1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Kernel memory allocator, as described in the following two papers and a 28 * statement about the consolidator: 29 * 30 * Jeff Bonwick, 31 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 32 * Proceedings of the Summer 1994 Usenix Conference. 33 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 34 * 35 * Jeff Bonwick and Jonathan Adams, 36 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 37 * Arbitrary Resources. 38 * Proceedings of the 2001 Usenix Conference. 39 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 40 * 41 * kmem Slab Consolidator Big Theory Statement: 42 * 43 * 1. Motivation 44 * 45 * As stated in Bonwick94, slabs provide the following advantages over other 46 * allocation structures in terms of memory fragmentation: 47 * 48 * - Internal fragmentation (per-buffer wasted space) is minimal. 49 * - Severe external fragmentation (unused buffers on the free list) is 50 * unlikely. 51 * 52 * Segregating objects by size eliminates one source of external fragmentation, 53 * and according to Bonwick: 54 * 55 * The other reason that slabs reduce external fragmentation is that all 56 * objects in a slab are of the same type, so they have the same lifetime 57 * distribution. The resulting segregation of short-lived and long-lived 58 * objects at slab granularity reduces the likelihood of an entire page being 59 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 60 * 61 * While unlikely, severe external fragmentation remains possible. Clients that 62 * allocate both short- and long-lived objects from the same cache cannot 63 * anticipate the distribution of long-lived objects within the allocator's slab 64 * implementation. Even a small percentage of long-lived objects distributed 65 * randomly across many slabs can lead to a worst case scenario where the client 66 * frees the majority of its objects and the system gets back almost none of the 67 * slabs. Despite the client doing what it reasonably can to help the system 68 * reclaim memory, the allocator cannot shake free enough slabs because of 69 * lonely allocations stubbornly hanging on. Although the allocator is in a 70 * position to diagnose the fragmentation, there is nothing that the allocator 71 * by itself can do about it. It only takes a single allocated object to prevent 72 * an entire slab from being reclaimed, and any object handed out by 73 * kmem_cache_alloc() is by definition in the client's control. Conversely, 74 * although the client is in a position to move a long-lived object, it has no 75 * way of knowing if the object is causing fragmentation, and if so, where to 76 * move it. A solution necessarily requires further cooperation between the 77 * allocator and the client. 78 * 79 * 2. Move Callback 80 * 81 * The kmem slab consolidator therefore adds a move callback to the 82 * allocator/client interface, improving worst-case external fragmentation in 83 * kmem caches that supply a function to move objects from one memory location 84 * to another. In a situation of low memory kmem attempts to consolidate all of 85 * a cache's slabs at once; otherwise it works slowly to bring external 86 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 87 * thereby helping to avoid a low memory situation in the future. 88 * 89 * The callback has the following signature: 90 * 91 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 92 * 93 * It supplies the kmem client with two addresses: the allocated object that 94 * kmem wants to move and a buffer selected by kmem for the client to use as the 95 * copy destination. The callback is kmem's way of saying "Please get off of 96 * this buffer and use this one instead." kmem knows where it wants to move the 97 * object in order to best reduce fragmentation. All the client needs to know 98 * about the second argument (void *new) is that it is an allocated, constructed 99 * object ready to take the contents of the old object. When the move function 100 * is called, the system is likely to be low on memory, and the new object 101 * spares the client from having to worry about allocating memory for the 102 * requested move. The third argument supplies the size of the object, in case a 103 * single move function handles multiple caches whose objects differ only in 104 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 105 * user argument passed to the constructor, destructor, and reclaim functions is 106 * also passed to the move callback. 107 * 108 * 2.1 Setting the Move Callback 109 * 110 * The client sets the move callback after creating the cache and before 111 * allocating from it: 112 * 113 * object_cache = kmem_cache_create(...); 114 * kmem_cache_set_move(object_cache, object_move); 115 * 116 * 2.2 Move Callback Return Values 117 * 118 * Only the client knows about its own data and when is a good time to move it. 119 * The client is cooperating with kmem to return unused memory to the system, 120 * and kmem respectfully accepts this help at the client's convenience. When 121 * asked to move an object, the client can respond with any of the following: 122 * 123 * typedef enum kmem_cbrc { 124 * KMEM_CBRC_YES, 125 * KMEM_CBRC_NO, 126 * KMEM_CBRC_LATER, 127 * KMEM_CBRC_DONT_NEED, 128 * KMEM_CBRC_DONT_KNOW 129 * } kmem_cbrc_t; 130 * 131 * The client must not explicitly kmem_cache_free() either of the objects passed 132 * to the callback, since kmem wants to free them directly to the slab layer 133 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 134 * objects to free: 135 * 136 * YES: (Did it) The client moved the object, so kmem frees the old one. 137 * NO: (Never) The client refused, so kmem frees the new object (the 138 * unused copy destination). kmem also marks the slab of the old 139 * object so as not to bother the client with further callbacks for 140 * that object as long as the slab remains on the partial slab list. 141 * (The system won't be getting the slab back as long as the 142 * immovable object holds it hostage, so there's no point in moving 143 * any of its objects.) 144 * LATER: The client is using the object and cannot move it now, so kmem 145 * frees the new object (the unused copy destination). kmem still 146 * attempts to move other objects off the slab, since it expects to 147 * succeed in clearing the slab in a later callback. The client 148 * should use LATER instead of NO if the object is likely to become 149 * movable very soon. 150 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 151 * with the new object (the unused copy destination). This response 152 * is the client's opportunity to be a model citizen and give back as 153 * much as it can. 154 * DONT_KNOW: The client does not know about the object because 155 * a) the client has just allocated the object and not yet put it 156 * wherever it expects to find known objects 157 * b) the client has removed the object from wherever it expects to 158 * find known objects and is about to free it, or 159 * c) the client has freed the object. 160 * In all these cases (a, b, and c) kmem frees the new object (the 161 * unused copy destination) and searches for the old object in the 162 * magazine layer. If found, the object is removed from the magazine 163 * layer and freed to the slab layer so it will no longer hold the 164 * slab hostage. 165 * 166 * 2.3 Object States 167 * 168 * Neither kmem nor the client can be assumed to know the object's whereabouts 169 * at the time of the callback. An object belonging to a kmem cache may be in 170 * any of the following states: 171 * 172 * 1. Uninitialized on the slab 173 * 2. Allocated from the slab but not constructed (still uninitialized) 174 * 3. Allocated from the slab, constructed, but not yet ready for business 175 * (not in a valid state for the move callback) 176 * 4. In use (valid and known to the client) 177 * 5. About to be freed (no longer in a valid state for the move callback) 178 * 6. Freed to a magazine (still constructed) 179 * 7. Allocated from a magazine, not yet ready for business (not in a valid 180 * state for the move callback), and about to return to state #4 181 * 8. Deconstructed on a magazine that is about to be freed 182 * 9. Freed to the slab 183 * 184 * Since the move callback may be called at any time while the object is in any 185 * of the above states (except state #1), the client needs a safe way to 186 * determine whether or not it knows about the object. Specifically, the client 187 * needs to know whether or not the object is in state #4, the only state in 188 * which a move is valid. If the object is in any other state, the client should 189 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 190 * the object's fields. 191 * 192 * Note that although an object may be in state #4 when kmem initiates the move 193 * request, the object may no longer be in that state by the time kmem actually 194 * calls the move function. Not only does the client free objects 195 * asynchronously, kmem itself puts move requests on a queue where thay are 196 * pending until kmem processes them from another context. Also, objects freed 197 * to a magazine appear allocated from the point of view of the slab layer, so 198 * kmem may even initiate requests for objects in a state other than state #4. 199 * 200 * 2.3.1 Magazine Layer 201 * 202 * An important insight revealed by the states listed above is that the magazine 203 * layer is populated only by kmem_cache_free(). Magazines of constructed 204 * objects are never populated directly from the slab layer (which contains raw, 205 * unconstructed objects). Whenever an allocation request cannot be satisfied 206 * from the magazine layer, the magazines are bypassed and the request is 207 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 208 * the object constructor only when allocating from the slab layer, and only in 209 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 210 * the move callback. kmem does not preconstruct objects in anticipation of 211 * kmem_cache_alloc(). 212 * 213 * 2.3.2 Object Constructor and Destructor 214 * 215 * If the client supplies a destructor, it must be valid to call the destructor 216 * on a newly created object (immediately after the constructor). 217 * 218 * 2.4 Recognizing Known Objects 219 * 220 * There is a simple test to determine safely whether or not the client knows 221 * about a given object in the move callback. It relies on the fact that kmem 222 * guarantees that the object of the move callback has only been touched by the 223 * client itself or else by kmem. kmem does this by ensuring that none of the 224 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 225 * callback is pending. When the last object on a slab is freed, if there is a 226 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 227 * slabs on that list until all pending callbacks are completed. That way, 228 * clients can be certain that the object of a move callback is in one of the 229 * states listed above, making it possible to distinguish known objects (in 230 * state #4) using the two low order bits of any pointer member (with the 231 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 232 * platforms). 233 * 234 * The test works as long as the client always transitions objects from state #4 235 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 236 * order bit of the client-designated pointer member. Since kmem only writes 237 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 238 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 239 * guaranteed to set at least one of the two low order bits. Therefore, given an 240 * object with a back pointer to a 'container_t *o_container', the client can 241 * test 242 * 243 * container_t *container = object->o_container; 244 * if ((uintptr_t)container & 0x3) { 245 * return (KMEM_CBRC_DONT_KNOW); 246 * } 247 * 248 * Typically, an object will have a pointer to some structure with a list or 249 * hash where objects from the cache are kept while in use. Assuming that the 250 * client has some way of knowing that the container structure is valid and will 251 * not go away during the move, and assuming that the structure includes a lock 252 * to protect whatever collection is used, then the client would continue as 253 * follows: 254 * 255 * // Ensure that the container structure does not go away. 256 * if (container_hold(container) == 0) { 257 * return (KMEM_CBRC_DONT_KNOW); 258 * } 259 * mutex_enter(&container->c_objects_lock); 260 * if (container != object->o_container) { 261 * mutex_exit(&container->c_objects_lock); 262 * container_rele(container); 263 * return (KMEM_CBRC_DONT_KNOW); 264 * } 265 * 266 * At this point the client knows that the object cannot be freed as long as 267 * c_objects_lock is held. Note that after acquiring the lock, the client must 268 * recheck the o_container pointer in case the object was removed just before 269 * acquiring the lock. 270 * 271 * When the client is about to free an object, it must first remove that object 272 * from the list, hash, or other structure where it is kept. At that time, to 273 * mark the object so it can be distinguished from the remaining, known objects, 274 * the client sets the designated low order bit: 275 * 276 * mutex_enter(&container->c_objects_lock); 277 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 278 * list_remove(&container->c_objects, object); 279 * mutex_exit(&container->c_objects_lock); 280 * 281 * In the common case, the object is freed to the magazine layer, where it may 282 * be reused on a subsequent allocation without the overhead of calling the 283 * constructor. While in the magazine it appears allocated from the point of 284 * view of the slab layer, making it a candidate for the move callback. Most 285 * objects unrecognized by the client in the move callback fall into this 286 * category and are cheaply distinguished from known objects by the test 287 * described earlier. Since recognition is cheap for the client, and searching 288 * magazines is expensive for kmem, kmem defers searching until the client first 289 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 290 * elsewhere does what it can to avoid bothering the client unnecessarily. 291 * 292 * Invalidating the designated pointer member before freeing the object marks 293 * the object to be avoided in the callback, and conversely, assigning a valid 294 * value to the designated pointer member after allocating the object makes the 295 * object fair game for the callback: 296 * 297 * ... allocate object ... 298 * ... set any initial state not set by the constructor ... 299 * 300 * mutex_enter(&container->c_objects_lock); 301 * list_insert_tail(&container->c_objects, object); 302 * membar_producer(); 303 * object->o_container = container; 304 * mutex_exit(&container->c_objects_lock); 305 * 306 * Note that everything else must be valid before setting o_container makes the 307 * object fair game for the move callback. The membar_producer() call ensures 308 * that all the object's state is written to memory before setting the pointer 309 * that transitions the object from state #3 or #7 (allocated, constructed, not 310 * yet in use) to state #4 (in use, valid). That's important because the move 311 * function has to check the validity of the pointer before it can safely 312 * acquire the lock protecting the collection where it expects to find known 313 * objects. 314 * 315 * This method of distinguishing known objects observes the usual symmetry: 316 * invalidating the designated pointer is the first thing the client does before 317 * freeing the object, and setting the designated pointer is the last thing the 318 * client does after allocating the object. Of course, the client is not 319 * required to use this method. Fundamentally, how the client recognizes known 320 * objects is completely up to the client, but this method is recommended as an 321 * efficient and safe way to take advantage of the guarantees made by kmem. If 322 * the entire object is arbitrary data without any markable bits from a suitable 323 * pointer member, then the client must find some other method, such as 324 * searching a hash table of known objects. 325 * 326 * 2.5 Preventing Objects From Moving 327 * 328 * Besides a way to distinguish known objects, the other thing that the client 329 * needs is a strategy to ensure that an object will not move while the client 330 * is actively using it. The details of satisfying this requirement tend to be 331 * highly cache-specific. It might seem that the same rules that let a client 332 * remove an object safely should also decide when an object can be moved 333 * safely. However, any object state that makes a removal attempt invalid is 334 * likely to be long-lasting for objects that the client does not expect to 335 * remove. kmem knows nothing about the object state and is equally likely (from 336 * the client's point of view) to request a move for any object in the cache, 337 * whether prepared for removal or not. Even a low percentage of objects stuck 338 * in place by unremovability will defeat the consolidator if the stuck objects 339 * are the same long-lived allocations likely to hold slabs hostage. 340 * Fundamentally, the consolidator is not aimed at common cases. Severe external 341 * fragmentation is a worst case scenario manifested as sparsely allocated 342 * slabs, by definition a low percentage of the cache's objects. When deciding 343 * what makes an object movable, keep in mind the goal of the consolidator: to 344 * bring worst-case external fragmentation within the limits guaranteed for 345 * internal fragmentation. Removability is a poor criterion if it is likely to 346 * exclude more than an insignificant percentage of objects for long periods of 347 * time. 348 * 349 * A tricky general solution exists, and it has the advantage of letting you 350 * move any object at almost any moment, practically eliminating the likelihood 351 * that an object can hold a slab hostage. However, if there is a cache-specific 352 * way to ensure that an object is not actively in use in the vast majority of 353 * cases, a simpler solution that leverages this cache-specific knowledge is 354 * preferred. 355 * 356 * 2.5.1 Cache-Specific Solution 357 * 358 * As an example of a cache-specific solution, the ZFS znode cache takes 359 * advantage of the fact that the vast majority of znodes are only being 360 * referenced from the DNLC. (A typical case might be a few hundred in active 361 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 362 * client has established that it recognizes the znode and can access its fields 363 * safely (using the method described earlier), it then tests whether the znode 364 * is referenced by anything other than the DNLC. If so, it assumes that the 365 * znode may be in active use and is unsafe to move, so it drops its locks and 366 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 367 * else znodes are used, no change is needed to protect against the possibility 368 * of the znode moving. The disadvantage is that it remains possible for an 369 * application to hold a znode slab hostage with an open file descriptor. 370 * However, this case ought to be rare and the consolidator has a way to deal 371 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 372 * object, kmem eventually stops believing it and treats the slab as if the 373 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 374 * then focus on getting it off of the partial slab list by allocating rather 375 * than freeing all of its objects. (Either way of getting a slab off the 376 * free list reduces fragmentation.) 377 * 378 * 2.5.2 General Solution 379 * 380 * The general solution, on the other hand, requires an explicit hold everywhere 381 * the object is used to prevent it from moving. To keep the client locking 382 * strategy as uncomplicated as possible, kmem guarantees the simplifying 383 * assumption that move callbacks are sequential, even across multiple caches. 384 * Internally, a global queue processed by a single thread supports all caches 385 * implementing the callback function. No matter how many caches supply a move 386 * function, the consolidator never moves more than one object at a time, so the 387 * client does not have to worry about tricky lock ordering involving several 388 * related objects from different kmem caches. 389 * 390 * The general solution implements the explicit hold as a read-write lock, which 391 * allows multiple readers to access an object from the cache simultaneously 392 * while a single writer is excluded from moving it. A single rwlock for the 393 * entire cache would lock out all threads from using any of the cache's objects 394 * even though only a single object is being moved, so to reduce contention, 395 * the client can fan out the single rwlock into an array of rwlocks hashed by 396 * the object address, making it probable that moving one object will not 397 * prevent other threads from using a different object. The rwlock cannot be a 398 * member of the object itself, because the possibility of the object moving 399 * makes it unsafe to access any of the object's fields until the lock is 400 * acquired. 401 * 402 * Assuming a small, fixed number of locks, it's possible that multiple objects 403 * will hash to the same lock. A thread that needs to use multiple objects in 404 * the same function may acquire the same lock multiple times. Since rwlocks are 405 * reentrant for readers, and since there is never more than a single writer at 406 * a time (assuming that the client acquires the lock as a writer only when 407 * moving an object inside the callback), there would seem to be no problem. 408 * However, a client locking multiple objects in the same function must handle 409 * one case of potential deadlock: Assume that thread A needs to prevent both 410 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 411 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 412 * same lock, that thread A will acquire the lock for object 1 as a reader 413 * before thread B sets the lock's write-wanted bit, preventing thread A from 414 * reacquiring the lock for object 2 as a reader. Unable to make forward 415 * progress, thread A will never release the lock for object 1, resulting in 416 * deadlock. 