2511 * kmem_flags may be set in /etc/system, but mod_read_system_file() 2512 * needs to use the allocator. The simplest solution is to create 2513 * all the standard kmem caches, read /etc/system, destroy all the 2514 * caches we just created, and then create them all again in light 2515 * of the (possibly) new kmem_flags and other kmem tunables. 2516 */ 2517 kmem_cache_init(1, 0); 2518 2519 mod_read_system_file(boothowto & RB_ASKNAME); 2520 2521 while ((cp = kmem_null_cache.cache_prev) != &kmem_null_cache) 2522 kmem_cache_destroy(cp); 2523 2524 vmem_destroy(kmem_oversize_arena); 2525 2526 if (old_kmem_flags & KMF_STICKY) 2527 kmem_flags = old_kmem_flags; 2528 2529 if (!(kmem_flags & KMF_AUDIT)) 2530 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 2531 2532 if (kmem_maxverify == 0) 2533 kmem_maxverify = maxverify; 2534 2535 if (kmem_minfirewall == 0) 2536 kmem_minfirewall = minfirewall; 2537 2538 /* 2539 * give segkmem a chance to figure out if we are using large pages 2540 * for the kernel heap 2541 */ 2542 use_large_pages = segkmem_lpsetup(); 2543 2544 /* 2545 * To protect against corruption, we keep the actual number of callers 2546 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 2547 * to 16, since the overhead for small buffers quickly gets out of 2548 * hand. 2549 * 2550 * The real limit would depend on the needs of the largest KMC_NOHASH 2551 * cache. 2552 */ 2553 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 2554 kmem_lite_pcs = kmem_lite_count; 2555 2556 /* 2557 * Normally, we firewall oversized allocations when possible, but 2558 * if we are using large pages for kernel memory, and we don't have 2559 * any non-LITE debugging flags set, we want to allocate oversized 2560 * buffers from large pages, and so skip the firewalling. 2561 */ 2562 if (use_large_pages && 2563 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 2564 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 2565 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 2566 0, VM_SLEEP); 2567 } else { 2568 kmem_oversize_arena = vmem_create("kmem_oversize", 2569 NULL, 0, PAGESIZE, 2570 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 2571 kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); 2572 } 2573 2574 kmem_cache_init(2, use_large_pages); 2575 2576 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 2577 if (kmem_transaction_log_size == 0) 2578 kmem_transaction_log_size = kmem_maxavail() / 50; 2579 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 2580 } 2581 2582 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 2583 if (kmem_content_log_size == 0) 2584 kmem_content_log_size = kmem_maxavail() / 50; 2585 kmem_content_log = kmem_log_init(kmem_content_log_size); 2586 } 2587 2588 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 2589 2590 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 2591 2592 /* 2593 * Initialize STREAMS message caches so allocb() is available. 2594 * This allows us to initialize the logging framework (cmn_err(9F), 2595 * strlog(9F), etc) so we can start recording messages. 2596 */ 2597 streams_msg_init(); 2598 2599 /* 2600 * Initialize the ZSD framework in Zones so modules loaded henceforth 2601 * can register their callbacks. 2602 */ 2603 zone_zsd_init(); 2604 log_init(); 2605 taskq_init(); 2606 2607 /* 2608 * Warn about invalid or dangerous values of kmem_flags. 2609 * Always warn about unsupported values. 2610 */ 2611 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 2612 KMF_CONTENTS | KMF_LITE)) != 0) || 2613 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 2614 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 2615 "See the Solaris Tunable Parameters Reference Manual.", 2616 kmem_flags); 2617 2618 #ifdef DEBUG 2619 if ((kmem_flags & KMF_DEBUG) == 0) 2620 cmn_err(CE_NOTE, "kmem debugging disabled."); 2621 #else 2622 /* 2623 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 2624 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 2625 * if KMF_AUDIT is set). We should warn the user about the performance 2626 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 2627 * isn't set (since that disables AUDIT). 2628 */ 2629 if (!(kmem_flags & KMF_LITE) && 2630 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 2631 cmn_err(CE_WARN, "High-overhead kmem debugging features " 2632 "enabled (kmem_flags = 0x%x). Performance degradation " 2633 "and large memory overhead possible. See the Solaris " 2634 "Tunable Parameters Reference Manual.", kmem_flags); 2635 #endif /* not DEBUG */ 2636 2637 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 2638 2639 kmem_ready = 1; 2640 2641 /* 2642 * Initialize the platform-specific aligned/DMA memory allocator. 2643 */ 2644 ka_init(); 2645 2646 /* 2647 * Initialize 32-bit ID cache. 2648 */ 2649 id32_init(); 2650 } 2651 2652 void 2653 kmem_thread_init(void) 2654 { 2655 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 2656 300, INT_MAX, TASKQ_PREPOPULATE); 2657 } 2658 2659 void 2660 kmem_mp_init(void) 2661 { 2662 mutex_enter(&cpu_lock); 2663 register_cpu_setup_func(kmem_cpu_setup, NULL); 2664 mutex_exit(&cpu_lock); 2665 2666 kmem_update_timeout(NULL); 2667 } 2668