xref: /titanic_41/usr/src/uts/common/os/kmem.c (revision eb697d4e197e82b849ffb581a10e573182a3143e)
17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate  * CDDL HEADER START
37c478bd9Sstevel@tonic-gate  *
47c478bd9Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
57d692464Sdp201428  * Common Development and Distribution License (the "License").
67d692464Sdp201428  * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate  *
87c478bd9Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate  * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate  * and limitations under the License.
127c478bd9Sstevel@tonic-gate  *
137c478bd9Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate  *
197c478bd9Sstevel@tonic-gate  * CDDL HEADER END
207c478bd9Sstevel@tonic-gate  */
217c478bd9Sstevel@tonic-gate /*
229f1b636aStomee  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
237c478bd9Sstevel@tonic-gate  * Use is subject to license terms.
247c478bd9Sstevel@tonic-gate  */
257c478bd9Sstevel@tonic-gate 
267c478bd9Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
277c478bd9Sstevel@tonic-gate 
287c478bd9Sstevel@tonic-gate /*
29b5fca8f8Stomee  * Kernel memory allocator, as described in the following two papers and a
30b5fca8f8Stomee  * statement about the consolidator:
317c478bd9Sstevel@tonic-gate  *
327c478bd9Sstevel@tonic-gate  * Jeff Bonwick,
337c478bd9Sstevel@tonic-gate  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
347c478bd9Sstevel@tonic-gate  * Proceedings of the Summer 1994 Usenix Conference.
357c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
367c478bd9Sstevel@tonic-gate  *
377c478bd9Sstevel@tonic-gate  * Jeff Bonwick and Jonathan Adams,
387c478bd9Sstevel@tonic-gate  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
397c478bd9Sstevel@tonic-gate  * Arbitrary Resources.
407c478bd9Sstevel@tonic-gate  * Proceedings of the 2001 Usenix Conference.
417c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42b5fca8f8Stomee  *
43b5fca8f8Stomee  * kmem Slab Consolidator Big Theory Statement:
44b5fca8f8Stomee  *
45b5fca8f8Stomee  * 1. Motivation
46b5fca8f8Stomee  *
47b5fca8f8Stomee  * As stated in Bonwick94, slabs provide the following advantages over other
48b5fca8f8Stomee  * allocation structures in terms of memory fragmentation:
49b5fca8f8Stomee  *
50b5fca8f8Stomee  *  - Internal fragmentation (per-buffer wasted space) is minimal.
51b5fca8f8Stomee  *  - Severe external fragmentation (unused buffers on the free list) is
52b5fca8f8Stomee  *    unlikely.
53b5fca8f8Stomee  *
54b5fca8f8Stomee  * Segregating objects by size eliminates one source of external fragmentation,
55b5fca8f8Stomee  * and according to Bonwick:
56b5fca8f8Stomee  *
57b5fca8f8Stomee  *   The other reason that slabs reduce external fragmentation is that all
58b5fca8f8Stomee  *   objects in a slab are of the same type, so they have the same lifetime
59b5fca8f8Stomee  *   distribution. The resulting segregation of short-lived and long-lived
60b5fca8f8Stomee  *   objects at slab granularity reduces the likelihood of an entire page being
61b5fca8f8Stomee  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62b5fca8f8Stomee  *
63b5fca8f8Stomee  * While unlikely, severe external fragmentation remains possible. Clients that
64b5fca8f8Stomee  * allocate both short- and long-lived objects from the same cache cannot
65b5fca8f8Stomee  * anticipate the distribution of long-lived objects within the allocator's slab
66b5fca8f8Stomee  * implementation. Even a small percentage of long-lived objects distributed
67b5fca8f8Stomee  * randomly across many slabs can lead to a worst case scenario where the client
68b5fca8f8Stomee  * frees the majority of its objects and the system gets back almost none of the
69b5fca8f8Stomee  * slabs. Despite the client doing what it reasonably can to help the system
70b5fca8f8Stomee  * reclaim memory, the allocator cannot shake free enough slabs because of
71b5fca8f8Stomee  * lonely allocations stubbornly hanging on. Although the allocator is in a
72b5fca8f8Stomee  * position to diagnose the fragmentation, there is nothing that the allocator
73b5fca8f8Stomee  * by itself can do about it. It only takes a single allocated object to prevent
74b5fca8f8Stomee  * an entire slab from being reclaimed, and any object handed out by
75b5fca8f8Stomee  * kmem_cache_alloc() is by definition in the client's control. Conversely,
76b5fca8f8Stomee  * although the client is in a position to move a long-lived object, it has no
77b5fca8f8Stomee  * way of knowing if the object is causing fragmentation, and if so, where to
78b5fca8f8Stomee  * move it. A solution necessarily requires further cooperation between the
79b5fca8f8Stomee  * allocator and the client.
80b5fca8f8Stomee  *
81b5fca8f8Stomee  * 2. Move Callback
82b5fca8f8Stomee  *
83b5fca8f8Stomee  * The kmem slab consolidator therefore adds a move callback to the
84b5fca8f8Stomee  * allocator/client interface, improving worst-case external fragmentation in
85b5fca8f8Stomee  * kmem caches that supply a function to move objects from one memory location
86b5fca8f8Stomee  * to another. In a situation of low memory kmem attempts to consolidate all of
87b5fca8f8Stomee  * a cache's slabs at once; otherwise it works slowly to bring external
88b5fca8f8Stomee  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
89b5fca8f8Stomee  * thereby helping to avoid a low memory situation in the future.
90b5fca8f8Stomee  *
91b5fca8f8Stomee  * The callback has the following signature:
92b5fca8f8Stomee  *
93b5fca8f8Stomee  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94b5fca8f8Stomee  *
95b5fca8f8Stomee  * It supplies the kmem client with two addresses: the allocated object that
96b5fca8f8Stomee  * kmem wants to move and a buffer selected by kmem for the client to use as the
97b5fca8f8Stomee  * copy destination. The callback is kmem's way of saying "Please get off of
98b5fca8f8Stomee  * this buffer and use this one instead." kmem knows where it wants to move the
99b5fca8f8Stomee  * object in order to best reduce fragmentation. All the client needs to know
100b5fca8f8Stomee  * about the second argument (void *new) is that it is an allocated, constructed
101b5fca8f8Stomee  * object ready to take the contents of the old object. When the move function
102b5fca8f8Stomee  * is called, the system is likely to be low on memory, and the new object
103b5fca8f8Stomee  * spares the client from having to worry about allocating memory for the
104b5fca8f8Stomee  * requested move. The third argument supplies the size of the object, in case a
105b5fca8f8Stomee  * single move function handles multiple caches whose objects differ only in
106b5fca8f8Stomee  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
107b5fca8f8Stomee  * user argument passed to the constructor, destructor, and reclaim functions is
108b5fca8f8Stomee  * also passed to the move callback.
109b5fca8f8Stomee  *
110b5fca8f8Stomee  * 2.1 Setting the Move Callback
111b5fca8f8Stomee  *
112b5fca8f8Stomee  * The client sets the move callback after creating the cache and before
113b5fca8f8Stomee  * allocating from it:
114b5fca8f8Stomee  *
115b5fca8f8Stomee  *	object_cache = kmem_cache_create(...);
116b5fca8f8Stomee  *      kmem_cache_set_move(object_cache, object_move);
117b5fca8f8Stomee  *
118b5fca8f8Stomee  * 2.2 Move Callback Return Values
119b5fca8f8Stomee  *
120b5fca8f8Stomee  * Only the client knows about its own data and when is a good time to move it.
121b5fca8f8Stomee  * The client is cooperating with kmem to return unused memory to the system,
122b5fca8f8Stomee  * and kmem respectfully accepts this help at the client's convenience. When
123b5fca8f8Stomee  * asked to move an object, the client can respond with any of the following:
124b5fca8f8Stomee  *
125b5fca8f8Stomee  *   typedef enum kmem_cbrc {
126b5fca8f8Stomee  *           KMEM_CBRC_YES,
127b5fca8f8Stomee  *           KMEM_CBRC_NO,
128b5fca8f8Stomee  *           KMEM_CBRC_LATER,
129b5fca8f8Stomee  *           KMEM_CBRC_DONT_NEED,
130b5fca8f8Stomee  *           KMEM_CBRC_DONT_KNOW
131b5fca8f8Stomee  *   } kmem_cbrc_t;
132b5fca8f8Stomee  *
133b5fca8f8Stomee  * The client must not explicitly kmem_cache_free() either of the objects passed
134b5fca8f8Stomee  * to the callback, since kmem wants to free them directly to the slab layer
135b5fca8f8Stomee  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
136b5fca8f8Stomee  * objects to free:
137b5fca8f8Stomee  *
138b5fca8f8Stomee  *       YES: (Did it) The client moved the object, so kmem frees the old one.
139b5fca8f8Stomee  *        NO: (Never) The client refused, so kmem frees the new object (the
140b5fca8f8Stomee  *            unused copy destination). kmem also marks the slab of the old
141b5fca8f8Stomee  *            object so as not to bother the client with further callbacks for
142b5fca8f8Stomee  *            that object as long as the slab remains on the partial slab list.
143b5fca8f8Stomee  *            (The system won't be getting the slab back as long as the
144b5fca8f8Stomee  *            immovable object holds it hostage, so there's no point in moving
145b5fca8f8Stomee  *            any of its objects.)
146b5fca8f8Stomee  *     LATER: The client is using the object and cannot move it now, so kmem
147b5fca8f8Stomee  *            frees the new object (the unused copy destination). kmem still
148b5fca8f8Stomee  *            attempts to move other objects off the slab, since it expects to
149b5fca8f8Stomee  *            succeed in clearing the slab in a later callback. The client
150b5fca8f8Stomee  *            should use LATER instead of NO if the object is likely to become
151b5fca8f8Stomee  *            movable very soon.
152b5fca8f8Stomee  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
153b5fca8f8Stomee  *            with the new object (the unused copy destination). This response
154b5fca8f8Stomee  *            is the client's opportunity to be a model citizen and give back as
155b5fca8f8Stomee  *            much as it can.
156b5fca8f8Stomee  * DONT_KNOW: The client does not know about the object because
157b5fca8f8Stomee  *            a) the client has just allocated the object and not yet put it
158b5fca8f8Stomee  *               wherever it expects to find known objects
159b5fca8f8Stomee  *            b) the client has removed the object from wherever it expects to
160b5fca8f8Stomee  *               find known objects and is about to free it, or
161b5fca8f8Stomee  *            c) the client has freed the object.
162b5fca8f8Stomee  *            In all these cases (a, b, and c) kmem frees the new object (the
163b5fca8f8Stomee  *            unused copy destination) and searches for the old object in the
164b5fca8f8Stomee  *            magazine layer. If found, the object is removed from the magazine
165b5fca8f8Stomee  *            layer and freed to the slab layer so it will no longer hold the
166b5fca8f8Stomee  *            slab hostage.
167b5fca8f8Stomee  *
168b5fca8f8Stomee  * 2.3 Object States
169b5fca8f8Stomee  *
170b5fca8f8Stomee  * Neither kmem nor the client can be assumed to know the object's whereabouts
171b5fca8f8Stomee  * at the time of the callback. An object belonging to a kmem cache may be in
172b5fca8f8Stomee  * any of the following states:
173b5fca8f8Stomee  *
174b5fca8f8Stomee  * 1. Uninitialized on the slab
175b5fca8f8Stomee  * 2. Allocated from the slab but not constructed (still uninitialized)
176b5fca8f8Stomee  * 3. Allocated from the slab, constructed, but not yet ready for business
177b5fca8f8Stomee  *    (not in a valid state for the move callback)
178b5fca8f8Stomee  * 4. In use (valid and known to the client)
179b5fca8f8Stomee  * 5. About to be freed (no longer in a valid state for the move callback)
180b5fca8f8Stomee  * 6. Freed to a magazine (still constructed)
181b5fca8f8Stomee  * 7. Allocated from a magazine, not yet ready for business (not in a valid
182b5fca8f8Stomee  *    state for the move callback), and about to return to state #4
183b5fca8f8Stomee  * 8. Deconstructed on a magazine that is about to be freed
184b5fca8f8Stomee  * 9. Freed to the slab
185b5fca8f8Stomee  *
186b5fca8f8Stomee  * Since the move callback may be called at any time while the object is in any
187b5fca8f8Stomee  * of the above states (except state #1), the client needs a safe way to
188b5fca8f8Stomee  * determine whether or not it knows about the object. Specifically, the client
189b5fca8f8Stomee  * needs to know whether or not the object is in state #4, the only state in
190b5fca8f8Stomee  * which a move is valid. If the object is in any other state, the client should
191b5fca8f8Stomee  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
192b5fca8f8Stomee  * the object's fields.
193b5fca8f8Stomee  *
194b5fca8f8Stomee  * Note that although an object may be in state #4 when kmem initiates the move
195b5fca8f8Stomee  * request, the object may no longer be in that state by the time kmem actually
196b5fca8f8Stomee  * calls the move function. Not only does the client free objects
197b5fca8f8Stomee  * asynchronously, kmem itself puts move requests on a queue where thay are
198b5fca8f8Stomee  * pending until kmem processes them from another context. Also, objects freed
199b5fca8f8Stomee  * to a magazine appear allocated from the point of view of the slab layer, so
200b5fca8f8Stomee  * kmem may even initiate requests for objects in a state other than state #4.
201b5fca8f8Stomee  *
202b5fca8f8Stomee  * 2.3.1 Magazine Layer
203b5fca8f8Stomee  *
204b5fca8f8Stomee  * An important insight revealed by the states listed above is that the magazine
205b5fca8f8Stomee  * layer is populated only by kmem_cache_free(). Magazines of constructed
206b5fca8f8Stomee  * objects are never populated directly from the slab layer (which contains raw,
207b5fca8f8Stomee  * unconstructed objects). Whenever an allocation request cannot be satisfied
208b5fca8f8Stomee  * from the magazine layer, the magazines are bypassed and the request is
209b5fca8f8Stomee  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
210b5fca8f8Stomee  * the object constructor only when allocating from the slab layer, and only in
211b5fca8f8Stomee  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
212b5fca8f8Stomee  * the move callback. kmem does not preconstruct objects in anticipation of
213b5fca8f8Stomee  * kmem_cache_alloc().
214b5fca8f8Stomee  *
215b5fca8f8Stomee  * 2.3.2 Object Constructor and Destructor
216b5fca8f8Stomee  *
217b5fca8f8Stomee  * If the client supplies a destructor, it must be valid to call the destructor
218b5fca8f8Stomee  * on a newly created object (immediately after the constructor).
219b5fca8f8Stomee  *
220b5fca8f8Stomee  * 2.4 Recognizing Known Objects
221b5fca8f8Stomee  *
222b5fca8f8Stomee  * There is a simple test to determine safely whether or not the client knows
223b5fca8f8Stomee  * about a given object in the move callback. It relies on the fact that kmem
224b5fca8f8Stomee  * guarantees that the object of the move callback has only been touched by the
225b5fca8f8Stomee  * client itself or else by kmem. kmem does this by ensuring that none of the
226b5fca8f8Stomee  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
227b5fca8f8Stomee  * callback is pending. When the last object on a slab is freed, if there is a
228b5fca8f8Stomee  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
229b5fca8f8Stomee  * slabs on that list until all pending callbacks are completed. That way,
230b5fca8f8Stomee  * clients can be certain that the object of a move callback is in one of the
231b5fca8f8Stomee  * states listed above, making it possible to distinguish known objects (in
232b5fca8f8Stomee  * state #4) using the two low order bits of any pointer member (with the
233b5fca8f8Stomee  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
234b5fca8f8Stomee  * platforms).
235b5fca8f8Stomee  *
236b5fca8f8Stomee  * The test works as long as the client always transitions objects from state #4
237b5fca8f8Stomee  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
238b5fca8f8Stomee  * order bit of the client-designated pointer member. Since kmem only writes
239b5fca8f8Stomee  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
240b5fca8f8Stomee  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
241b5fca8f8Stomee  * guaranteed to set at least one of the two low order bits. Therefore, given an
242b5fca8f8Stomee  * object with a back pointer to a 'container_t *o_container', the client can
243b5fca8f8Stomee  * test
244b5fca8f8Stomee  *
245b5fca8f8Stomee  *      container_t *container = object->o_container;
246b5fca8f8Stomee  *      if ((uintptr_t)container & 0x3) {
247b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
248b5fca8f8Stomee  *      }
249b5fca8f8Stomee  *
250b5fca8f8Stomee  * Typically, an object will have a pointer to some structure with a list or
251b5fca8f8Stomee  * hash where objects from the cache are kept while in use. Assuming that the
252b5fca8f8Stomee  * client has some way of knowing that the container structure is valid and will
253b5fca8f8Stomee  * not go away during the move, and assuming that the structure includes a lock
254b5fca8f8Stomee  * to protect whatever collection is used, then the client would continue as
255b5fca8f8Stomee  * follows:
256b5fca8f8Stomee  *
257b5fca8f8Stomee  *	// Ensure that the container structure does not go away.
258b5fca8f8Stomee  *      if (container_hold(container) == 0) {
259b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
260b5fca8f8Stomee  *      }
261b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
262b5fca8f8Stomee  *      if (container != object->o_container) {
263b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
264b5fca8f8Stomee  *              container_rele(container);
265b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
266b5fca8f8Stomee  *      }
267b5fca8f8Stomee  *
268b5fca8f8Stomee  * At this point the client knows that the object cannot be freed as long as
269b5fca8f8Stomee  * c_objects_lock is held. Note that after acquiring the lock, the client must
270b5fca8f8Stomee  * recheck the o_container pointer in case the object was removed just before
271b5fca8f8Stomee  * acquiring the lock.
272b5fca8f8Stomee  *
273b5fca8f8Stomee  * When the client is about to free an object, it must first remove that object
274b5fca8f8Stomee  * from the list, hash, or other structure where it is kept. At that time, to
275b5fca8f8Stomee  * mark the object so it can be distinguished from the remaining, known objects,
276b5fca8f8Stomee  * the client sets the designated low order bit:
277b5fca8f8Stomee  *
278b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
279b5fca8f8Stomee  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
280b5fca8f8Stomee  *      list_remove(&container->c_objects, object);
281b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
282b5fca8f8Stomee  *
283b5fca8f8Stomee  * In the common case, the object is freed to the magazine layer, where it may
284b5fca8f8Stomee  * be reused on a subsequent allocation without the overhead of calling the
285b5fca8f8Stomee  * constructor. While in the magazine it appears allocated from the point of
286b5fca8f8Stomee  * view of the slab layer, making it a candidate for the move callback. Most
287b5fca8f8Stomee  * objects unrecognized by the client in the move callback fall into this
288b5fca8f8Stomee  * category and are cheaply distinguished from known objects by the test
289b5fca8f8Stomee  * described earlier. Since recognition is cheap for the client, and searching
290b5fca8f8Stomee  * magazines is expensive for kmem, kmem defers searching until the client first
291b5fca8f8Stomee  * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
292b5fca8f8Stomee  * elsewhere does what it can to avoid bothering the client unnecessarily.
293b5fca8f8Stomee  *
294b5fca8f8Stomee  * Invalidating the designated pointer member before freeing the object marks
295b5fca8f8Stomee  * the object to be avoided in the callback, and conversely, assigning a valid
296b5fca8f8Stomee  * value to the designated pointer member after allocating the object makes the
297b5fca8f8Stomee  * object fair game for the callback:
298b5fca8f8Stomee  *
299b5fca8f8Stomee  *      ... allocate object ...
300b5fca8f8Stomee  *      ... set any initial state not set by the constructor ...
301b5fca8f8Stomee  *
302b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
303b5fca8f8Stomee  *      list_insert_tail(&container->c_objects, object);
304b5fca8f8Stomee  *      membar_producer();
305b5fca8f8Stomee  *      object->o_container = container;
306b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
307b5fca8f8Stomee  *
308b5fca8f8Stomee  * Note that everything else must be valid before setting o_container makes the
309b5fca8f8Stomee  * object fair game for the move callback. The membar_producer() call ensures
310b5fca8f8Stomee  * that all the object's state is written to memory before setting the pointer
311b5fca8f8Stomee  * that transitions the object from state #3 or #7 (allocated, constructed, not
312b5fca8f8Stomee  * yet in use) to state #4 (in use, valid). That's important because the move
313b5fca8f8Stomee  * function has to check the validity of the pointer before it can safely
314b5fca8f8Stomee  * acquire the lock protecting the collection where it expects to find known
315b5fca8f8Stomee  * objects.
316b5fca8f8Stomee  *
317b5fca8f8Stomee  * This method of distinguishing known objects observes the usual symmetry:
318b5fca8f8Stomee  * invalidating the designated pointer is the first thing the client does before
319b5fca8f8Stomee  * freeing the object, and setting the designated pointer is the last thing the
320b5fca8f8Stomee  * client does after allocating the object. Of course, the client is not
321b5fca8f8Stomee  * required to use this method. Fundamentally, how the client recognizes known
322b5fca8f8Stomee  * objects is completely up to the client, but this method is recommended as an
323b5fca8f8Stomee  * efficient and safe way to take advantage of the guarantees made by kmem. If
324b5fca8f8Stomee  * the entire object is arbitrary data without any markable bits from a suitable
325b5fca8f8Stomee  * pointer member, then the client must find some other method, such as
326b5fca8f8Stomee  * searching a hash table of known objects.