417 * 418 * There are two ways of avoiding the deadlock just described. The first is to 419 * use rw_tryenter() rather than rw_enter() in the callback function when 420 * attempting to acquire the lock as a writer. If tryenter discovers that the 421 * same object (or another object hashed to the same lock) is already in use, it 422 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 423 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 424 * since it allows a thread to acquire the lock as a reader in spite of a 425 * waiting writer. This second approach insists on moving the object now, no 426 * matter how many readers the move function must wait for in order to do so, 427 * and could delay the completion of the callback indefinitely (blocking 428 * callbacks to other clients). In practice, a less insistent callback using 429 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 430 * little reason to use anything else. 431 * 432 * Avoiding deadlock is not the only problem that an implementation using an 433 * explicit hold needs to solve. Locking the object in the first place (to 434 * prevent it from moving) remains a problem, since the object could move 435 * between the time you obtain a pointer to the object and the time you acquire 436 * the rwlock hashed to that pointer value. Therefore the client needs to 437 * recheck the value of the pointer after acquiring the lock, drop the lock if 438 * the value has changed, and try again. This requires a level of indirection: 439 * something that points to the object rather than the object itself, that the 440 * client can access safely while attempting to acquire the lock. (The object 441 * itself cannot be referenced safely because it can move at any time.) 442 * The following lock-acquisition function takes whatever is safe to reference 443 * (arg), follows its pointer to the object (using function f), and tries as 444 * often as necessary to acquire the hashed lock and verify that the object 445 * still has not moved: 446 * 447 * object_t * 448 * object_hold(object_f f, void *arg) 449 * { 450 * object_t *op; 451 * 452 * op = f(arg); 453 * if (op == NULL) { 454 * return (NULL); 455 * } 456 * 457 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 458 * while (op != f(arg)) { 459 * rw_exit(OBJECT_RWLOCK(op)); 460 * op = f(arg); 461 * if (op == NULL) { 462 * break; 463 * } 464 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 465 * } 466 * 467 * return (op); 468 * } 469 * 470 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 471 * lock reacquisition loop, while necessary, almost never executes. The function 472 * pointer f (used to obtain the object pointer from arg) has the following type 473 * definition: 474 * 475 * typedef object_t *(*object_f)(void *arg); 476 * 477 * An object_f implementation is likely to be as simple as accessing a structure 478 * member: 479 * 480 * object_t * 481 * s_object(void *arg) 482 * { 483 * something_t *sp = arg; 484 * return (sp->s_object); 485 * } 486 * 487 * The flexibility of a function pointer allows the path to the object to be 488 * arbitrarily complex and also supports the notion that depending on where you 489 * are using the object, you may need to get it from someplace different. 490 * 491 * The function that releases the explicit hold is simpler because it does not 492 * have to worry about the object moving: 493 * 494 * void 495 * object_rele(object_t *op) 496 * { 497 * rw_exit(OBJECT_RWLOCK(op)); 498 * } 499 * 500 * The caller is spared these details so that obtaining and releasing an 501 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 502 * of object_hold() only needs to know that the returned object pointer is valid 503 * if not NULL and that the object will not move until released. 504 * 505 * Although object_hold() prevents an object from moving, it does not prevent it 506 * from being freed. The caller must take measures before calling object_hold() 507 * (afterwards is too late) to ensure that the held object cannot be freed. The 508 * caller must do so without accessing the unsafe object reference, so any lock 509 * or reference count used to ensure the continued existence of the object must 510 * live outside the object itself. 511 * 512 * Obtaining a new object is a special case where an explicit hold is impossible 513 * for the caller. Any function that returns a newly allocated object (either as 514 * a return value, or as an in-out paramter) must return it already held; after 515 * the caller gets it is too late, since the object cannot be safely accessed 516 * without the level of indirection described earlier. The following 517 * object_alloc() example uses the same code shown earlier to transition a new 518 * object into the state of being recognized (by the client) as a known object. 519 * The function must acquire the hold (rw_enter) before that state transition 520 * makes the object movable: 521 * 522 * static object_t * 523 * object_alloc(container_t *container) 524 * { 525 * object_t *object = kmem_cache_alloc(object_cache, 0); 526 * ... set any initial state not set by the constructor ... 527 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 528 * mutex_enter(&container->c_objects_lock); 529 * list_insert_tail(&container->c_objects, object); 530 * membar_producer(); 531 * object->o_container = container; 532 * mutex_exit(&container->c_objects_lock); 533 * return (object); 534 * } 535 * 536 * Functions that implicitly acquire an object hold (any function that calls 537 * object_alloc() to supply an object for the caller) need to be carefully noted 538 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 539 * prevent all objects hashed to the affected rwlocks from ever being moved. 540 * 541 * The pointer to a held object can be hashed to the holding rwlock even after 542 * the object has been freed. Although it is possible to release the hold 543 * after freeing the object, you may decide to release the hold implicitly in 544 * whatever function frees the object, so as to release the hold as soon as 545 * possible, and for the sake of symmetry with the function that implicitly 546 * acquires the hold when it allocates the object. Here, object_free() releases 547 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 548 * matching pair with object_hold(): 549 * 550 * void 551 * object_free(object_t *object) 552 * { 553 * container_t *container; 554 * 555 * ASSERT(object_held(object)); 556 * container = object->o_container; 557 * mutex_enter(&container->c_objects_lock); 558 * object->o_container = 559 * (void *)((uintptr_t)object->o_container | 0x1); 560 * list_remove(&container->c_objects, object); 561 * mutex_exit(&container->c_objects_lock); 562 * object_rele(object); 563 * kmem_cache_free(object_cache, object); 564 * } 565 * 566 * Note that object_free() cannot safely accept an object pointer as an argument 567 * unless the object is already held. Any function that calls object_free() 568 * needs to be carefully noted since it similarly forms a matching pair with 569 * object_hold(). 570 * 571 * To complete the picture, the following callback function implements the 572 * general solution by moving objects only if they are currently unheld: 573 * 574 * static kmem_cbrc_t 575 * object_move(void *buf, void *newbuf, size_t size, void *arg) 576 * { 577 * object_t *op = buf, *np = newbuf; 578 * container_t *container; 579 * 580 * container = op->o_container; 581 * if ((uintptr_t)container & 0x3) { 582 * return (KMEM_CBRC_DONT_KNOW); 583 * } 584 * 585 * // Ensure that the container structure does not go away. 586 * if (container_hold(container) == 0) { 587 * return (KMEM_CBRC_DONT_KNOW); 588 * } 589 * 590 * mutex_enter(&container->c_objects_lock); 591 * if (container != op->o_container) { 592 * mutex_exit(&container->c_objects_lock); 593 * container_rele(container); 594 * return (KMEM_CBRC_DONT_KNOW); 595 * } 596 * 597 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 598 * mutex_exit(&container->c_objects_lock); 599 * container_rele(container); 600 * return (KMEM_CBRC_LATER); 601 * } 602 * 603 * object_move_impl(op, np); // critical section 604 * rw_exit(OBJECT_RWLOCK(op)); 605 * 606 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 607 * list_link_replace(&op->o_link_node, &np->o_link_node); 608 * mutex_exit(&container->c_objects_lock); 609 * container_rele(container); 610 * return (KMEM_CBRC_YES); 611 * } 612 * 613 * Note that object_move() must invalidate the designated o_container pointer of 614 * the old object in the same way that object_free() does, since kmem will free 615 * the object in response to the KMEM_CBRC_YES return value. 616 * 617 * The lock order in object_move() differs from object_alloc(), which locks 618 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 619 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 620 * not a problem. Holding the lock on the object list in the example above 621 * through the entire callback not only prevents the object from going away, it 622 * also allows you to lock the list elsewhere and know that none of its elements 623 * will move during iteration. 624 * 625 * Adding an explicit hold everywhere an object from the cache is used is tricky 626 * and involves much more change to client code than a cache-specific solution 627 * that leverages existing state to decide whether or not an object is 628 * movable. However, this approach has the advantage that no object remains 629 * immovable for any significant length of time, making it extremely unlikely 630 * that long-lived allocations can continue holding slabs hostage; and it works 631 * for any cache. 632 * 633 * 3. Consolidator Implementation 634 * 635 * Once the client supplies a move function that a) recognizes known objects and 636 * b) avoids moving objects that are actively in use, the remaining work is up 637 * to the consolidator to decide which objects to move and when to issue 638 * callbacks. 639 * 640 * The consolidator relies on the fact that a cache's slabs are ordered by 641 * usage. Each slab has a fixed number of objects. Depending on the slab's 642 * "color" (the offset of the first object from the beginning of the slab; 643 * offsets are staggered to mitigate false sharing of cache lines) it is either 644 * the maximum number of objects per slab determined at cache creation time or 645 * else the number closest to the maximum that fits within the space remaining 646 * after the initial offset. A completely allocated slab may contribute some 647 * internal fragmentation (per-slab overhead) but no external fragmentation, so 648 * it is of no interest to the consolidator. At the other extreme, slabs whose 649 * objects have all been freed to the slab are released to the virtual memory 650 * (VM) subsystem (objects freed to magazines are still allocated as far as the 651 * slab is concerned). External fragmentation exists when there are slabs 652 * somewhere between these extremes. A partial slab has at least one but not all 653 * of its objects allocated. The more partial slabs, and the fewer allocated 654 * objects on each of them, the higher the fragmentation. Hence the 655 * consolidator's overall strategy is to reduce the number of partial slabs by 656 * moving allocated objects from the least allocated slabs to the most allocated 657 * slabs. 658 * 659 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 660 * slabs are kept separately in an unordered list. Since the majority of slabs 661 * tend to be completely allocated (a typical unfragmented cache may have 662 * thousands of complete slabs and only a single partial slab), separating 663 * complete slabs improves the efficiency of partial slab ordering, since the 664 * complete slabs do not affect the depth or balance of the AVL tree. This 665 * ordered sequence of partial slabs acts as a "free list" supplying objects for 666 * allocation requests. 667 * 668 * Objects are always allocated from the first partial slab in the free list, 669 * where the allocation is most likely to eliminate a partial slab (by 670 * completely allocating it). Conversely, when a single object from a completely 671 * allocated slab is freed to the slab, that slab is added to the front of the 672 * free list. Since most free list activity involves highly allocated slabs 673 * coming and going at the front of the list, slabs tend naturally toward the 674 * ideal order: highly allocated at the front, sparsely allocated at the back. 675 * Slabs with few allocated objects are likely to become completely free if they 676 * keep a safe distance away from the front of the free list. Slab misorders 677 * interfere with the natural tendency of slabs to become completely free or 678 * completely allocated. For example, a slab with a single allocated object 679 * needs only a single free to escape the cache; its natural desire is 680 * frustrated when it finds itself at the front of the list where a second 681 * allocation happens just before the free could have released it. Another slab 682 * with all but one object allocated might have supplied the buffer instead, so 683 * that both (as opposed to neither) of the slabs would have been taken off the 684 * free list. 685 * 686 * Although slabs tend naturally toward the ideal order, misorders allowed by a 687 * simple list implementation defeat the consolidator's strategy of merging 688 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 689 * needs another way to fix misorders to optimize its callback strategy. One 690 * approach is to periodically scan a limited number of slabs, advancing a 691 * marker to hold the current scan position, and to move extreme misorders to 692 * the front or back of the free list and to the front or back of the current 693 * scan range. By making consecutive scan ranges overlap by one slab, the least 694 * allocated slab in the current range can be carried along from the end of one 695 * scan to the start of the next. 696 * 697 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 698 * task, however. Since most of the cache's activity is in the magazine layer, 699 * and allocations from the slab layer represent only a startup cost, the 700 * overhead of maintaining a balanced tree is not a significant concern compared 701 * to the opportunity of reducing complexity by eliminating the partial slab 702 * scanner just described. The overhead of an AVL tree is minimized by 703 * maintaining only partial slabs in the tree and keeping completely allocated 704 * slabs separately in a list. To avoid increasing the size of the slab 705 * structure the AVL linkage pointers are reused for the slab's list linkage, 706 * since the slab will always be either partial or complete, never stored both 707 * ways at the same time. To further minimize the overhead of the AVL tree the 708 * compare function that orders partial slabs by usage divides the range of 709 * allocated object counts into bins such that counts within the same bin are 710 * considered equal. Binning partial slabs makes it less likely that allocating 711 * or freeing a single object will change the slab's order, requiring a tree 712 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 713 * requiring some rebalancing of the tree). Allocation counts closest to 714 * completely free and completely allocated are left unbinned (finely sorted) to 715 * better support the consolidator's strategy of merging slabs at either 716 * extreme. 717 * 718 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 719 * 720 * The consolidator piggybacks on the kmem maintenance thread and is called on 721 * the same interval as kmem_cache_update(), once per cache every fifteen 722 * seconds. kmem maintains a running count of unallocated objects in the slab 723 * layer (cache_bufslab). The consolidator checks whether that number exceeds 724 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 725 * there is a significant number of slabs in the cache (arbitrarily a minimum 726 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 727 * working set are included in the assessment, and magazines in the depot are 728 * reaped if those objects would lift cache_bufslab above the fragmentation 729 * threshold. Once the consolidator decides that a cache is fragmented, it looks 730 * for a candidate slab to reclaim, starting at the end of the partial slab free 731 * list and scanning backwards. At first the consolidator is choosy: only a slab 732 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 733 * single allocated object, regardless of percentage). If there is difficulty 734 * finding a candidate slab, kmem raises the allocation threshold incrementally, 735 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 736 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 737 * even in the worst case of every slab in the cache being almost 7/8 allocated. 738 * The threshold can also be lowered incrementally when candidate slabs are easy 739 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 740 * is no longer fragmented. 741 * 742 * 3.2 Generating Callbacks 743 * 744 * Once an eligible slab is chosen, a callback is generated for every allocated 745 * object on the slab, in the hope that the client will move everything off the 746 * slab and make it reclaimable. Objects selected as move destinations are 747 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 748 * order (most allocated at the front, least allocated at the back) and a 749 * cooperative client, the consolidator will succeed in removing slabs from both 750 * ends of the free list, completely allocating on the one hand and completely 751 * freeing on the other. Objects selected as move destinations are allocated in 752 * the kmem maintenance thread where move requests are enqueued. A separate 753 * callback thread removes pending callbacks from the queue and calls the 754 * client. The separate thread ensures that client code (the move function) does 755 * not interfere with internal kmem maintenance tasks. A map of pending 756 * callbacks keyed by object address (the object to be moved) is checked to 757 * ensure that duplicate callbacks are not generated for the same object. 758 * Allocating the move destination (the object to move to) prevents subsequent 759 * callbacks from selecting the same destination as an earlier pending callback. 760 * 761 * Move requests can also be generated by kmem_cache_reap() when the system is 762 * desperate for memory and by kmem_cache_move_notify(), called by the client to 763 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 764 * The map of pending callbacks is protected by the same lock that protects the 765 * slab layer. 766 * 767 * When the system is desperate for memory, kmem does not bother to determine 768 * whether or not the cache exceeds the fragmentation threshold, but tries to 769 * consolidate as many slabs as possible. Normally, the consolidator chews 770 * slowly, one sparsely allocated slab at a time during each maintenance 771 * interval that the cache is fragmented. When desperate, the consolidator 772 * starts at the last partial slab and enqueues callbacks for every allocated 773 * object on every partial slab, working backwards until it reaches the first 774 * partial slab. The first partial slab, meanwhile, advances in pace with the 775 * consolidator as allocations to supply move destinations for the enqueued 776 * callbacks use up the highly allocated slabs at the front of the free list. 777 * Ideally, the overgrown free list collapses like an accordion, starting at 778 * both ends and ending at the center with a single partial slab. 779 * 780 * 3.3 Client Responses 781 * 782 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 783 * marks the slab that supplied the stuck object non-reclaimable and moves it to 784 * front of the free list. The slab remains marked as long as it remains on the 785 * free list, and it appears more allocated to the partial slab compare function 786 * than any unmarked slab, no matter how many of its objects are allocated. 787 * Since even one immovable object ties up the entire slab, the goal is to 788 * completely allocate any slab that cannot be completely freed. kmem does not 789 * bother generating callbacks to move objects from a marked slab unless the 790 * system is desperate. 791 * 792 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 793 * slab. If the client responds LATER too many times, kmem disbelieves and 794 * treats the response as a NO. The count is cleared when the slab is taken off 795 * the partial slab list or when the client moves one of the slab's objects. 796 * 797 * 4. Observability 798 * 799 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 800 * the ::kmem_slabs dcmd. For a complete description of the command, enter 801 * '::help kmem_slabs' at the mdb prompt. 802 */ 803 804 #include <sys/kmem_impl.h> 805 #include <sys/vmem_impl.h> 806 #include <sys/param.h> 807 #include <sys/sysmacros.h> 808 #include <sys/vm.h> 809 #include <sys/proc.h> 810 #include <sys/tuneable.h> 811 #include <sys/systm.h> 812 #include <sys/cmn_err.h> 813 #include <sys/debug.h> 814 #include <sys/sdt.h> 815 #include <sys/mutex.h> 816 #include <sys/bitmap.h> 817 #include <sys/atomic.h> 818 #include <sys/kobj.h> 819 #include <sys/disp.h> 820 #include <vm/seg_kmem.h> 821 #include <sys/log.h> 822 #include <sys/callb.h> 823 #include <sys/taskq.h> 824 #include <sys/modctl.h> 825 #include <sys/reboot.h> 826 #include <sys/id32.h> 827 #include <sys/zone.h> 828 #include <sys/netstack.h> 829 #ifdef DEBUG 830 #include <sys/random.h> 831 #endif 832 833 extern void streams_msg_init(void); 834 extern int segkp_fromheap; 835 extern void segkp_cache_free(void); 836 837 struct kmem_cache_kstat { 838 kstat_named_t kmc_buf_size; 839 kstat_named_t kmc_align; 840 kstat_named_t kmc_chunk_size; 841 kstat_named_t kmc_slab_size; 842 kstat_named_t kmc_alloc; 843 kstat_named_t kmc_alloc_fail; 844 kstat_named_t kmc_free; 845 kstat_named_t kmc_depot_alloc; 846 kstat_named_t kmc_depot_free; 847 kstat_named_t kmc_depot_contention; 848 kstat_named_t kmc_slab_alloc; 849 kstat_named_t kmc_slab_free; 850 kstat_named_t kmc_buf_constructed; 851 kstat_named_t kmc_buf_avail; 852 kstat_named_t kmc_buf_inuse; 853 kstat_named_t kmc_buf_total; 854 kstat_named_t kmc_buf_max; 855 kstat_named_t kmc_slab_create; 856 kstat_named_t kmc_slab_destroy; 857 kstat_named_t kmc_vmem_source; 858 kstat_named_t kmc_hash_size; 859 kstat_named_t kmc_hash_lookup_depth; 860 kstat_named_t kmc_hash_rescale; 861 kstat_named_t kmc_full_magazines; 862 kstat_named_t kmc_empty_magazines; 863 kstat_named_t kmc_magazine_size; 864 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 865 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 866 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 867 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 868 kstat_named_t kmc_move_yes; 869 kstat_named_t kmc_move_no; 870 kstat_named_t kmc_move_later; 871 kstat_named_t kmc_move_dont_need; 872 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 873 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 874 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 875 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 876 } kmem_cache_kstat = { 877 { "buf_size", KSTAT_DATA_UINT64 }, 878 { "align", KSTAT_DATA_UINT64 }, 879 { "chunk_size", KSTAT_DATA_UINT64 }, 880 { "slab_size", KSTAT_DATA_UINT64 }, 881 { "alloc", KSTAT_DATA_UINT64 }, 882 { "alloc_fail", KSTAT_DATA_UINT64 }, 883 { "free", KSTAT_DATA_UINT64 }, 884 { "depot_alloc", KSTAT_DATA_UINT64 }, 885 { "depot_free", KSTAT_DATA_UINT64 }, 886 { "depot_contention", KSTAT_DATA_UINT64 }, 887 { "slab_alloc", KSTAT_DATA_UINT64 }, 888 { "slab_free", KSTAT_DATA_UINT64 }, 889 { "buf_constructed", KSTAT_DATA_UINT64 }, 890 { "buf_avail", KSTAT_DATA_UINT64 }, 891 { "buf_inuse", KSTAT_DATA_UINT64 }, 892 { "buf_total", KSTAT_DATA_UINT64 }, 893 { "buf_max", KSTAT_DATA_UINT64 }, 894 { "slab_create", KSTAT_DATA_UINT64 }, 895 { "slab_destroy", KSTAT_DATA_UINT64 }, 896 { "vmem_source", KSTAT_DATA_UINT64 }, 897 { "hash_size", KSTAT_DATA_UINT64 }, 898 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 899 { "hash_rescale", KSTAT_DATA_UINT64 }, 900 { "full_magazines", KSTAT_DATA_UINT64 }, 901 { "empty_magazines", KSTAT_DATA_UINT64 }, 902 { "magazine_size", KSTAT_DATA_UINT64 }, 903 { "reap", KSTAT_DATA_UINT64 }, 904 { "defrag", KSTAT_DATA_UINT64 }, 905 { "scan", KSTAT_DATA_UINT64 }, 906 { "move_callbacks", KSTAT_DATA_UINT64 }, 907 { "move_yes", KSTAT_DATA_UINT64 }, 908 { "move_no", KSTAT_DATA_UINT64 }, 909 { "move_later", KSTAT_DATA_UINT64 }, 910 { "move_dont_need", KSTAT_DATA_UINT64 }, 911 { "move_dont_know", KSTAT_DATA_UINT64 }, 912 { "move_hunt_found", KSTAT_DATA_UINT64 }, 913 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 914 { "move_reclaimable", KSTAT_DATA_UINT64 }, 915 }; 916 917 static kmutex_t kmem_cache_kstat_lock; 918 919 /* 920 * The default set of caches to back kmem_alloc(). 921 * These sizes should be reevaluated periodically. 922 * 923 * We want allocations that are multiples of the coherency granularity 924 * (64 bytes) to be satisfied from a cache which is a multiple of 64 925 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 926 * the next kmem_cache_size greater than or equal to it must be a 927 * multiple of 64. 928 * 929 * We split the table into two sections: size <= 4k and size > 4k. This 930 * saves a lot of space and cache footprint in our cache tables. 931 */ 932 static const int kmem_alloc_sizes[] = { 933 1 * 8, 934 2 * 8, 935 3 * 8, 936 4 * 8, 5 * 8, 6 * 8, 7 * 8, 937 4 * 16, 5 * 16, 6 * 16, 7 * 16, 938 4 * 32, 5 * 32, 6 * 32, 7 * 32, 939 4 * 64, 5 * 64, 6 * 64, 7 * 64, 940 4 * 128, 5 * 128, 6 * 128, 7 * 128, 941 P2ALIGN(8192 / 7, 64), 942 P2ALIGN(8192 / 6, 64), 943 P2ALIGN(8192 / 5, 64), 944 P2ALIGN(8192 / 4, 64), 945 P2ALIGN(8192 / 3, 64), 946 P2ALIGN(8192 / 2, 64), 947 }; 948 949 static const int kmem_big_alloc_sizes[] = { 950 2 * 4096, 3 * 4096, 951 2 * 8192, 3 * 8192, 952 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 953 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 954 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 955 16 * 8192 956 }; 957 958 #define KMEM_MAXBUF 4096 959 #define KMEM_BIG_MAXBUF_32BIT 32768 960 #define KMEM_BIG_MAXBUF 131072 961 962 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 963 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 964 965 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 966 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 967 968 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 969 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 970 971 static kmem_magtype_t kmem_magtype[] = { 972 { 1, 8, 3200, 65536 }, 973 { 3, 16, 256, 32768 }, 974 { 7, 32, 64, 16384 }, 975 { 15, 64, 0, 8192 }, 976 { 31, 64, 0, 4096 }, 977 { 47, 64, 0, 2048 }, 978 { 63, 64, 0, 1024 }, 979 { 95, 64, 0, 512 }, 980 { 143, 64, 0, 0 }, 981 }; 982 983 static uint32_t kmem_reaping; 984 static uint32_t kmem_reaping_idspace; 985 986 /* 987 * kmem tunables 988 */ 989 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 990 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 991 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 992 int kmem_panic = 1; /* whether to panic on error */ 993 int kmem_logging = 1; /* kmem_log_enter() override */ 994 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 995 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 996 size_t kmem_content_log_size; /* content log size [2% of memory] */ 997 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 998 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 999 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1000 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1001 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1002 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1003 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1004 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1005 1006 #ifdef _LP64 1007 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1008 #else 1009 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1010 #endif 1011 1012 #ifdef DEBUG 1013 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1014 #else 1015 int kmem_flags = 0; 1016 #endif 1017 int kmem_ready; 1018 1019 static kmem_cache_t *kmem_slab_cache; 1020 static kmem_cache_t *kmem_bufctl_cache; 1021 static kmem_cache_t *kmem_bufctl_audit_cache; 1022 1023 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1024 static list_t kmem_caches; 1025 1026 static taskq_t *kmem_taskq; 1027 static kmutex_t kmem_flags_lock; 1028 static vmem_t *kmem_metadata_arena; 1029 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1030 static vmem_t *kmem_cache_arena; 1031 static vmem_t *kmem_hash_arena; 1032 static vmem_t *kmem_log_arena; 1033 static vmem_t *kmem_oversize_arena; 1034 static vmem_t *kmem_va_arena; 1035 static vmem_t *kmem_default_arena; 1036 static vmem_t *kmem_firewall_va_arena; 1037 static vmem_t *kmem_firewall_arena; 1038 1039 /* 1040 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1041 * turned on when DEBUG is also defined. 1042 */ 1043 #ifdef DEBUG 1044 #define KMEM_STATS 1045 #endif /* DEBUG */ 1046 1047 #ifdef KMEM_STATS 1048 #define KMEM_STAT_ADD(stat) ((stat)++) 1049 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1050 #else 1051 #define KMEM_STAT_ADD(stat) /* nothing */ 1052 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1053 #endif /* KMEM_STATS */ 1054 1055 /* 1056 * kmem slab consolidator thresholds (tunables) 1057 */ 1058 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1059 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1060 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1061 /* 1062 * Maximum number of slabs from which to move buffers during a single 1063 * maintenance interval while the system is not low on memory. 1064 */ 1065 size_t kmem_reclaim_max_slabs = 1; 1066 /* 1067 * Number of slabs to scan backwards from the end of the partial slab list 1068 * when searching for buffers to relocate. 1069 */ 1070 size_t kmem_reclaim_scan_range = 12; 1071 1072 #ifdef KMEM_STATS 1073 static struct { 1074 uint64_t kms_callbacks; 1075 uint64_t kms_yes; 1076 uint64_t kms_no; 1077 uint64_t kms_later; 1078 uint64_t kms_dont_need; 1079 uint64_t kms_dont_know; 1080 uint64_t kms_hunt_found_mag; 1081 uint64_t kms_hunt_found_slab; 1082 uint64_t kms_hunt_alloc_fail; 1083 uint64_t kms_hunt_lucky; 1084 uint64_t kms_notify; 1085 uint64_t kms_notify_callbacks; 1086 uint64_t kms_disbelief; 1087 uint64_t kms_already_pending; 1088 uint64_t kms_callback_alloc_fail; 1089 uint64_t kms_callback_taskq_fail; 1090 uint64_t kms_endscan_slab_dead; 1091 uint64_t kms_endscan_slab_destroyed; 1092 uint64_t kms_endscan_nomem; 1093 uint64_t kms_endscan_refcnt_changed; 1094 uint64_t kms_endscan_nomove_changed; 1095 uint64_t kms_endscan_freelist; 1096 uint64_t kms_avl_update; 1097 uint64_t kms_avl_noupdate; 1098 uint64_t kms_no_longer_reclaimable; 1099 uint64_t kms_notify_no_longer_reclaimable; 1100 uint64_t kms_notify_slab_dead; 1101 uint64_t kms_notify_slab_destroyed; 1102 uint64_t kms_alloc_fail; 1103 uint64_t kms_constructor_fail; 1104 uint64_t kms_dead_slabs_freed; 1105 uint64_t kms_defrags; 1106 uint64_t kms_scans; 1107 uint64_t kms_scan_depot_ws_reaps; 1108 uint64_t kms_debug_reaps; 1109 uint64_t kms_debug_scans; 1110 } kmem_move_stats; 1111 #endif /* KMEM_STATS */ 1112 1113 /* consolidator knobs */ 1114 static boolean_t kmem_move_noreap; 1115 static boolean_t kmem_move_blocked; 1116 static boolean_t kmem_move_fulltilt; 1117 static boolean_t kmem_move_any_partial; 1118 1119 #ifdef DEBUG 1120 /* 1121 * kmem consolidator debug tunables: 1122 * Ensure code coverage by occasionally running the consolidator even when the 1123 * caches are not fragmented (they may never be). These intervals are mean time 1124 * in cache maintenance intervals (kmem_cache_update). 1125 */ 1126 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1127 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1128 #endif /* DEBUG */ 1129 1130 static kmem_cache_t *kmem_defrag_cache; 1131 static kmem_cache_t *kmem_move_cache; 1132 static taskq_t *kmem_move_taskq; 1133 1134 static void kmem_cache_scan(kmem_cache_t *); 1135 static void kmem_cache_defrag(kmem_cache_t *); 1136 1137 1138 kmem_log_header_t *kmem_transaction_log; 1139 kmem_log_header_t *kmem_content_log; 1140 kmem_log_header_t *kmem_failure_log; 1141 kmem_log_header_t *kmem_slab_log; 1142 1143 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1144 1145 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1146 if ((count) > 0) { \ 1147 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1148 pc_t *_e; \ 1149 /* memmove() the old entries down one notch */ \ 1150 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1151 *_e = *(_e - 1); \ 1152 *_s = (uintptr_t)(caller); \ 1153 } 1154 1155 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1156 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1157 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1158 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1159 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1160 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1161 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1162 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1163 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1164 1165 struct { 1166 hrtime_t kmp_timestamp; /* timestamp of panic */ 1167 int kmp_error; /* type of kmem error */ 1168 void *kmp_buffer; /* buffer that induced panic */ 1169 void *kmp_realbuf; /* real start address for buffer */ 1170 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1171 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1172 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1173 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1174 } kmem_panic_info; 1175 1176 1177 static void 1178 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1179 { 1180 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1181 uint64_t *buf = buf_arg; 1182 1183 while (buf < bufend) 1184 *buf++ = pattern; 1185 } 1186 1187 static void * 1188 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1189 { 1190 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1191 uint64_t *buf; 1192 1193 for (buf = buf_arg; buf < bufend; buf++) 1194 if (*buf != pattern) 1195 return (buf); 1196 return (NULL); 1197 } 1198 1199 static void * 1200 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1201 { 1202 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1203 uint64_t *buf; 1204 1205 for (buf = buf_arg; buf < bufend; buf++) { 1206 if (*buf != old) { 1207 copy_pattern(old, buf_arg, 1208 (char *)buf - (char *)buf_arg); 1209 return (buf); 1210 } 1211 *buf = new; 1212 } 1213 1214 return (NULL); 1215 } 1216 1217 static void 1218 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1219 { 1220 kmem_cache_t *cp; 1221 1222 mutex_enter(&kmem_cache_lock); 1223 for (cp = list_head(&kmem_caches); cp != NULL; 1224 cp = list_next(&kmem_caches, cp)) 1225 if (tq != NULL) 1226 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1227 tqflag); 1228 else 1229 func(cp); 1230 mutex_exit(&kmem_cache_lock); 1231 } 1232 1233 static void 1234 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1235 { 1236 kmem_cache_t *cp; 1237 1238 mutex_enter(&kmem_cache_lock); 1239 for (cp = list_head(&kmem_caches); cp != NULL; 1240 cp = list_next(&kmem_caches, cp)) { 1241 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1242 continue; 1243 if (tq != NULL) 1244 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1245 tqflag); 1246 else 1247 func(cp); 1248 } 1249 mutex_exit(&kmem_cache_lock); 1250 } 1251 1252 /* 1253 * Debugging support. Given a buffer address, find its slab. 1254 */ 1255 static kmem_slab_t * 1256 kmem_findslab(kmem_cache_t *cp, void *buf) 1257 { 1258 kmem_slab_t *sp; 1259 1260 mutex_enter(&cp->cache_lock); 1261 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1262 sp = list_next(&cp->cache_complete_slabs, sp)) { 1263 if (KMEM_SLAB_MEMBER(sp, buf)) { 1264 mutex_exit(&cp->cache_lock); 1265 return (sp); 1266 } 1267 } 1268 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1269 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1270 if (KMEM_SLAB_MEMBER(sp, buf)) { 1271 mutex_exit(&cp->cache_lock); 1272 return (sp); 1273 } 1274 } 1275 mutex_exit(&cp->cache_lock); 1276 1277 return (NULL); 1278 } 1279 1280 static void 1281 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1282 { 1283 kmem_buftag_t *btp = NULL; 1284 kmem_bufctl_t *bcp = NULL; 1285 kmem_cache_t *cp = cparg; 1286 kmem_slab_t *sp; 1287 uint64_t *off; 1288 void *buf = bufarg; 1289 1290 kmem_logging = 0; /* stop logging when a bad thing happens */ 1291 1292 kmem_panic_info.kmp_timestamp = gethrtime(); 1293 1294 sp = kmem_findslab(cp, buf); 1295 if (sp == NULL) { 1296 for (cp = list_tail(&kmem_caches); cp != NULL; 1297 cp = list_prev(&kmem_caches, cp)) { 1298 if ((sp = kmem_findslab(cp, buf)) != NULL) 1299 break; 1300 } 1301 } 1302 1303 if (sp == NULL) { 1304 cp = NULL; 1305 error = KMERR_BADADDR; 1306 } else { 1307 if (cp != cparg) 1308 error = KMERR_BADCACHE; 1309 else 1310 buf = (char *)bufarg - ((uintptr_t)bufarg - 1311 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1312 if (buf != bufarg) 1313 error = KMERR_BADBASE; 1314 if (cp->cache_flags & KMF_BUFTAG) 1315 btp = KMEM_BUFTAG(cp, buf); 1316 if (cp->cache_flags & KMF_HASH) { 1317 mutex_enter(&cp->cache_lock); 1318 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1319 if (bcp->bc_addr == buf) 1320 break; 1321 mutex_exit(&cp->cache_lock); 1322 if (bcp == NULL && btp != NULL) 1323 bcp = btp->bt_bufctl; 1324 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1325 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1326 bcp->bc_addr != buf) { 1327 error = KMERR_BADBUFCTL; 1328 bcp = NULL; 1329 } 1330 } 1331 } 1332 1333 kmem_panic_info.kmp_error = error; 1334 kmem_panic_info.kmp_buffer = bufarg; 1335 kmem_panic_info.kmp_realbuf = buf; 1336 kmem_panic_info.kmp_cache = cparg; 1337 kmem_panic_info.kmp_realcache = cp; 1338 kmem_panic_info.kmp_slab = sp; 1339 kmem_panic_info.kmp_bufctl = bcp; 1340 1341 printf("kernel memory allocator: "); 1342 1343 switch (error) { 1344 1345 case KMERR_MODIFIED: 1346 printf("buffer modified after being freed\n"); 1347 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1348 if (off == NULL) /* shouldn't happen */ 1349 off = buf; 1350 printf("modification occurred at offset 0x%lx " 1351 "(0x%llx replaced by 0x%llx)\n", 1352 (uintptr_t)off - (uintptr_t)buf, 1353 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1354 break; 1355 1356 case KMERR_REDZONE: 1357 printf("redzone violation: write past end of buffer\n"); 1358 break; 1359 1360 case KMERR_BADADDR: 1361 printf("invalid free: buffer not in cache\n"); 1362 break; 1363 1364 case KMERR_DUPFREE: 1365 printf("duplicate free: buffer freed twice\n"); 1366 break; 1367 1368 case KMERR_BADBUFTAG: 1369 printf("boundary tag corrupted\n"); 1370 printf("bcp ^ bxstat = %lx, should be %lx\n", 1371 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1372 KMEM_BUFTAG_FREE); 1373 break; 1374 1375 case KMERR_BADBUFCTL: 1376 printf("bufctl corrupted\n"); 1377 break; 1378 1379 case KMERR_BADCACHE: 1380 printf("buffer freed to wrong cache\n"); 1381 printf("buffer was allocated from %s,\n", cp->cache_name); 1382 printf("caller attempting free to %s.\n", cparg->cache_name); 1383 break; 1384 1385 case KMERR_BADSIZE: 1386 printf("bad free: free size (%u) != alloc size (%u)\n", 1387 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1388 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1389 break; 1390 1391 case KMERR_BADBASE: 1392 printf("bad free: free address (%p) != alloc address (%p)\n", 1393 bufarg, buf); 1394 break; 1395 } 1396 1397 printf("buffer=%p bufctl=%p cache: %s\n", 1398 bufarg, (void *)bcp, cparg->cache_name); 1399 1400 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1401 error != KMERR_BADBUFCTL) { 1402 int d; 1403 timestruc_t ts; 1404 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1405 1406 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1407 printf("previous transaction on buffer %p:\n", buf); 1408 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1409 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1410 (void *)sp, cp->cache_name); 1411 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1412 ulong_t off; 1413 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1414 printf("%s+%lx\n", sym ? sym : "?", off); 1415 } 1416 } 1417 if (kmem_panic > 0) 1418 panic("kernel heap corruption detected"); 1419 if (kmem_panic == 0) 1420 debug_enter(NULL); 1421 kmem_logging = 1; /* resume logging */ 1422 } 1423 1424 static kmem_log_header_t * 1425 kmem_log_init(size_t logsize) 1426 { 1427 kmem_log_header_t *lhp; 1428 int nchunks = 4 * max_ncpus; 1429 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1430 int i; 1431 1432 /* 1433 * Make sure that lhp->lh_cpu[] is nicely aligned 1434 * to prevent false sharing of cache lines. 1435 */ 1436 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1437 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1438 NULL, NULL, VM_SLEEP); 1439 bzero(lhp, lhsize); 1440 1441 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1442 lhp->lh_nchunks = nchunks; 1443 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1444 lhp->lh_base = vmem_alloc(kmem_log_arena, 1445 lhp->lh_chunksize * nchunks, VM_SLEEP); 1446 lhp->lh_free = vmem_alloc(kmem_log_arena, 1447 nchunks * sizeof (int), VM_SLEEP); 1448 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1449 1450 for (i = 0; i < max_ncpus; i++) { 1451 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1452 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1453 clhp->clh_chunk = i; 1454 } 1455 1456 for (i = max_ncpus; i < nchunks; i++) 1457 lhp->lh_free[i] = i; 1458 1459 lhp->lh_head = max_ncpus; 1460 lhp->lh_tail = 0; 1461 1462 return (lhp); 1463 } 1464 1465 static void * 1466 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1467 { 1468 void *logspace; 1469 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1470 1471 if (lhp == NULL || kmem_logging == 0 || panicstr) 1472 return (NULL); 1473 1474 mutex_enter(&clhp->clh_lock); 1475 clhp->clh_hits++; 1476 if (size > clhp->clh_avail) { 1477 mutex_enter(&lhp->lh_lock); 1478 lhp->lh_hits++; 1479 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1480 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1481 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1482 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1483 clhp->clh_current = lhp->lh_base + 1484 clhp->clh_chunk * lhp->lh_chunksize; 1485 clhp->clh_avail = lhp->lh_chunksize; 1486 if (size > lhp->lh_chunksize) 1487 size = lhp->lh_chunksize; 1488 mutex_exit(&lhp->lh_lock); 1489 } 1490 logspace = clhp->clh_current; 1491 clhp->clh_current += size; 1492 clhp->clh_avail -= size; 1493 bcopy(data, logspace, size); 1494 mutex_exit(&clhp->clh_lock); 1495 return (logspace); 1496 } 1497 1498 #define KMEM_AUDIT(lp, cp, bcp) \ 1499 { \ 1500 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1501 _bcp->bc_timestamp = gethrtime(); \ 1502 _bcp->bc_thread = curthread; \ 1503 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1504 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1505 } 1506 1507 static void 1508 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1509 kmem_slab_t *sp, void *addr) 1510 { 1511 kmem_bufctl_audit_t bca; 1512 1513 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1514 bca.bc_addr = addr; 1515 bca.bc_slab = sp; 1516 bca.bc_cache = cp; 1517 KMEM_AUDIT(lp, cp, &bca); 1518 } 1519 1520 /* 1521 * Create a new slab for cache cp. 1522 */ 1523 static kmem_slab_t * 1524 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1525 { 1526 size_t slabsize = cp->cache_slabsize; 1527 size_t chunksize = cp->cache_chunksize; 1528 int cache_flags = cp->cache_flags; 1529 size_t color, chunks; 1530 char *buf, *slab; 1531 kmem_slab_t *sp; 1532 kmem_bufctl_t *bcp; 1533 vmem_t *vmp = cp->cache_arena; 1534 1535 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1536 1537 color = cp->cache_color + cp->cache_align; 1538 if (color > cp->cache_maxcolor) 1539 color = cp->cache_mincolor; 1540 cp->cache_color = color; 1541 1542 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1543 1544 if (slab == NULL) 1545 goto vmem_alloc_failure; 1546 1547 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1548 1549 /* 1550 * Reverify what was already checked in kmem_cache_set_move(), since the 1551 * consolidator depends (for correctness) on slabs being initialized 1552 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1553 * clients to distinguish uninitialized memory from known objects). 