327b5fca8f8Stomee  *
328b5fca8f8Stomee  * 2.5 Preventing Objects From Moving
329b5fca8f8Stomee  *
330b5fca8f8Stomee  * Besides a way to distinguish known objects, the other thing that the client
331b5fca8f8Stomee  * needs is a strategy to ensure that an object will not move while the client
332b5fca8f8Stomee  * is actively using it. The details of satisfying this requirement tend to be
333b5fca8f8Stomee  * highly cache-specific. It might seem that the same rules that let a client
334b5fca8f8Stomee  * remove an object safely should also decide when an object can be moved
335b5fca8f8Stomee  * safely. However, any object state that makes a removal attempt invalid is
336b5fca8f8Stomee  * likely to be long-lasting for objects that the client does not expect to
337b5fca8f8Stomee  * remove. kmem knows nothing about the object state and is equally likely (from
338b5fca8f8Stomee  * the client's point of view) to request a move for any object in the cache,
339b5fca8f8Stomee  * whether prepared for removal or not. Even a low percentage of objects stuck
340b5fca8f8Stomee  * in place by unremovability will defeat the consolidator if the stuck objects
341b5fca8f8Stomee  * are the same long-lived allocations likely to hold slabs hostage.
342b5fca8f8Stomee  * Fundamentally, the consolidator is not aimed at common cases. Severe external
343b5fca8f8Stomee  * fragmentation is a worst case scenario manifested as sparsely allocated
344b5fca8f8Stomee  * slabs, by definition a low percentage of the cache's objects. When deciding
345b5fca8f8Stomee  * what makes an object movable, keep in mind the goal of the consolidator: to
346b5fca8f8Stomee  * bring worst-case external fragmentation within the limits guaranteed for
347b5fca8f8Stomee  * internal fragmentation. Removability is a poor criterion if it is likely to
348b5fca8f8Stomee  * exclude more than an insignificant percentage of objects for long periods of
349b5fca8f8Stomee  * time.
350b5fca8f8Stomee  *
351b5fca8f8Stomee  * A tricky general solution exists, and it has the advantage of letting you
352b5fca8f8Stomee  * move any object at almost any moment, practically eliminating the likelihood
353b5fca8f8Stomee  * that an object can hold a slab hostage. However, if there is a cache-specific
354b5fca8f8Stomee  * way to ensure that an object is not actively in use in the vast majority of
355b5fca8f8Stomee  * cases, a simpler solution that leverages this cache-specific knowledge is
356b5fca8f8Stomee  * preferred.
357b5fca8f8Stomee  *
358b5fca8f8Stomee  * 2.5.1 Cache-Specific Solution
359b5fca8f8Stomee  *
360b5fca8f8Stomee  * As an example of a cache-specific solution, the ZFS znode cache takes
361b5fca8f8Stomee  * advantage of the fact that the vast majority of znodes are only being
362b5fca8f8Stomee  * referenced from the DNLC. (A typical case might be a few hundred in active
363b5fca8f8Stomee  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
364b5fca8f8Stomee  * client has established that it recognizes the znode and can access its fields
365b5fca8f8Stomee  * safely (using the method described earlier), it then tests whether the znode
366b5fca8f8Stomee  * is referenced by anything other than the DNLC. If so, it assumes that the
367b5fca8f8Stomee  * znode may be in active use and is unsafe to move, so it drops its locks and
368b5fca8f8Stomee  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
369b5fca8f8Stomee  * else znodes are used, no change is needed to protect against the possibility
370b5fca8f8Stomee  * of the znode moving. The disadvantage is that it remains possible for an
371b5fca8f8Stomee  * application to hold a znode slab hostage with an open file descriptor.
372b5fca8f8Stomee  * However, this case ought to be rare and the consolidator has a way to deal
373b5fca8f8Stomee  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
374b5fca8f8Stomee  * object, kmem eventually stops believing it and treats the slab as if the
375b5fca8f8Stomee  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
376b5fca8f8Stomee  * then focus on getting it off of the partial slab list by allocating rather
377b5fca8f8Stomee  * than freeing all of its objects. (Either way of getting a slab off the
378b5fca8f8Stomee  * free list reduces fragmentation.)
379b5fca8f8Stomee  *
380b5fca8f8Stomee  * 2.5.2 General Solution
381b5fca8f8Stomee  *
382b5fca8f8Stomee  * The general solution, on the other hand, requires an explicit hold everywhere
383b5fca8f8Stomee  * the object is used to prevent it from moving. To keep the client locking
384b5fca8f8Stomee  * strategy as uncomplicated as possible, kmem guarantees the simplifying
385b5fca8f8Stomee  * assumption that move callbacks are sequential, even across multiple caches.
386b5fca8f8Stomee  * Internally, a global queue processed by a single thread supports all caches
387b5fca8f8Stomee  * implementing the callback function. No matter how many caches supply a move
388b5fca8f8Stomee  * function, the consolidator never moves more than one object at a time, so the
389b5fca8f8Stomee  * client does not have to worry about tricky lock ordering involving several
390b5fca8f8Stomee  * related objects from different kmem caches.
391b5fca8f8Stomee  *
392b5fca8f8Stomee  * The general solution implements the explicit hold as a read-write lock, which
393b5fca8f8Stomee  * allows multiple readers to access an object from the cache simultaneously
394b5fca8f8Stomee  * while a single writer is excluded from moving it. A single rwlock for the
395b5fca8f8Stomee  * entire cache would lock out all threads from using any of the cache's objects
396b5fca8f8Stomee  * even though only a single object is being moved, so to reduce contention,
397b5fca8f8Stomee  * the client can fan out the single rwlock into an array of rwlocks hashed by
398b5fca8f8Stomee  * the object address, making it probable that moving one object will not
399b5fca8f8Stomee  * prevent other threads from using a different object. The rwlock cannot be a
400b5fca8f8Stomee  * member of the object itself, because the possibility of the object moving
401b5fca8f8Stomee  * makes it unsafe to access any of the object's fields until the lock is
402b5fca8f8Stomee  * acquired.
403b5fca8f8Stomee  *
404b5fca8f8Stomee  * Assuming a small, fixed number of locks, it's possible that multiple objects
405b5fca8f8Stomee  * will hash to the same lock. A thread that needs to use multiple objects in
406b5fca8f8Stomee  * the same function may acquire the same lock multiple times. Since rwlocks are
407b5fca8f8Stomee  * reentrant for readers, and since there is never more than a single writer at
408b5fca8f8Stomee  * a time (assuming that the client acquires the lock as a writer only when
409b5fca8f8Stomee  * moving an object inside the callback), there would seem to be no problem.
410b5fca8f8Stomee  * However, a client locking multiple objects in the same function must handle
411b5fca8f8Stomee  * one case of potential deadlock: Assume that thread A needs to prevent both
412b5fca8f8Stomee  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
413b5fca8f8Stomee  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
414b5fca8f8Stomee  * same lock, that thread A will acquire the lock for object 1 as a reader
415b5fca8f8Stomee  * before thread B sets the lock's write-wanted bit, preventing thread A from
416b5fca8f8Stomee  * reacquiring the lock for object 2 as a reader. Unable to make forward
417b5fca8f8Stomee  * progress, thread A will never release the lock for object 1, resulting in
418b5fca8f8Stomee  * deadlock.
419b5fca8f8Stomee  *
420b5fca8f8Stomee  * There are two ways of avoiding the deadlock just described. The first is to
421b5fca8f8Stomee  * use rw_tryenter() rather than rw_enter() in the callback function when
422b5fca8f8Stomee  * attempting to acquire the lock as a writer. If tryenter discovers that the
423b5fca8f8Stomee  * same object (or another object hashed to the same lock) is already in use, it
424b5fca8f8Stomee  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
425b5fca8f8Stomee  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
426b5fca8f8Stomee  * since it allows a thread to acquire the lock as a reader in spite of a
427b5fca8f8Stomee  * waiting writer. This second approach insists on moving the object now, no
428b5fca8f8Stomee  * matter how many readers the move function must wait for in order to do so,
429b5fca8f8Stomee  * and could delay the completion of the callback indefinitely (blocking
430b5fca8f8Stomee  * callbacks to other clients). In practice, a less insistent callback using
431b5fca8f8Stomee  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
432b5fca8f8Stomee  * little reason to use anything else.
433b5fca8f8Stomee  *
434b5fca8f8Stomee  * Avoiding deadlock is not the only problem that an implementation using an
435b5fca8f8Stomee  * explicit hold needs to solve. Locking the object in the first place (to
436b5fca8f8Stomee  * prevent it from moving) remains a problem, since the object could move
437b5fca8f8Stomee  * between the time you obtain a pointer to the object and the time you acquire
438b5fca8f8Stomee  * the rwlock hashed to that pointer value. Therefore the client needs to
439b5fca8f8Stomee  * recheck the value of the pointer after acquiring the lock, drop the lock if
440b5fca8f8Stomee  * the value has changed, and try again. This requires a level of indirection:
441b5fca8f8Stomee  * something that points to the object rather than the object itself, that the
442b5fca8f8Stomee  * client can access safely while attempting to acquire the lock. (The object
443b5fca8f8Stomee  * itself cannot be referenced safely because it can move at any time.)
444b5fca8f8Stomee  * The following lock-acquisition function takes whatever is safe to reference
445b5fca8f8Stomee  * (arg), follows its pointer to the object (using function f), and tries as
446b5fca8f8Stomee  * often as necessary to acquire the hashed lock and verify that the object
447b5fca8f8Stomee  * still has not moved:
448b5fca8f8Stomee  *
449b5fca8f8Stomee  *      object_t *
450b5fca8f8Stomee  *      object_hold(object_f f, void *arg)
451b5fca8f8Stomee  *      {
452b5fca8f8Stomee  *              object_t *op;
453b5fca8f8Stomee  *
454b5fca8f8Stomee  *              op = f(arg);
455b5fca8f8Stomee  *              if (op == NULL) {
456b5fca8f8Stomee  *                      return (NULL);
457b5fca8f8Stomee  *              }
458b5fca8f8Stomee  *
459b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
460b5fca8f8Stomee  *              while (op != f(arg)) {
461b5fca8f8Stomee  *                      rw_exit(OBJECT_RWLOCK(op));
462b5fca8f8Stomee  *                      op = f(arg);
463b5fca8f8Stomee  *                      if (op == NULL) {
464b5fca8f8Stomee  *                              break;
465b5fca8f8Stomee  *                      }
466b5fca8f8Stomee  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
467b5fca8f8Stomee  *              }
468b5fca8f8Stomee  *
469b5fca8f8Stomee  *              return (op);
470b5fca8f8Stomee  *      }
471b5fca8f8Stomee  *
472b5fca8f8Stomee  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
473b5fca8f8Stomee  * lock reacquisition loop, while necessary, almost never executes. The function
474b5fca8f8Stomee  * pointer f (used to obtain the object pointer from arg) has the following type
475b5fca8f8Stomee  * definition:
476b5fca8f8Stomee  *
477b5fca8f8Stomee  *      typedef object_t *(*object_f)(void *arg);
478b5fca8f8Stomee  *
479b5fca8f8Stomee  * An object_f implementation is likely to be as simple as accessing a structure
480b5fca8f8Stomee  * member:
481b5fca8f8Stomee  *
482b5fca8f8Stomee  *      object_t *
483b5fca8f8Stomee  *      s_object(void *arg)
484b5fca8f8Stomee  *      {
485b5fca8f8Stomee  *              something_t *sp = arg;
486b5fca8f8Stomee  *              return (sp->s_object);
487b5fca8f8Stomee  *      }
488b5fca8f8Stomee  *
489b5fca8f8Stomee  * The flexibility of a function pointer allows the path to the object to be
490b5fca8f8Stomee  * arbitrarily complex and also supports the notion that depending on where you
491b5fca8f8Stomee  * are using the object, you may need to get it from someplace different.
492b5fca8f8Stomee  *
493b5fca8f8Stomee  * The function that releases the explicit hold is simpler because it does not
494b5fca8f8Stomee  * have to worry about the object moving:
495b5fca8f8Stomee  *
496b5fca8f8Stomee  *      void
497b5fca8f8Stomee  *      object_rele(object_t *op)
498b5fca8f8Stomee  *      {
499b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
500b5fca8f8Stomee  *      }
501b5fca8f8Stomee  *
502b5fca8f8Stomee  * The caller is spared these details so that obtaining and releasing an
503b5fca8f8Stomee  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
504b5fca8f8Stomee  * of object_hold() only needs to know that the returned object pointer is valid
505b5fca8f8Stomee  * if not NULL and that the object will not move until released.
506b5fca8f8Stomee  *
507b5fca8f8Stomee  * Although object_hold() prevents an object from moving, it does not prevent it
508b5fca8f8Stomee  * from being freed. The caller must take measures before calling object_hold()
509b5fca8f8Stomee  * (afterwards is too late) to ensure that the held object cannot be freed. The
510b5fca8f8Stomee  * caller must do so without accessing the unsafe object reference, so any lock
511b5fca8f8Stomee  * or reference count used to ensure the continued existence of the object must
512b5fca8f8Stomee  * live outside the object itself.
513b5fca8f8Stomee  *
514b5fca8f8Stomee  * Obtaining a new object is a special case where an explicit hold is impossible
515b5fca8f8Stomee  * for the caller. Any function that returns a newly allocated object (either as
516b5fca8f8Stomee  * a return value, or as an in-out paramter) must return it already held; after
517b5fca8f8Stomee  * the caller gets it is too late, since the object cannot be safely accessed
518b5fca8f8Stomee  * without the level of indirection described earlier. The following
519b5fca8f8Stomee  * object_alloc() example uses the same code shown earlier to transition a new
520b5fca8f8Stomee  * object into the state of being recognized (by the client) as a known object.
521b5fca8f8Stomee  * The function must acquire the hold (rw_enter) before that state transition
522b5fca8f8Stomee  * makes the object movable:
523b5fca8f8Stomee  *
524b5fca8f8Stomee  *      static object_t *
525b5fca8f8Stomee  *      object_alloc(container_t *container)
526b5fca8f8Stomee  *      {
527b5fca8f8Stomee  *              object_t *object = kmem_cache_create(object_cache, 0);
528b5fca8f8Stomee  *              ... set any initial state not set by the constructor ...
529b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
530b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
531b5fca8f8Stomee  *              list_insert_tail(&container->c_objects, object);
532b5fca8f8Stomee  *              membar_producer();
533b5fca8f8Stomee  *              object->o_container = container;
534b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
535b5fca8f8Stomee  *              return (object);
536b5fca8f8Stomee  *      }
537b5fca8f8Stomee  *
538b5fca8f8Stomee  * Functions that implicitly acquire an object hold (any function that calls
539b5fca8f8Stomee  * object_alloc() to supply an object for the caller) need to be carefully noted
540b5fca8f8Stomee  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
541b5fca8f8Stomee  * prevent all objects hashed to the affected rwlocks from ever being moved.
542b5fca8f8Stomee  *
543b5fca8f8Stomee  * The pointer to a held object can be hashed to the holding rwlock even after
544b5fca8f8Stomee  * the object has been freed. Although it is possible to release the hold
545b5fca8f8Stomee  * after freeing the object, you may decide to release the hold implicitly in
546b5fca8f8Stomee  * whatever function frees the object, so as to release the hold as soon as
547b5fca8f8Stomee  * possible, and for the sake of symmetry with the function that implicitly
548b5fca8f8Stomee  * acquires the hold when it allocates the object. Here, object_free() releases
549b5fca8f8Stomee  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
550b5fca8f8Stomee  * matching pair with object_hold():
551b5fca8f8Stomee  *
552b5fca8f8Stomee  *      void
553b5fca8f8Stomee  *      object_free(object_t *object)
554b5fca8f8Stomee  *      {
555b5fca8f8Stomee  *              container_t *container;
556b5fca8f8Stomee  *
557b5fca8f8Stomee  *              ASSERT(object_held(object));
558b5fca8f8Stomee  *              container = object->o_container;
559b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
560b5fca8f8Stomee  *              object->o_container =
561b5fca8f8Stomee  *                  (void *)((uintptr_t)object->o_container | 0x1);
562b5fca8f8Stomee  *              list_remove(&container->c_objects, object);
563b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
564b5fca8f8Stomee  *              object_rele(object);
565b5fca8f8Stomee  *              kmem_cache_free(object_cache, object);
566b5fca8f8Stomee  *      }
567b5fca8f8Stomee  *
568b5fca8f8Stomee  * Note that object_free() cannot safely accept an object pointer as an argument
569b5fca8f8Stomee  * unless the object is already held. Any function that calls object_free()
570b5fca8f8Stomee  * needs to be carefully noted since it similarly forms a matching pair with
571b5fca8f8Stomee  * object_hold().
572b5fca8f8Stomee  *
573b5fca8f8Stomee  * To complete the picture, the following callback function implements the
574b5fca8f8Stomee  * general solution by moving objects only if they are currently unheld:
575b5fca8f8Stomee  *
576b5fca8f8Stomee  *      static kmem_cbrc_t
577b5fca8f8Stomee  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
578b5fca8f8Stomee  *      {
579b5fca8f8Stomee  *              object_t *op = buf, *np = newbuf;
580b5fca8f8Stomee  *              container_t *container;
581b5fca8f8Stomee  *
582b5fca8f8Stomee  *              container = op->o_container;
583b5fca8f8Stomee  *              if ((uintptr_t)container & 0x3) {
584b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
585b5fca8f8Stomee  *              }
586b5fca8f8Stomee  *
587b5fca8f8Stomee  *	        // Ensure that the container structure does not go away.
588b5fca8f8Stomee  *              if (container_hold(container) == 0) {
589b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
590b5fca8f8Stomee  *              }
591b5fca8f8Stomee  *
592b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
593b5fca8f8Stomee  *              if (container != op->o_container) {
594b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
595b5fca8f8Stomee  *                      container_rele(container);
596b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
597b5fca8f8Stomee  *              }
598b5fca8f8Stomee  *
599b5fca8f8Stomee  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
600b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
601b5fca8f8Stomee  *                      container_rele(container);
602b5fca8f8Stomee  *                      return (KMEM_CBRC_LATER);
603b5fca8f8Stomee  *              }
604b5fca8f8Stomee  *
605b5fca8f8Stomee  *              object_move_impl(op, np); // critical section
606b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
607b5fca8f8Stomee  *
608b5fca8f8Stomee  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
609b5fca8f8Stomee  *              list_link_replace(&op->o_link_node, &np->o_link_node);
610b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
611b5fca8f8Stomee  *              container_rele(container);
612b5fca8f8Stomee  *              return (KMEM_CBRC_YES);
613b5fca8f8Stomee  *      }
614b5fca8f8Stomee  *
615b5fca8f8Stomee  * Note that object_move() must invalidate the designated o_container pointer of
616b5fca8f8Stomee  * the old object in the same way that object_free() does, since kmem will free
617b5fca8f8Stomee  * the object in response to the KMEM_CBRC_YES return value.
618b5fca8f8Stomee  *
619b5fca8f8Stomee  * The lock order in object_move() differs from object_alloc(), which locks
620b5fca8f8Stomee  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
621b5fca8f8Stomee  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
622b5fca8f8Stomee  * not a problem. Holding the lock on the object list in the example above
623b5fca8f8Stomee  * through the entire callback not only prevents the object from going away, it
624b5fca8f8Stomee  * also allows you to lock the list elsewhere and know that none of its elements
625b5fca8f8Stomee  * will move during iteration.
626b5fca8f8Stomee  *
627b5fca8f8Stomee  * Adding an explicit hold everywhere an object from the cache is used is tricky
628b5fca8f8Stomee  * and involves much more change to client code than a cache-specific solution
629b5fca8f8Stomee  * that leverages existing state to decide whether or not an object is
630b5fca8f8Stomee  * movable. However, this approach has the advantage that no object remains
631b5fca8f8Stomee  * immovable for any significant length of time, making it extremely unlikely
632b5fca8f8Stomee  * that long-lived allocations can continue holding slabs hostage; and it works
633b5fca8f8Stomee  * for any cache.
634b5fca8f8Stomee  *
635b5fca8f8Stomee  * 3. Consolidator Implementation
636b5fca8f8Stomee  *
637b5fca8f8Stomee  * Once the client supplies a move function that a) recognizes known objects and
638b5fca8f8Stomee  * b) avoids moving objects that are actively in use, the remaining work is up
639b5fca8f8Stomee  * to the consolidator to decide which objects to move and when to issue
640b5fca8f8Stomee  * callbacks.