1554 */ 1555 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1556 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1557 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1558 1559 if (cache_flags & KMF_HASH) { 1560 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1561 goto slab_alloc_failure; 1562 chunks = (slabsize - color) / chunksize; 1563 } else { 1564 sp = KMEM_SLAB(cp, slab); 1565 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1566 } 1567 1568 sp->slab_cache = cp; 1569 sp->slab_head = NULL; 1570 sp->slab_refcnt = 0; 1571 sp->slab_base = buf = slab + color; 1572 sp->slab_chunks = chunks; 1573 sp->slab_stuck_offset = (uint32_t)-1; 1574 sp->slab_later_count = 0; 1575 sp->slab_flags = 0; 1576 1577 ASSERT(chunks > 0); 1578 while (chunks-- != 0) { 1579 if (cache_flags & KMF_HASH) { 1580 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1581 if (bcp == NULL) 1582 goto bufctl_alloc_failure; 1583 if (cache_flags & KMF_AUDIT) { 1584 kmem_bufctl_audit_t *bcap = 1585 (kmem_bufctl_audit_t *)bcp; 1586 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1587 bcap->bc_cache = cp; 1588 } 1589 bcp->bc_addr = buf; 1590 bcp->bc_slab = sp; 1591 } else { 1592 bcp = KMEM_BUFCTL(cp, buf); 1593 } 1594 if (cache_flags & KMF_BUFTAG) { 1595 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1596 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1597 btp->bt_bufctl = bcp; 1598 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1599 if (cache_flags & KMF_DEADBEEF) { 1600 copy_pattern(KMEM_FREE_PATTERN, buf, 1601 cp->cache_verify); 1602 } 1603 } 1604 bcp->bc_next = sp->slab_head; 1605 sp->slab_head = bcp; 1606 buf += chunksize; 1607 } 1608 1609 kmem_log_event(kmem_slab_log, cp, sp, slab); 1610 1611 return (sp); 1612 1613 bufctl_alloc_failure: 1614 1615 while ((bcp = sp->slab_head) != NULL) { 1616 sp->slab_head = bcp->bc_next; 1617 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1618 } 1619 kmem_cache_free(kmem_slab_cache, sp); 1620 1621 slab_alloc_failure: 1622 1623 vmem_free(vmp, slab, slabsize); 1624 1625 vmem_alloc_failure: 1626 1627 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1628 atomic_add_64(&cp->cache_alloc_fail, 1); 1629 1630 return (NULL); 1631 } 1632 1633 /* 1634 * Destroy a slab. 1635 */ 1636 static void 1637 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1638 { 1639 vmem_t *vmp = cp->cache_arena; 1640 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1641 1642 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1643 ASSERT(sp->slab_refcnt == 0); 1644 1645 if (cp->cache_flags & KMF_HASH) { 1646 kmem_bufctl_t *bcp; 1647 while ((bcp = sp->slab_head) != NULL) { 1648 sp->slab_head = bcp->bc_next; 1649 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1650 } 1651 kmem_cache_free(kmem_slab_cache, sp); 1652 } 1653 vmem_free(vmp, slab, cp->cache_slabsize); 1654 } 1655 1656 static void * 1657 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp) 1658 { 1659 kmem_bufctl_t *bcp, **hash_bucket; 1660 void *buf; 1661 1662 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1663 /* 1664 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1665 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1666 * slab is newly created (sp->slab_refcnt == 0). 1667 */ 1668 ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) && 1669 (sp == avl_first(&cp->cache_partial_slabs)))); 1670 ASSERT(sp->slab_cache == cp); 1671 1672 cp->cache_slab_alloc++; 1673 cp->cache_bufslab--; 1674 sp->slab_refcnt++; 1675 1676 bcp = sp->slab_head; 1677 if ((sp->slab_head = bcp->bc_next) == NULL) { 1678 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1679 if (sp->slab_refcnt == 1) { 1680 ASSERT(sp->slab_chunks == 1); 1681 } else { 1682 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1683 avl_remove(&cp->cache_partial_slabs, sp); 1684 sp->slab_later_count = 0; /* clear history */ 1685 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1686 sp->slab_stuck_offset = (uint32_t)-1; 1687 } 1688 list_insert_head(&cp->cache_complete_slabs, sp); 1689 cp->cache_complete_slab_count++; 1690 } else { 1691 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1692 if (sp->slab_refcnt == 1) { 1693 avl_add(&cp->cache_partial_slabs, sp); 1694 } else { 1695 /* 1696 * The slab is now more allocated than it was, so the 1697 * order remains unchanged. 1698 */ 1699 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1700 } 1701 } 1702 1703 if (cp->cache_flags & KMF_HASH) { 1704 /* 1705 * Add buffer to allocated-address hash table. 1706 */ 1707 buf = bcp->bc_addr; 1708 hash_bucket = KMEM_HASH(cp, buf); 1709 bcp->bc_next = *hash_bucket; 1710 *hash_bucket = bcp; 1711 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1712 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1713 } 1714 } else { 1715 buf = KMEM_BUF(cp, bcp); 1716 } 1717 1718 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1719 return (buf); 1720 } 1721 1722 /* 1723 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1724 */ 1725 static void * 1726 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1727 { 1728 kmem_slab_t *sp; 1729 void *buf; 1730 boolean_t test_destructor; 1731 1732 mutex_enter(&cp->cache_lock); 1733 test_destructor = (cp->cache_slab_alloc == 0); 1734 sp = avl_first(&cp->cache_partial_slabs); 1735 if (sp == NULL) { 1736 ASSERT(cp->cache_bufslab == 0); 1737 1738 /* 1739 * The freelist is empty. Create a new slab. 1740 */ 1741 mutex_exit(&cp->cache_lock); 1742 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1743 return (NULL); 1744 } 1745 mutex_enter(&cp->cache_lock); 1746 cp->cache_slab_create++; 1747 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1748 cp->cache_bufmax = cp->cache_buftotal; 1749 cp->cache_bufslab += sp->slab_chunks; 1750 } 1751 1752 buf = kmem_slab_alloc_impl(cp, sp); 1753 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1754 (cp->cache_complete_slab_count + 1755 avl_numnodes(&cp->cache_partial_slabs) + 1756 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1757 mutex_exit(&cp->cache_lock); 1758 1759 if (test_destructor && cp->cache_destructor != NULL) { 1760 /* 1761 * On the first kmem_slab_alloc(), assert that it is valid to 1762 * call the destructor on a newly constructed object without any 1763 * client involvement. 1764 */ 1765 if ((cp->cache_constructor == NULL) || 1766 cp->cache_constructor(buf, cp->cache_private, 1767 kmflag) == 0) { 1768 cp->cache_destructor(buf, cp->cache_private); 1769 } 1770 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1771 cp->cache_bufsize); 1772 if (cp->cache_flags & KMF_DEADBEEF) { 1773 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1774 } 1775 } 1776 1777 return (buf); 1778 } 1779 1780 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1781 1782 /* 1783 * Free a raw (unconstructed) buffer to cp's slab layer. 1784 */ 1785 static void 1786 kmem_slab_free(kmem_cache_t *cp, void *buf) 1787 { 1788 kmem_slab_t *sp; 1789 kmem_bufctl_t *bcp, **prev_bcpp; 1790 1791 ASSERT(buf != NULL); 1792 1793 mutex_enter(&cp->cache_lock); 1794 cp->cache_slab_free++; 1795 1796 if (cp->cache_flags & KMF_HASH) { 1797 /* 1798 * Look up buffer in allocated-address hash table. 1799 */ 1800 prev_bcpp = KMEM_HASH(cp, buf); 1801 while ((bcp = *prev_bcpp) != NULL) { 1802 if (bcp->bc_addr == buf) { 1803 *prev_bcpp = bcp->bc_next; 1804 sp = bcp->bc_slab; 1805 break; 1806 } 1807 cp->cache_lookup_depth++; 1808 prev_bcpp = &bcp->bc_next; 1809 } 1810 } else { 1811 bcp = KMEM_BUFCTL(cp, buf); 1812 sp = KMEM_SLAB(cp, buf); 1813 } 1814 1815 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1816 mutex_exit(&cp->cache_lock); 1817 kmem_error(KMERR_BADADDR, cp, buf); 1818 return; 1819 } 1820 1821 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1822 /* 1823 * If this is the buffer that prevented the consolidator from 1824 * clearing the slab, we can reset the slab flags now that the 1825 * buffer is freed. (It makes sense to do this in 1826 * kmem_cache_free(), where the client gives up ownership of the 1827 * buffer, but on the hot path the test is too expensive.) 1828 */ 1829 kmem_slab_move_yes(cp, sp, buf); 1830 } 1831 1832 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1833 if (cp->cache_flags & KMF_CONTENTS) 1834 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1835 kmem_log_enter(kmem_content_log, buf, 1836 cp->cache_contents); 1837 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1838 } 1839 1840 bcp->bc_next = sp->slab_head; 1841 sp->slab_head = bcp; 1842 1843 cp->cache_bufslab++; 1844 ASSERT(sp->slab_refcnt >= 1); 1845 1846 if (--sp->slab_refcnt == 0) { 1847 /* 1848 * There are no outstanding allocations from this slab, 1849 * so we can reclaim the memory. 1850 */ 1851 if (sp->slab_chunks == 1) { 1852 list_remove(&cp->cache_complete_slabs, sp); 1853 cp->cache_complete_slab_count--; 1854 } else { 1855 avl_remove(&cp->cache_partial_slabs, sp); 1856 } 1857 1858 cp->cache_buftotal -= sp->slab_chunks; 1859 cp->cache_bufslab -= sp->slab_chunks; 1860 /* 1861 * Defer releasing the slab to the virtual memory subsystem 1862 * while there is a pending move callback, since we guarantee 1863 * that buffers passed to the move callback have only been 1864 * touched by kmem or by the client itself. Since the memory 1865 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1866 * set at least one of the two lowest order bits, the client can 1867 * test those bits in the move callback to determine whether or 1868 * not it knows about the buffer (assuming that the client also 1869 * sets one of those low order bits whenever it frees a buffer). 1870 */ 1871 if (cp->cache_defrag == NULL || 1872 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1873 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1874 cp->cache_slab_destroy++; 1875 mutex_exit(&cp->cache_lock); 1876 kmem_slab_destroy(cp, sp); 1877 } else { 1878 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1879 /* 1880 * Slabs are inserted at both ends of the deadlist to 1881 * distinguish between slabs freed while move callbacks 1882 * are pending (list head) and a slab freed while the 1883 * lock is dropped in kmem_move_buffers() (list tail) so 1884 * that in both cases slab_destroy() is called from the 1885 * right context. 1886 */ 1887 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1888 list_insert_tail(deadlist, sp); 1889 } else { 1890 list_insert_head(deadlist, sp); 1891 } 1892 cp->cache_defrag->kmd_deadcount++; 1893 mutex_exit(&cp->cache_lock); 1894 } 1895 return; 1896 } 1897 1898 if (bcp->bc_next == NULL) { 1899 /* Transition the slab from completely allocated to partial. */ 1900 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1901 ASSERT(sp->slab_chunks > 1); 1902 list_remove(&cp->cache_complete_slabs, sp); 1903 cp->cache_complete_slab_count--; 1904 avl_add(&cp->cache_partial_slabs, sp); 1905 } else { 1906 #ifdef DEBUG 1907 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1908 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1909 } else { 1910 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1911 } 1912 #else 1913 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1914 #endif 1915 } 1916 1917 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1918 (cp->cache_complete_slab_count + 1919 avl_numnodes(&cp->cache_partial_slabs) + 1920 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1921 mutex_exit(&cp->cache_lock); 1922 } 1923 1924 /* 1925 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1926 */ 1927 static int 1928 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1929 caddr_t caller) 1930 { 1931 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1932 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1933 uint32_t mtbf; 1934 1935 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1936 kmem_error(KMERR_BADBUFTAG, cp, buf); 1937 return (-1); 1938 } 1939 1940 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1941 1942 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1943 kmem_error(KMERR_BADBUFCTL, cp, buf); 1944 return (-1); 1945 } 1946 1947 if (cp->cache_flags & KMF_DEADBEEF) { 1948 if (!construct && (cp->cache_flags & KMF_LITE)) { 1949 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1950 kmem_error(KMERR_MODIFIED, cp, buf); 1951 return (-1); 1952 } 1953 if (cp->cache_constructor != NULL) 1954 *(uint64_t *)buf = btp->bt_redzone; 1955 else 1956 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1957 } else { 1958 construct = 1; 1959 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1960 KMEM_UNINITIALIZED_PATTERN, buf, 1961 cp->cache_verify)) { 1962 kmem_error(KMERR_MODIFIED, cp, buf); 1963 return (-1); 1964 } 1965 } 1966 } 1967 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1968 1969 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1970 gethrtime() % mtbf == 0 && 1971 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1972 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1973 if (!construct && cp->cache_destructor != NULL) 1974 cp->cache_destructor(buf, cp->cache_private); 1975 } else { 1976 mtbf = 0; 1977 } 1978 1979 if (mtbf || (construct && cp->cache_constructor != NULL && 1980 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1981 atomic_add_64(&cp->cache_alloc_fail, 1); 1982 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1983 if (cp->cache_flags & KMF_DEADBEEF) 1984 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1985 kmem_slab_free(cp, buf); 1986 return (1); 1987 } 1988 1989 if (cp->cache_flags & KMF_AUDIT) { 1990 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1991 } 1992 1993 if ((cp->cache_flags & KMF_LITE) && 1994 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1995 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1996 } 1997 1998 return (0); 1999 } 2000 2001 static int 2002 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 2003 { 2004 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2005 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 2006 kmem_slab_t *sp; 2007 2008 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 2009 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 2010 kmem_error(KMERR_DUPFREE, cp, buf); 2011 return (-1); 2012 } 2013 sp = kmem_findslab(cp, buf); 2014 if (sp == NULL || sp->slab_cache != cp) 2015 kmem_error(KMERR_BADADDR, cp, buf); 2016 else 2017 kmem_error(KMERR_REDZONE, cp, buf); 2018 return (-1); 2019 } 2020 2021 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2022 2023 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2024 kmem_error(KMERR_BADBUFCTL, cp, buf); 2025 return (-1); 2026 } 2027 2028 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2029 kmem_error(KMERR_REDZONE, cp, buf); 2030 return (-1); 2031 } 2032 2033 if (cp->cache_flags & KMF_AUDIT) { 2034 if (cp->cache_flags & KMF_CONTENTS) 2035 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2036 buf, cp->cache_contents); 2037 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2038 } 2039 2040 if ((cp->cache_flags & KMF_LITE) && 2041 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2042 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2043 } 2044 2045 if (cp->cache_flags & KMF_DEADBEEF) { 2046 if (cp->cache_flags & KMF_LITE) 2047 btp->bt_redzone = *(uint64_t *)buf; 2048 else if (cp->cache_destructor != NULL) 2049 cp->cache_destructor(buf, cp->cache_private); 2050 2051 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2052 } 2053 2054 return (0); 2055 } 2056 2057 /* 2058 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2059 */ 2060 static void 2061 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2062 { 2063 int round; 2064 2065 ASSERT(!list_link_active(&cp->cache_link) || 2066 taskq_member(kmem_taskq, curthread)); 2067 2068 for (round = 0; round < nrounds; round++) { 2069 void *buf = mp->mag_round[round]; 2070 2071 if (cp->cache_flags & KMF_DEADBEEF) { 2072 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2073 cp->cache_verify) != NULL) { 2074 kmem_error(KMERR_MODIFIED, cp, buf); 2075 continue; 2076 } 2077 if ((cp->cache_flags & KMF_LITE) && 2078 cp->cache_destructor != NULL) { 2079 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2080 *(uint64_t *)buf = btp->bt_redzone; 2081 cp->cache_destructor(buf, cp->cache_private); 2082 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2083 } 2084 } else if (cp->cache_destructor != NULL) { 2085 cp->cache_destructor(buf, cp->cache_private); 2086 } 2087 2088 kmem_slab_free(cp, buf); 2089 } 2090 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2091 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2092 } 2093 2094 /* 2095 * Allocate a magazine from the depot. 2096 */ 2097 static kmem_magazine_t * 2098 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2099 { 2100 kmem_magazine_t *mp; 2101 2102 /* 2103 * If we can't get the depot lock without contention, 2104 * update our contention count. We use the depot 2105 * contention rate to determine whether we need to 2106 * increase the magazine size for better scalability. 2107 */ 2108 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2109 mutex_enter(&cp->cache_depot_lock); 2110 cp->cache_depot_contention++; 2111 } 2112 2113 if ((mp = mlp->ml_list) != NULL) { 2114 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2115 mlp->ml_list = mp->mag_next; 2116 if (--mlp->ml_total < mlp->ml_min) 2117 mlp->ml_min = mlp->ml_total; 2118 mlp->ml_alloc++; 2119 } 2120 2121 mutex_exit(&cp->cache_depot_lock); 2122 2123 return (mp); 2124 } 2125 2126 /* 2127 * Free a magazine to the depot. 2128 */ 2129 static void 2130 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2131 { 2132 mutex_enter(&cp->cache_depot_lock); 2133 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2134 mp->mag_next = mlp->ml_list; 2135 mlp->ml_list = mp; 2136 mlp->ml_total++; 2137 mutex_exit(&cp->cache_depot_lock); 2138 } 2139 2140 /* 2141 * Update the working set statistics for cp's depot. 2142 */ 2143 static void 2144 kmem_depot_ws_update(kmem_cache_t *cp) 2145 { 2146 mutex_enter(&cp->cache_depot_lock); 2147 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2148 cp->cache_full.ml_min = cp->cache_full.ml_total; 2149 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2150 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2151 mutex_exit(&cp->cache_depot_lock); 2152 } 2153 2154 /* 2155 * Reap all magazines that have fallen out of the depot's working set. 2156 */ 2157 static void 2158 kmem_depot_ws_reap(kmem_cache_t *cp) 2159 { 2160 long reap; 2161 kmem_magazine_t *mp; 2162 2163 ASSERT(!list_link_active(&cp->cache_link) || 2164 taskq_member(kmem_taskq, curthread)); 2165 2166 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2167 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2168 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2169 2170 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2171 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2172 kmem_magazine_destroy(cp, mp, 0); 2173 } 2174 2175 static void 2176 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2177 { 2178 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2179 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2180 ASSERT(ccp->cc_magsize > 0); 2181 2182 ccp->cc_ploaded = ccp->cc_loaded; 2183 ccp->cc_prounds = ccp->cc_rounds; 2184 ccp->cc_loaded = mp; 2185 ccp->cc_rounds = rounds; 2186 } 2187 2188 /* 2189 * Allocate a constructed object from cache cp. 2190 */ 2191 void * 2192 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2193 { 2194 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2195 kmem_magazine_t *fmp; 2196 void *buf; 2197 2198 mutex_enter(&ccp->cc_lock); 2199 for (;;) { 2200 /* 2201 * If there's an object available in the current CPU's 2202 * loaded magazine, just take it and return. 2203 */ 2204 if (ccp->cc_rounds > 0) { 2205 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2206 ccp->cc_alloc++; 2207 mutex_exit(&ccp->cc_lock); 2208 if ((ccp->cc_flags & KMF_BUFTAG) && 2209 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2210 caller()) != 0) { 2211 if (kmflag & KM_NOSLEEP) 2212 return (NULL); 2213 mutex_enter(&ccp->cc_lock); 2214 continue; 2215 } 2216 return (buf); 2217 } 2218 2219 /* 2220 * The loaded magazine is empty. If the previously loaded 2221 * magazine was full, exchange them and try again. 2222 */ 2223 if (ccp->cc_prounds > 0) { 2224 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2225 continue; 2226 } 2227 2228 /* 2229 * If the magazine layer is disabled, break out now. 2230 */ 2231 if (ccp->cc_magsize == 0) 2232 break; 2233 2234 /* 2235 * Try to get a full magazine from the depot. 2236 */ 2237 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2238 if (fmp != NULL) { 2239 if (ccp->cc_ploaded != NULL) 2240 kmem_depot_free(cp, &cp->cache_empty, 2241 ccp->cc_ploaded); 2242 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2243 continue; 2244 } 2245 2246 /* 2247 * There are no full magazines in the depot, 2248 * so fall through to the slab layer. 2249 */ 2250 break; 2251 } 2252 mutex_exit(&ccp->cc_lock); 2253 2254 /* 2255 * We couldn't allocate a constructed object from the magazine layer, 2256 * so get a raw buffer from the slab layer and apply its constructor. 2257 */ 2258 buf = kmem_slab_alloc(cp, kmflag); 2259 2260 if (buf == NULL) 2261 return (NULL); 2262 2263 if (cp->cache_flags & KMF_BUFTAG) { 2264 /* 2265 * Make kmem_cache_alloc_debug() apply the constructor for us. 2266 */ 2267 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2268 if (rc != 0) { 2269 if (kmflag & KM_NOSLEEP) 2270 return (NULL); 2271 /* 2272 * kmem_cache_alloc_debug() detected corruption 2273 * but didn't panic (kmem_panic <= 0). We should not be 2274 * here because the constructor failed (indicated by a 2275 * return code of 1). Try again. 2276 */ 2277 ASSERT(rc == -1); 2278 return (kmem_cache_alloc(cp, kmflag)); 2279 } 2280 return (buf); 2281 } 2282 2283 if (cp->cache_constructor != NULL && 2284 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2285 atomic_add_64(&cp->cache_alloc_fail, 1); 2286 kmem_slab_free(cp, buf); 2287 return (NULL); 2288 } 2289 2290 return (buf); 2291 } 2292 2293 /* 2294 * The freed argument tells whether or not kmem_cache_free_debug() has already 2295 * been called so that we can avoid the duplicate free error. For example, a 2296 * buffer on a magazine has already been freed by the client but is still 2297 * constructed. 2298 */ 2299 static void 2300 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2301 { 2302 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2303 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2304 return; 2305 2306 /* 2307 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2308 * kmem_cache_free_debug() will have already applied the destructor. 2309 */ 2310 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2311 cp->cache_destructor != NULL) { 2312 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2313 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2314 *(uint64_t *)buf = btp->bt_redzone; 2315 cp->cache_destructor(buf, cp->cache_private); 2316 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2317 } else { 2318 cp->cache_destructor(buf, cp->cache_private); 2319 } 2320 } 2321 2322 kmem_slab_free(cp, buf); 2323 } 2324 2325 /* 2326 * Free a constructed object to cache cp. 2327 */ 2328 void 2329 kmem_cache_free(kmem_cache_t *cp, void *buf) 2330 { 2331 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2332 kmem_magazine_t *emp; 2333 kmem_magtype_t *mtp; 2334 2335 /* 2336 * The client must not free either of the buffers passed to the move 2337 * callback function. 2338 */ 2339 ASSERT(cp->cache_defrag == NULL || 2340 cp->cache_defrag->kmd_thread != curthread || 2341 (buf != cp->cache_defrag->kmd_from_buf && 2342 buf != cp->cache_defrag->kmd_to_buf)); 2343 2344 if (ccp->cc_flags & KMF_BUFTAG) 2345 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2346 return; 2347 2348 mutex_enter(&ccp->cc_lock); 2349 for (;;) { 2350 /* 2351 * If there's a slot available in the current CPU's 2352 * loaded magazine, just put the object there and return. 2353 */ 2354 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2355 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2356 ccp->cc_free++; 2357 mutex_exit(&ccp->cc_lock); 2358 return; 2359 } 2360 2361 /* 2362 * The loaded magazine is full. If the previously loaded 2363 * magazine was empty, exchange them and try again. 2364 */ 2365 if (ccp->cc_prounds == 0) { 2366 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2367 continue; 2368 } 2369 2370 /* 2371 * If the magazine layer is disabled, break out now. 2372 */ 2373 if (ccp->cc_magsize == 0) 2374 break; 2375 2376 /* 2377 * Try to get an empty magazine from the depot. 2378 */ 2379 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2380 if (emp != NULL) { 2381 if (ccp->cc_ploaded != NULL) 2382 kmem_depot_free(cp, &cp->cache_full, 2383 ccp->cc_ploaded); 2384 kmem_cpu_reload(ccp, emp, 0); 2385 continue; 2386 } 2387 2388 /* 2389 * There are no empty magazines in the depot, 2390 * so try to allocate a new one. We must drop all locks 2391 * across kmem_cache_alloc() because lower layers may 2392 * attempt to allocate from this cache. 2393 */ 2394 mtp = cp->cache_magtype; 2395 mutex_exit(&ccp->cc_lock); 2396 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2397 mutex_enter(&ccp->cc_lock); 2398 2399 if (emp != NULL) { 2400 /* 2401 * We successfully allocated an empty magazine. 2402 * However, we had to drop ccp->cc_lock to do it, 2403 * so the cache's magazine size may have changed. 2404 * If so, free the magazine and try again. 2405 */ 2406 if (ccp->cc_magsize != mtp->mt_magsize) { 2407 mutex_exit(&ccp->cc_lock); 2408 kmem_cache_free(mtp->mt_cache, emp); 2409 mutex_enter(&ccp->cc_lock); 2410 continue; 2411 } 2412 2413 /* 2414 * We got a magazine of the right size. Add it to 2415 * the depot and try the whole dance again. 2416 */ 2417 kmem_depot_free(cp, &cp->cache_empty, emp); 2418 continue; 2419 } 2420 2421 /* 2422 * We couldn't allocate an empty magazine, 2423 * so fall through to the slab layer. 2424 */ 2425 break; 2426 } 2427 mutex_exit(&ccp->cc_lock); 2428 2429 /* 2430 * We couldn't free our constructed object to the magazine layer, 2431 * so apply its destructor and free it to the slab layer. 2432 */ 2433 kmem_slab_free_constructed(cp, buf, B_TRUE); 2434 } 2435 2436 void * 2437 kmem_zalloc(size_t size, int kmflag) 2438 { 2439 size_t index; 2440 void *buf; 2441 2442 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2443 kmem_cache_t *cp = kmem_alloc_table[index]; 2444 buf = kmem_cache_alloc(cp, kmflag); 2445 if (buf != NULL) { 2446 if (cp->cache_flags & KMF_BUFTAG) { 2447 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2448 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2449 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2450 2451 if (cp->cache_flags & KMF_LITE) { 2452 KMEM_BUFTAG_LITE_ENTER(btp, 2453 kmem_lite_count, caller()); 2454 } 2455 } 2456 bzero(buf, size); 2457 } 2458 } else { 2459 buf = kmem_alloc(size, kmflag); 2460 if (buf != NULL) 2461 bzero(buf, size); 2462 } 2463 return (buf); 2464 } 2465 2466 void * 2467 kmem_alloc(size_t size, int kmflag) 2468 { 2469 size_t index; 2470 kmem_cache_t *cp; 2471 void *buf; 2472 2473 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2474 cp = kmem_alloc_table[index]; 2475 /* fall through to kmem_cache_alloc() */ 2476 2477 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2478 kmem_big_alloc_table_max) { 2479 cp = kmem_big_alloc_table[index]; 2480 /* fall through to kmem_cache_alloc() */ 2481 2482 } else { 2483 if (size == 0) 2484 return (NULL); 2485 2486 buf = vmem_alloc(kmem_oversize_arena, size, 2487 kmflag & KM_VMFLAGS); 2488 if (buf == NULL) 2489 kmem_log_event(kmem_failure_log, NULL, NULL, 2490 (void *)size); 2491 return (buf); 2492 } 2493 2494 buf = kmem_cache_alloc(cp, kmflag); 2495 if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { 2496 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2497 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2498 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2499 2500 if (cp->cache_flags & KMF_LITE) { 2501 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2502 } 2503 } 2504 return (buf); 2505 } 2506 2507 void 2508 kmem_free(void *buf, size_t size) 2509 { 2510 size_t index; 2511 kmem_cache_t *cp; 2512 2513 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2514 cp = kmem_alloc_table[index]; 2515 /* fall through to kmem_cache_free() */ 2516 2517 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2518 kmem_big_alloc_table_max) { 2519 cp = kmem_big_alloc_table[index]; 2520 /* fall through to kmem_cache_free() */ 2521 2522 } else { 2523 if (buf == NULL && size == 0) 2524 return; 2525 vmem_free(kmem_oversize_arena, buf, size); 2526 return; 2527 } 2528 2529 if (cp->cache_flags & KMF_BUFTAG) { 2530 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2531 uint32_t *ip = (uint32_t *)btp; 2532 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2533 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2534 kmem_error(KMERR_DUPFREE, cp, buf); 2535 return; 2536 } 2537 if (KMEM_SIZE_VALID(ip[1])) { 2538 ip[0] = KMEM_SIZE_ENCODE(size); 2539 kmem_error(KMERR_BADSIZE, cp, buf); 2540 } else { 2541 kmem_error(KMERR_REDZONE, cp, buf); 2542 } 2543 return; 2544 } 2545 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2546 kmem_error(KMERR_REDZONE, cp, buf); 2547 return; 2548 } 2549 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2550 if (cp->cache_flags & KMF_LITE) { 2551 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2552 caller()); 2553 } 2554 } 2555 kmem_cache_free(cp, buf); 2556 } 2557 2558 void * 2559 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2560 { 2561 size_t realsize = size + vmp->vm_quantum; 2562 void *addr; 2563 2564 /* 2565 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2566 * vm_quantum will cause integer wraparound. Check for this, and 2567 * blow off the firewall page in this case. Note that such a 2568 * giant allocation (the entire kernel address space) can never 2569 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2570 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2571 * corresponding check in kmem_firewall_va_free(). 2572 */ 2573 if (realsize < size) 2574 realsize = size; 2575 2576 /* 2577 * While boot still owns resource management, make sure that this 2578 * redzone virtual address allocation is properly accounted for in 2579 * OBPs "virtual-memory" "available" lists because we're 2580 * effectively claiming them for a red zone. If we don't do this, 2581 * the available lists become too fragmented and too large for the 2582 * current boot/kernel memory list interface. 2583 */ 2584 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2585 2586 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2587 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2588 2589 return (addr); 2590 } 2591 2592 void 2593 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2594 { 2595 ASSERT((kvseg.s_base == NULL ? 2596 va_to_pfn((char *)addr + size) : 2597 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2598 2599 vmem_free(vmp, addr, size + vmp->vm_quantum); 2600 } 2601 2602 /* 2603 * Try to allocate at least `size' bytes of memory without sleeping or 2604 * panicking. Return actual allocated size in `asize'. If allocation failed, 2605 * try final allocation with sleep or panic allowed. 2606 */ 2607 void * 2608 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2609 { 2610 void *p; 2611 2612 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2613 do { 2614 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2615 if (p != NULL) 2616 return (p); 2617 *asize += KMEM_ALIGN; 2618 } while (*asize <= PAGESIZE); 2619 2620 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2621 return (kmem_alloc(*asize, kmflag)); 2622 } 2623 2624 /* 2625 * Reclaim all unused memory from a cache. 2626 */ 2627 static void 2628 kmem_cache_reap(kmem_cache_t *cp) 2629 { 2630 ASSERT(taskq_member(kmem_taskq, curthread)); 2631 cp->cache_reap++; 2632 2633 /* 2634 * Ask the cache's owner to free some memory if possible. 2635 * The idea is to handle things like the inode cache, which 2636 * typically sits on a bunch of memory that it doesn't truly 2637 * *need*. Reclaim policy is entirely up to the owner; this 2638 * callback is just an advisory plea for help. 2639 */ 2640 if (cp->cache_reclaim != NULL) { 2641 long delta; 2642 2643 /* 2644 * Reclaimed memory should be reapable (not included in the 2645 * depot's working set). 2646 */ 2647 delta = cp->cache_full.ml_total; 2648 cp->cache_reclaim(cp->cache_private); 2649 delta = cp->cache_full.ml_total - delta; 2650 if (delta > 0) { 2651 mutex_enter(&cp->cache_depot_lock); 2652 cp->cache_full.ml_reaplimit += delta; 2653 cp->cache_full.ml_min += delta; 2654 mutex_exit(&cp->cache_depot_lock); 2655 } 2656 } 2657 2658 kmem_depot_ws_reap(cp); 2659 2660 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 2661 kmem_cache_defrag(cp); 2662 } 2663 } 2664 2665 static void 2666 kmem_reap_timeout(void *flag_arg) 2667 { 2668 uint32_t *flag = (uint32_t *)flag_arg; 2669 2670 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2671 *flag = 0; 2672 } 2673 2674 static void 2675 kmem_reap_done(void *flag) 2676 { 2677 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 2678 } 2679 2680 static void 2681 kmem_reap_start(void *flag) 2682 { 2683 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2684 2685 if (flag == &kmem_reaping) { 2686 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2687 /* 2688 * if we have segkp under heap, reap segkp cache. 2689 */ 2690 if (segkp_fromheap) 2691 segkp_cache_free(); 2692 } 2693 else 2694 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2695 2696 /* 2697 * We use taskq_dispatch() to schedule a timeout to clear 2698 * the flag so that kmem_reap() becomes self-throttling: 2699 * we won't reap again until the current reap completes *and* 2700 * at least kmem_reap_interval ticks have elapsed. 2701 */ 2702 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 2703 kmem_reap_done(flag); 2704 } 2705 2706 static void 2707 kmem_reap_common(void *flag_arg) 2708 { 2709 uint32_t *flag = (uint32_t *)flag_arg; 2710 2711 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 2712 cas32(flag, 0, 1) != 0) 2713 return; 2714 2715 /* 2716 * It may not be kosher to do memory allocation when a reap is called 2717 * is called (for example, if vmem_populate() is in the call chain). 2718 * So we start the reap going with a TQ_NOALLOC dispatch. If the 2719 * dispatch fails, we reset the flag, and the next reap will try again. 2720 */ 2721 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 2722 *flag = 0; 2723 } 2724 2725 /* 2726 * Reclaim all unused memory from all caches. Called from the VM system 2727 * when memory gets tight. 2728 */ 2729 void 2730 kmem_reap(void) 2731 { 2732 kmem_reap_common(&kmem_reaping); 2733 } 2734 2735 /* 2736 * Reclaim all unused memory from identifier arenas, called when a vmem 2737 * arena not back by memory is exhausted. Since reaping memory-backed caches 2738 * cannot help with identifier exhaustion, we avoid both a large amount of 2739 * work and unwanted side-effects from reclaim callbacks. 2740 */ 2741 void 2742 kmem_reap_idspace(void) 2743 { 2744 kmem_reap_common(&kmem_reaping_idspace); 2745 } 2746 2747 /* 2748 * Purge all magazines from a cache and set its magazine limit to zero. 2749 * All calls are serialized by the kmem_taskq lock, except for the final 2750 * call from kmem_cache_destroy(). 2751 */ 2752 static void 2753 kmem_cache_magazine_purge(kmem_cache_t *cp) 2754 { 2755 kmem_cpu_cache_t *ccp; 2756 kmem_magazine_t *mp, *pmp; 2757 int rounds, prounds, cpu_seqid; 2758 2759 ASSERT(!list_link_active(&cp->cache_link) || 2760 taskq_member(kmem_taskq, curthread)); 2761 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 2762 2763 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2764 ccp = &cp->cache_cpu[cpu_seqid]; 2765 2766 mutex_enter(&ccp->cc_lock); 2767 mp = ccp->cc_loaded; 2768 pmp = ccp->cc_ploaded; 2769 rounds = ccp->cc_rounds; 2770 prounds = ccp->cc_prounds; 2771 ccp->cc_loaded = NULL; 2772 ccp->cc_ploaded = NULL; 2773 ccp->cc_rounds = -1; 2774 ccp->cc_prounds = -1; 2775 ccp->cc_magsize = 0; 2776 mutex_exit(&ccp->cc_lock); 2777 2778 if (mp) 2779 kmem_magazine_destroy(cp, mp, rounds); 2780 if (pmp) 2781 kmem_magazine_destroy(cp, pmp, prounds); 2782 } 2783 2784 /* 2785 * Updating the working set statistics twice in a row has the 2786 * effect of setting the working set size to zero, so everything 2787 * is eligible for reaping. 2788 */ 2789 kmem_depot_ws_update(cp); 2790 kmem_depot_ws_update(cp); 2791 2792 kmem_depot_ws_reap(cp); 2793 } 2794 2795 /* 2796 * Enable per-cpu magazines on a cache. 2797 */ 2798 static void 2799 kmem_cache_magazine_enable(kmem_cache_t *cp) 2800 { 2801 int cpu_seqid; 2802 2803 if (cp->cache_flags & KMF_NOMAGAZINE) 2804 return; 2805 2806 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2807 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2808 mutex_enter(&ccp->cc_lock); 2809 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2810 mutex_exit(&ccp->cc_lock); 2811 } 2812 2813 } 2814 2815 /* 2816 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 2817 * for explanation of the back-to-back kmem_depot_ws_update() calls. 2818 */ 2819 void 2820 kmem_cache_reap_now(kmem_cache_t *cp) 2821 { 2822 ASSERT(list_link_active(&cp->cache_link)); 2823 2824 kmem_depot_ws_update(cp); 2825 kmem_depot_ws_update(cp); 2826 2827 (void) taskq_dispatch(kmem_taskq, 2828 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 2829 taskq_wait(kmem_taskq); 2830 } 2831 2832 /* 2833 * Recompute a cache's magazine size. The trade-off is that larger magazines 2834 * provide a higher transfer rate with the depot, while smaller magazines 2835 * reduce memory consumption. Magazine resizing is an expensive operation; 2836 * it should not be done frequently. 2837 * 2838 * Changes to the magazine size are serialized by the kmem_taskq lock. 2839 * 2840 * Note: at present this only grows the magazine size. It might be useful 2841 * to allow shrinkage too. 2842 */ 2843 static void 2844 kmem_cache_magazine_resize(kmem_cache_t *cp) 2845 { 2846 kmem_magtype_t *mtp = cp->cache_magtype; 2847 2848 ASSERT(taskq_member(kmem_taskq, curthread)); 2849 2850 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2851 kmem_cache_magazine_purge(cp); 2852 mutex_enter(&cp->cache_depot_lock); 2853 cp->cache_magtype = ++mtp; 2854 cp->cache_depot_contention_prev = 2855 cp->cache_depot_contention + INT_MAX; 2856 mutex_exit(&cp->cache_depot_lock); 2857 kmem_cache_magazine_enable(cp); 2858 } 2859 } 2860 2861 /* 2862 * Rescale a cache's hash table, so that the table size is roughly the 2863 * cache size. We want the average lookup time to be extremely small. 2864 */ 2865 static void 2866 kmem_hash_rescale(kmem_cache_t *cp) 2867 { 2868 kmem_bufctl_t **old_table, **new_table, *bcp; 2869 size_t old_size, new_size, h; 2870 2871 ASSERT(taskq_member(kmem_taskq, curthread)); 2872 2873 new_size = MAX(KMEM_HASH_INITIAL, 2874 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2875 old_size = cp->cache_hash_mask + 1; 2876 2877 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2878 return; 2879 2880 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 2881 VM_NOSLEEP); 2882 if (new_table == NULL) 2883 return; 2884 bzero(new_table, new_size * sizeof (void *)); 2885 2886 mutex_enter(&cp->cache_lock); 2887 2888 old_size = cp->cache_hash_mask + 1; 2889 old_table = cp->cache_hash_table; 2890 2891 cp->cache_hash_mask = new_size - 1; 2892 cp->cache_hash_table = new_table; 2893 cp->cache_rescale++; 2894 2895 for (h = 0; h < old_size; h++) { 2896 bcp = old_table[h]; 2897 while (bcp != NULL) { 2898 void *addr = bcp->bc_addr; 2899 kmem_bufctl_t *next_bcp = bcp->bc_next; 2900 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 2901 bcp->bc_next = *hash_bucket; 2902 *hash_bucket = bcp; 2903 bcp = next_bcp; 2904 } 2905 } 2906 2907 mutex_exit(&cp->cache_lock); 2908 2909 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 2910 } 2911 2912 /* 2913 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 2914 * update, magazine resizing, and slab consolidation. 2915 */ 2916 static void 2917 kmem_cache_update(kmem_cache_t *cp) 2918 { 2919 int need_hash_rescale = 0; 2920 int need_magazine_resize = 0; 2921 2922 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 2923 2924 /* 2925 * If the cache has become much larger or smaller than its hash table, 2926 * fire off a request to rescale the hash table. 2927 */ 2928 mutex_enter(&cp->cache_lock); 2929 2930 if ((cp->cache_flags & KMF_HASH) && 2931 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2932 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2933 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 2934 need_hash_rescale = 1; 2935 2936 mutex_exit(&cp->cache_lock); 2937 2938 /* 2939 * Update the depot working set statistics. 2940 */ 2941 kmem_depot_ws_update(cp); 2942 2943 /* 2944 * If there's a lot of contention in the depot, 2945 * increase the magazine size. 2946 */ 2947 mutex_enter(&cp->cache_depot_lock); 2948 2949 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2950 (int)(cp->cache_depot_contention - 2951 cp->cache_depot_contention_prev) > kmem_depot_contention) 2952 need_magazine_resize = 1; 2953 2954 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2955 2956 mutex_exit(&cp->cache_depot_lock); 2957 2958 if (need_hash_rescale) 2959 (void) taskq_dispatch(kmem_taskq, 2960 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 2961 2962 if (need_magazine_resize) 2963 (void) taskq_dispatch(kmem_taskq, 2964 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 2965 2966 if (cp->cache_defrag != NULL) 2967 (void) taskq_dispatch(kmem_taskq, 2968 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 2969 } 2970 2971 static void kmem_update(void *); 2972 2973 static void 2974 kmem_update_timeout(void *dummy) 2975 { 2976 (void) timeout(kmem_update, dummy, kmem_reap_interval); 2977 } 2978 2979 static void 2980 kmem_update(void *dummy) 2981 { 2982 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 2983 2984 /* 2985 * We use taskq_dispatch() to reschedule the timeout so that 2986 * kmem_update() becomes self-throttling: it won't schedule 2987 * new tasks until all previous tasks have completed. 2988 */ 2989 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 2990 kmem_update_timeout(NULL); 2991 } 2992 2993 static int 2994 kmem_cache_kstat_update(kstat_t *ksp, int rw) 2995 { 2996 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 2997 kmem_cache_t *cp = ksp->ks_private; 2998 uint64_t cpu_buf_avail; 2999 uint64_t buf_avail = 0; 3000 int cpu_seqid; 3001 long reap; 3002 3003 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3004 3005 if (rw == KSTAT_WRITE) 3006 return (EACCES); 3007 3008 mutex_enter(&cp->cache_lock); 3009 3010 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3011 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3012 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3013 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3014 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3015 3016 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3017 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3018 3019 mutex_enter(&ccp->cc_lock); 3020 3021 cpu_buf_avail = 0; 3022 if (ccp->cc_rounds > 0) 3023 cpu_buf_avail += ccp->cc_rounds; 3024 if (ccp->cc_prounds > 0) 3025 cpu_buf_avail += ccp->cc_prounds; 3026 3027 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3028 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3029 buf_avail += cpu_buf_avail; 3030 3031 mutex_exit(&ccp->cc_lock); 3032 } 3033 3034 mutex_enter(&cp->cache_depot_lock); 3035 3036 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3037 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3038 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3039 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3040 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3041 kmcp->kmc_magazine_size.value.ui64 = 3042 (cp->cache_flags & KMF_NOMAGAZINE) ? 