641b5fca8f8Stomee  *
642b5fca8f8Stomee  * The consolidator relies on the fact that a cache's slabs are ordered by
643b5fca8f8Stomee  * usage. Each slab has a fixed number of objects. Depending on the slab's
644b5fca8f8Stomee  * "color" (the offset of the first object from the beginning of the slab;
645b5fca8f8Stomee  * offsets are staggered to mitigate false sharing of cache lines) it is either
646b5fca8f8Stomee  * the maximum number of objects per slab determined at cache creation time or
647b5fca8f8Stomee  * else the number closest to the maximum that fits within the space remaining
648b5fca8f8Stomee  * after the initial offset. A completely allocated slab may contribute some
649b5fca8f8Stomee  * internal fragmentation (per-slab overhead) but no external fragmentation, so
650b5fca8f8Stomee  * it is of no interest to the consolidator. At the other extreme, slabs whose
651b5fca8f8Stomee  * objects have all been freed to the slab are released to the virtual memory
652b5fca8f8Stomee  * (VM) subsystem (objects freed to magazines are still allocated as far as the
653b5fca8f8Stomee  * slab is concerned). External fragmentation exists when there are slabs
654b5fca8f8Stomee  * somewhere between these extremes. A partial slab has at least one but not all
655b5fca8f8Stomee  * of its objects allocated. The more partial slabs, and the fewer allocated
656b5fca8f8Stomee  * objects on each of them, the higher the fragmentation. Hence the
657b5fca8f8Stomee  * consolidator's overall strategy is to reduce the number of partial slabs by
658b5fca8f8Stomee  * moving allocated objects from the least allocated slabs to the most allocated
659b5fca8f8Stomee  * slabs.
660b5fca8f8Stomee  *
661b5fca8f8Stomee  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
662b5fca8f8Stomee  * slabs are kept separately in an unordered list. Since the majority of slabs
663b5fca8f8Stomee  * tend to be completely allocated (a typical unfragmented cache may have
664b5fca8f8Stomee  * thousands of complete slabs and only a single partial slab), separating
665b5fca8f8Stomee  * complete slabs improves the efficiency of partial slab ordering, since the
666b5fca8f8Stomee  * complete slabs do not affect the depth or balance of the AVL tree. This
667b5fca8f8Stomee  * ordered sequence of partial slabs acts as a "free list" supplying objects for
668b5fca8f8Stomee  * allocation requests.
669b5fca8f8Stomee  *
670b5fca8f8Stomee  * Objects are always allocated from the first partial slab in the free list,
671b5fca8f8Stomee  * where the allocation is most likely to eliminate a partial slab (by
672b5fca8f8Stomee  * completely allocating it). Conversely, when a single object from a completely
673b5fca8f8Stomee  * allocated slab is freed to the slab, that slab is added to the front of the
674b5fca8f8Stomee  * free list. Since most free list activity involves highly allocated slabs
675b5fca8f8Stomee  * coming and going at the front of the list, slabs tend naturally toward the
676b5fca8f8Stomee  * ideal order: highly allocated at the front, sparsely allocated at the back.
677b5fca8f8Stomee  * Slabs with few allocated objects are likely to become completely free if they
678b5fca8f8Stomee  * keep a safe distance away from the front of the free list. Slab misorders
679b5fca8f8Stomee  * interfere with the natural tendency of slabs to become completely free or
680b5fca8f8Stomee  * completely allocated. For example, a slab with a single allocated object
681b5fca8f8Stomee  * needs only a single free to escape the cache; its natural desire is
682b5fca8f8Stomee  * frustrated when it finds itself at the front of the list where a second
683b5fca8f8Stomee  * allocation happens just before the free could have released it. Another slab
684b5fca8f8Stomee  * with all but one object allocated might have supplied the buffer instead, so
685b5fca8f8Stomee  * that both (as opposed to neither) of the slabs would have been taken off the
686b5fca8f8Stomee  * free list.
687b5fca8f8Stomee  *
688b5fca8f8Stomee  * Although slabs tend naturally toward the ideal order, misorders allowed by a
689b5fca8f8Stomee  * simple list implementation defeat the consolidator's strategy of merging
690b5fca8f8Stomee  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
691b5fca8f8Stomee  * needs another way to fix misorders to optimize its callback strategy. One
692b5fca8f8Stomee  * approach is to periodically scan a limited number of slabs, advancing a
693b5fca8f8Stomee  * marker to hold the current scan position, and to move extreme misorders to
694b5fca8f8Stomee  * the front or back of the free list and to the front or back of the current
695b5fca8f8Stomee  * scan range. By making consecutive scan ranges overlap by one slab, the least
696b5fca8f8Stomee  * allocated slab in the current range can be carried along from the end of one
697b5fca8f8Stomee  * scan to the start of the next.
698b5fca8f8Stomee  *
699b5fca8f8Stomee  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
700b5fca8f8Stomee  * task, however. Since most of the cache's activity is in the magazine layer,
701b5fca8f8Stomee  * and allocations from the slab layer represent only a startup cost, the
702b5fca8f8Stomee  * overhead of maintaining a balanced tree is not a significant concern compared
703b5fca8f8Stomee  * to the opportunity of reducing complexity by eliminating the partial slab
704b5fca8f8Stomee  * scanner just described. The overhead of an AVL tree is minimized by
705b5fca8f8Stomee  * maintaining only partial slabs in the tree and keeping completely allocated
706b5fca8f8Stomee  * slabs separately in a list. To avoid increasing the size of the slab
707b5fca8f8Stomee  * structure the AVL linkage pointers are reused for the slab's list linkage,
708b5fca8f8Stomee  * since the slab will always be either partial or complete, never stored both
709b5fca8f8Stomee  * ways at the same time. To further minimize the overhead of the AVL tree the
710b5fca8f8Stomee  * compare function that orders partial slabs by usage divides the range of
711b5fca8f8Stomee  * allocated object counts into bins such that counts within the same bin are
712b5fca8f8Stomee  * considered equal. Binning partial slabs makes it less likely that allocating
713b5fca8f8Stomee  * or freeing a single object will change the slab's order, requiring a tree
714b5fca8f8Stomee  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
715b5fca8f8Stomee  * requiring some rebalancing of the tree). Allocation counts closest to
716b5fca8f8Stomee  * completely free and completely allocated are left unbinned (finely sorted) to
717b5fca8f8Stomee  * better support the consolidator's strategy of merging slabs at either
718b5fca8f8Stomee  * extreme.
719b5fca8f8Stomee  *
720b5fca8f8Stomee  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
721b5fca8f8Stomee  *
722b5fca8f8Stomee  * The consolidator piggybacks on the kmem maintenance thread and is called on
723b5fca8f8Stomee  * the same interval as kmem_cache_update(), once per cache every fifteen
724b5fca8f8Stomee  * seconds. kmem maintains a running count of unallocated objects in the slab
725b5fca8f8Stomee  * layer (cache_bufslab). The consolidator checks whether that number exceeds
726b5fca8f8Stomee  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
727b5fca8f8Stomee  * there is a significant number of slabs in the cache (arbitrarily a minimum
728b5fca8f8Stomee  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
729b5fca8f8Stomee  * working set are included in the assessment, and magazines in the depot are
730b5fca8f8Stomee  * reaped if those objects would lift cache_bufslab above the fragmentation
731b5fca8f8Stomee  * threshold. Once the consolidator decides that a cache is fragmented, it looks
732b5fca8f8Stomee  * for a candidate slab to reclaim, starting at the end of the partial slab free
733b5fca8f8Stomee  * list and scanning backwards. At first the consolidator is choosy: only a slab
734b5fca8f8Stomee  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
735b5fca8f8Stomee  * single allocated object, regardless of percentage). If there is difficulty
736b5fca8f8Stomee  * finding a candidate slab, kmem raises the allocation threshold incrementally,
737b5fca8f8Stomee  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
738b5fca8f8Stomee  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
739b5fca8f8Stomee  * even in the worst case of every slab in the cache being almost 7/8 allocated.
740b5fca8f8Stomee  * The threshold can also be lowered incrementally when candidate slabs are easy
741b5fca8f8Stomee  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
742b5fca8f8Stomee  * is no longer fragmented.
743b5fca8f8Stomee  *
744b5fca8f8Stomee  * 3.2 Generating Callbacks
745b5fca8f8Stomee  *
746b5fca8f8Stomee  * Once an eligible slab is chosen, a callback is generated for every allocated
747b5fca8f8Stomee  * object on the slab, in the hope that the client will move everything off the
748b5fca8f8Stomee  * slab and make it reclaimable. Objects selected as move destinations are
749b5fca8f8Stomee  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
750b5fca8f8Stomee  * order (most allocated at the front, least allocated at the back) and a
751b5fca8f8Stomee  * cooperative client, the consolidator will succeed in removing slabs from both
752b5fca8f8Stomee  * ends of the free list, completely allocating on the one hand and completely
753b5fca8f8Stomee  * freeing on the other. Objects selected as move destinations are allocated in
754b5fca8f8Stomee  * the kmem maintenance thread where move requests are enqueued. A separate
755b5fca8f8Stomee  * callback thread removes pending callbacks from the queue and calls the
756b5fca8f8Stomee  * client. The separate thread ensures that client code (the move function) does
757b5fca8f8Stomee  * not interfere with internal kmem maintenance tasks. A map of pending
758b5fca8f8Stomee  * callbacks keyed by object address (the object to be moved) is checked to
759b5fca8f8Stomee  * ensure that duplicate callbacks are not generated for the same object.
760b5fca8f8Stomee  * Allocating the move destination (the object to move to) prevents subsequent
761b5fca8f8Stomee  * callbacks from selecting the same destination as an earlier pending callback.
762b5fca8f8Stomee  *
763b5fca8f8Stomee  * Move requests can also be generated by kmem_cache_reap() when the system is
764b5fca8f8Stomee  * desperate for memory and by kmem_cache_move_notify(), called by the client to
765b5fca8f8Stomee  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
766b5fca8f8Stomee  * The map of pending callbacks is protected by the same lock that protects the
767b5fca8f8Stomee  * slab layer.
768b5fca8f8Stomee  *
769b5fca8f8Stomee  * When the system is desperate for memory, kmem does not bother to determine
770b5fca8f8Stomee  * whether or not the cache exceeds the fragmentation threshold, but tries to
771b5fca8f8Stomee  * consolidate as many slabs as possible. Normally, the consolidator chews
772b5fca8f8Stomee  * slowly, one sparsely allocated slab at a time during each maintenance
773b5fca8f8Stomee  * interval that the cache is fragmented. When desperate, the consolidator
774b5fca8f8Stomee  * starts at the last partial slab and enqueues callbacks for every allocated
775b5fca8f8Stomee  * object on every partial slab, working backwards until it reaches the first
776b5fca8f8Stomee  * partial slab. The first partial slab, meanwhile, advances in pace with the
777b5fca8f8Stomee  * consolidator as allocations to supply move destinations for the enqueued
778b5fca8f8Stomee  * callbacks use up the highly allocated slabs at the front of the free list.
779b5fca8f8Stomee  * Ideally, the overgrown free list collapses like an accordion, starting at
780b5fca8f8Stomee  * both ends and ending at the center with a single partial slab.
781b5fca8f8Stomee  *
782b5fca8f8Stomee  * 3.3 Client Responses
783b5fca8f8Stomee  *
784b5fca8f8Stomee  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
785b5fca8f8Stomee  * marks the slab that supplied the stuck object non-reclaimable and moves it to
786b5fca8f8Stomee  * front of the free list. The slab remains marked as long as it remains on the
787b5fca8f8Stomee  * free list, and it appears more allocated to the partial slab compare function
788b5fca8f8Stomee  * than any unmarked slab, no matter how many of its objects are allocated.
789b5fca8f8Stomee  * Since even one immovable object ties up the entire slab, the goal is to
790b5fca8f8Stomee  * completely allocate any slab that cannot be completely freed. kmem does not
791b5fca8f8Stomee  * bother generating callbacks to move objects from a marked slab unless the
792b5fca8f8Stomee  * system is desperate.
793b5fca8f8Stomee  *
794b5fca8f8Stomee  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
795b5fca8f8Stomee  * slab. If the client responds LATER too many times, kmem disbelieves and
796b5fca8f8Stomee  * treats the response as a NO. The count is cleared when the slab is taken off
797b5fca8f8Stomee  * the partial slab list or when the client moves one of the slab's objects.
798b5fca8f8Stomee  *
799b5fca8f8Stomee  * 4. Observability
800b5fca8f8Stomee  *
801b5fca8f8Stomee  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
802b5fca8f8Stomee  * the ::kmem_slabs dcmd. For a complete description of the command, enter
803b5fca8f8Stomee  * '::help kmem_slabs' at the mdb prompt.
8047c478bd9Sstevel@tonic-gate  */
8057c478bd9Sstevel@tonic-gate 
8067c478bd9Sstevel@tonic-gate #include <sys/kmem_impl.h>
8077c478bd9Sstevel@tonic-gate #include <sys/vmem_impl.h>
8087c478bd9Sstevel@tonic-gate #include <sys/param.h>
8097c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h>
8107c478bd9Sstevel@tonic-gate #include <sys/vm.h>
8117c478bd9Sstevel@tonic-gate #include <sys/proc.h>
8127c478bd9Sstevel@tonic-gate #include <sys/tuneable.h>
8137c478bd9Sstevel@tonic-gate #include <sys/systm.h>
8147c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
8157c478bd9Sstevel@tonic-gate #include <sys/debug.h>
816b5fca8f8Stomee #include <sys/sdt.h>
8177c478bd9Sstevel@tonic-gate #include <sys/mutex.h>
8187c478bd9Sstevel@tonic-gate #include <sys/bitmap.h>
8197c478bd9Sstevel@tonic-gate #include <sys/atomic.h>
8207c478bd9Sstevel@tonic-gate #include <sys/kobj.h>
8217c478bd9Sstevel@tonic-gate #include <sys/disp.h>
8227c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h>
8237c478bd9Sstevel@tonic-gate #include <sys/log.h>
8247c478bd9Sstevel@tonic-gate #include <sys/callb.h>
8257c478bd9Sstevel@tonic-gate #include <sys/taskq.h>
8267c478bd9Sstevel@tonic-gate #include <sys/modctl.h>
8277c478bd9Sstevel@tonic-gate #include <sys/reboot.h>
8287c478bd9Sstevel@tonic-gate #include <sys/id32.h>
8297c478bd9Sstevel@tonic-gate #include <sys/zone.h>
830f4b3ec61Sdh155122 #include <sys/netstack.h>
831b5fca8f8Stomee #ifdef	DEBUG
832b5fca8f8Stomee #include <sys/random.h>
833b5fca8f8Stomee #endif
8347c478bd9Sstevel@tonic-gate 
8357c478bd9Sstevel@tonic-gate extern void streams_msg_init(void);
8367c478bd9Sstevel@tonic-gate extern int segkp_fromheap;
8377c478bd9Sstevel@tonic-gate extern void segkp_cache_free(void);
8387c478bd9Sstevel@tonic-gate 
8397c478bd9Sstevel@tonic-gate struct kmem_cache_kstat {
8407c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_size;
8417c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_align;
8427c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_chunk_size;
8437c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_size;
8447c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc;
8457c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc_fail;
8467c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_free;
8477c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_alloc;
8487c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_free;
8497c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_contention;
8507c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_alloc;
8517c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_free;
8527c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_constructed;
8537c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_avail;
8547c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_inuse;
8557c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_total;
8567c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_max;
8577c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_create;
8587c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_destroy;
8597c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_vmem_source;
8607c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_size;
8617c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_lookup_depth;
8627c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_rescale;
8637c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_full_magazines;
8647c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_empty_magazines;
8657c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_magazine_size;
866b5fca8f8Stomee 	kstat_named_t	kmc_move_callbacks;
867b5fca8f8Stomee 	kstat_named_t	kmc_move_yes;
868b5fca8f8Stomee 	kstat_named_t	kmc_move_no;
869b5fca8f8Stomee 	kstat_named_t	kmc_move_later;
870b5fca8f8Stomee 	kstat_named_t	kmc_move_dont_need;
871b5fca8f8Stomee 	kstat_named_t	kmc_move_dont_know;
872b5fca8f8Stomee 	kstat_named_t	kmc_move_hunt_found;
8737c478bd9Sstevel@tonic-gate } kmem_cache_kstat = {
8747c478bd9Sstevel@tonic-gate 	{ "buf_size",		KSTAT_DATA_UINT64 },
8757c478bd9Sstevel@tonic-gate 	{ "align",		KSTAT_DATA_UINT64 },
8767c478bd9Sstevel@tonic-gate 	{ "chunk_size",		KSTAT_DATA_UINT64 },
8777c478bd9Sstevel@tonic-gate 	{ "slab_size",		KSTAT_DATA_UINT64 },
8787c478bd9Sstevel@tonic-gate 	{ "alloc",		KSTAT_DATA_UINT64 },
8797c478bd9Sstevel@tonic-gate 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
8807c478bd9Sstevel@tonic-gate 	{ "free",		KSTAT_DATA_UINT64 },
8817c478bd9Sstevel@tonic-gate 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
8827c478bd9Sstevel@tonic-gate 	{ "depot_free",		KSTAT_DATA_UINT64 },
8837c478bd9Sstevel@tonic-gate 	{ "depot_contention",	KSTAT_DATA_UINT64 },
8847c478bd9Sstevel@tonic-gate 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
8857c478bd9Sstevel@tonic-gate 	{ "slab_free",		KSTAT_DATA_UINT64 },
8867c478bd9Sstevel@tonic-gate 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
8877c478bd9Sstevel@tonic-gate 	{ "buf_avail",		KSTAT_DATA_UINT64 },
8887c478bd9Sstevel@tonic-gate 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
8897c478bd9Sstevel@tonic-gate 	{ "buf_total",		KSTAT_DATA_UINT64 },
8907c478bd9Sstevel@tonic-gate 	{ "buf_max",		KSTAT_DATA_UINT64 },
8917c478bd9Sstevel@tonic-gate 	{ "slab_create",	KSTAT_DATA_UINT64 },
8927c478bd9Sstevel@tonic-gate 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
8937c478bd9Sstevel@tonic-gate 	{ "vmem_source",	KSTAT_DATA_UINT64 },
8947c478bd9Sstevel@tonic-gate 	{ "hash_size",		KSTAT_DATA_UINT64 },
8957c478bd9Sstevel@tonic-gate 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
8967c478bd9Sstevel@tonic-gate 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
8977c478bd9Sstevel@tonic-gate 	{ "full_magazines",	KSTAT_DATA_UINT64 },
8987c478bd9Sstevel@tonic-gate 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
8997c478bd9Sstevel@tonic-gate 	{ "magazine_size",	KSTAT_DATA_UINT64 },
900b5fca8f8Stomee 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
901b5fca8f8Stomee 	{ "move_yes",		KSTAT_DATA_UINT64 },
902b5fca8f8Stomee 	{ "move_no",		KSTAT_DATA_UINT64 },
903b5fca8f8Stomee 	{ "move_later",		KSTAT_DATA_UINT64 },
904b5fca8f8Stomee 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
905b5fca8f8Stomee 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
906b5fca8f8Stomee 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
9077c478bd9Sstevel@tonic-gate };
9087c478bd9Sstevel@tonic-gate 
9097c478bd9Sstevel@tonic-gate static kmutex_t kmem_cache_kstat_lock;
9107c478bd9Sstevel@tonic-gate 
9117c478bd9Sstevel@tonic-gate /*
9127c478bd9Sstevel@tonic-gate  * The default set of caches to back kmem_alloc().
9137c478bd9Sstevel@tonic-gate  * These sizes should be reevaluated periodically.
9147c478bd9Sstevel@tonic-gate  *
9157c478bd9Sstevel@tonic-gate  * We want allocations that are multiples of the coherency granularity
9167c478bd9Sstevel@tonic-gate  * (64 bytes) to be satisfied from a cache which is a multiple of 64
9177c478bd9Sstevel@tonic-gate  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
9187c478bd9Sstevel@tonic-gate  * the next kmem_cache_size greater than or equal to it must be a
9197c478bd9Sstevel@tonic-gate  * multiple of 64.