3043 0 : cp->cache_magtype->mt_magsize; 3044 3045 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3046 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3047 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3048 3049 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3050 reap = MIN(reap, cp->cache_full.ml_total); 3051 3052 mutex_exit(&cp->cache_depot_lock); 3053 3054 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3055 kmcp->kmc_align.value.ui64 = cp->cache_align; 3056 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3057 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3058 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3059 buf_avail += cp->cache_bufslab; 3060 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3061 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3062 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3063 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3064 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3065 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3066 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3067 cp->cache_hash_mask + 1 : 0; 3068 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3069 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3070 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3071 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3072 3073 if (cp->cache_defrag == NULL) { 3074 kmcp->kmc_move_callbacks.value.ui64 = 0; 3075 kmcp->kmc_move_yes.value.ui64 = 0; 3076 kmcp->kmc_move_no.value.ui64 = 0; 3077 kmcp->kmc_move_later.value.ui64 = 0; 3078 kmcp->kmc_move_dont_need.value.ui64 = 0; 3079 kmcp->kmc_move_dont_know.value.ui64 = 0; 3080 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3081 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3082 kmcp->kmc_defrag.value.ui64 = 0; 3083 kmcp->kmc_scan.value.ui64 = 0; 3084 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3085 } else { 3086 int64_t reclaimable; 3087 3088 kmem_defrag_t *kd = cp->cache_defrag; 3089 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3090 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3091 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3092 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3093 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3094 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3095 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3096 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3097 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3098 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3099 3100 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3101 reclaimable = MAX(reclaimable, 0); 3102 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3103 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3104 } 3105 3106 mutex_exit(&cp->cache_lock); 3107 return (0); 3108 } 3109 3110 /* 3111 * Return a named statistic about a particular cache. 3112 * This shouldn't be called very often, so it's currently designed for 3113 * simplicity (leverages existing kstat support) rather than efficiency. 3114 */ 3115 uint64_t 3116 kmem_cache_stat(kmem_cache_t *cp, char *name) 3117 { 3118 int i; 3119 kstat_t *ksp = cp->cache_kstat; 3120 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3121 uint64_t value = 0; 3122 3123 if (ksp != NULL) { 3124 mutex_enter(&kmem_cache_kstat_lock); 3125 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3126 for (i = 0; i < ksp->ks_ndata; i++) { 3127 if (strcmp(knp[i].name, name) == 0) { 3128 value = knp[i].value.ui64; 3129 break; 3130 } 3131 } 3132 mutex_exit(&kmem_cache_kstat_lock); 3133 } 3134 return (value); 3135 } 3136 3137 /* 3138 * Return an estimate of currently available kernel heap memory. 3139 * On 32-bit systems, physical memory may exceed virtual memory, 3140 * we just truncate the result at 1GB. 3141 */ 3142 size_t 3143 kmem_avail(void) 3144 { 3145 spgcnt_t rmem = availrmem - tune.t_minarmem; 3146 spgcnt_t fmem = freemem - minfree; 3147 3148 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3149 1 << (30 - PAGESHIFT)))); 3150 } 3151 3152 /* 3153 * Return the maximum amount of memory that is (in theory) allocatable 3154 * from the heap. This may be used as an estimate only since there 3155 * is no guarentee this space will still be available when an allocation 3156 * request is made, nor that the space may be allocated in one big request 3157 * due to kernel heap fragmentation. 3158 */ 3159 size_t 3160 kmem_maxavail(void) 3161 { 3162 spgcnt_t pmem = availrmem - tune.t_minarmem; 3163 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3164 3165 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3166 } 3167 3168 /* 3169 * Indicate whether memory-intensive kmem debugging is enabled. 3170 */ 3171 int 3172 kmem_debugging(void) 3173 { 3174 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3175 } 3176 3177 /* binning function, sorts finely at the two extremes */ 3178 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3179 ((((sp)->slab_refcnt <= (binshift)) || \ 3180 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3181 ? -(sp)->slab_refcnt \ 3182 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3183 3184 /* 3185 * Minimizing the number of partial slabs on the freelist minimizes 3186 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3187 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3188 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3189 * the most-used slabs at the front of the list where they have the best chance 3190 * of being completely allocated, and the least-used slabs at a safe distance 3191 * from the front to improve the odds that the few remaining buffers will all be 3192 * freed before another allocation can tie up the slab. For that reason a slab 3193 * with a higher slab_refcnt sorts less than than a slab with a lower 3194 * slab_refcnt. 3195 * 3196 * However, if a slab has at least one buffer that is deemed unfreeable, we 3197 * would rather have that slab at the front of the list regardless of 3198 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3199 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3200 * callback, the slab is marked unfreeable for as long as it remains on the 3201 * freelist. 3202 */ 3203 static int 3204 kmem_partial_slab_cmp(const void *p0, const void *p1) 3205 { 3206 const kmem_cache_t *cp; 3207 const kmem_slab_t *s0 = p0; 3208 const kmem_slab_t *s1 = p1; 3209 int w0, w1; 3210 size_t binshift; 3211 3212 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3213 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3214 ASSERT(s0->slab_cache == s1->slab_cache); 3215 cp = s1->slab_cache; 3216 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3217 binshift = cp->cache_partial_binshift; 3218 3219 /* weight of first slab */ 3220 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3221 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3222 w0 -= cp->cache_maxchunks; 3223 } 3224 3225 /* weight of second slab */ 3226 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3227 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3228 w1 -= cp->cache_maxchunks; 3229 } 3230 3231 if (w0 < w1) 3232 return (-1); 3233 if (w0 > w1) 3234 return (1); 3235 3236 /* compare pointer values */ 3237 if ((uintptr_t)s0 < (uintptr_t)s1) 3238 return (-1); 3239 if ((uintptr_t)s0 > (uintptr_t)s1) 3240 return (1); 3241 3242 return (0); 3243 } 3244 3245 /* 3246 * It must be valid to call the destructor (if any) on a newly created object. 3247 * That is, the constructor (if any) must leave the object in a valid state for 3248 * the destructor. 3249 */ 3250 kmem_cache_t * 3251 kmem_cache_create( 3252 char *name, /* descriptive name for this cache */ 3253 size_t bufsize, /* size of the objects it manages */ 3254 size_t align, /* required object alignment */ 3255 int (*constructor)(void *, void *, int), /* object constructor */ 3256 void (*destructor)(void *, void *), /* object destructor */ 3257 void (*reclaim)(void *), /* memory reclaim callback */ 3258 void *private, /* pass-thru arg for constr/destr/reclaim */ 3259 vmem_t *vmp, /* vmem source for slab allocation */ 3260 int cflags) /* cache creation flags */ 3261 { 3262 int cpu_seqid; 3263 size_t chunksize; 3264 kmem_cache_t *cp; 3265 kmem_magtype_t *mtp; 3266 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3267 3268 #ifdef DEBUG 3269 /* 3270 * Cache names should conform to the rules for valid C identifiers 3271 */ 3272 if (!strident_valid(name)) { 3273 cmn_err(CE_CONT, 3274 "kmem_cache_create: '%s' is an invalid cache name\n" 3275 "cache names must conform to the rules for " 3276 "C identifiers\n", name); 3277 } 3278 #endif /* DEBUG */ 3279 3280 if (vmp == NULL) 3281 vmp = kmem_default_arena; 3282 3283 /* 3284 * If this kmem cache has an identifier vmem arena as its source, mark 3285 * it such to allow kmem_reap_idspace(). 3286 */ 3287 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3288 if (vmp->vm_cflags & VMC_IDENTIFIER) 3289 cflags |= KMC_IDENTIFIER; 3290 3291 /* 3292 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3293 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3294 * false sharing of per-CPU data. 3295 */ 3296 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3297 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3298 bzero(cp, csize); 3299 list_link_init(&cp->cache_link); 3300 3301 if (align == 0) 3302 align = KMEM_ALIGN; 3303 3304 /* 3305 * If we're not at least KMEM_ALIGN aligned, we can't use free 3306 * memory to hold bufctl information (because we can't safely 3307 * perform word loads and stores on it). 3308 */ 3309 if (align < KMEM_ALIGN) 3310 cflags |= KMC_NOTOUCH; 3311 3312 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 3313 panic("kmem_cache_create: bad alignment %lu", align); 3314 3315 mutex_enter(&kmem_flags_lock); 3316 if (kmem_flags & KMF_RANDOMIZE) 3317 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3318 KMF_RANDOMIZE; 3319 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3320 mutex_exit(&kmem_flags_lock); 3321 3322 /* 3323 * Make sure all the various flags are reasonable. 3324 */ 3325 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3326 3327 if (cp->cache_flags & KMF_LITE) { 3328 if (bufsize >= kmem_lite_minsize && 3329 align <= kmem_lite_maxalign && 3330 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3331 cp->cache_flags |= KMF_BUFTAG; 3332 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3333 } else { 3334 cp->cache_flags &= ~KMF_DEBUG; 3335 } 3336 } 3337 3338 if (cp->cache_flags & KMF_DEADBEEF) 3339 cp->cache_flags |= KMF_REDZONE; 3340 3341 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3342 cp->cache_flags |= KMF_NOMAGAZINE; 3343 3344 if (cflags & KMC_NODEBUG) 3345 cp->cache_flags &= ~KMF_DEBUG; 3346 3347 if (cflags & KMC_NOTOUCH) 3348 cp->cache_flags &= ~KMF_TOUCH; 3349 3350 if (cflags & KMC_NOHASH) 3351 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3352 3353 if (cflags & KMC_NOMAGAZINE) 3354 cp->cache_flags |= KMF_NOMAGAZINE; 3355 3356 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3357 cp->cache_flags |= KMF_REDZONE; 3358 3359 if (!(cp->cache_flags & KMF_AUDIT)) 3360 cp->cache_flags &= ~KMF_CONTENTS; 3361 3362 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3363 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3364 cp->cache_flags |= KMF_FIREWALL; 3365 3366 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3367 cp->cache_flags &= ~KMF_FIREWALL; 3368 3369 if (cp->cache_flags & KMF_FIREWALL) { 3370 cp->cache_flags &= ~KMF_BUFTAG; 3371 cp->cache_flags |= KMF_NOMAGAZINE; 3372 ASSERT(vmp == kmem_default_arena); 3373 vmp = kmem_firewall_arena; 3374 } 3375 3376 /* 3377 * Set cache properties. 3378 */ 3379 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3380 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3381 cp->cache_bufsize = bufsize; 3382 cp->cache_align = align; 3383 cp->cache_constructor = constructor; 3384 cp->cache_destructor = destructor; 3385 cp->cache_reclaim = reclaim; 3386 cp->cache_private = private; 3387 cp->cache_arena = vmp; 3388 cp->cache_cflags = cflags; 3389 3390 /* 3391 * Determine the chunk size. 3392 */ 3393 chunksize = bufsize; 3394 3395 if (align >= KMEM_ALIGN) { 3396 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3397 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3398 } 3399 3400 if (cp->cache_flags & KMF_BUFTAG) { 3401 cp->cache_bufctl = chunksize; 3402 cp->cache_buftag = chunksize; 3403 if (cp->cache_flags & KMF_LITE) 3404 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3405 else 3406 chunksize += sizeof (kmem_buftag_t); 3407 } 3408 3409 if (cp->cache_flags & KMF_DEADBEEF) { 3410 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3411 if (cp->cache_flags & KMF_LITE) 3412 cp->cache_verify = sizeof (uint64_t); 3413 } 3414 3415 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3416 3417 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3418 3419 /* 3420 * Now that we know the chunk size, determine the optimal slab size. 3421 */ 3422 if (vmp == kmem_firewall_arena) { 3423 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3424 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3425 cp->cache_maxcolor = cp->cache_mincolor; 3426 cp->cache_flags |= KMF_HASH; 3427 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3428 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3429 !(cp->cache_flags & KMF_AUDIT) && 3430 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3431 cp->cache_slabsize = vmp->vm_quantum; 3432 cp->cache_mincolor = 0; 3433 cp->cache_maxcolor = 3434 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3435 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3436 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3437 } else { 3438 size_t chunks, bestfit, waste, slabsize; 3439 size_t minwaste = LONG_MAX; 3440 3441 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3442 slabsize = P2ROUNDUP(chunksize * chunks, 3443 vmp->vm_quantum); 3444 chunks = slabsize / chunksize; 3445 waste = (slabsize % chunksize) / chunks; 3446 if (waste < minwaste) { 3447 minwaste = waste; 3448 bestfit = slabsize; 3449 } 3450 } 3451 if (cflags & KMC_QCACHE) 3452 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3453 cp->cache_slabsize = bestfit; 3454 cp->cache_mincolor = 0; 3455 cp->cache_maxcolor = bestfit % chunksize; 3456 cp->cache_flags |= KMF_HASH; 3457 } 3458 3459 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3460 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3461 3462 if (cp->cache_flags & KMF_HASH) { 3463 ASSERT(!(cflags & KMC_NOHASH)); 3464 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3465 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3466 } 3467 3468 if (cp->cache_maxcolor >= vmp->vm_quantum) 3469 cp->cache_maxcolor = vmp->vm_quantum - 1; 3470 3471 cp->cache_color = cp->cache_mincolor; 3472 3473 /* 3474 * Initialize the rest of the slab layer. 3475 */ 3476 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3477 3478 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3479 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3480 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3481 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3482 /* reuse partial slab AVL linkage for complete slab list linkage */ 3483 list_create(&cp->cache_complete_slabs, 3484 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3485 3486 if (cp->cache_flags & KMF_HASH) { 3487 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3488 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3489 bzero(cp->cache_hash_table, 3490 KMEM_HASH_INITIAL * sizeof (void *)); 3491 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3492 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3493 } 3494 3495 /* 3496 * Initialize the depot. 3497 */ 3498 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3499 3500 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3501 continue; 3502 3503 cp->cache_magtype = mtp; 3504 3505 /* 3506 * Initialize the CPU layer. 3507 */ 3508 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3509 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3510 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3511 ccp->cc_flags = cp->cache_flags; 3512 ccp->cc_rounds = -1; 3513 ccp->cc_prounds = -1; 3514 } 3515 3516 /* 3517 * Create the cache's kstats. 3518 */ 3519 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3520 "kmem_cache", KSTAT_TYPE_NAMED, 3521 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3522 KSTAT_FLAG_VIRTUAL)) != NULL) { 3523 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3524 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3525 cp->cache_kstat->ks_private = cp; 3526 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3527 kstat_install(cp->cache_kstat); 3528 } 3529 3530 /* 3531 * Add the cache to the global list. This makes it visible 3532 * to kmem_update(), so the cache must be ready for business. 3533 */ 3534 mutex_enter(&kmem_cache_lock); 3535 list_insert_tail(&kmem_caches, cp); 3536 mutex_exit(&kmem_cache_lock); 3537 3538 if (kmem_ready) 3539 kmem_cache_magazine_enable(cp); 3540 3541 return (cp); 3542 } 3543 3544 static int 3545 kmem_move_cmp(const void *buf, const void *p) 3546 { 3547 const kmem_move_t *kmm = p; 3548 uintptr_t v1 = (uintptr_t)buf; 3549 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3550 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3551 } 3552 3553 static void 3554 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3555 { 3556 kmd->kmd_reclaim_numer = 1; 3557 } 3558 3559 /* 3560 * Initially, when choosing candidate slabs for buffers to move, we want to be 3561 * very selective and take only slabs that are less than 3562 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3563 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3564 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3565 * longer fragmented. 3566 */ 3567 static void 3568 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3569 { 3570 if (direction > 0) { 3571 /* make it easier to find a candidate slab */ 3572 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3573 kmd->kmd_reclaim_numer++; 3574 } 3575 } else { 3576 /* be more selective */ 3577 if (kmd->kmd_reclaim_numer > 1) { 3578 kmd->kmd_reclaim_numer--; 3579 } 3580 } 3581 } 3582 3583 void 3584 kmem_cache_set_move(kmem_cache_t *cp, 3585 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3586 { 3587 kmem_defrag_t *defrag; 3588 3589 ASSERT(move != NULL); 3590 /* 3591 * The consolidator does not support NOTOUCH caches because kmem cannot 3592 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3593 * a low order bit usable by clients to distinguish uninitialized memory 3594 * from known objects (see kmem_slab_create). 3595 */ 3596 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3597 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3598 3599 /* 3600 * We should not be holding anyone's cache lock when calling 3601 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3602 * lock. 3603 */ 3604 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3605 3606 mutex_enter(&cp->cache_lock); 3607 3608 if (KMEM_IS_MOVABLE(cp)) { 3609 if (cp->cache_move == NULL) { 3610 ASSERT(cp->cache_slab_alloc == 0); 3611 3612 cp->cache_defrag = defrag; 3613 defrag = NULL; /* nothing to free */ 3614 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 3615 avl_create(&cp->cache_defrag->kmd_moves_pending, 3616 kmem_move_cmp, sizeof (kmem_move_t), 3617 offsetof(kmem_move_t, kmm_entry)); 3618 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3619 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3620 /* reuse the slab's AVL linkage for deadlist linkage */ 3621 list_create(&cp->cache_defrag->kmd_deadlist, 3622 sizeof (kmem_slab_t), 3623 offsetof(kmem_slab_t, slab_link)); 3624 kmem_reset_reclaim_threshold(cp->cache_defrag); 3625 } 3626 cp->cache_move = move; 3627 } 3628 3629 mutex_exit(&cp->cache_lock); 3630 3631 if (defrag != NULL) { 3632 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 3633 } 3634 } 3635 3636 void 3637 kmem_cache_destroy(kmem_cache_t *cp) 3638 { 3639 int cpu_seqid; 3640 3641 /* 3642 * Remove the cache from the global cache list so that no one else 3643 * can schedule tasks on its behalf, wait for any pending tasks to 3644 * complete, purge the cache, and then destroy it. 3645 */ 3646 mutex_enter(&kmem_cache_lock); 3647 list_remove(&kmem_caches, cp); 3648 mutex_exit(&kmem_cache_lock); 3649 3650 if (kmem_taskq != NULL) 3651 taskq_wait(kmem_taskq); 3652 if (kmem_move_taskq != NULL) 3653 taskq_wait(kmem_move_taskq); 3654 3655 kmem_cache_magazine_purge(cp); 3656 3657 mutex_enter(&cp->cache_lock); 3658 if (cp->cache_buftotal != 0) 3659 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 3660 cp->cache_name, (void *)cp); 3661 if (cp->cache_defrag != NULL) { 3662 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 3663 list_destroy(&cp->cache_defrag->kmd_deadlist); 3664 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 3665 cp->cache_defrag = NULL; 3666 } 3667 /* 3668 * The cache is now dead. There should be no further activity. We 3669 * enforce this by setting land mines in the constructor, destructor, 3670 * reclaim, and move routines that induce a kernel text fault if 3671 * invoked. 3672 */ 3673 cp->cache_constructor = (int (*)(void *, void *, int))1; 3674 cp->cache_destructor = (void (*)(void *, void *))2; 3675 cp->cache_reclaim = (void (*)(void *))3; 3676 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 3677 mutex_exit(&cp->cache_lock); 3678 3679 kstat_delete(cp->cache_kstat); 3680 3681 if (cp->cache_hash_table != NULL) 3682 vmem_free(kmem_hash_arena, cp->cache_hash_table, 3683 (cp->cache_hash_mask + 1) * sizeof (void *)); 3684 3685 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 3686 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 3687 3688 mutex_destroy(&cp->cache_depot_lock); 3689 mutex_destroy(&cp->cache_lock); 3690 3691 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 3692 } 3693 3694 /*ARGSUSED*/ 3695 static int 3696 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 3697 { 3698 ASSERT(MUTEX_HELD(&cpu_lock)); 3699 if (what == CPU_UNCONFIG) { 3700 kmem_cache_applyall(kmem_cache_magazine_purge, 3701 kmem_taskq, TQ_SLEEP); 3702 kmem_cache_applyall(kmem_cache_magazine_enable, 3703 kmem_taskq, TQ_SLEEP); 3704 } 3705 return (0); 3706 } 3707 3708 static void 3709 kmem_alloc_caches_create(const int *array, size_t count, 3710 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 3711 { 3712 char name[KMEM_CACHE_NAMELEN + 1]; 3713 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 3714 size_t size = table_unit; 3715 int i; 3716 3717 for (i = 0; i < count; i++) { 3718 size_t cache_size = array[i]; 3719 size_t align = KMEM_ALIGN; 3720 kmem_cache_t *cp; 3721 3722 /* if the table has an entry for maxbuf, we're done */ 3723 if (size > maxbuf) 3724 break; 3725 3726 /* cache size must be a multiple of the table unit */ 3727 ASSERT(P2PHASE(cache_size, table_unit) == 0); 3728 3729 /* 3730 * If they allocate a multiple of the coherency granularity, 3731 * they get a coherency-granularity-aligned address. 3732 */ 3733 if (IS_P2ALIGNED(cache_size, 64)) 3734 align = 64; 3735 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 3736 align = PAGESIZE; 3737 (void) snprintf(name, sizeof (name), 3738 "kmem_alloc_%lu", cache_size); 3739 cp = kmem_cache_create(name, cache_size, align, 3740 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 3741 3742 while (size <= cache_size) { 3743 alloc_table[(size - 1) >> shift] = cp; 3744 size += table_unit; 3745 } 3746 } 3747 3748 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 3749 } 3750 3751 static void 3752 kmem_cache_init(int pass, int use_large_pages) 3753 { 3754 int i; 3755 size_t maxbuf; 3756 kmem_magtype_t *mtp; 3757 3758 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 3759 char name[KMEM_CACHE_NAMELEN + 1]; 3760 3761 mtp = &kmem_magtype[i]; 3762 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 3763 mtp->mt_cache = kmem_cache_create(name, 3764 (mtp->mt_magsize + 1) * sizeof (void *), 3765 mtp->mt_align, NULL, NULL, NULL, NULL, 3766 kmem_msb_arena, KMC_NOHASH); 3767 } 3768 3769 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 3770 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 3771 kmem_msb_arena, KMC_NOHASH); 3772 3773 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 3774 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3775 kmem_msb_arena, KMC_NOHASH); 3776 3777 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 3778 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 3779 kmem_msb_arena, KMC_NOHASH); 3780 3781 if (pass == 2) { 3782 kmem_va_arena = vmem_create("kmem_va", 3783 NULL, 0, PAGESIZE, 3784 vmem_alloc, vmem_free, heap_arena, 3785 8 * PAGESIZE, VM_SLEEP); 3786 3787 if (use_large_pages) { 3788 kmem_default_arena = vmem_xcreate("kmem_default", 3789 NULL, 0, PAGESIZE, 3790 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 3791 0, VM_SLEEP); 3792 } else { 3793 kmem_default_arena = vmem_create("kmem_default", 3794 NULL, 0, PAGESIZE, 3795 segkmem_alloc, segkmem_free, kmem_va_arena, 3796 0, VM_SLEEP); 3797 } 3798 3799 /* Figure out what our maximum cache size is */ 3800 maxbuf = kmem_max_cached; 3801 if (maxbuf <= KMEM_MAXBUF) { 3802 maxbuf = 0; 3803 kmem_max_cached = KMEM_MAXBUF; 3804 } else { 3805 size_t size = 0; 3806 size_t max = 3807 sizeof (kmem_big_alloc_sizes) / sizeof (int); 3808 /* 3809 * Round maxbuf up to an existing cache size. If maxbuf 3810 * is larger than the largest cache, we truncate it to 3811 * the largest cache's size. 3812 */ 3813 for (i = 0; i < max; i++) { 3814 size = kmem_big_alloc_sizes[i]; 3815 if (maxbuf <= size) 3816 break; 3817 } 3818 kmem_max_cached = maxbuf = size; 3819 } 3820 3821 /* 3822 * The big alloc table may not be completely overwritten, so 3823 * we clear out any stale cache pointers from the first pass. 3824 */ 3825 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 3826 } else { 3827 /* 3828 * During the first pass, the kmem_alloc_* caches 3829 * are treated as metadata. 3830 */ 3831 kmem_default_arena = kmem_msb_arena; 3832 maxbuf = KMEM_BIG_MAXBUF_32BIT; 3833 } 3834 3835 /* 3836 * Set up the default caches to back kmem_alloc() 3837 */ 3838 kmem_alloc_caches_create( 3839 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 3840 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 3841 3842 kmem_alloc_caches_create( 3843 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 3844 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 3845 3846 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 3847 } 3848 3849 void 3850 kmem_init(void) 3851 { 3852 kmem_cache_t *cp; 3853 int old_kmem_flags = kmem_flags; 3854 int use_large_pages = 0; 3855 size_t maxverify, minfirewall; 3856 3857 kstat_init(); 3858 3859 /* 3860 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 3861 */ 3862 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 3863 kmem_flags = 0; 3864 3865 /* 3866 * Don't do firewalled allocations if the heap is less than 1TB 3867 * (i.e. on a 32-bit kernel) 3868 * The resulting VM_NEXTFIT allocations would create too much 3869 * fragmentation in a small heap. 3870 */ 3871 #if defined(_LP64) 3872 maxverify = minfirewall = PAGESIZE / 2; 3873 #else 3874 maxverify = minfirewall = ULONG_MAX; 3875 #endif 3876 3877 /* LINTED */ 3878 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 3879 3880 list_create(&kmem_caches, sizeof (kmem_cache_t), 3881 offsetof(kmem_cache_t, cache_link)); 3882 3883 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 3884 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 3885 VM_SLEEP | VMC_NO_QCACHE); 3886 3887 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 3888 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 3889 VM_SLEEP); 3890 3891 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 3892 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3893 3894 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 3895 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3896 3897 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 3898 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3899 3900 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 3901 NULL, 0, PAGESIZE, 3902 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 3903 0, VM_SLEEP); 3904 3905 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 3906 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); 3907 3908 /* temporary oversize arena for mod_read_system_file */ 3909 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 3910 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3911 3912 kmem_reap_interval = 15 * hz; 3913 3914 /* 3915 * Read /etc/system. This is a chicken-and-egg problem because 3916 * kmem_flags may be set in /etc/system, but mod_read_system_file() 3917 * needs to use the allocator. The simplest solution is to create 3918 * all the standard kmem caches, read /etc/system, destroy all the 3919 * caches we just created, and then create them all again in light 3920 * of the (possibly) new kmem_flags and other kmem tunables. 3921 */ 3922 kmem_cache_init(1, 0); 3923 3924 mod_read_system_file(boothowto & RB_ASKNAME); 3925 3926 while ((cp = list_tail(&kmem_caches)) != NULL) 3927 kmem_cache_destroy(cp); 3928 3929 vmem_destroy(kmem_oversize_arena); 3930 3931 if (old_kmem_flags & KMF_STICKY) 3932 kmem_flags = old_kmem_flags; 3933 3934 if (!(kmem_flags & KMF_AUDIT)) 3935 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 3936 3937 if (kmem_maxverify == 0) 3938 kmem_maxverify = maxverify; 3939 3940 if (kmem_minfirewall == 0) 3941 kmem_minfirewall = minfirewall; 3942 3943 /* 3944 * give segkmem a chance to figure out if we are using large pages 3945 * for the kernel heap 3946 */ 3947 use_large_pages = segkmem_lpsetup(); 3948 3949 /* 3950 * To protect against corruption, we keep the actual number of callers 3951 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 3952 * to 16, since the overhead for small buffers quickly gets out of 3953 * hand. 3954 * 3955 * The real limit would depend on the needs of the largest KMC_NOHASH 3956 * cache. 3957 */ 3958 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 3959 kmem_lite_pcs = kmem_lite_count; 3960 3961 /* 3962 * Normally, we firewall oversized allocations when possible, but 3963 * if we are using large pages for kernel memory, and we don't have 3964 * any non-LITE debugging flags set, we want to allocate oversized 3965 * buffers from large pages, and so skip the firewalling. 3966 */ 3967 if (use_large_pages && 3968 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 3969 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 3970 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 3971 0, VM_SLEEP); 3972 } else { 3973 kmem_oversize_arena = vmem_create("kmem_oversize", 3974 NULL, 0, PAGESIZE, 3975 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 3976 kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); 3977 } 3978 3979 kmem_cache_init(2, use_large_pages); 3980 3981 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 3982 if (kmem_transaction_log_size == 0) 3983 kmem_transaction_log_size = kmem_maxavail() / 50; 3984 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 3985 } 3986 3987 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 3988 if (kmem_content_log_size == 0) 3989 kmem_content_log_size = kmem_maxavail() / 50; 3990 kmem_content_log = kmem_log_init(kmem_content_log_size); 3991 } 3992 3993 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 3994 3995 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 3996 3997 /* 3998 * Initialize STREAMS message caches so allocb() is available. 3999 * This allows us to initialize the logging framework (cmn_err(9F), 4000 * strlog(9F), etc) so we can start recording messages. 4001 */ 4002 streams_msg_init(); 4003 4004 /* 4005 * Initialize the ZSD framework in Zones so modules loaded henceforth 4006 * can register their callbacks. 4007 */ 4008 zone_zsd_init(); 4009 4010 log_init(); 4011 taskq_init(); 4012 4013 /* 4014 * Warn about invalid or dangerous values of kmem_flags. 4015 * Always warn about unsupported values. 4016 */ 4017 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4018 KMF_CONTENTS | KMF_LITE)) != 0) || 4019 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4020 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4021 "See the Solaris Tunable Parameters Reference Manual.", 4022 kmem_flags); 4023 4024 #ifdef DEBUG 4025 if ((kmem_flags & KMF_DEBUG) == 0) 4026 cmn_err(CE_NOTE, "kmem debugging disabled."); 4027 #else 4028 /* 4029 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4030 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4031 * if KMF_AUDIT is set). We should warn the user about the performance 4032 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4033 * isn't set (since that disables AUDIT). 4034 */ 4035 if (!(kmem_flags & KMF_LITE) && 4036 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4037 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4038 "enabled (kmem_flags = 0x%x). Performance degradation " 4039 "and large memory overhead possible. See the Solaris " 4040 "Tunable Parameters Reference Manual.", kmem_flags); 4041 #endif /* not DEBUG */ 4042 4043 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4044 4045 kmem_ready = 1; 4046 4047 /* 4048 * Initialize the platform-specific aligned/DMA memory allocator. 4049 */ 4050 ka_init(); 4051 4052 /* 4053 * Initialize 32-bit ID cache. 4054 */ 4055 id32_init(); 4056 4057 /* 4058 * Initialize the networking stack so modules loaded can 4059 * register their callbacks. 4060 */ 4061 netstack_init(); 4062 } 4063 4064 static void 4065 kmem_move_init(void) 4066 { 4067 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4068 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4069 kmem_msb_arena, KMC_NOHASH); 4070 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4071 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4072 kmem_msb_arena, KMC_NOHASH); 4073 4074 /* 4075 * kmem guarantees that move callbacks are sequential and that even 4076 * across multiple caches no two moves ever execute simultaneously. 4077 * Move callbacks are processed on a separate taskq so that client code 4078 * does not interfere with internal maintenance tasks. 4079 */ 4080 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4081 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4082 } 4083 4084 void 4085 kmem_thread_init(void) 4086 { 4087 kmem_move_init(); 4088 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4089 300, INT_MAX, TASKQ_PREPOPULATE); 4090 } 4091 4092 void 4093 kmem_mp_init(void) 4094 { 4095 mutex_enter(&cpu_lock); 4096 register_cpu_setup_func(kmem_cpu_setup, NULL); 4097 mutex_exit(&cpu_lock); 4098 4099 kmem_update_timeout(NULL); 4100 4101 taskq_mp_init(); 4102 } 4103 4104 /* 4105 * Return the slab of the allocated buffer, or NULL if the buffer is not 4106 * allocated. This function may be called with a known slab address to determine 4107 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4108 * an allocated buffer's slab. 4109 */ 4110 static kmem_slab_t * 4111 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4112 { 4113 kmem_bufctl_t *bcp, *bufbcp; 4114 4115 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4116 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4117 4118 if (cp->cache_flags & KMF_HASH) { 4119 for (bcp = *KMEM_HASH(cp, buf); 4120 (bcp != NULL) && (bcp->bc_addr != buf); 4121 bcp = bcp->bc_next) { 4122 continue; 4123 } 4124 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4125 return (bcp == NULL ? NULL : bcp->bc_slab); 4126 } 4127 4128 if (sp == NULL) { 4129 sp = KMEM_SLAB(cp, buf); 4130 } 4131 bufbcp = KMEM_BUFCTL(cp, buf); 4132 for (bcp = sp->slab_head; 4133 (bcp != NULL) && (bcp != bufbcp); 4134 bcp = bcp->bc_next) { 4135 continue; 4136 } 4137 return (bcp == NULL ? sp : NULL); 4138 } 4139 4140 static boolean_t 4141 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4142 { 4143 long refcnt = sp->slab_refcnt; 4144 4145 ASSERT(cp->cache_defrag != NULL); 4146 4147 /* 4148 * For code coverage we want to be able to move an object within the 4149 * same slab (the only partial slab) even if allocating the destination 4150 * buffer resulted in a completely allocated slab. 4151 */ 4152 if (flags & KMM_DEBUG) { 4153 return ((flags & KMM_DESPERATE) || 4154 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4155 } 4156 4157 /* If we're desperate, we don't care if the client said NO. */ 4158 if (flags & KMM_DESPERATE) { 4159 return (refcnt < sp->slab_chunks); /* any partial */ 4160 } 4161 4162 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4163 return (B_FALSE); 4164 } 4165 4166 if ((refcnt == 1) || kmem_move_any_partial) { 4167 return (refcnt < sp->slab_chunks); 4168 } 4169 4170 /* 4171 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4172 * slabs with a progressively higher percentage of used buffers can be 4173 * reclaimed until the cache as a whole is no longer fragmented. 4174 * 4175 * sp->slab_refcnt kmd_reclaim_numer 4176 * --------------- < ------------------ 4177 * sp->slab_chunks KMEM_VOID_FRACTION 4178 */ 4179 return ((refcnt * KMEM_VOID_FRACTION) < 4180 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4181 } 4182 4183 static void * 4184 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4185 void *tbuf) 4186 { 4187 int i; /* magazine round index */ 4188 4189 for (i = 0; i < n; i++) { 4190 if (buf == m->mag_round[i]) { 4191 if (cp->cache_flags & KMF_BUFTAG) { 4192 (void) kmem_cache_free_debug(cp, tbuf, 4193 caller()); 4194 } 4195 m->mag_round[i] = tbuf; 4196 return (buf); 4197 } 4198 } 4199 4200 return (NULL); 4201 } 4202 4203 /* 4204 * Hunt the magazine layer for the given buffer. If found, the buffer is 4205 * removed from the magazine layer and returned, otherwise NULL is returned. 4206 * The state of the returned buffer is freed and constructed. 4207 */ 4208 static void * 4209 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4210 { 4211 kmem_cpu_cache_t *ccp; 4212 kmem_magazine_t *m; 4213 int cpu_seqid; 4214 int n; /* magazine rounds */ 4215 void *tbuf; /* temporary swap buffer */ 4216 4217 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4218 4219 /* 4220 * Allocated a buffer to swap with the one we hope to pull out of a 4221 * magazine when found. 4222 */ 4223 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4224 if (tbuf == NULL) { 4225 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4226 return (NULL); 4227 } 4228 if (tbuf == buf) { 4229 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4230 if (cp->cache_flags & KMF_BUFTAG) { 4231 (void) kmem_cache_free_debug(cp, buf, caller()); 4232 } 4233 return (buf); 4234 } 4235 4236 /* Hunt the depot. */ 4237 mutex_enter(&cp->cache_depot_lock); 4238 n = cp->cache_magtype->mt_magsize; 4239 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4240 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4241 mutex_exit(&cp->cache_depot_lock); 4242 return (buf); 4243 } 4244 } 4245 mutex_exit(&cp->cache_depot_lock); 4246 4247 /* Hunt the per-CPU magazines. */ 4248 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4249 ccp = &cp->cache_cpu[cpu_seqid]; 4250 4251 mutex_enter(&ccp->cc_lock); 4252 m = ccp->cc_loaded; 4253 n = ccp->cc_rounds; 4254 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4255 mutex_exit(&ccp->cc_lock); 4256 return (buf); 4257 } 4258 m = ccp->cc_ploaded; 4259 n = ccp->cc_prounds; 4260 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4261 mutex_exit(&ccp->cc_lock); 4262 return (buf); 4263 } 4264 mutex_exit(&ccp->cc_lock); 4265 } 4266 4267 kmem_cache_free(cp, tbuf); 4268 return (NULL); 4269 } 4270 4271 /* 4272 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4273 * or when the buffer is freed. 4274 */ 4275 static void 4276 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4277 { 4278 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4279 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4280 4281 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4282 return; 4283 } 4284 4285 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4286 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4287 avl_remove(&cp->cache_partial_slabs, sp); 4288 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4289 sp->slab_stuck_offset = (uint32_t)-1; 4290 avl_add(&cp->cache_partial_slabs, sp); 4291 } 4292 } else { 4293 sp->slab_later_count = 0; 4294 sp->slab_stuck_offset = (uint32_t)-1; 4295 } 4296 } 4297 4298 static void 4299 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4300 { 4301 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4302 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4303 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4304 4305 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4306 return; 4307 } 4308 4309 avl_remove(&cp->cache_partial_slabs, sp); 4310 sp->slab_later_count = 0; 4311 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4312 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4313 avl_add(&cp->cache_partial_slabs, sp); 4314 } 4315 4316 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4317 4318 /* 4319 * The move callback takes two buffer addresses, the buffer to be moved, and a 4320 * newly allocated and constructed buffer selected by kmem as the destination. 4321 * It also takes the size of the buffer and an optional user argument specified 4322 * at cache creation time. kmem guarantees that the buffer to be moved has not 4323 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4324 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4325 * the client to safely determine whether or not it is still using the buffer. 4326 * The client must not free either of the buffers passed to the move callback, 4327 * since kmem wants to free them directly to the slab layer. The client response 4328 * tells kmem which of the two buffers to free: 4329 * 4330 * YES kmem frees the old buffer (the move was successful) 4331 * NO kmem frees the new buffer, marks the slab of the old buffer 4332 * non-reclaimable to avoid bothering the client again 4333 * LATER kmem frees the new buffer, increments slab_later_count 4334 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4335 * DONT_NEED kmem frees both the old buffer and the new buffer 4336 * 4337 * The pending callback argument now being processed contains both of the 4338 * buffers (old and new) passed to the move callback function, the slab of the 4339 * old buffer, and flags related to the move request, such as whether or not the 4340 * system was desperate for memory. 4341 * 4342 * Slabs are not freed while there is a pending callback, but instead are kept 4343 * on a deadlist, which is drained after the last callback completes. This means 4344 * that slabs are safe to access until kmem_move_end(), no matter how many of 4345 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4346 * zero for as long as the slab remains on the deadlist and until the slab is 4347 * freed. 4348 */ 4349 static void 4350 kmem_move_buffer(kmem_move_t *callback) 4351 { 4352 kmem_cbrc_t response; 4353 kmem_slab_t *sp = callback->kmm_from_slab; 4354 kmem_cache_t *cp = sp->slab_cache; 4355 boolean_t free_on_slab; 4356 4357 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4358 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4359 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4360 4361 /* 4362 * The number of allocated buffers on the slab may have changed since we 4363 * last checked the slab's reclaimability (when the pending move was 4364 * enqueued), or the client may have responded NO when asked to move 4365 * another buffer on the same slab. 4366 */ 4367 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4368 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4369 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4370 kmem_move_stats.kms_notify_no_longer_reclaimable); 4371 kmem_slab_free(cp, callback->kmm_to_buf); 4372 kmem_move_end(cp, callback); 4373 return; 4374 } 4375 4376 /* 4377 * Hunting magazines is expensive, so we'll wait to do that until the 4378 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4379 * is cheap, so we might as well do that here in case we can avoid 4380 * bothering the client. 