9207c478bd9Sstevel@tonic-gate  */
9217c478bd9Sstevel@tonic-gate static const int kmem_alloc_sizes[] = {
9227c478bd9Sstevel@tonic-gate 	1 * 8,
9237c478bd9Sstevel@tonic-gate 	2 * 8,
9247c478bd9Sstevel@tonic-gate 	3 * 8,
9257c478bd9Sstevel@tonic-gate 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
9267c478bd9Sstevel@tonic-gate 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
9277c478bd9Sstevel@tonic-gate 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
9287c478bd9Sstevel@tonic-gate 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
9297c478bd9Sstevel@tonic-gate 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
9307c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 7, 64),
9317c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 6, 64),
9327c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 5, 64),
9337c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 4, 64),
9347c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 3, 64),
9357c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 2, 64),
9367c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 1, 64),
9377c478bd9Sstevel@tonic-gate 	4096 * 3,
9387c478bd9Sstevel@tonic-gate 	8192 * 2,
939ad23a2dbSjohansen 	8192 * 3,
940ad23a2dbSjohansen 	8192 * 4,
9417c478bd9Sstevel@tonic-gate };
9427c478bd9Sstevel@tonic-gate 
943ad23a2dbSjohansen #define	KMEM_MAXBUF	32768
9447c478bd9Sstevel@tonic-gate 
9457c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
9467c478bd9Sstevel@tonic-gate 
9477c478bd9Sstevel@tonic-gate static kmem_magtype_t kmem_magtype[] = {
9487c478bd9Sstevel@tonic-gate 	{ 1,	8,	3200,	65536	},
9497c478bd9Sstevel@tonic-gate 	{ 3,	16,	256,	32768	},
9507c478bd9Sstevel@tonic-gate 	{ 7,	32,	64,	16384	},
9517c478bd9Sstevel@tonic-gate 	{ 15,	64,	0,	8192	},
9527c478bd9Sstevel@tonic-gate 	{ 31,	64,	0,	4096	},
9537c478bd9Sstevel@tonic-gate 	{ 47,	64,	0,	2048	},
9547c478bd9Sstevel@tonic-gate 	{ 63,	64,	0,	1024	},
9557c478bd9Sstevel@tonic-gate 	{ 95,	64,	0,	512	},
9567c478bd9Sstevel@tonic-gate 	{ 143,	64,	0,	0	},
9577c478bd9Sstevel@tonic-gate };
9587c478bd9Sstevel@tonic-gate 
9597c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping;
9607c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping_idspace;
9617c478bd9Sstevel@tonic-gate 
9627c478bd9Sstevel@tonic-gate /*
9637c478bd9Sstevel@tonic-gate  * kmem tunables
9647c478bd9Sstevel@tonic-gate  */
9657c478bd9Sstevel@tonic-gate clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
9667c478bd9Sstevel@tonic-gate int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
9677c478bd9Sstevel@tonic-gate pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
9687c478bd9Sstevel@tonic-gate int kmem_panic = 1;		/* whether to panic on error */
9697c478bd9Sstevel@tonic-gate int kmem_logging = 1;		/* kmem_log_enter() override */
9707c478bd9Sstevel@tonic-gate uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
9717c478bd9Sstevel@tonic-gate size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
9727c478bd9Sstevel@tonic-gate size_t kmem_content_log_size;	/* content log size [2% of memory] */
9737c478bd9Sstevel@tonic-gate size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
9747c478bd9Sstevel@tonic-gate size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
9757c478bd9Sstevel@tonic-gate size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
9767c478bd9Sstevel@tonic-gate size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
9777c478bd9Sstevel@tonic-gate size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
9787c478bd9Sstevel@tonic-gate int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
9797c478bd9Sstevel@tonic-gate size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
9807c478bd9Sstevel@tonic-gate size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
9817c478bd9Sstevel@tonic-gate 
9827c478bd9Sstevel@tonic-gate #ifdef DEBUG
9837c478bd9Sstevel@tonic-gate int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
9847c478bd9Sstevel@tonic-gate #else
9857c478bd9Sstevel@tonic-gate int kmem_flags = 0;
9867c478bd9Sstevel@tonic-gate #endif
9877c478bd9Sstevel@tonic-gate int kmem_ready;
9887c478bd9Sstevel@tonic-gate 
9897c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_slab_cache;
9907c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_cache;
9917c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_audit_cache;
9927c478bd9Sstevel@tonic-gate 
9937c478bd9Sstevel@tonic-gate static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
994b5fca8f8Stomee static list_t		kmem_caches;
9957c478bd9Sstevel@tonic-gate 
9967c478bd9Sstevel@tonic-gate static taskq_t		*kmem_taskq;
9977c478bd9Sstevel@tonic-gate static kmutex_t		kmem_flags_lock;
9987c478bd9Sstevel@tonic-gate static vmem_t		*kmem_metadata_arena;
9997c478bd9Sstevel@tonic-gate static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
10007c478bd9Sstevel@tonic-gate static vmem_t		*kmem_cache_arena;
10017c478bd9Sstevel@tonic-gate static vmem_t		*kmem_hash_arena;
10027c478bd9Sstevel@tonic-gate static vmem_t		*kmem_log_arena;
10037c478bd9Sstevel@tonic-gate static vmem_t		*kmem_oversize_arena;
10047c478bd9Sstevel@tonic-gate static vmem_t		*kmem_va_arena;
10057c478bd9Sstevel@tonic-gate static vmem_t		*kmem_default_arena;
10067c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_va_arena;
10077c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_arena;
10087c478bd9Sstevel@tonic-gate 
1009b5fca8f8Stomee /*
1010b5fca8f8Stomee  * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1011b5fca8f8Stomee  * turned on when DEBUG is also defined.
1012b5fca8f8Stomee  */
1013b5fca8f8Stomee #ifdef	DEBUG
1014b5fca8f8Stomee #define	KMEM_STATS
1015b5fca8f8Stomee #endif	/* DEBUG */
1016b5fca8f8Stomee 
1017b5fca8f8Stomee #ifdef	KMEM_STATS
1018b5fca8f8Stomee #define	KMEM_STAT_ADD(stat)			((stat)++)
1019b5fca8f8Stomee #define	KMEM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
1020b5fca8f8Stomee #else
1021b5fca8f8Stomee #define	KMEM_STAT_ADD(stat)			/* nothing */
1022b5fca8f8Stomee #define	KMEM_STAT_COND_ADD(cond, stat)		/* nothing */
1023b5fca8f8Stomee #endif	/* KMEM_STATS */
1024b5fca8f8Stomee 
1025b5fca8f8Stomee /*
1026b5fca8f8Stomee  * kmem slab consolidator thresholds (tunables)
1027b5fca8f8Stomee  */
1028b5fca8f8Stomee static size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1029b5fca8f8Stomee static size_t kmem_frag_numer = 1;	/* free buffers (numerator) */
1030b5fca8f8Stomee static size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1031b5fca8f8Stomee /*
1032b5fca8f8Stomee  * Maximum number of slabs from which to move buffers during a single
1033b5fca8f8Stomee  * maintenance interval while the system is not low on memory.
1034b5fca8f8Stomee  */
1035b5fca8f8Stomee static size_t kmem_reclaim_max_slabs = 1;
1036b5fca8f8Stomee /*
1037b5fca8f8Stomee  * Number of slabs to scan backwards from the end of the partial slab list
1038b5fca8f8Stomee  * when searching for buffers to relocate.
1039b5fca8f8Stomee  */
1040b5fca8f8Stomee static size_t kmem_reclaim_scan_range = 12;
1041b5fca8f8Stomee 
1042b5fca8f8Stomee #ifdef	KMEM_STATS
1043b5fca8f8Stomee static struct {
1044b5fca8f8Stomee 	uint64_t kms_callbacks;
1045b5fca8f8Stomee 	uint64_t kms_yes;
1046b5fca8f8Stomee 	uint64_t kms_no;
1047b5fca8f8Stomee 	uint64_t kms_later;
1048b5fca8f8Stomee 	uint64_t kms_dont_need;
1049b5fca8f8Stomee 	uint64_t kms_dont_know;
1050b5fca8f8Stomee 	uint64_t kms_hunt_found_slab;
1051b5fca8f8Stomee 	uint64_t kms_hunt_found_mag;
1052b5fca8f8Stomee 	uint64_t kms_hunt_alloc_fail;
1053b5fca8f8Stomee 	uint64_t kms_hunt_lucky;
1054b5fca8f8Stomee 	uint64_t kms_notify;
1055b5fca8f8Stomee 	uint64_t kms_notify_callbacks;
1056b5fca8f8Stomee 	uint64_t kms_disbelief;
1057b5fca8f8Stomee 	uint64_t kms_already_pending;
1058b5fca8f8Stomee 	uint64_t kms_callback_alloc_fail;
1059b5fca8f8Stomee 	uint64_t kms_endscan_slab_destroyed;
1060b5fca8f8Stomee 	uint64_t kms_endscan_nomem;
1061b5fca8f8Stomee 	uint64_t kms_endscan_slab_all_used;
1062b5fca8f8Stomee 	uint64_t kms_endscan_refcnt_changed;
1063b5fca8f8Stomee 	uint64_t kms_endscan_nomove_changed;
1064b5fca8f8Stomee 	uint64_t kms_endscan_freelist;
1065b5fca8f8Stomee 	uint64_t kms_avl_update;
1066b5fca8f8Stomee 	uint64_t kms_avl_noupdate;
1067b5fca8f8Stomee 	uint64_t kms_no_longer_reclaimable;
1068b5fca8f8Stomee 	uint64_t kms_notify_no_longer_reclaimable;
1069b5fca8f8Stomee 	uint64_t kms_alloc_fail;
1070b5fca8f8Stomee 	uint64_t kms_constructor_fail;
1071b5fca8f8Stomee 	uint64_t kms_dead_slabs_freed;
1072b5fca8f8Stomee 	uint64_t kms_defrags;
1073b5fca8f8Stomee 	uint64_t kms_scan_depot_ws_reaps;
1074b5fca8f8Stomee 	uint64_t kms_debug_reaps;
1075b5fca8f8Stomee 	uint64_t kms_debug_move_scans;
1076b5fca8f8Stomee } kmem_move_stats;
1077b5fca8f8Stomee #endif	/* KMEM_STATS */
1078b5fca8f8Stomee 
1079b5fca8f8Stomee /* consolidator knobs */
1080b5fca8f8Stomee static boolean_t kmem_move_noreap;
1081b5fca8f8Stomee static boolean_t kmem_move_blocked;
1082b5fca8f8Stomee static boolean_t kmem_move_fulltilt;
1083b5fca8f8Stomee static boolean_t kmem_move_any_partial;
1084b5fca8f8Stomee 
1085b5fca8f8Stomee #ifdef	DEBUG
1086b5fca8f8Stomee /*
1087b5fca8f8Stomee  * Ensure code coverage by occasionally running the consolidator even when the
1088b5fca8f8Stomee  * caches are not fragmented (they may never be). These intervals are mean time
1089b5fca8f8Stomee  * in cache maintenance intervals (kmem_cache_update).
1090b5fca8f8Stomee  */
1091b5fca8f8Stomee static int kmem_mtb_move = 60;		/* defrag 1 slab (~15min) */
1092b5fca8f8Stomee static int kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1093b5fca8f8Stomee #endif	/* DEBUG */
1094b5fca8f8Stomee 
1095b5fca8f8Stomee static kmem_cache_t	*kmem_defrag_cache;
1096b5fca8f8Stomee static kmem_cache_t	*kmem_move_cache;
1097b5fca8f8Stomee static taskq_t		*kmem_move_taskq;
1098b5fca8f8Stomee 
1099b5fca8f8Stomee static void kmem_cache_scan(kmem_cache_t *);
1100b5fca8f8Stomee static void kmem_cache_defrag(kmem_cache_t *);
1101b5fca8f8Stomee 
1102b5fca8f8Stomee 
11037c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_transaction_log;
11047c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_content_log;
11057c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_failure_log;
11067c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_slab_log;
11077c478bd9Sstevel@tonic-gate 
11087c478bd9Sstevel@tonic-gate static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
11097c478bd9Sstevel@tonic-gate 
11107c478bd9Sstevel@tonic-gate #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
11117c478bd9Sstevel@tonic-gate 	if ((count) > 0) {						\
11127c478bd9Sstevel@tonic-gate 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
11137c478bd9Sstevel@tonic-gate 		pc_t *_e;						\
11147c478bd9Sstevel@tonic-gate 		/* memmove() the old entries down one notch */		\
11157c478bd9Sstevel@tonic-gate 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
11167c478bd9Sstevel@tonic-gate 			*_e = *(_e - 1);				\
11177c478bd9Sstevel@tonic-gate 		*_s = (uintptr_t)(caller);				\
11187c478bd9Sstevel@tonic-gate 	}
11197c478bd9Sstevel@tonic-gate 
11207c478bd9Sstevel@tonic-gate #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
11217c478bd9Sstevel@tonic-gate #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
11227c478bd9Sstevel@tonic-gate #define	KMERR_DUPFREE	2	/* freed a buffer twice */
11237c478bd9Sstevel@tonic-gate #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
11247c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
11257c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
11267c478bd9Sstevel@tonic-gate #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
11277c478bd9Sstevel@tonic-gate #define	KMERR_BADSIZE	7	/* alloc size != free size */
11287c478bd9Sstevel@tonic-gate #define	KMERR_BADBASE	8	/* buffer base address wrong */
11297c478bd9Sstevel@tonic-gate 
11307c478bd9Sstevel@tonic-gate struct {
11317c478bd9Sstevel@tonic-gate 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
11327c478bd9Sstevel@tonic-gate 	int		kmp_error;	/* type of kmem error */
11337c478bd9Sstevel@tonic-gate 	void		*kmp_buffer;	/* buffer that induced panic */
11347c478bd9Sstevel@tonic-gate 	void		*kmp_realbuf;	/* real start address for buffer */
11357c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
11367c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
11377c478bd9Sstevel@tonic-gate 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
11387c478bd9Sstevel@tonic-gate 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
11397c478bd9Sstevel@tonic-gate } kmem_panic_info;
11407c478bd9Sstevel@tonic-gate 
11417c478bd9Sstevel@tonic-gate 
11427c478bd9Sstevel@tonic-gate static void
11437c478bd9Sstevel@tonic-gate copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
11447c478bd9Sstevel@tonic-gate {
11457c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11467c478bd9Sstevel@tonic-gate 	uint64_t *buf = buf_arg;
11477c478bd9Sstevel@tonic-gate 
11487c478bd9Sstevel@tonic-gate 	while (buf < bufend)
11497c478bd9Sstevel@tonic-gate 		*buf++ = pattern;
11507c478bd9Sstevel@tonic-gate }
11517c478bd9Sstevel@tonic-gate 
11527c478bd9Sstevel@tonic-gate static void *
11537c478bd9Sstevel@tonic-gate verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
11547c478bd9Sstevel@tonic-gate {
11557c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11567c478bd9Sstevel@tonic-gate 	uint64_t *buf;
11577c478bd9Sstevel@tonic-gate 
11587c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++)
11597c478bd9Sstevel@tonic-gate 		if (*buf != pattern)
11607c478bd9Sstevel@tonic-gate 			return (buf);
11617c478bd9Sstevel@tonic-gate 	return (NULL);
11627c478bd9Sstevel@tonic-gate }
11637c478bd9Sstevel@tonic-gate 
11647c478bd9Sstevel@tonic-gate static void *
11657c478bd9Sstevel@tonic-gate verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
11667c478bd9Sstevel@tonic-gate {
11677c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11687c478bd9Sstevel@tonic-gate 	uint64_t *buf;
11697c478bd9Sstevel@tonic-gate 
11707c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++) {
11717c478bd9Sstevel@tonic-gate 		if (*buf != old) {
11727c478bd9Sstevel@tonic-gate 			copy_pattern(old, buf_arg,
11737c478bd9Sstevel@tonic-gate 			    (char *)buf - (char *)buf_arg);
11747c478bd9Sstevel@tonic-gate 			return (buf);
11757c478bd9Sstevel@tonic-gate 		}
11767c478bd9Sstevel@tonic-gate 		*buf = new;
11777c478bd9Sstevel@tonic-gate 	}
11787c478bd9Sstevel@tonic-gate 
11797c478bd9Sstevel@tonic-gate 	return (NULL);
11807c478bd9Sstevel@tonic-gate }
11817c478bd9Sstevel@tonic-gate 
11827c478bd9Sstevel@tonic-gate static void
11837c478bd9Sstevel@tonic-gate kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
11847c478bd9Sstevel@tonic-gate {
11857c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
11867c478bd9Sstevel@tonic-gate 
11877c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1188b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1189b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp))
11907c478bd9Sstevel@tonic-gate 		if (tq != NULL)
11917c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
11927c478bd9Sstevel@tonic-gate 			    tqflag);
11937c478bd9Sstevel@tonic-gate 		else
11947c478bd9Sstevel@tonic-gate 			func(cp);
11957c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
11967c478bd9Sstevel@tonic-gate }
11977c478bd9Sstevel@tonic-gate 
11987c478bd9Sstevel@tonic-gate static void
11997c478bd9Sstevel@tonic-gate kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
12007c478bd9Sstevel@tonic-gate {
12017c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
12027c478bd9Sstevel@tonic-gate 
12037c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1204b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1205b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp)) {
12067c478bd9Sstevel@tonic-gate 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
12077c478bd9Sstevel@tonic-gate 			continue;
12087c478bd9Sstevel@tonic-gate 		if (tq != NULL)
12097c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
12107c478bd9Sstevel@tonic-gate 			    tqflag);
12117c478bd9Sstevel@tonic-gate 		else
12127c478bd9Sstevel@tonic-gate 			func(cp);
12137c478bd9Sstevel@tonic-gate 	}
12147c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
12157c478bd9Sstevel@tonic-gate }
12167c478bd9Sstevel@tonic-gate 
12177c478bd9Sstevel@tonic-gate /*
12187c478bd9Sstevel@tonic-gate  * Debugging support.  Given a buffer address, find its slab.