4381 */ 4382 mutex_enter(&cp->cache_lock); 4383 free_on_slab = (kmem_slab_allocated(cp, sp, 4384 callback->kmm_from_buf) == NULL); 4385 mutex_exit(&cp->cache_lock); 4386 4387 if (free_on_slab) { 4388 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4389 kmem_slab_free(cp, callback->kmm_to_buf); 4390 kmem_move_end(cp, callback); 4391 return; 4392 } 4393 4394 if (cp->cache_flags & KMF_BUFTAG) { 4395 /* 4396 * Make kmem_cache_alloc_debug() apply the constructor for us. 4397 */ 4398 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4399 KM_NOSLEEP, 1, caller()) != 0) { 4400 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4401 kmem_move_end(cp, callback); 4402 return; 4403 } 4404 } else if (cp->cache_constructor != NULL && 4405 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4406 KM_NOSLEEP) != 0) { 4407 atomic_add_64(&cp->cache_alloc_fail, 1); 4408 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4409 kmem_slab_free(cp, callback->kmm_to_buf); 4410 kmem_move_end(cp, callback); 4411 return; 4412 } 4413 4414 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4415 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4416 kmem_move_stats.kms_notify_callbacks); 4417 cp->cache_defrag->kmd_callbacks++; 4418 cp->cache_defrag->kmd_thread = curthread; 4419 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4420 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4421 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4422 callback); 4423 4424 response = cp->cache_move(callback->kmm_from_buf, 4425 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4426 4427 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4428 callback, kmem_cbrc_t, response); 4429 cp->cache_defrag->kmd_thread = NULL; 4430 cp->cache_defrag->kmd_from_buf = NULL; 4431 cp->cache_defrag->kmd_to_buf = NULL; 4432 4433 if (response == KMEM_CBRC_YES) { 4434 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4435 cp->cache_defrag->kmd_yes++; 4436 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4437 /* slab safe to access until kmem_move_end() */ 4438 if (sp->slab_refcnt == 0) 4439 cp->cache_defrag->kmd_slabs_freed++; 4440 mutex_enter(&cp->cache_lock); 4441 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4442 mutex_exit(&cp->cache_lock); 4443 kmem_move_end(cp, callback); 4444 return; 4445 } 4446 4447 switch (response) { 4448 case KMEM_CBRC_NO: 4449 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4450 cp->cache_defrag->kmd_no++; 4451 mutex_enter(&cp->cache_lock); 4452 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4453 mutex_exit(&cp->cache_lock); 4454 break; 4455 case KMEM_CBRC_LATER: 4456 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4457 cp->cache_defrag->kmd_later++; 4458 mutex_enter(&cp->cache_lock); 4459 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4460 mutex_exit(&cp->cache_lock); 4461 break; 4462 } 4463 4464 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4465 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4466 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4467 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4468 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4469 callback->kmm_from_buf); 4470 } 4471 mutex_exit(&cp->cache_lock); 4472 break; 4473 case KMEM_CBRC_DONT_NEED: 4474 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4475 cp->cache_defrag->kmd_dont_need++; 4476 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4477 if (sp->slab_refcnt == 0) 4478 cp->cache_defrag->kmd_slabs_freed++; 4479 mutex_enter(&cp->cache_lock); 4480 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4481 mutex_exit(&cp->cache_lock); 4482 break; 4483 case KMEM_CBRC_DONT_KNOW: 4484 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4485 cp->cache_defrag->kmd_dont_know++; 4486 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4487 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4488 cp->cache_defrag->kmd_hunt_found++; 4489 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4490 B_TRUE); 4491 if (sp->slab_refcnt == 0) 4492 cp->cache_defrag->kmd_slabs_freed++; 4493 mutex_enter(&cp->cache_lock); 4494 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4495 mutex_exit(&cp->cache_lock); 4496 } 4497 break; 4498 default: 4499 panic("'%s' (%p) unexpected move callback response %d\n", 4500 cp->cache_name, (void *)cp, response); 4501 } 4502 4503 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4504 kmem_move_end(cp, callback); 4505 } 4506 4507 /* Return B_FALSE if there is insufficient memory for the move request. */ 4508 static boolean_t 4509 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4510 { 4511 void *to_buf; 4512 avl_index_t index; 4513 kmem_move_t *callback, *pending; 4514 ulong_t n; 4515 4516 ASSERT(taskq_member(kmem_taskq, curthread)); 4517 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4518 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4519 4520 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4521 if (callback == NULL) { 4522 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4523 return (B_FALSE); 4524 } 4525 4526 callback->kmm_from_slab = sp; 4527 callback->kmm_from_buf = buf; 4528 callback->kmm_flags = flags; 4529 4530 mutex_enter(&cp->cache_lock); 4531 4532 n = avl_numnodes(&cp->cache_partial_slabs); 4533 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4534 mutex_exit(&cp->cache_lock); 4535 kmem_cache_free(kmem_move_cache, callback); 4536 return (B_TRUE); /* there is no need for the move request */ 4537 } 4538 4539 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4540 if (pending != NULL) { 4541 /* 4542 * If the move is already pending and we're desperate now, 4543 * update the move flags. 4544 */ 4545 if (flags & KMM_DESPERATE) { 4546 pending->kmm_flags |= KMM_DESPERATE; 4547 } 4548 mutex_exit(&cp->cache_lock); 4549 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4550 kmem_cache_free(kmem_move_cache, callback); 4551 return (B_TRUE); 4552 } 4553 4554 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs)); 4555 callback->kmm_to_buf = to_buf; 4556 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4557 4558 mutex_exit(&cp->cache_lock); 4559 4560 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4561 callback, TQ_NOSLEEP)) { 4562 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail); 4563 mutex_enter(&cp->cache_lock); 4564 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4565 mutex_exit(&cp->cache_lock); 4566 kmem_slab_free(cp, to_buf); 4567 kmem_cache_free(kmem_move_cache, callback); 4568 return (B_FALSE); 4569 } 4570 4571 return (B_TRUE); 4572 } 4573 4574 static void 4575 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4576 { 4577 avl_index_t index; 4578 4579 ASSERT(cp->cache_defrag != NULL); 4580 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4581 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4582 4583 mutex_enter(&cp->cache_lock); 4584 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4585 callback->kmm_from_buf, &index) != NULL); 4586 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4587 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4588 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4589 kmem_slab_t *sp; 4590 4591 /* 4592 * The last pending move completed. Release all slabs from the 4593 * front of the dead list except for any slab at the tail that 4594 * needs to be released from the context of kmem_move_buffers(). 4595 * kmem deferred unmapping the buffers on these slabs in order 4596 * to guarantee that buffers passed to the move callback have 4597 * been touched only by kmem or by the client itself. 4598 */ 4599 while ((sp = list_remove_head(deadlist)) != NULL) { 4600 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4601 list_insert_tail(deadlist, sp); 4602 break; 4603 } 4604 cp->cache_defrag->kmd_deadcount--; 4605 cp->cache_slab_destroy++; 4606 mutex_exit(&cp->cache_lock); 4607 kmem_slab_destroy(cp, sp); 4608 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4609 mutex_enter(&cp->cache_lock); 4610 } 4611 } 4612 mutex_exit(&cp->cache_lock); 4613 kmem_cache_free(kmem_move_cache, callback); 4614 } 4615 4616 /* 4617 * Move buffers from least used slabs first by scanning backwards from the end 4618 * of the partial slab list. Scan at most max_scan candidate slabs and move 4619 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4620 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4621 * skip slabs with a ratio of allocated buffers at or above the current 4622 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4623 * scan is aborted) so that the caller can adjust the reclaimability threshold 4624 * depending on how many reclaimable slabs it finds. 4625 * 4626 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4627 * move request, since it is not valid for kmem_move_begin() to call 4628 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4629 */ 4630 static int 4631 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4632 int flags) 4633 { 4634 kmem_slab_t *sp; 4635 void *buf; 4636 int i, j; /* slab index, buffer index */ 4637 int s; /* reclaimable slabs */ 4638 int b; /* allocated (movable) buffers on reclaimable slab */ 4639 boolean_t success; 4640 int refcnt; 4641 int nomove; 4642 4643 ASSERT(taskq_member(kmem_taskq, curthread)); 4644 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4645 ASSERT(kmem_move_cache != NULL); 4646 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4647 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4648 avl_numnodes(&cp->cache_partial_slabs) > 1); 4649 4650 if (kmem_move_blocked) { 4651 return (0); 4652 } 4653 4654 if (kmem_move_fulltilt) { 4655 flags |= KMM_DESPERATE; 4656 } 4657 4658 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4659 /* 4660 * Scan as many slabs as needed to find the desired number of 4661 * candidate slabs. 4662 */ 4663 max_scan = (size_t)-1; 4664 } 4665 4666 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4667 /* Find as many candidate slabs as possible. */ 4668 max_slabs = (size_t)-1; 4669 } 4670 4671 sp = avl_last(&cp->cache_partial_slabs); 4672 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 4673 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 4674 ((sp != avl_first(&cp->cache_partial_slabs)) || 4675 (flags & KMM_DEBUG)); 4676 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4677 4678 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4679 continue; 4680 } 4681 s++; 4682 4683 /* Look for allocated buffers to move. */ 4684 for (j = 0, b = 0, buf = sp->slab_base; 4685 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4686 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4687 4688 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4689 continue; 4690 } 4691 4692 b++; 4693 4694 /* 4695 * Prevent the slab from being destroyed while we drop 4696 * cache_lock and while the pending move is not yet 4697 * registered. Flag the pending move while 4698 * kmd_moves_pending may still be empty, since we can't 4699 * yet rely on a non-zero pending move count to prevent 4700 * the slab from being destroyed. 4701 */ 4702 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4703 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4704 /* 4705 * Recheck refcnt and nomove after reacquiring the lock, 4706 * since these control the order of partial slabs, and 4707 * we want to know if we can pick up the scan where we 4708 * left off. 4709 */ 4710 refcnt = sp->slab_refcnt; 4711 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 4712 mutex_exit(&cp->cache_lock); 4713 4714 success = kmem_move_begin(cp, sp, buf, flags); 4715 4716 /* 4717 * Now, before the lock is reacquired, kmem could 4718 * process all pending move requests and purge the 4719 * deadlist, so that upon reacquiring the lock, sp has 4720 * been remapped. Or, the client may free all the 4721 * objects on the slab while the pending moves are still 4722 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 4723 * flag causes the slab to be put at the end of the 4724 * deadlist and prevents it from being destroyed, since 4725 * we plan to destroy it here after reacquiring the 4726 * lock. 4727 */ 4728 mutex_enter(&cp->cache_lock); 4729 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4730 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4731 4732 if (sp->slab_refcnt == 0) { 4733 list_t *deadlist = 4734 &cp->cache_defrag->kmd_deadlist; 4735 list_remove(deadlist, sp); 4736 4737 if (!avl_is_empty( 4738 &cp->cache_defrag->kmd_moves_pending)) { 4739 /* 4740 * A pending move makes it unsafe to 4741 * destroy the slab, because even though 4742 * the move is no longer needed, the 4743 * context where that is determined 4744 * requires the slab to exist. 4745 * Fortunately, a pending move also 4746 * means we don't need to destroy the 4747 * slab here, since it will get 4748 * destroyed along with any other slabs 4749 * on the deadlist after the last 4750 * pending move completes. 4751 */ 4752 list_insert_head(deadlist, sp); 4753 KMEM_STAT_ADD(kmem_move_stats. 4754 kms_endscan_slab_dead); 4755 return (-1); 4756 } 4757 4758 /* 4759 * Destroy the slab now if it was completely 4760 * freed while we dropped cache_lock and there 4761 * are no pending moves. Since slab_refcnt 4762 * cannot change once it reaches zero, no new 4763 * pending moves from that slab are possible. 4764 */ 4765 cp->cache_defrag->kmd_deadcount--; 4766 cp->cache_slab_destroy++; 4767 mutex_exit(&cp->cache_lock); 4768 kmem_slab_destroy(cp, sp); 4769 KMEM_STAT_ADD(kmem_move_stats. 4770 kms_dead_slabs_freed); 4771 KMEM_STAT_ADD(kmem_move_stats. 4772 kms_endscan_slab_destroyed); 4773 mutex_enter(&cp->cache_lock); 4774 /* 4775 * Since we can't pick up the scan where we left 4776 * off, abort the scan and say nothing about the 4777 * number of reclaimable slabs. 4778 */ 4779 return (-1); 4780 } 4781 4782 if (!success) { 4783 /* 4784 * Abort the scan if there is not enough memory 4785 * for the request and say nothing about the 4786 * number of reclaimable slabs. 4787 */ 4788 KMEM_STAT_COND_ADD(s < max_slabs, 4789 kmem_move_stats.kms_endscan_nomem); 4790 return (-1); 4791 } 4792 4793 /* 4794 * The slab's position changed while the lock was 4795 * dropped, so we don't know where we are in the 4796 * sequence any more. 4797 */ 4798 if (sp->slab_refcnt != refcnt) { 4799 /* 4800 * If this is a KMM_DEBUG move, the slab_refcnt 4801 * may have changed because we allocated a 4802 * destination buffer on the same slab. In that 4803 * case, we're not interested in counting it. 4804 */ 4805 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 4806 (s < max_slabs), 4807 kmem_move_stats.kms_endscan_refcnt_changed); 4808 return (-1); 4809 } 4810 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 4811 KMEM_STAT_COND_ADD(s < max_slabs, 4812 kmem_move_stats.kms_endscan_nomove_changed); 4813 return (-1); 4814 } 4815 4816 /* 4817 * Generating a move request allocates a destination 4818 * buffer from the slab layer, bumping the first partial 4819 * slab if it is completely allocated. If the current 4820 * slab becomes the first partial slab as a result, we 4821 * can't continue to scan backwards. 4822 * 4823 * If this is a KMM_DEBUG move and we allocated the 4824 * destination buffer from the last partial slab, then 4825 * the buffer we're moving is on the same slab and our 4826 * slab_refcnt has changed, causing us to return before 4827 * reaching here if there are no partial slabs left. 4828 */ 4829 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 4830 if (sp == avl_first(&cp->cache_partial_slabs)) { 4831 /* 4832 * We're not interested in a second KMM_DEBUG 4833 * move. 4834 */ 4835 goto end_scan; 4836 } 4837 } 4838 } 4839 end_scan: 4840 4841 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 4842 (s < max_slabs) && 4843 (sp == avl_first(&cp->cache_partial_slabs)), 4844 kmem_move_stats.kms_endscan_freelist); 4845 4846 return (s); 4847 } 4848 4849 typedef struct kmem_move_notify_args { 4850 kmem_cache_t *kmna_cache; 4851 void *kmna_buf; 4852 } kmem_move_notify_args_t; 4853 4854 static void 4855 kmem_cache_move_notify_task(void *arg) 4856 { 4857 kmem_move_notify_args_t *args = arg; 4858 kmem_cache_t *cp = args->kmna_cache; 4859 void *buf = args->kmna_buf; 4860 kmem_slab_t *sp; 4861 4862 ASSERT(taskq_member(kmem_taskq, curthread)); 4863 ASSERT(list_link_active(&cp->cache_link)); 4864 4865 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4866 mutex_enter(&cp->cache_lock); 4867 sp = kmem_slab_allocated(cp, NULL, buf); 4868 4869 /* Ignore the notification if the buffer is no longer allocated. */ 4870 if (sp == NULL) { 4871 mutex_exit(&cp->cache_lock); 4872 return; 4873 } 4874 4875 /* Ignore the notification if there's no reason to move the buffer. */ 4876 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4877 /* 4878 * So far the notification is not ignored. Ignore the 4879 * notification if the slab is not marked by an earlier refusal 4880 * to move a buffer. 4881 */ 4882 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 4883 (sp->slab_later_count == 0)) { 4884 mutex_exit(&cp->cache_lock); 4885 return; 4886 } 4887 4888 kmem_slab_move_yes(cp, sp, buf); 4889 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4890 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4891 mutex_exit(&cp->cache_lock); 4892 /* see kmem_move_buffers() about dropping the lock */ 4893 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 4894 mutex_enter(&cp->cache_lock); 4895 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4896 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4897 if (sp->slab_refcnt == 0) { 4898 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4899 list_remove(deadlist, sp); 4900 4901 if (!avl_is_empty( 4902 &cp->cache_defrag->kmd_moves_pending)) { 4903 list_insert_head(deadlist, sp); 4904 mutex_exit(&cp->cache_lock); 4905 KMEM_STAT_ADD(kmem_move_stats. 4906 kms_notify_slab_dead); 4907 return; 4908 } 4909 4910 cp->cache_defrag->kmd_deadcount--; 4911 cp->cache_slab_destroy++; 4912 mutex_exit(&cp->cache_lock); 4913 kmem_slab_destroy(cp, sp); 4914 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4915 KMEM_STAT_ADD(kmem_move_stats. 4916 kms_notify_slab_destroyed); 4917 return; 4918 } 4919 } else { 4920 kmem_slab_move_yes(cp, sp, buf); 4921 } 4922 mutex_exit(&cp->cache_lock); 4923 } 4924 4925 void 4926 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 4927 { 4928 kmem_move_notify_args_t *args; 4929 4930 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 4931 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 4932 if (args != NULL) { 4933 args->kmna_cache = cp; 4934 args->kmna_buf = buf; 4935 if (!taskq_dispatch(kmem_taskq, 4936 (task_func_t *)kmem_cache_move_notify_task, args, 4937 TQ_NOSLEEP)) 4938 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4939 } 4940 } 4941 4942 static void 4943 kmem_cache_defrag(kmem_cache_t *cp) 4944 { 4945 size_t n; 4946 4947 ASSERT(cp->cache_defrag != NULL); 4948 4949 mutex_enter(&cp->cache_lock); 4950 n = avl_numnodes(&cp->cache_partial_slabs); 4951 if (n > 1) { 4952 /* kmem_move_buffers() drops and reacquires cache_lock */ 4953 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 4954 cp->cache_defrag->kmd_defrags++; 4955 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 4956 } 4957 mutex_exit(&cp->cache_lock); 4958 } 4959 4960 /* Is this cache above the fragmentation threshold? */ 4961 static boolean_t 4962 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 4963 { 4964 /* 4965 * nfree kmem_frag_numer 4966 * ------------------ > --------------- 4967 * cp->cache_buftotal kmem_frag_denom 4968 */ 4969 return ((nfree * kmem_frag_denom) > 4970 (cp->cache_buftotal * kmem_frag_numer)); 4971 } 4972 4973 static boolean_t 4974 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 4975 { 4976 boolean_t fragmented; 4977 uint64_t nfree; 4978 4979 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4980 *doreap = B_FALSE; 4981 4982 if (kmem_move_fulltilt) { 4983 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4984 return (B_TRUE); 4985 } 4986 } else { 4987 if ((cp->cache_complete_slab_count + avl_numnodes( 4988 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 4989 return (B_FALSE); 4990 } 4991 } 4992 4993 nfree = cp->cache_bufslab; 4994 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 4995 kmem_cache_frag_threshold(cp, nfree)); 4996 4997 /* 4998 * Free buffers in the magazine layer appear allocated from the point of 4999 * view of the slab layer. We want to know if the slab layer would 5000 * appear fragmented if we included free buffers from magazines that 5001 * have fallen out of the working set. 5002 */ 5003 if (!fragmented) { 5004 long reap; 5005 5006 mutex_enter(&cp->cache_depot_lock); 5007 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5008 reap = MIN(reap, cp->cache_full.ml_total); 5009 mutex_exit(&cp->cache_depot_lock); 5010 5011 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5012 if (kmem_cache_frag_threshold(cp, nfree)) { 5013 *doreap = B_TRUE; 5014 } 5015 } 5016 5017 return (fragmented); 5018 } 5019 5020 /* Called periodically from kmem_taskq */ 5021 static void 5022 kmem_cache_scan(kmem_cache_t *cp) 5023 { 5024 boolean_t reap = B_FALSE; 5025 kmem_defrag_t *kmd; 5026 5027 ASSERT(taskq_member(kmem_taskq, curthread)); 5028 5029 mutex_enter(&cp->cache_lock); 5030 5031 kmd = cp->cache_defrag; 5032 if (kmd->kmd_consolidate > 0) { 5033 kmd->kmd_consolidate--; 5034 mutex_exit(&cp->cache_lock); 5035 kmem_cache_reap(cp); 5036 return; 5037 } 5038 5039 if (kmem_cache_is_fragmented(cp, &reap)) { 5040 size_t slabs_found; 5041 5042 /* 5043 * Consolidate reclaimable slabs from the end of the partial 5044 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5045 * reclaimable slabs). Keep track of how many candidate slabs we 5046 * looked for and how many we actually found so we can adjust 5047 * the definition of a candidate slab if we're having trouble 5048 * finding them. 5049 * 5050 * kmem_move_buffers() drops and reacquires cache_lock. 5051 */ 5052 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5053 kmd->kmd_scans++; 5054 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5055 kmem_reclaim_max_slabs, 0); 5056 if (slabs_found >= 0) { 5057 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5058 kmd->kmd_slabs_found += slabs_found; 5059 } 5060 5061 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5062 kmd->kmd_tries = 0; 5063 5064 /* 5065 * If we had difficulty finding candidate slabs in 5066 * previous scans, adjust the threshold so that 5067 * candidates are easier to find. 5068 */ 5069 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5070 kmem_adjust_reclaim_threshold(kmd, -1); 5071 } else if ((kmd->kmd_slabs_found * 2) < 5072 kmd->kmd_slabs_sought) { 5073 kmem_adjust_reclaim_threshold(kmd, 1); 5074 } 5075 kmd->kmd_slabs_sought = 0; 5076 kmd->kmd_slabs_found = 0; 5077 } 5078 } else { 5079 kmem_reset_reclaim_threshold(cp->cache_defrag); 5080 #ifdef DEBUG 5081 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5082 /* 5083 * In a debug kernel we want the consolidator to 5084 * run occasionally even when there is plenty of 5085 * memory. 5086 */ 5087 uint16_t debug_rand; 5088 5089 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5090 if (!kmem_move_noreap && 5091 ((debug_rand % kmem_mtb_reap) == 0)) { 5092 mutex_exit(&cp->cache_lock); 5093 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 5094 kmem_cache_reap(cp); 5095 return; 5096 } else if ((debug_rand % kmem_mtb_move) == 0) { 5097 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5098 KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans); 5099 kmd->kmd_scans++; 5100 (void) kmem_move_buffers(cp, 5101 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5102 } 5103 } 5104 #endif /* DEBUG */ 5105 } 5106 5107 mutex_exit(&cp->cache_lock); 5108 5109 if (reap) { 5110 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 5111 kmem_depot_ws_reap(cp); 5112 } 5113 } 5114