12197c478bd9Sstevel@tonic-gate  */
12207c478bd9Sstevel@tonic-gate static kmem_slab_t *
12217c478bd9Sstevel@tonic-gate kmem_findslab(kmem_cache_t *cp, void *buf)
12227c478bd9Sstevel@tonic-gate {
12237c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12247c478bd9Sstevel@tonic-gate 
12257c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
1226b5fca8f8Stomee 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1227b5fca8f8Stomee 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1228b5fca8f8Stomee 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1229b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1230b5fca8f8Stomee 			return (sp);
1231b5fca8f8Stomee 		}
1232b5fca8f8Stomee 	}
1233b5fca8f8Stomee 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1234b5fca8f8Stomee 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
12357c478bd9Sstevel@tonic-gate 		if (KMEM_SLAB_MEMBER(sp, buf)) {
12367c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
12377c478bd9Sstevel@tonic-gate 			return (sp);
12387c478bd9Sstevel@tonic-gate 		}
12397c478bd9Sstevel@tonic-gate 	}
12407c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
12417c478bd9Sstevel@tonic-gate 
12427c478bd9Sstevel@tonic-gate 	return (NULL);
12437c478bd9Sstevel@tonic-gate }
12447c478bd9Sstevel@tonic-gate 
12457c478bd9Sstevel@tonic-gate static void
12467c478bd9Sstevel@tonic-gate kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
12477c478bd9Sstevel@tonic-gate {
12487c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = NULL;
12497c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp = NULL;
12507c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = cparg;
12517c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12527c478bd9Sstevel@tonic-gate 	uint64_t *off;
12537c478bd9Sstevel@tonic-gate 	void *buf = bufarg;
12547c478bd9Sstevel@tonic-gate 
12557c478bd9Sstevel@tonic-gate 	kmem_logging = 0;	/* stop logging when a bad thing happens */
12567c478bd9Sstevel@tonic-gate 
12577c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_timestamp = gethrtime();
12587c478bd9Sstevel@tonic-gate 
12597c478bd9Sstevel@tonic-gate 	sp = kmem_findslab(cp, buf);
12607c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
1261b5fca8f8Stomee 		for (cp = list_tail(&kmem_caches); cp != NULL;
1262b5fca8f8Stomee 		    cp = list_prev(&kmem_caches, cp)) {
12637c478bd9Sstevel@tonic-gate 			if ((sp = kmem_findslab(cp, buf)) != NULL)
12647c478bd9Sstevel@tonic-gate 				break;
12657c478bd9Sstevel@tonic-gate 		}
12667c478bd9Sstevel@tonic-gate 	}
12677c478bd9Sstevel@tonic-gate 
12687c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
12697c478bd9Sstevel@tonic-gate 		cp = NULL;
12707c478bd9Sstevel@tonic-gate 		error = KMERR_BADADDR;
12717c478bd9Sstevel@tonic-gate 	} else {
12727c478bd9Sstevel@tonic-gate 		if (cp != cparg)
12737c478bd9Sstevel@tonic-gate 			error = KMERR_BADCACHE;
12747c478bd9Sstevel@tonic-gate 		else
12757c478bd9Sstevel@tonic-gate 			buf = (char *)bufarg - ((uintptr_t)bufarg -
12767c478bd9Sstevel@tonic-gate 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
12777c478bd9Sstevel@tonic-gate 		if (buf != bufarg)
12787c478bd9Sstevel@tonic-gate 			error = KMERR_BADBASE;
12797c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_BUFTAG)
12807c478bd9Sstevel@tonic-gate 			btp = KMEM_BUFTAG(cp, buf);
12817c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_HASH) {
12827c478bd9Sstevel@tonic-gate 			mutex_enter(&cp->cache_lock);
12837c478bd9Sstevel@tonic-gate 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
12847c478bd9Sstevel@tonic-gate 				if (bcp->bc_addr == buf)
12857c478bd9Sstevel@tonic-gate 					break;
12867c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
12877c478bd9Sstevel@tonic-gate 			if (bcp == NULL && btp != NULL)
12887c478bd9Sstevel@tonic-gate 				bcp = btp->bt_bufctl;
12897c478bd9Sstevel@tonic-gate 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
12907c478bd9Sstevel@tonic-gate 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
12917c478bd9Sstevel@tonic-gate 			    bcp->bc_addr != buf) {
12927c478bd9Sstevel@tonic-gate 				error = KMERR_BADBUFCTL;
12937c478bd9Sstevel@tonic-gate 				bcp = NULL;
12947c478bd9Sstevel@tonic-gate 			}
12957c478bd9Sstevel@tonic-gate 		}
12967c478bd9Sstevel@tonic-gate 	}
12977c478bd9Sstevel@tonic-gate 
12987c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_error = error;
12997c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_buffer = bufarg;
13007c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realbuf = buf;
13017c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_cache = cparg;
13027c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realcache = cp;
13037c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_slab = sp;
13047c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_bufctl = bcp;
13057c478bd9Sstevel@tonic-gate 
13067c478bd9Sstevel@tonic-gate 	printf("kernel memory allocator: ");
13077c478bd9Sstevel@tonic-gate 
13087c478bd9Sstevel@tonic-gate 	switch (error) {
13097c478bd9Sstevel@tonic-gate 
13107c478bd9Sstevel@tonic-gate 	case KMERR_MODIFIED:
13117c478bd9Sstevel@tonic-gate 		printf("buffer modified after being freed\n");
13127c478bd9Sstevel@tonic-gate 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
13137c478bd9Sstevel@tonic-gate 		if (off == NULL)	/* shouldn't happen */
13147c478bd9Sstevel@tonic-gate 			off = buf;
13157c478bd9Sstevel@tonic-gate 		printf("modification occurred at offset 0x%lx "
13167c478bd9Sstevel@tonic-gate 		    "(0x%llx replaced by 0x%llx)\n",
13177c478bd9Sstevel@tonic-gate 		    (uintptr_t)off - (uintptr_t)buf,
13187c478bd9Sstevel@tonic-gate 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
13197c478bd9Sstevel@tonic-gate 		break;
13207c478bd9Sstevel@tonic-gate 
13217c478bd9Sstevel@tonic-gate 	case KMERR_REDZONE:
13227c478bd9Sstevel@tonic-gate 		printf("redzone violation: write past end of buffer\n");
13237c478bd9Sstevel@tonic-gate 		break;
13247c478bd9Sstevel@tonic-gate 
13257c478bd9Sstevel@tonic-gate 	case KMERR_BADADDR:
13267c478bd9Sstevel@tonic-gate 		printf("invalid free: buffer not in cache\n");
13277c478bd9Sstevel@tonic-gate 		break;
13287c478bd9Sstevel@tonic-gate 
13297c478bd9Sstevel@tonic-gate 	case KMERR_DUPFREE:
13307c478bd9Sstevel@tonic-gate 		printf("duplicate free: buffer freed twice\n");
13317c478bd9Sstevel@tonic-gate 		break;
13327c478bd9Sstevel@tonic-gate 
13337c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFTAG:
13347c478bd9Sstevel@tonic-gate 		printf("boundary tag corrupted\n");
13357c478bd9Sstevel@tonic-gate 		printf("bcp ^ bxstat = %lx, should be %lx\n",
13367c478bd9Sstevel@tonic-gate 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
13377c478bd9Sstevel@tonic-gate 		    KMEM_BUFTAG_FREE);
13387c478bd9Sstevel@tonic-gate 		break;
13397c478bd9Sstevel@tonic-gate 
13407c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFCTL:
13417c478bd9Sstevel@tonic-gate 		printf("bufctl corrupted\n");
13427c478bd9Sstevel@tonic-gate 		break;
13437c478bd9Sstevel@tonic-gate 
13447c478bd9Sstevel@tonic-gate 	case KMERR_BADCACHE:
13457c478bd9Sstevel@tonic-gate 		printf("buffer freed to wrong cache\n");
13467c478bd9Sstevel@tonic-gate 		printf("buffer was allocated from %s,\n", cp->cache_name);
13477c478bd9Sstevel@tonic-gate 		printf("caller attempting free to %s.\n", cparg->cache_name);
13487c478bd9Sstevel@tonic-gate 		break;
13497c478bd9Sstevel@tonic-gate 
13507c478bd9Sstevel@tonic-gate 	case KMERR_BADSIZE:
13517c478bd9Sstevel@tonic-gate 		printf("bad free: free size (%u) != alloc size (%u)\n",
13527c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
13537c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
13547c478bd9Sstevel@tonic-gate 		break;
13557c478bd9Sstevel@tonic-gate 
13567c478bd9Sstevel@tonic-gate 	case KMERR_BADBASE:
13577c478bd9Sstevel@tonic-gate 		printf("bad free: free address (%p) != alloc address (%p)\n",
13587c478bd9Sstevel@tonic-gate 		    bufarg, buf);
13597c478bd9Sstevel@tonic-gate 		break;
13607c478bd9Sstevel@tonic-gate 	}
13617c478bd9Sstevel@tonic-gate 
13627c478bd9Sstevel@tonic-gate 	printf("buffer=%p  bufctl=%p  cache: %s\n",
13637c478bd9Sstevel@tonic-gate 	    bufarg, (void *)bcp, cparg->cache_name);
13647c478bd9Sstevel@tonic-gate 
13657c478bd9Sstevel@tonic-gate 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
13667c478bd9Sstevel@tonic-gate 	    error != KMERR_BADBUFCTL) {
13677c478bd9Sstevel@tonic-gate 		int d;
13687c478bd9Sstevel@tonic-gate 		timestruc_t ts;
13697c478bd9Sstevel@tonic-gate 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
13707c478bd9Sstevel@tonic-gate 
13717c478bd9Sstevel@tonic-gate 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
13727c478bd9Sstevel@tonic-gate 		printf("previous transaction on buffer %p:\n", buf);
13737c478bd9Sstevel@tonic-gate 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
13747c478bd9Sstevel@tonic-gate 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
13757c478bd9Sstevel@tonic-gate 		    (void *)sp, cp->cache_name);
13767c478bd9Sstevel@tonic-gate 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
13777c478bd9Sstevel@tonic-gate 			ulong_t off;
13787c478bd9Sstevel@tonic-gate 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
13797c478bd9Sstevel@tonic-gate 			printf("%s+%lx\n", sym ? sym : "?", off);
13807c478bd9Sstevel@tonic-gate 		}
13817c478bd9Sstevel@tonic-gate 	}
13827c478bd9Sstevel@tonic-gate 	if (kmem_panic > 0)
13837c478bd9Sstevel@tonic-gate 		panic("kernel heap corruption detected");
13847c478bd9Sstevel@tonic-gate 	if (kmem_panic == 0)
13857c478bd9Sstevel@tonic-gate 		debug_enter(NULL);
13867c478bd9Sstevel@tonic-gate 	kmem_logging = 1;	/* resume logging */
13877c478bd9Sstevel@tonic-gate }
13887c478bd9Sstevel@tonic-gate 
13897c478bd9Sstevel@tonic-gate static kmem_log_header_t *
13907c478bd9Sstevel@tonic-gate kmem_log_init(size_t logsize)
13917c478bd9Sstevel@tonic-gate {
13927c478bd9Sstevel@tonic-gate 	kmem_log_header_t *lhp;
13937c478bd9Sstevel@tonic-gate 	int nchunks = 4 * max_ncpus;
13947c478bd9Sstevel@tonic-gate 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
13957c478bd9Sstevel@tonic-gate 	int i;
13967c478bd9Sstevel@tonic-gate 
13977c478bd9Sstevel@tonic-gate 	/*
13987c478bd9Sstevel@tonic-gate 	 * Make sure that lhp->lh_cpu[] is nicely aligned
13997c478bd9Sstevel@tonic-gate 	 * to prevent false sharing of cache lines.
14007c478bd9Sstevel@tonic-gate 	 */
14017c478bd9Sstevel@tonic-gate 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
14027c478bd9Sstevel@tonic-gate 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
14037c478bd9Sstevel@tonic-gate 	    NULL, NULL, VM_SLEEP);
14047c478bd9Sstevel@tonic-gate 	bzero(lhp, lhsize);
14057c478bd9Sstevel@tonic-gate 
14067c478bd9Sstevel@tonic-gate 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
14077c478bd9Sstevel@tonic-gate 	lhp->lh_nchunks = nchunks;
14087c478bd9Sstevel@tonic-gate 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
14097c478bd9Sstevel@tonic-gate 	lhp->lh_base = vmem_alloc(kmem_log_arena,
14107c478bd9Sstevel@tonic-gate 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
14117c478bd9Sstevel@tonic-gate 	lhp->lh_free = vmem_alloc(kmem_log_arena,
14127c478bd9Sstevel@tonic-gate 	    nchunks * sizeof (int), VM_SLEEP);
14137c478bd9Sstevel@tonic-gate 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
14147c478bd9Sstevel@tonic-gate 
14157c478bd9Sstevel@tonic-gate 	for (i = 0; i < max_ncpus; i++) {
14167c478bd9Sstevel@tonic-gate 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
14177c478bd9Sstevel@tonic-gate 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
14187c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = i;
14197c478bd9Sstevel@tonic-gate 	}
14207c478bd9Sstevel@tonic-gate 
14217c478bd9Sstevel@tonic-gate 	for (i = max_ncpus; i < nchunks; i++)
14227c478bd9Sstevel@tonic-gate 		lhp->lh_free[i] = i;
14237c478bd9Sstevel@tonic-gate 
14247c478bd9Sstevel@tonic-gate 	lhp->lh_head = max_ncpus;
14257c478bd9Sstevel@tonic-gate 	lhp->lh_tail = 0;
14267c478bd9Sstevel@tonic-gate 
14277c478bd9Sstevel@tonic-gate 	return (lhp);
14287c478bd9Sstevel@tonic-gate }
14297c478bd9Sstevel@tonic-gate 
14307c478bd9Sstevel@tonic-gate static void *
14317c478bd9Sstevel@tonic-gate kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
14327c478bd9Sstevel@tonic-gate {
14337c478bd9Sstevel@tonic-gate 	void *logspace;
14347c478bd9Sstevel@tonic-gate 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
14357c478bd9Sstevel@tonic-gate 
14367c478bd9Sstevel@tonic-gate 	if (lhp == NULL || kmem_logging == 0 || panicstr)
14377c478bd9Sstevel@tonic-gate 		return (NULL);
14387c478bd9Sstevel@tonic-gate 
14397c478bd9Sstevel@tonic-gate 	mutex_enter(&clhp->clh_lock);
14407c478bd9Sstevel@tonic-gate 	clhp->clh_hits++;
14417c478bd9Sstevel@tonic-gate 	if (size > clhp->clh_avail) {
14427c478bd9Sstevel@tonic-gate 		mutex_enter(&lhp->lh_lock);
14437c478bd9Sstevel@tonic-gate 		lhp->lh_hits++;
14447c478bd9Sstevel@tonic-gate 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
14457c478bd9Sstevel@tonic-gate 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
14467c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
14477c478bd9Sstevel@tonic-gate 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
14487c478bd9Sstevel@tonic-gate 		clhp->clh_current = lhp->lh_base +
14497c478bd9Sstevel@tonic-gate 		    clhp->clh_chunk * lhp->lh_chunksize;
14507c478bd9Sstevel@tonic-gate 		clhp->clh_avail = lhp->lh_chunksize;
14517c478bd9Sstevel@tonic-gate 		if (size > lhp->lh_chunksize)
14527c478bd9Sstevel@tonic-gate 			size = lhp->lh_chunksize;
14537c478bd9Sstevel@tonic-gate 		mutex_exit(&lhp->lh_lock);
14547c478bd9Sstevel@tonic-gate 	}
14557c478bd9Sstevel@tonic-gate 	logspace = clhp->clh_current;
14567c478bd9Sstevel@tonic-gate 	clhp->clh_current += size;
14577c478bd9Sstevel@tonic-gate 	clhp->clh_avail -= size;
14587c478bd9Sstevel@tonic-gate 	bcopy(data, logspace, size);
14597c478bd9Sstevel@tonic-gate 	mutex_exit(&clhp->clh_lock);
14607c478bd9Sstevel@tonic-gate 	return (logspace);
14617c478bd9Sstevel@tonic-gate }
14627c478bd9Sstevel@tonic-gate 
14637c478bd9Sstevel@tonic-gate #define	KMEM_AUDIT(lp, cp, bcp)						\
14647c478bd9Sstevel@tonic-gate {									\
14657c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
14667c478bd9Sstevel@tonic-gate 	_bcp->bc_timestamp = gethrtime();				\
14677c478bd9Sstevel@tonic-gate 	_bcp->bc_thread = curthread;					\
14687c478bd9Sstevel@tonic-gate 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
14697c478bd9Sstevel@tonic-gate 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
14707c478bd9Sstevel@tonic-gate }
14717c478bd9Sstevel@tonic-gate 
14727c478bd9Sstevel@tonic-gate static void
14737c478bd9Sstevel@tonic-gate kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
14747c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp, void *addr)
14757c478bd9Sstevel@tonic-gate {
14767c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t bca;
14777c478bd9Sstevel@tonic-gate 
14787c478bd9Sstevel@tonic-gate 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
14797c478bd9Sstevel@tonic-gate 	bca.bc_addr = addr;
14807c478bd9Sstevel@tonic-gate 	bca.bc_slab = sp;
14817c478bd9Sstevel@tonic-gate 	bca.bc_cache = cp;
14827c478bd9Sstevel@tonic-gate 	KMEM_AUDIT(lp, cp, &bca);
14837c478bd9Sstevel@tonic-gate }
14847c478bd9Sstevel@tonic-gate 
14857c478bd9Sstevel@tonic-gate /*
14867c478bd9Sstevel@tonic-gate  * Create a new slab for cache cp.
14877c478bd9Sstevel@tonic-gate  */
14887c478bd9Sstevel@tonic-gate static kmem_slab_t *
14897c478bd9Sstevel@tonic-gate kmem_slab_create(kmem_cache_t *cp, int kmflag)
14907c478bd9Sstevel@tonic-gate {
14917c478bd9Sstevel@tonic-gate 	size_t slabsize = cp->cache_slabsize;
14927c478bd9Sstevel@tonic-gate 	size_t chunksize = cp->cache_chunksize;
14937c478bd9Sstevel@tonic-gate 	int cache_flags = cp->cache_flags;
14947c478bd9Sstevel@tonic-gate 	size_t color, chunks;
14957c478bd9Sstevel@tonic-gate 	char *buf, *slab;
14967c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
14977c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp;
14987c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
14997c478bd9Sstevel@tonic-gate 
1500b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1501b5fca8f8Stomee 
15027c478bd9Sstevel@tonic-gate 	color = cp->cache_color + cp->cache_align;
15037c478bd9Sstevel@tonic-gate 	if (color > cp->cache_maxcolor)
15047c478bd9Sstevel@tonic-gate 		color = cp->cache_mincolor;
15057c478bd9Sstevel@tonic-gate 	cp->cache_color = color;
15067c478bd9Sstevel@tonic-gate 
15077c478bd9Sstevel@tonic-gate 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
15087c478bd9Sstevel@tonic-gate 
15097c478bd9Sstevel@tonic-gate 	if (slab == NULL)
15107c478bd9Sstevel@tonic-gate 		goto vmem_alloc_failure;
15117c478bd9Sstevel@tonic-gate 
15127c478bd9Sstevel@tonic-gate 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
15137c478bd9Sstevel@tonic-gate 
1514b5fca8f8Stomee 	/*
1515b5fca8f8Stomee 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1516b5fca8f8Stomee 	 * consolidator depends (for correctness) on slabs being initialized
1517b5fca8f8Stomee 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1518b5fca8f8Stomee 	 * clients to distinguish uninitialized memory from known objects).
1519b5fca8f8Stomee 	 */
1520b5fca8f8Stomee 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
15217c478bd9Sstevel@tonic-gate 	if (!(cp->cache_cflags & KMC_NOTOUCH))
15227c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
15237c478bd9Sstevel@tonic-gate 
15247c478bd9Sstevel@tonic-gate 	if (cache_flags & KMF_HASH) {
15257c478bd9Sstevel@tonic-gate 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
15267c478bd9Sstevel@tonic-gate 			goto slab_alloc_failure;
15277c478bd9Sstevel@tonic-gate 		chunks = (slabsize - color) / chunksize;
15287c478bd9Sstevel@tonic-gate 	} else {
15297c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, slab);
15307c478bd9Sstevel@tonic-gate 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
15317c478bd9Sstevel@tonic-gate 	}
15327c478bd9Sstevel@tonic-gate 
15337c478bd9Sstevel@tonic-gate 	sp->slab_cache	= cp;
15347c478bd9Sstevel@tonic-gate 	sp->slab_head	= NULL;
15357c478bd9Sstevel@tonic-gate 	sp->slab_refcnt	= 0;
15367c478bd9Sstevel@tonic-gate 	sp->slab_base	= buf = slab + color;
15377c478bd9Sstevel@tonic-gate 	sp->slab_chunks	= chunks;
1538b5fca8f8Stomee 	sp->slab_stuck_offset = (uint32_t)-1;
1539b5fca8f8Stomee 	sp->slab_later_count = 0;
1540b5fca8f8Stomee 	sp->slab_flags = 0;
15417c478bd9Sstevel@tonic-gate 
15427c478bd9Sstevel@tonic-gate 	ASSERT(chunks > 0);
15437c478bd9Sstevel@tonic-gate 	while (chunks-- != 0) {
15447c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_HASH) {
15457c478bd9Sstevel@tonic-gate 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
15467c478bd9Sstevel@tonic-gate 			if (bcp == NULL)
15477c478bd9Sstevel@tonic-gate 				goto bufctl_alloc_failure;
15487c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_AUDIT) {
15497c478bd9Sstevel@tonic-gate 				kmem_bufctl_audit_t *bcap =
15507c478bd9Sstevel@tonic-gate 				    (kmem_bufctl_audit_t *)bcp;
15517c478bd9Sstevel@tonic-gate 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
15527c478bd9Sstevel@tonic-gate 				bcap->bc_cache = cp;
15537c478bd9Sstevel@tonic-gate 			}
15547c478bd9Sstevel@tonic-gate 			bcp->bc_addr = buf;
15557c478bd9Sstevel@tonic-gate 			bcp->bc_slab = sp;
15567c478bd9Sstevel@tonic-gate 		} else {
15577c478bd9Sstevel@tonic-gate 			bcp = KMEM_BUFCTL(cp, buf);
15587c478bd9Sstevel@tonic-gate 		}
15597c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_BUFTAG) {
15607c478bd9Sstevel@tonic-gate 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
15617c478bd9Sstevel@tonic-gate 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
15627c478bd9Sstevel@tonic-gate 			btp->bt_bufctl = bcp;
15637c478bd9Sstevel@tonic-gate 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
15647c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_DEADBEEF) {
15657c478bd9Sstevel@tonic-gate 				copy_pattern(KMEM_FREE_PATTERN, buf,
15667c478bd9Sstevel@tonic-gate 				    cp->cache_verify);
15677c478bd9Sstevel@tonic-gate 			}
15687c478bd9Sstevel@tonic-gate 		}
15697c478bd9Sstevel@tonic-gate 		bcp->bc_next = sp->slab_head;
15707c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp;
15717c478bd9Sstevel@tonic-gate 		buf += chunksize;
15727c478bd9Sstevel@tonic-gate 	}
15737c478bd9Sstevel@tonic-gate 
15747c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_slab_log, cp, sp, slab);
15757c478bd9Sstevel@tonic-gate 
15767c478bd9Sstevel@tonic-gate 	return (sp);
15777c478bd9Sstevel@tonic-gate 
15787c478bd9Sstevel@tonic-gate bufctl_alloc_failure:
15797c478bd9Sstevel@tonic-gate 
15807c478bd9Sstevel@tonic-gate 	while ((bcp = sp->slab_head) != NULL) {
15817c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp->bc_next;
15827c478bd9Sstevel@tonic-gate 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
15837c478bd9Sstevel@tonic-gate 	}
15847c478bd9Sstevel@tonic-gate 	kmem_cache_free(kmem_slab_cache, sp);
15857c478bd9Sstevel@tonic-gate 
15867c478bd9Sstevel@tonic-gate slab_alloc_failure:
15877c478bd9Sstevel@tonic-gate 
15887c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, slabsize);
15897c478bd9Sstevel@tonic-gate 
15907c478bd9Sstevel@tonic-gate vmem_alloc_failure:
15917c478bd9Sstevel@tonic-gate 
15927c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
15937c478bd9Sstevel@tonic-gate 	atomic_add_64(&cp->cache_alloc_fail, 1);
15947c478bd9Sstevel@tonic-gate 
15957c478bd9Sstevel@tonic-gate 	return (NULL);
15967c478bd9Sstevel@tonic-gate }
15977c478bd9Sstevel@tonic-gate 
15987c478bd9Sstevel@tonic-gate /*
15997c478bd9Sstevel@tonic-gate  * Destroy a slab.
16007c478bd9Sstevel@tonic-gate  */
16017c478bd9Sstevel@tonic-gate static void
16027c478bd9Sstevel@tonic-gate kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
16037c478bd9Sstevel@tonic-gate {
16047c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
16057c478bd9Sstevel@tonic-gate 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
16067c478bd9Sstevel@tonic-gate 
1607b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1608b5fca8f8Stomee 	ASSERT(sp->slab_refcnt == 0);
1609b5fca8f8Stomee 
16107c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
16117c478bd9Sstevel@tonic-gate 		kmem_bufctl_t *bcp;
16127c478bd9Sstevel@tonic-gate 		while ((bcp = sp->slab_head) != NULL) {
16137c478bd9Sstevel@tonic-gate 			sp->slab_head = bcp->bc_next;
16147c478bd9Sstevel@tonic-gate 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
16157c478bd9Sstevel@tonic-gate 		}
16167c478bd9Sstevel@tonic-gate 		kmem_cache_free(kmem_slab_cache, sp);
16177c478bd9Sstevel@tonic-gate 	}
16187c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, cp->cache_slabsize);
16197c478bd9Sstevel@tonic-gate }
16207c478bd9Sstevel@tonic-gate 
16217c478bd9Sstevel@tonic-gate static void *
1622b5fca8f8Stomee kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp)
16237c478bd9Sstevel@tonic-gate {
16247c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **hash_bucket;
16257c478bd9Sstevel@tonic-gate 	void *buf;
16267c478bd9Sstevel@tonic-gate 
1627b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
16287c478bd9Sstevel@tonic-gate 	/*
1629b5fca8f8Stomee 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1630b5fca8f8Stomee 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1631b5fca8f8Stomee 	 * slab is newly created (sp->slab_refcnt == 0).
16327c478bd9Sstevel@tonic-gate 	 */
1633b5fca8f8Stomee 	ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) &&
1634b5fca8f8Stomee 	    (sp == avl_first(&cp->cache_partial_slabs))));
1635b5fca8f8Stomee 	ASSERT(sp->slab_cache == cp);
16367c478bd9Sstevel@tonic-gate 
1637b5fca8f8Stomee 	cp->cache_slab_alloc++;
16389f1b636aStomee 	cp->cache_bufslab--;
16397c478bd9Sstevel@tonic-gate 	sp->slab_refcnt++;
16407c478bd9Sstevel@tonic-gate 
16417c478bd9Sstevel@tonic-gate 	bcp = sp->slab_head;
16427c478bd9Sstevel@tonic-gate 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1643b5fca8f8Stomee 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1644b5fca8f8Stomee 		if (sp->slab_refcnt == 1) {
1645b5fca8f8Stomee 			ASSERT(sp->slab_chunks == 1);
1646b5fca8f8Stomee 		} else {
1647b5fca8f8Stomee 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1648b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
1649b5fca8f8Stomee 			sp->slab_later_count = 0; /* clear history */
1650b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1651b5fca8f8Stomee 			sp->slab_stuck_offset = (uint32_t)-1;
1652b5fca8f8Stomee 		}
1653b5fca8f8Stomee 		list_insert_head(&cp->cache_complete_slabs, sp);
1654b5fca8f8Stomee 		cp->cache_complete_slab_count++;
1655b5fca8f8Stomee 	} else {
1656b5fca8f8Stomee 		ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1657b5fca8f8Stomee 		if (sp->slab_refcnt == 1) {
1658b5fca8f8Stomee 			avl_add(&cp->cache_partial_slabs, sp);
1659b5fca8f8Stomee 		} else {
1660b5fca8f8Stomee 			/*
1661b5fca8f8Stomee 			 * The slab is now more allocated than it was, so the
1662b5fca8f8Stomee 			 * order remains unchanged.
1663b5fca8f8Stomee 			 */
1664b5fca8f8Stomee 			ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1665b5fca8f8Stomee 		}
16667c478bd9Sstevel@tonic-gate 	}
16677c478bd9Sstevel@tonic-gate 
16687c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
16697c478bd9Sstevel@tonic-gate 		/*
16707c478bd9Sstevel@tonic-gate 		 * Add buffer to allocated-address hash table.
16717c478bd9Sstevel@tonic-gate 		 */
16727c478bd9Sstevel@tonic-gate 		buf = bcp->bc_addr;
16737c478bd9Sstevel@tonic-gate 		hash_bucket = KMEM_HASH(cp, buf);
16747c478bd9Sstevel@tonic-gate 		bcp->bc_next = *hash_bucket;
16757c478bd9Sstevel@tonic-gate 		*hash_bucket = bcp;
16767c478bd9Sstevel@tonic-gate 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
16777c478bd9Sstevel@tonic-gate 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
16787c478bd9Sstevel@tonic-gate 		}
16797c478bd9Sstevel@tonic-gate 	} else {
16807c478bd9Sstevel@tonic-gate 		buf = KMEM_BUF(cp, bcp);
16817c478bd9Sstevel@tonic-gate 	}
16827c478bd9Sstevel@tonic-gate 
16837c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1684b5fca8f8Stomee 	return (buf);
1685b5fca8f8Stomee }
16867c478bd9Sstevel@tonic-gate 
1687b5fca8f8Stomee /*
1688b5fca8f8Stomee  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1689b5fca8f8Stomee  */
1690b5fca8f8Stomee static void *
1691b5fca8f8Stomee kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1692b5fca8f8Stomee {
1693b5fca8f8Stomee 	kmem_slab_t *sp;
1694b5fca8f8Stomee 	void *buf;
1695b5fca8f8Stomee 
1696b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
1697b5fca8f8Stomee 	sp = avl_first(&cp->cache_partial_slabs);
1698b5fca8f8Stomee 	if (sp == NULL) {
1699b5fca8f8Stomee 		ASSERT(cp->cache_bufslab == 0);
1700b5fca8f8Stomee 
1701b5fca8f8Stomee 		/*
1702b5fca8f8Stomee 		 * The freelist is empty.  Create a new slab.
1703b5fca8f8Stomee 		 */
1704b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
1705b5fca8f8Stomee 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1706b5fca8f8Stomee 			return (NULL);
1707b5fca8f8Stomee 		}
1708b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
1709b5fca8f8Stomee 		cp->cache_slab_create++;
1710b5fca8f8Stomee 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1711b5fca8f8Stomee 			cp->cache_bufmax = cp->cache_buftotal;
1712b5fca8f8Stomee 		cp->cache_bufslab += sp->slab_chunks;
1713b5fca8f8Stomee 	}
1714b5fca8f8Stomee 
1715b5fca8f8Stomee 	buf = kmem_slab_alloc_impl(cp, sp);
1716b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1717b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1718b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1719b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
17207c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
17217c478bd9Sstevel@tonic-gate 
17227c478bd9Sstevel@tonic-gate 	return (buf);
17237c478bd9Sstevel@tonic-gate }
17247c478bd9Sstevel@tonic-gate 
1725b5fca8f8Stomee static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1726b5fca8f8Stomee 
17277c478bd9Sstevel@tonic-gate /*
17287c478bd9Sstevel@tonic-gate  * Free a raw (unconstructed) buffer to cp's slab layer.
17297c478bd9Sstevel@tonic-gate  */
17307c478bd9Sstevel@tonic-gate static void
17317c478bd9Sstevel@tonic-gate kmem_slab_free(kmem_cache_t *cp, void *buf)
17327c478bd9Sstevel@tonic-gate {
17337c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
17347c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **prev_bcpp;
17357c478bd9Sstevel@tonic-gate 
17367c478bd9Sstevel@tonic-gate 	ASSERT(buf != NULL);
17377c478bd9Sstevel@tonic-gate 
17387c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
17397c478bd9Sstevel@tonic-gate 	cp->cache_slab_free++;
17407c478bd9Sstevel@tonic-gate 
17417c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
17427c478bd9Sstevel@tonic-gate 		/*
17437c478bd9Sstevel@tonic-gate 		 * Look up buffer in allocated-address hash table.
17447c478bd9Sstevel@tonic-gate 		 */
17457c478bd9Sstevel@tonic-gate 		prev_bcpp = KMEM_HASH(cp, buf);
17467c478bd9Sstevel@tonic-gate 		while ((bcp = *prev_bcpp) != NULL) {
17477c478bd9Sstevel@tonic-gate 			if (bcp->bc_addr == buf) {
17487c478bd9Sstevel@tonic-gate 				*prev_bcpp = bcp->bc_next;
17497c478bd9Sstevel@tonic-gate 				sp = bcp->bc_slab;
17507c478bd9Sstevel@tonic-gate 				break;
17517c478bd9Sstevel@tonic-gate 			}
17527c478bd9Sstevel@tonic-gate 			cp->cache_lookup_depth++;
17537c478bd9Sstevel@tonic-gate 			prev_bcpp = &bcp->bc_next;
17547c478bd9Sstevel@tonic-gate 		}
17557c478bd9Sstevel@tonic-gate 	} else {
17567c478bd9Sstevel@tonic-gate 		bcp = KMEM_BUFCTL(cp, buf);
17577c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, buf);
17587c478bd9Sstevel@tonic-gate 	}
17597c478bd9Sstevel@tonic-gate 
17607c478bd9Sstevel@tonic-gate 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
17617c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_lock);
17627c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADADDR, cp, buf);
17637c478bd9Sstevel@tonic-gate 		return;
17647c478bd9Sstevel@tonic-gate 	}
17657c478bd9Sstevel@tonic-gate 
1766b5fca8f8Stomee 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1767b5fca8f8Stomee 		/*
1768b5fca8f8Stomee 		 * If this is the buffer that prevented the consolidator from
1769b5fca8f8Stomee 		 * clearing the slab, we can reset the slab flags now that the
1770b5fca8f8Stomee 		 * buffer is freed. (It makes sense to do this in
1771b5fca8f8Stomee 		 * kmem_cache_free(), where the client gives up ownership of the
1772b5fca8f8Stomee 		 * buffer, but on the hot path the test is too expensive.)
1773b5fca8f8Stomee 		 */
1774b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
1775b5fca8f8Stomee 	}
1776b5fca8f8Stomee 
17777c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
17787c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
17797c478bd9Sstevel@tonic-gate 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
17807c478bd9Sstevel@tonic-gate 			    kmem_log_enter(kmem_content_log, buf,
17817c478bd9Sstevel@tonic-gate 			    cp->cache_contents);
17827c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
17837c478bd9Sstevel@tonic-gate 	}
17847c478bd9Sstevel@tonic-gate 
17857c478bd9Sstevel@tonic-gate 	bcp->bc_next = sp->slab_head;
17867c478bd9Sstevel@tonic-gate 	sp->slab_head = bcp;
17877c478bd9Sstevel@tonic-gate 
17889f1b636aStomee 	cp->cache_bufslab++;
17897c478bd9Sstevel@tonic-gate 	ASSERT(sp->slab_refcnt >= 1);
1790b5fca8f8Stomee 
17917c478bd9Sstevel@tonic-gate 	if (--sp->slab_refcnt == 0) {
17927c478bd9Sstevel@tonic-gate 		/*
17937c478bd9Sstevel@tonic-gate 		 * There are no outstanding allocations from this slab,
17947c478bd9Sstevel@tonic-gate 		 * so we can reclaim the memory.
17957c478bd9Sstevel@tonic-gate 		 */
1796b5fca8f8Stomee 		if (sp->slab_chunks == 1) {
1797b5fca8f8Stomee 			list_remove(&cp->cache_complete_slabs, sp);
1798b5fca8f8Stomee 			cp->cache_complete_slab_count--;
1799b5fca8f8Stomee 		} else {
1800b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
1801b5fca8f8Stomee 		}
1802b5fca8f8Stomee 
18037c478bd9Sstevel@tonic-gate 		cp->cache_buftotal -= sp->slab_chunks;
18049f1b636aStomee 		cp->cache_bufslab -= sp->slab_chunks;
1805b5fca8f8Stomee 		/*
1806b5fca8f8Stomee 		 * Defer releasing the slab to the virtual memory subsystem
1807b5fca8f8Stomee 		 * while there is a pending move callback, since we guarantee
1808b5fca8f8Stomee 		 * that buffers passed to the move callback have only been
1809b5fca8f8Stomee 		 * touched by kmem or by the client itself. Since the memory
1810b5fca8f8Stomee 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1811b5fca8f8Stomee 		 * set at least one of the two lowest order bits, the client can
1812b5fca8f8Stomee 		 * test those bits in the move callback to determine whether or
1813b5fca8f8Stomee 		 * not it knows about the buffer (assuming that the client also
1814b5fca8f8Stomee 		 * sets one of those low order bits whenever it frees a buffer).
1815b5fca8f8Stomee 		 */
1816b5fca8f8Stomee 		if (cp->cache_defrag == NULL ||
1817b5fca8f8Stomee 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1818b5fca8f8Stomee 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1819b5fca8f8Stomee 			cp->cache_slab_destroy++;
18207c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
18217c478bd9Sstevel@tonic-gate 			kmem_slab_destroy(cp, sp);
1822b5fca8f8Stomee 		} else {
1823b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1824b5fca8f8Stomee 			/*
1825b5fca8f8Stomee 			 * Slabs are inserted at both ends of the deadlist to
1826b5fca8f8Stomee 			 * distinguish between slabs freed while move callbacks
1827b5fca8f8Stomee 			 * are pending (list head) and a slab freed while the
1828b5fca8f8Stomee 			 * lock is dropped in kmem_move_buffers() (list tail) so
1829b5fca8f8Stomee 			 * that in both cases slab_destroy() is called from the
1830b5fca8f8Stomee 			 * right context.
1831b5fca8f8Stomee 			 */
1832b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1833b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
1834b5fca8f8Stomee 			} else {
1835b5fca8f8Stomee 				list_insert_head(deadlist, sp);
1836b5fca8f8Stomee 			}
1837b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount++;
1838b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1839b5fca8f8Stomee 		}
18407c478bd9Sstevel@tonic-gate 		return;
18417c478bd9Sstevel@tonic-gate 	}
1842b5fca8f8Stomee 
1843b5fca8f8Stomee 	if (bcp->bc_next == NULL) {
1844b5fca8f8Stomee 		/* Transition the slab from completely allocated to partial. */
1845b5fca8f8Stomee 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1846b5fca8f8Stomee 		ASSERT(sp->slab_chunks > 1);
1847b5fca8f8Stomee 		list_remove(&cp->cache_complete_slabs, sp);
1848b5fca8f8Stomee 		cp->cache_complete_slab_count--;
1849b5fca8f8Stomee 		avl_add(&cp->cache_partial_slabs, sp);
1850b5fca8f8Stomee 	} else {
1851b5fca8f8Stomee #ifdef	DEBUG
1852b5fca8f8Stomee 		if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1853b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1854b5fca8f8Stomee 		} else {
1855b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1856b5fca8f8Stomee 		}
1857b5fca8f8Stomee #else
1858b5fca8f8Stomee 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1859b5fca8f8Stomee #endif
1860b5fca8f8Stomee 	}
1861b5fca8f8Stomee 
1862b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1863b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1864b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1865b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
18667c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
18677c478bd9Sstevel@tonic-gate }
18687c478bd9Sstevel@tonic-gate 
1869b5fca8f8Stomee /*
1870b5fca8f8Stomee  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1871b5fca8f8Stomee  */
18727c478bd9Sstevel@tonic-gate static int
18737c478bd9Sstevel@tonic-gate kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
18747c478bd9Sstevel@tonic-gate     caddr_t caller)
18757c478bd9Sstevel@tonic-gate {
18767c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
18777c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
18787c478bd9Sstevel@tonic-gate 	uint32_t mtbf;
18797c478bd9Sstevel@tonic-gate 
18807c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
18817c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFTAG, cp, buf);
18827c478bd9Sstevel@tonic-gate 		return (-1);
18837c478bd9Sstevel@tonic-gate 	}
18847c478bd9Sstevel@tonic-gate 
18857c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
18867c478bd9Sstevel@tonic-gate 
18877c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
18887c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
18897c478bd9Sstevel@tonic-gate 		return (-1);
18907c478bd9Sstevel@tonic-gate 	}
18917c478bd9Sstevel@tonic-gate 
18927c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
18937c478bd9Sstevel@tonic-gate 		if (!construct && (cp->cache_flags & KMF_LITE)) {
18947c478bd9Sstevel@tonic-gate 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
18957c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
18967c478bd9Sstevel@tonic-gate 				return (-1);
18977c478bd9Sstevel@tonic-gate 			}
18987c478bd9Sstevel@tonic-gate 			if (cp->cache_constructor != NULL)
18997c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
19007c478bd9Sstevel@tonic-gate 			else
19017c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
19027c478bd9Sstevel@tonic-gate 		} else {
19037c478bd9Sstevel@tonic-gate 			construct = 1;
19047c478bd9Sstevel@tonic-gate 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
19057c478bd9Sstevel@tonic-gate 			    KMEM_UNINITIALIZED_PATTERN, buf,
19067c478bd9Sstevel@tonic-gate 			    cp->cache_verify)) {
19077c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
19087c478bd9Sstevel@tonic-gate 				return (-1);
19097c478bd9Sstevel@tonic-gate 			}
19107c478bd9Sstevel@tonic-gate 		}
19117c478bd9Sstevel@tonic-gate 	}
19127c478bd9Sstevel@tonic-gate 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
19137c478bd9Sstevel@tonic-gate 
19147c478bd9Sstevel@tonic-gate 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
19157c478bd9Sstevel@tonic-gate 	    gethrtime() % mtbf == 0 &&
19167c478bd9Sstevel@tonic-gate 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
19177c478bd9Sstevel@tonic-gate 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
19187c478bd9Sstevel@tonic-gate 		if (!construct && cp->cache_destructor != NULL)
19197c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
19207c478bd9Sstevel@tonic-gate 	} else {
19217c478bd9Sstevel@tonic-gate 		mtbf = 0;
19227c478bd9Sstevel@tonic-gate 	}
19237c478bd9Sstevel@tonic-gate 
19247c478bd9Sstevel@tonic-gate 	if (mtbf || (construct && cp->cache_constructor != NULL &&
19257c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
19267c478bd9Sstevel@tonic-gate 		atomic_add_64(&cp->cache_alloc_fail, 1);
19277c478bd9Sstevel@tonic-gate 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
19287c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF)
19297c478bd9Sstevel@tonic-gate 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
19307c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
1931b5fca8f8Stomee 		return (1);
19327c478bd9Sstevel@tonic-gate 	}
19337c478bd9Sstevel@tonic-gate 
19347c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
19357c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
19367c478bd9Sstevel@tonic-gate 	}
19377c478bd9Sstevel@tonic-gate 
19387c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
19397c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
19407c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
19417c478bd9Sstevel@tonic-gate 	}
19427c478bd9Sstevel@tonic-gate 
19437c478bd9Sstevel@tonic-gate 	return (0);
19447c478bd9Sstevel@tonic-gate }
19457c478bd9Sstevel@tonic-gate 
19467c478bd9Sstevel@tonic-gate static int
19477c478bd9Sstevel@tonic-gate kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
19487c478bd9Sstevel@tonic-gate {
19497c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
19507c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
19517c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
19527c478bd9Sstevel@tonic-gate 
19537c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
19547c478bd9Sstevel@tonic-gate 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
19557c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_DUPFREE, cp, buf);
19567c478bd9Sstevel@tonic-gate 			return (-1);
19577c478bd9Sstevel@tonic-gate 		}
19587c478bd9Sstevel@tonic-gate 		sp = kmem_findslab(cp, buf);
19597c478bd9Sstevel@tonic-gate 		if (sp == NULL || sp->slab_cache != cp)
19607c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_BADADDR, cp, buf);
19617c478bd9Sstevel@tonic-gate 		else
19627c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_REDZONE, cp, buf);
19637c478bd9Sstevel@tonic-gate 		return (-1);
19647c478bd9Sstevel@tonic-gate 	}
19657c478bd9Sstevel@tonic-gate 
19667c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
19677c478bd9Sstevel@tonic-gate 
19687c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
19697c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
19707c478bd9Sstevel@tonic-gate 		return (-1);
19717c478bd9Sstevel@tonic-gate 	}
19727c478bd9Sstevel@tonic-gate 
19737c478bd9Sstevel@tonic-gate 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
19747c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_REDZONE, cp, buf);
19757c478bd9Sstevel@tonic-gate 		return (-1);
19767c478bd9Sstevel@tonic-gate 	}
19777c478bd9Sstevel@tonic-gate 
19787c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
19797c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
19807c478bd9Sstevel@tonic-gate 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
19817c478bd9Sstevel@tonic-gate 			    buf, cp->cache_contents);
19827c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
19837c478bd9Sstevel@tonic-gate 	}
19847c478bd9Sstevel@tonic-gate 
19857c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
19867c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
19877c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
19887c478bd9Sstevel@tonic-gate 	}
19897c478bd9Sstevel@tonic-gate 
19907c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
19917c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
19927c478bd9Sstevel@tonic-gate 			btp->bt_redzone = *(uint64_t *)buf;
19937c478bd9Sstevel@tonic-gate 		else if (cp->cache_destructor != NULL)
19947c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
19957c478bd9Sstevel@tonic-gate 
19967c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
19977c478bd9Sstevel@tonic-gate 	}
19987c478bd9Sstevel@tonic-gate 
19997c478bd9Sstevel@tonic-gate 	return (0);
20007c478bd9Sstevel@tonic-gate }
20017c478bd9Sstevel@tonic-gate 
20027c478bd9Sstevel@tonic-gate /*
20037c478bd9Sstevel@tonic-gate  * Free each object in magazine mp to cp's slab layer, and free mp itself.
20047c478bd9Sstevel@tonic-gate  */
20057c478bd9Sstevel@tonic-gate static void
20067c478bd9Sstevel@tonic-gate kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
20077c478bd9Sstevel@tonic-gate {
20087c478bd9Sstevel@tonic-gate 	int round;
20097c478bd9Sstevel@tonic-gate 
2010b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2011b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
20127c478bd9Sstevel@tonic-gate 
20137c478bd9Sstevel@tonic-gate 	for (round = 0; round < nrounds; round++) {
20147c478bd9Sstevel@tonic-gate 		void *buf = mp->mag_round[round];
20157c478bd9Sstevel@tonic-gate 
20167c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF) {
20177c478bd9Sstevel@tonic-gate 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
20187c478bd9Sstevel@tonic-gate 			    cp->cache_verify) != NULL) {
20197c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
20207c478bd9Sstevel@tonic-gate 				continue;
20217c478bd9Sstevel@tonic-gate 			}
20227c478bd9Sstevel@tonic-gate 			if ((cp->cache_flags & KMF_LITE) &&
20237c478bd9Sstevel@tonic-gate 			    cp->cache_destructor != NULL) {
20247c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
20257c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
20267c478bd9Sstevel@tonic-gate 				cp->cache_destructor(buf, cp->cache_private);
20277c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
20287c478bd9Sstevel@tonic-gate 			}
20297c478bd9Sstevel@tonic-gate 		} else if (cp->cache_destructor != NULL) {
20307c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
20317c478bd9Sstevel@tonic-gate 		}
20327c478bd9Sstevel@tonic-gate 
20337c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
20347c478bd9Sstevel@tonic-gate 	}
20357c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20367c478bd9Sstevel@tonic-gate 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
20377c478bd9Sstevel@tonic-gate }
20387c478bd9Sstevel@tonic-gate 
20397c478bd9Sstevel@tonic-gate /*
20407c478bd9Sstevel@tonic-gate  * Allocate a magazine from the depot.
20417c478bd9Sstevel@tonic-gate  */
20427c478bd9Sstevel@tonic-gate static kmem_magazine_t *
20437c478bd9Sstevel@tonic-gate kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
20447c478bd9Sstevel@tonic-gate {
20457c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
20467c478bd9Sstevel@tonic-gate 
20477c478bd9Sstevel@tonic-gate 	/*
20487c478bd9Sstevel@tonic-gate 	 * If we can't get the depot lock without contention,
20497c478bd9Sstevel@tonic-gate 	 * update our contention count.  We use the depot
20507c478bd9Sstevel@tonic-gate 	 * contention rate to determine whether we need to
20517c478bd9Sstevel@tonic-gate 	 * increase the magazine size for better scalability.
20527c478bd9Sstevel@tonic-gate 	 */
20537c478bd9Sstevel@tonic-gate 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
20547c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
20557c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention++;
20567c478bd9Sstevel@tonic-gate 	}
20577c478bd9Sstevel@tonic-gate 
20587c478bd9Sstevel@tonic-gate 	if ((mp = mlp->ml_list) != NULL) {
20597c478bd9Sstevel@tonic-gate 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20607c478bd9Sstevel@tonic-gate 		mlp->ml_list = mp->mag_next;
20617c478bd9Sstevel@tonic-gate 		if (--mlp->ml_total < mlp->ml_min)
20627c478bd9Sstevel@tonic-gate 			mlp->ml_min = mlp->ml_total;
20637c478bd9Sstevel@tonic-gate 		mlp->ml_alloc++;
20647c478bd9Sstevel@tonic-gate 	}
20657c478bd9Sstevel@tonic-gate 
20667c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
20677c478bd9Sstevel@tonic-gate 
20687c478bd9Sstevel@tonic-gate 	return (mp);
20697c478bd9Sstevel@tonic-gate }
20707c478bd9Sstevel@tonic-gate 
20717c478bd9Sstevel@tonic-gate /*
20727c478bd9Sstevel@tonic-gate  * Free a magazine to the depot.
20737c478bd9Sstevel@tonic-gate  */
20747c478bd9Sstevel@tonic-gate static void
20757c478bd9Sstevel@tonic-gate kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
20767c478bd9Sstevel@tonic-gate {
20777c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
20787c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20797c478bd9Sstevel@tonic-gate 	mp->mag_next = mlp->ml_list;
20807c478bd9Sstevel@tonic-gate 	mlp->ml_list = mp;
20817c478bd9Sstevel@tonic-gate 	mlp->ml_total++;
20827c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
20837c478bd9Sstevel@tonic-gate }
20847c478bd9Sstevel@tonic-gate 
20857c478bd9Sstevel@tonic-gate /*
20867c478bd9Sstevel@tonic-gate  * Update the working set statistics for cp's depot.
20877c478bd9Sstevel@tonic-gate  */
20887c478bd9Sstevel@tonic-gate static void
20897c478bd9Sstevel@tonic-gate kmem_depot_ws_update(kmem_cache_t *cp)
20907c478bd9Sstevel@tonic-gate {
20917c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
20927c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
20937c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_min = cp->cache_full.ml_total;
20947c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
20957c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
20967c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
20977c478bd9Sstevel@tonic-gate }
20987c478bd9Sstevel@tonic-gate 
20997c478bd9Sstevel@tonic-gate /*
21007c478bd9Sstevel@tonic-gate  * Reap all magazines that have fallen out of the depot's working set.
21017c478bd9Sstevel@tonic-gate  */
21027c478bd9Sstevel@tonic-gate static void
21037c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(kmem_cache_t *cp)
21047c478bd9Sstevel@tonic-gate {
21057c478bd9Sstevel@tonic-gate 	long reap;
21067c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
21077c478bd9Sstevel@tonic-gate 
2108b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2109b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
21107c478bd9Sstevel@tonic-gate 
21117c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
21127c478bd9Sstevel@tonic-gate 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
21137c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
21147c478bd9Sstevel@tonic-gate 
21157c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
21167c478bd9Sstevel@tonic-gate 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
21177c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, 0);
21187c478bd9Sstevel@tonic-gate }
21197c478bd9Sstevel@tonic-gate 
21207c478bd9Sstevel@tonic-gate static void
21217c478bd9Sstevel@tonic-gate kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
21227c478bd9Sstevel@tonic-gate {
21237c478bd9Sstevel@tonic-gate 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
21247c478bd9Sstevel@tonic-gate 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
21257c478bd9Sstevel@tonic-gate 	ASSERT(ccp->cc_magsize > 0);
21267c478bd9Sstevel@tonic-gate 
21277c478bd9Sstevel@tonic-gate 	ccp->cc_ploaded = ccp->cc_loaded;
21287c478bd9Sstevel@tonic-gate 	ccp->cc_prounds = ccp->cc_rounds;
21297c478bd9Sstevel@tonic-gate 	ccp->cc_loaded = mp;
21307c478bd9Sstevel@tonic-gate 	ccp->cc_rounds = rounds;
21317c478bd9Sstevel@tonic-gate }
21327c478bd9Sstevel@tonic-gate 
21337c478bd9Sstevel@tonic-gate /*
21347c478bd9Sstevel@tonic-gate  * Allocate a constructed object from cache cp.
21357c478bd9Sstevel@tonic-gate  */
21367c478bd9Sstevel@tonic-gate void *
21377c478bd9Sstevel@tonic-gate kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
21387c478bd9Sstevel@tonic-gate {
21397c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
21407c478bd9Sstevel@tonic-gate 	kmem_magazine_t *fmp;
21417c478bd9Sstevel@tonic-gate 	void *buf;
21427c478bd9Sstevel@tonic-gate 
21437c478bd9Sstevel@tonic-gate 	mutex_enter(&ccp->cc_lock);
21447c478bd9Sstevel@tonic-gate 	for (;;) {
21457c478bd9Sstevel@tonic-gate 		/*
21467c478bd9Sstevel@tonic-gate 		 * If there's an object available in the current CPU's
21477c478bd9Sstevel@tonic-gate 		 * loaded magazine, just take it and return.
21487c478bd9Sstevel@tonic-gate 		 */
21497c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0) {
21507c478bd9Sstevel@tonic-gate 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
21517c478bd9Sstevel@tonic-gate 			ccp->cc_alloc++;
21527c478bd9Sstevel@tonic-gate 			mutex_exit(&ccp->cc_lock);
21537c478bd9Sstevel@tonic-gate 			if ((ccp->cc_flags & KMF_BUFTAG) &&
21547c478bd9Sstevel@tonic-gate 			    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2155b5fca8f8Stomee 			    caller()) != 0) {
21567c478bd9Sstevel@tonic-gate 				if (kmflag & KM_NOSLEEP)
21577c478bd9Sstevel@tonic-gate 					return (NULL);
21587c478bd9Sstevel@tonic-gate 				mutex_enter(&ccp->cc_lock);
21597c478bd9Sstevel@tonic-gate 				continue;
21607c478bd9Sstevel@tonic-gate 			}
21617c478bd9Sstevel@tonic-gate 			return (buf);
21627c478bd9Sstevel@tonic-gate 		}
21637c478bd9Sstevel@tonic-gate 
21647c478bd9Sstevel@tonic-gate 		/*
21657c478bd9Sstevel@tonic-gate 		 * The loaded magazine is empty.  If the previously loaded
21667c478bd9Sstevel@tonic-gate 		 * magazine was full, exchange them and try again.
21677c478bd9Sstevel@tonic-gate 		 */
21687c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0) {
21697c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
21707c478bd9Sstevel@tonic-gate 			continue;
21717c478bd9Sstevel@tonic-gate 		}
21727c478bd9Sstevel@tonic-gate 
21737c478bd9Sstevel@tonic-gate 		/*
21747c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
21757c478bd9Sstevel@tonic-gate 		 */
21767c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
21777c478bd9Sstevel@tonic-gate 			break;
21787c478bd9Sstevel@tonic-gate 
21797c478bd9Sstevel@tonic-gate 		/*
21807c478bd9Sstevel@tonic-gate 		 * Try to get a full magazine from the depot.
21817c478bd9Sstevel@tonic-gate 		 */
21827c478bd9Sstevel@tonic-gate 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
21837c478bd9Sstevel@tonic-gate 		if (fmp != NULL) {
21847c478bd9Sstevel@tonic-gate 			if (ccp->cc_ploaded != NULL)
21857c478bd9Sstevel@tonic-gate 				kmem_depot_free(cp, &cp->cache_empty,
21867c478bd9Sstevel@tonic-gate 				    ccp->cc_ploaded);
21877c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
21887c478bd9Sstevel@tonic-gate 			continue;
21897c478bd9Sstevel@tonic-gate 		}
21907c478bd9Sstevel@tonic-gate 
21917c478bd9Sstevel@tonic-gate 		/*
21927c478bd9Sstevel@tonic-gate 		 * There are no full magazines in the depot,
21937c478bd9Sstevel@tonic-gate 		 * so fall through to the slab layer.
21947c478bd9Sstevel@tonic-gate 		 */
21957c478bd9Sstevel@tonic-gate 		break;
21967c478bd9Sstevel@tonic-gate 	}
21977c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
21987c478bd9Sstevel@tonic-gate 
21997c478bd9Sstevel@tonic-gate 	/*
22007c478bd9Sstevel@tonic-gate 	 * We couldn't allocate a constructed object from the magazine layer,
22017c478bd9Sstevel@tonic-gate 	 * so get a raw buffer from the slab layer and apply its constructor.
22027c478bd9Sstevel@tonic-gate 	 */
22037c478bd9Sstevel@tonic-gate 	buf = kmem_slab_alloc(cp, kmflag);
22047c478bd9Sstevel@tonic-gate 
22057c478bd9Sstevel@tonic-gate 	if (buf == NULL)
22067c478bd9Sstevel@tonic-gate 		return (NULL);
22077c478bd9Sstevel@tonic-gate 
22087c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
22097c478bd9Sstevel@tonic-gate 		/*
22107c478bd9Sstevel@tonic-gate 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
22117c478bd9Sstevel@tonic-gate 		 */
2212b5fca8f8Stomee 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2213b5fca8f8Stomee 		if (rc != 0) {
22147c478bd9Sstevel@tonic-gate 			if (kmflag & KM_NOSLEEP)
22157c478bd9Sstevel@tonic-gate 				return (NULL);
22167c478bd9Sstevel@tonic-gate 			/*
22177c478bd9Sstevel@tonic-gate 			 * kmem_cache_alloc_debug() detected corruption
2218b5fca8f8Stomee 			 * but didn't panic (kmem_panic <= 0). We should not be
2219b5fca8f8Stomee 			 * here because the constructor failed (indicated by a
2220b5fca8f8Stomee 			 * return code of 1). Try again.
22217c478bd9Sstevel@tonic-gate 			 */
2222b5fca8f8Stomee 			ASSERT(rc == -1);
22237c478bd9Sstevel@tonic-gate 			return (kmem_cache_alloc(cp, kmflag));
22247c478bd9Sstevel@tonic-gate 		}
22257c478bd9Sstevel@tonic-gate 		return (buf);
22267c478bd9Sstevel@tonic-gate 	}
22277c478bd9Sstevel@tonic-gate 
22287c478bd9Sstevel@tonic-gate 	if (cp->cache_constructor != NULL &&
22297c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
22307c478bd9Sstevel@tonic-gate 		atomic_add_64(&cp->cache_alloc_fail, 1);
22317c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
22327c478bd9Sstevel@tonic-gate 		return (NULL);
22337c478bd9Sstevel@tonic-gate 	}
22347c478bd9Sstevel@tonic-gate 
22357c478bd9Sstevel@tonic-gate 	return (buf);
22367c478bd9Sstevel@tonic-gate }
22377c478bd9Sstevel@tonic-gate 
22387c478bd9Sstevel@tonic-gate /*
2239b5fca8f8Stomee  * The freed argument tells whether or not kmem_cache_free_debug() has already
2240b5fca8f8Stomee  * been called so that we can avoid the duplicate free error. For example, a
2241b5fca8f8Stomee  * buffer on a magazine has already been freed by the client but is still
2242b5fca8f8Stomee  * constructed.
2243b5fca8f8Stomee  */
2244b5fca8f8Stomee static void
2245b5fca8f8Stomee kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2246b5fca8f8Stomee {
2247b5fca8f8Stomee 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2248b5fca8f8Stomee 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2249b5fca8f8Stomee 			return;
2250b5fca8f8Stomee 
2251b5fca8f8Stomee 	/*
2252b5fca8f8Stomee 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2253b5fca8f8Stomee 	 * kmem_cache_free_debug() will have already applied the destructor.
2254b5fca8f8Stomee 	 */
2255b5fca8f8Stomee 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2256b5fca8f8Stomee 	    cp->cache_destructor != NULL) {
2257b5fca8f8Stomee 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2258b5fca8f8Stomee 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2259b5fca8f8Stomee 			*(uint64_t *)buf = btp->bt_redzone;
2260b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2261b5fca8f8Stomee 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2262b5fca8f8Stomee 		} else {
2263b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2264b5fca8f8Stomee 		}
2265b5fca8f8Stomee 	}
2266b5fca8f8Stomee 
2267b5fca8f8Stomee 	kmem_slab_free(cp, buf);
2268b5fca8f8Stomee }
2269b5fca8f8Stomee 
2270b5fca8f8Stomee /*
22717c478bd9Sstevel@tonic-gate  * Free a constructed object to cache cp.
22727c478bd9Sstevel@tonic-gate  */
22737c478bd9Sstevel@tonic-gate void
22747c478bd9Sstevel@tonic-gate kmem_cache_free(kmem_cache_t *cp, void *buf)
22757c478bd9Sstevel@tonic-gate {
22767c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
22777c478bd9Sstevel@tonic-gate 	kmem_magazine_t *emp;
22787c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
22797c478bd9Sstevel@tonic-gate 
2280b5fca8f8Stomee 	/*
2281b5fca8f8Stomee 	 * The client must not free either of the buffers passed to the move
2282b5fca8f8Stomee 	 * callback function.
2283b5fca8f8Stomee 	 */
2284b5fca8f8Stomee 	ASSERT(cp->cache_defrag == NULL ||
2285b5fca8f8Stomee 	    cp->cache_defrag->kmd_thread != curthread ||
2286b5fca8f8Stomee 	    (buf != cp->cache_defrag->kmd_from_buf &&
2287b5fca8f8Stomee 	    buf != cp->cache_defrag->kmd_to_buf));
2288b5fca8f8Stomee 
22897c478bd9Sstevel@tonic-gate 	if (ccp->cc_flags & KMF_BUFTAG)
22907c478bd9Sstevel@tonic-gate 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
22917c478bd9Sstevel@tonic-gate 			return;
22927c478bd9Sstevel@tonic-gate 
22937c478bd9Sstevel@tonic-gate 	mutex_enter(&ccp->cc_lock);
22947c478bd9Sstevel@tonic-gate 	for (;;) {
22957c478bd9Sstevel@tonic-gate 		/*
22967c478bd9Sstevel@tonic-gate 		 * If there's a slot available in the current CPU's
22977c478bd9Sstevel@tonic-gate 		 * loaded magazine, just put the object there and return.
22987c478bd9Sstevel@tonic-gate 		 */
22997c478bd9Sstevel@tonic-gate 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
23007c478bd9Sstevel@tonic-gate 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
23017c478bd9Sstevel@tonic-gate 			ccp->cc_free++;
23027c478bd9Sstevel@tonic-gate 			mutex_exit(&ccp->cc_lock);
23037c478bd9Sstevel@tonic-gate 			return;
23047c478bd9Sstevel@tonic-gate 		}
23057c478bd9Sstevel@tonic-gate 
23067c478bd9Sstevel@tonic-gate 		/*
23077c478bd9Sstevel@tonic-gate 		 * The loaded magazine is full.  If the previously loaded
23087c478bd9Sstevel@tonic-gate 		 * magazine was empty, exchange them and try again.
23097c478bd9Sstevel@tonic-gate 		 */
23107c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds == 0) {
23117c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
23127c478bd9Sstevel@tonic-gate 			continue;
23137c478bd9Sstevel@tonic-gate 		}
23147c478bd9Sstevel@tonic-gate 
23157c478bd9Sstevel@tonic-gate 		/*
23167c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
23177c478bd9Sstevel@tonic-gate 		 */
23187c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
23197c478bd9Sstevel@tonic-gate 			break;
23207c478bd9Sstevel@tonic-gate 
23217c478bd9Sstevel@tonic-gate 		/*
23227c478bd9Sstevel@tonic-gate 		 * Try to get an empty magazine from the depot.
23237c478bd9Sstevel@tonic-gate 		 */
23247c478bd9Sstevel@tonic-gate 		emp = kmem_depot_alloc(cp, &cp->cache_empty);
23257c478bd9Sstevel@tonic-gate 		if (emp != NULL) {
23267c478bd9Sstevel@tonic-gate 			if (ccp->cc_ploaded != NULL)
23277c478bd9Sstevel@tonic-gate 				kmem_depot_free(cp, &cp->cache_full,
23287c478bd9Sstevel@tonic-gate 				    ccp->cc_ploaded);
23297c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, emp, 0);
23307c478bd9Sstevel@tonic-gate 			continue;
23317c478bd9Sstevel@tonic-gate 		}
23327c478bd9Sstevel@tonic-gate 
23337c478bd9Sstevel@tonic-gate 		/*
23347c478bd9Sstevel@tonic-gate 		 * There are no empty magazines in the depot,
23357c478bd9Sstevel@tonic-gate 		 * so try to allocate a new one.  We must drop all locks
23367c478bd9Sstevel@tonic-gate 		 * across kmem_cache_alloc() because lower layers may
23377c478bd9Sstevel@tonic-gate 		 * attempt to allocate from this cache.
23387c478bd9Sstevel@tonic-gate 		 */
23397c478bd9Sstevel@tonic-gate 		mtp = cp->cache_magtype;
23407c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
23417c478bd9Sstevel@tonic-gate 		emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
23427c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
23437c478bd9Sstevel@tonic-gate 
23447c478bd9Sstevel@tonic-gate 		if (emp != NULL) {
23457c478bd9Sstevel@tonic-gate 			/*
23467c478bd9Sstevel@tonic-gate 			 * We successfully allocated an empty magazine.
23477c478bd9Sstevel@tonic-gate 			 * However, we had to drop ccp->cc_lock to do it,
23487c478bd9Sstevel@tonic-gate 			 * so the cache's magazine size may have changed.
23497c478bd9Sstevel@tonic-gate 			 * If so, free the magazine and try again.
23507c478bd9Sstevel@tonic-gate 			 */
23517c478bd9Sstevel@tonic-gate 			if (ccp->cc_magsize != mtp->mt_magsize) {
23527c478bd9Sstevel@tonic-gate 				mutex_exit(&ccp->cc_lock);
23537c478bd9Sstevel@tonic-gate 				kmem_cache_free(mtp->mt_cache, emp);
23547c478bd9Sstevel@tonic-gate 				mutex_enter(&ccp->cc_lock);
23557c478bd9Sstevel@tonic-gate 				continue;
23567c478bd9Sstevel@tonic-gate 			}
23577c478bd9Sstevel@tonic-gate 
23587c478bd9Sstevel@tonic-gate 			/*
23597c478bd9Sstevel@tonic-gate 			 * We got a magazine of the right size.  Add it to
23607c478bd9Sstevel@tonic-gate 			 * the depot and try the whole dance again.
23617c478bd9Sstevel@tonic-gate 			 */
23627c478bd9Sstevel@tonic-gate 			kmem_depot_free(cp, &cp->cache_empty, emp);
23637c478bd9Sstevel@tonic-gate 			continue;
23647c478bd9Sstevel@tonic-gate 		}
23657c478bd9Sstevel@tonic-gate 
23667c478bd9Sstevel@tonic-gate 		/*
23677c478bd9Sstevel@tonic-gate 		 * We couldn't allocate an empty magazine,
23687c478bd9Sstevel@tonic-gate 		 * so fall through to the slab layer.
23697c478bd9Sstevel@tonic-gate 		 */
23707c478bd9Sstevel@tonic-gate 		break;
23717c478bd9Sstevel@tonic-gate 	}
23727c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
23737c478bd9Sstevel@tonic-gate 
23747c478bd9Sstevel@tonic-gate 	/*
23757c478bd9Sstevel@tonic-gate 	 * We couldn't free our constructed object to the magazine layer,
23767c478bd9Sstevel@tonic-gate 	 * so apply its destructor and free it to the slab layer.
23777c478bd9Sstevel@tonic-gate 	 */
2378b5fca8f8Stomee 	kmem_slab_free_constructed(cp, buf, B_TRUE);
23797c478bd9Sstevel@tonic-gate }
23807c478bd9Sstevel@tonic-gate 
23817c478bd9Sstevel@tonic-gate void *
23827c478bd9Sstevel@tonic-gate kmem_zalloc(size_t size, int kmflag)
23837c478bd9Sstevel@tonic-gate {
23847c478bd9Sstevel@tonic-gate 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
23857c478bd9Sstevel@tonic-gate 	void *buf;
23867c478bd9Sstevel@tonic-gate 
23877c478bd9Sstevel@tonic-gate 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
23887c478bd9Sstevel@tonic-gate 		kmem_cache_t *cp = kmem_alloc_table[index];
23897c478bd9Sstevel@tonic-gate 		buf = kmem_cache_alloc(cp, kmflag);
23907c478bd9Sstevel@tonic-gate 		if (buf != NULL) {
23917c478bd9Sstevel@tonic-gate 			if (cp->cache_flags & KMF_BUFTAG) {
23927c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
23937c478bd9Sstevel@tonic-gate 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
23947c478bd9Sstevel@tonic-gate 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
23957c478bd9Sstevel@tonic-gate 
23967c478bd9Sstevel@tonic-gate 				if (cp->cache_flags & KMF_LITE) {
23977c478bd9Sstevel@tonic-gate 					KMEM_BUFTAG_LITE_ENTER(btp,
23987c478bd9Sstevel@tonic-gate 					    kmem_lite_count, caller());
23997c478bd9Sstevel@tonic-gate 				}
24007c478bd9Sstevel@tonic-gate 			}
24017c478bd9Sstevel@tonic-gate 			bzero(buf, size);
24027c478bd9Sstevel@tonic-gate 		}
24037c478bd9Sstevel@tonic-gate 	} else {
24047c478bd9Sstevel@tonic-gate 		buf = kmem_alloc(size, kmflag);
24057c478bd9Sstevel@tonic-gate 		if (buf != NULL)
24067c478bd9Sstevel@tonic-gate 			bzero(buf, size);
24077c478bd9Sstevel@tonic-gate 	}
24087c478bd9Sstevel@tonic-gate 	return (buf);
24097c478bd9Sstevel@tonic-gate }
24107c478bd9Sstevel@tonic-gate 
24117c478bd9Sstevel@tonic-gate void *
24127c478bd9Sstevel@tonic-gate kmem_alloc(size_t size, int kmflag)
24137c478bd9Sstevel@tonic-gate {
24147c478bd9Sstevel@tonic-gate 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
24157c478bd9Sstevel@tonic-gate 	void *buf;
24167c478bd9Sstevel@tonic-gate 
24177c478bd9Sstevel@tonic-gate 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
24187c478bd9Sstevel@tonic-gate 		kmem_cache_t *cp = kmem_alloc_table[index];
24197c478bd9Sstevel@tonic-gate 		buf = kmem_cache_alloc(cp, kmflag);
24207c478bd9Sstevel@tonic-gate 		if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) {
24217c478bd9Sstevel@tonic-gate 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
24227c478bd9Sstevel@tonic-gate 			((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
24237c478bd9Sstevel@tonic-gate 			((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
24247c478bd9Sstevel@tonic-gate 
24257c478bd9Sstevel@tonic-gate 			if (cp->cache_flags & KMF_LITE) {
24267c478bd9Sstevel@tonic-gate 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
24277c478bd9Sstevel@tonic-gate 				    caller());
24287c478bd9Sstevel@tonic-gate 			}
24297c478bd9Sstevel@tonic-gate 		}
24307c478bd9Sstevel@tonic-gate 		return (buf);
24317c478bd9Sstevel@tonic-gate 	}
24327c478bd9Sstevel@tonic-gate 	if (size == 0)
24337c478bd9Sstevel@tonic-gate 		return (NULL);
24347c478bd9Sstevel@tonic-gate 	buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS);
24357c478bd9Sstevel@tonic-gate 	if (buf == NULL)
24367c478bd9Sstevel@tonic-gate 		kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size);
24377c478bd9Sstevel@tonic-gate 	return (buf);
24387c478bd9Sstevel@tonic-gate }
24397c478bd9Sstevel@tonic-gate 
24407c478bd9Sstevel@tonic-gate void
24417c478bd9Sstevel@tonic-gate kmem_free(void *buf, size_t size)
24427c478bd9Sstevel@tonic-gate {
24437c478bd9Sstevel@tonic-gate 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
24447c478bd9Sstevel@tonic-gate 
24457c478bd9Sstevel@tonic-gate 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
24467c478bd9Sstevel@tonic-gate 		kmem_cache_t *cp = kmem_alloc_table[index];
24477c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_BUFTAG) {
24487c478bd9Sstevel@tonic-gate 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
24497c478bd9Sstevel@tonic-gate 			uint32_t *ip = (uint32_t *)btp;
24507c478bd9Sstevel@tonic-gate 			if (ip[1] != KMEM_SIZE_ENCODE(size)) {
24517c478bd9Sstevel@tonic-gate 				if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
24527c478bd9Sstevel@tonic-gate 					kmem_error(KMERR_DUPFREE, cp, buf);
24537c478bd9Sstevel@tonic-gate 					return;
24547c478bd9Sstevel@tonic-gate 				}
24557c478bd9Sstevel@tonic-gate 				if (KMEM_SIZE_VALID(ip[1])) {
24567c478bd9Sstevel@tonic-gate 					ip[0] = KMEM_SIZE_ENCODE(size);
24577c478bd9Sstevel@tonic-gate 					kmem_error(KMERR_BADSIZE, cp, buf);
24587c478bd9Sstevel@tonic-gate 				} else {
24597c478bd9Sstevel@tonic-gate 					kmem_error(KMERR_REDZONE, cp, buf);
24607c478bd9Sstevel@tonic-gate 				}
24617c478bd9Sstevel@tonic-gate 				return;
24627c478bd9Sstevel@tonic-gate 			}
24637c478bd9Sstevel@tonic-gate 			if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
24647c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_REDZONE, cp, buf);
24657c478bd9Sstevel@tonic-gate 				return;
24667c478bd9Sstevel@tonic-gate 			}
24677c478bd9Sstevel@tonic-gate 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
24687c478bd9Sstevel@tonic-gate 			if (cp->cache_flags & KMF_LITE) {
24697c478bd9Sstevel@tonic-gate 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
24707c478bd9Sstevel@tonic-gate 				    caller());
24717c478bd9Sstevel@tonic-gate 			}
24727c478bd9Sstevel@tonic-gate 		}
24737c478bd9Sstevel@tonic-gate 		kmem_cache_free(cp, buf);
24747c478bd9Sstevel@tonic-gate 	} else {
24757c478bd9Sstevel@tonic-gate 		if (buf == NULL && size == 0)
24767c478bd9Sstevel@tonic-gate 			return;
24777c478bd9Sstevel@tonic-gate 		vmem_free(kmem_oversize_arena, buf, size);
24787c478bd9Sstevel@tonic-gate 	}
24797c478bd9Sstevel@tonic-gate }
24807c478bd9Sstevel@tonic-gate 
24817c478bd9Sstevel@tonic-gate void *
24827c478bd9Sstevel@tonic-gate kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
24837c478bd9Sstevel@tonic-gate {
24847c478bd9Sstevel@tonic-gate 	size_t realsize = size + vmp->vm_quantum;
24857c478bd9Sstevel@tonic-gate 	void *addr;
24867c478bd9Sstevel@tonic-gate 
24877c478bd9Sstevel@tonic-gate 	/*
24887c478bd9Sstevel@tonic-gate 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
24897c478bd9Sstevel@tonic-gate 	 * vm_quantum will cause integer wraparound.  Check for this, and
24907c478bd9Sstevel@tonic-gate 	 * blow off the firewall page in this case.  Note that such a
24917c478bd9Sstevel@tonic-gate 	 * giant allocation (the entire kernel address space) can never
24927c478bd9Sstevel@tonic-gate 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
24937c478bd9Sstevel@tonic-gate 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
24947c478bd9Sstevel@tonic-gate 	 * corresponding check in kmem_firewall_va_free().
24957c478bd9Sstevel@tonic-gate 	 */
24967c478bd9Sstevel@tonic-gate 	if (realsize < size)
24977c478bd9Sstevel@tonic-gate 		realsize = size;
24987c478bd9Sstevel@tonic-gate 
24997c478bd9Sstevel@tonic-gate 	/*
25007c478bd9Sstevel@tonic-gate 	 * While boot still owns resource management, make sure that this
25017c478bd9Sstevel@tonic-gate 	 * redzone virtual address allocation is properly accounted for in
25027c478bd9Sstevel@tonic-gate 	 * OBPs "virtual-memory" "available" lists because we're
25037c478bd9Sstevel@tonic-gate 	 * effectively claiming them for a red zone.  If we don't do this,
25047c478bd9Sstevel@tonic-gate 	 * the available lists become too fragmented and too large for the
25057c478bd9Sstevel@tonic-gate 	 * current boot/kernel memory list interface.
25067c478bd9Sstevel@tonic-gate 	 */
25077c478bd9Sstevel@tonic-gate 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
25087c478bd9Sstevel@tonic-gate 
25097c478bd9Sstevel@tonic-gate 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
25107c478bd9Sstevel@tonic-gate 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
25117c478bd9Sstevel@tonic-gate 
25127c478bd9Sstevel@tonic-gate 	return (addr);
25137c478bd9Sstevel@tonic-gate }
25147c478bd9Sstevel@tonic-gate 
25157c478bd9Sstevel@tonic-gate void
25167c478bd9Sstevel@tonic-gate kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
25177c478bd9Sstevel@tonic-gate {
25187c478bd9Sstevel@tonic-gate 	ASSERT((kvseg.s_base == NULL ?
25197c478bd9Sstevel@tonic-gate 	    va_to_pfn((char *)addr + size) :
25207c478bd9Sstevel@tonic-gate 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
25217c478bd9Sstevel@tonic-gate 
25227c478bd9Sstevel@tonic-gate 	vmem_free(vmp, addr, size + vmp->vm_quantum);
25237c478bd9Sstevel@tonic-gate }
25247c478bd9Sstevel@tonic-gate 
25257c478bd9Sstevel@tonic-gate /*
25267c478bd9Sstevel@tonic-gate  * Try to allocate at least `size' bytes of memory without sleeping or
25277c478bd9Sstevel@tonic-gate  * panicking. Return actual allocated size in `asize'. If allocation failed,
25287c478bd9Sstevel@tonic-gate  * try final allocation with sleep or panic allowed.
25297c478bd9Sstevel@tonic-gate  */
25307c478bd9Sstevel@tonic-gate void *
25317c478bd9Sstevel@tonic-gate kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
25327c478bd9Sstevel@tonic-gate {
25337c478bd9Sstevel@tonic-gate 	void *p;
25347c478bd9Sstevel@tonic-gate 
25357c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
25367c478bd9Sstevel@tonic-gate 	do {
25377c478bd9Sstevel@tonic-gate 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
25387c478bd9Sstevel@tonic-gate 		if (p != NULL)
25397c478bd9Sstevel@tonic-gate 			return (p);
25407c478bd9Sstevel@tonic-gate 		*asize += KMEM_ALIGN;
25417c478bd9Sstevel@tonic-gate 	} while (*asize <= PAGESIZE);
25427c478bd9Sstevel@tonic-gate 
25437c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
25447c478bd9Sstevel@tonic-gate 	return (kmem_alloc(*asize, kmflag));
25457c478bd9Sstevel@tonic-gate }
25467c478bd9Sstevel@tonic-gate 
25477c478bd9Sstevel@tonic-gate /*
25487c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from a cache.
25497c478bd9Sstevel@tonic-gate  */
25507c478bd9Sstevel@tonic-gate static void
25517c478bd9Sstevel@tonic-gate kmem_cache_reap(kmem_cache_t *cp)
25527c478bd9Sstevel@tonic-gate {
2553b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
2554b5fca8f8Stomee 
25557c478bd9Sstevel@tonic-gate 	/*
25567c478bd9Sstevel@tonic-gate 	 * Ask the cache's owner to free some memory if possible.
25577c478bd9Sstevel@tonic-gate 	 * The idea is to handle things like the inode cache, which
25587c478bd9Sstevel@tonic-gate 	 * typically sits on a bunch of memory that it doesn't truly
25597c478bd9Sstevel@tonic-gate 	 * *need*.  Reclaim policy is entirely up to the owner; this
25607c478bd9Sstevel@tonic-gate 	 * callback is just an advisory plea for help.
25617c478bd9Sstevel@tonic-gate 	 */
2562b5fca8f8Stomee 	if (cp->cache_reclaim != NULL) {
2563b5fca8f8Stomee 		long delta;
2564b5fca8f8Stomee 
2565b5fca8f8Stomee 		/*
2566b5fca8f8Stomee 		 * Reclaimed memory should be reapable (not included in the
2567b5fca8f8Stomee 		 * depot's working set).
2568b5fca8f8Stomee 		 */
2569b5fca8f8Stomee 		delta = cp->cache_full.ml_total;
25707c478bd9Sstevel@tonic-gate 		cp->cache_reclaim(cp->cache_private);
2571b5fca8f8Stomee 		delta = cp->cache_full.ml_total - delta;
2572b5fca8f8Stomee 		if (delta > 0) {
2573b5fca8f8Stomee 			mutex_enter(&cp->cache_depot_lock);
2574b5fca8f8Stomee 			cp->cache_full.ml_reaplimit += delta;
2575b5fca8f8Stomee 			cp->cache_full.ml_min += delta;
2576b5fca8f8Stomee 			mutex_exit(&cp->cache_depot_lock);
2577b5fca8f8Stomee 		}
2578b5fca8f8Stomee 	}
25797c478bd9Sstevel@tonic-gate 
25807c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
2581b5fca8f8Stomee 
2582b5fca8f8Stomee 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
2583b5fca8f8Stomee 		kmem_cache_defrag(cp);
2584b5fca8f8Stomee 	}
25857c478bd9Sstevel@tonic-gate }
25867c478bd9Sstevel@tonic-gate 
25877c478bd9Sstevel@tonic-gate static void
25887c478bd9Sstevel@tonic-gate kmem_reap_timeout(void *flag_arg)
25897c478bd9Sstevel@tonic-gate {
25907c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
25917c478bd9Sstevel@tonic-gate 
25927c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
25937c478bd9Sstevel@tonic-gate 	*flag = 0;
25947c478bd9Sstevel@tonic-gate }
25957c478bd9Sstevel@tonic-gate 
25967c478bd9Sstevel@tonic-gate static void
25977c478bd9Sstevel@tonic-gate kmem_reap_done(void *flag)
25987c478bd9Sstevel@tonic-gate {
25997c478bd9Sstevel@tonic-gate 	(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
26007c478bd9Sstevel@tonic-gate }
26017c478bd9Sstevel@tonic-gate 
26027c478bd9Sstevel@tonic-gate static void
26037c478bd9Sstevel@tonic-gate kmem_reap_start(void *flag)
26047c478bd9Sstevel@tonic-gate {
26057c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
26067c478bd9Sstevel@tonic-gate 
26077c478bd9Sstevel@tonic-gate 	if (flag == &kmem_reaping) {
26087c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
26097c478bd9Sstevel@tonic-gate 		/*
26107c478bd9Sstevel@tonic-gate 		 * if we have segkp under heap, reap segkp cache.
26117c478bd9Sstevel@tonic-gate 		 */
26127c478bd9Sstevel@tonic-gate 		if (segkp_fromheap)
26137c478bd9Sstevel@tonic-gate 			segkp_cache_free();
26147c478bd9Sstevel@tonic-gate 	}
26157c478bd9Sstevel@tonic-gate 	else
26167c478bd9Sstevel@tonic-gate 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
26177c478bd9Sstevel@tonic-gate 
26187c478bd9Sstevel@tonic-gate 	/*
26197c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to schedule a timeout to clear
26207c478bd9Sstevel@tonic-gate 	 * the flag so that kmem_reap() becomes self-throttling:
26217c478bd9Sstevel@tonic-gate 	 * we won't reap again until the current reap completes *and*
26227c478bd9Sstevel@tonic-gate 	 * at least kmem_reap_interval ticks have elapsed.
26237c478bd9Sstevel@tonic-gate 	 */
26247c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
26257c478bd9Sstevel@tonic-gate 		kmem_reap_done(flag);
26267c478bd9Sstevel@tonic-gate }
26277c478bd9Sstevel@tonic-gate 
26287c478bd9Sstevel@tonic-gate static void
26297c478bd9Sstevel@tonic-gate kmem_reap_common(void *flag_arg)
26307c478bd9Sstevel@tonic-gate {
26317c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
26327c478bd9Sstevel@tonic-gate 
26337c478bd9Sstevel@tonic-gate 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
26347c478bd9Sstevel@tonic-gate 	    cas32(flag, 0, 1) != 0)
26357c478bd9Sstevel@tonic-gate 		return;
26367c478bd9Sstevel@tonic-gate 
26377c478bd9Sstevel@tonic-gate 	/*
26387c478bd9Sstevel@tonic-gate 	 * It may not be kosher to do memory allocation when a reap is called
26397c478bd9Sstevel@tonic-gate 	 * is called (for example, if vmem_populate() is in the call chain).
26407c478bd9Sstevel@tonic-gate 	 * So we start the reap going with a TQ_NOALLOC dispatch.  If the
26417c478bd9Sstevel@tonic-gate 	 * dispatch fails, we reset the flag, and the next reap will try again.
26427c478bd9Sstevel@tonic-gate 	 */
26437c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
26447c478bd9Sstevel@tonic-gate 		*flag = 0;
26457c478bd9Sstevel@tonic-gate }
26467c478bd9Sstevel@tonic-gate 
26477c478bd9Sstevel@tonic-gate /*
26487c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from all caches.  Called from the VM system
26497c478bd9Sstevel@tonic-gate  * when memory gets tight.
26507c478bd9Sstevel@tonic-gate  */
26517c478bd9Sstevel@tonic-gate void
26527c478bd9Sstevel@tonic-gate kmem_reap(void)
26537c478bd9Sstevel@tonic-gate {
26547c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping);
26557c478bd9Sstevel@tonic-gate }
26567c478bd9Sstevel@tonic-gate 
26577c478bd9Sstevel@tonic-gate /*
26587c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from identifier arenas, called when a vmem
26597c478bd9Sstevel@tonic-gate  * arena not back by memory is exhausted.  Since reaping memory-backed caches
26607c478bd9Sstevel@tonic-gate  * cannot help with identifier exhaustion, we avoid both a large amount of
26617c478bd9Sstevel@tonic-gate  * work and unwanted side-effects from reclaim callbacks.
26627c478bd9Sstevel@tonic-gate  */
26637c478bd9Sstevel@tonic-gate void
26647c478bd9Sstevel@tonic-gate kmem_reap_idspace(void)
26657c478bd9Sstevel@tonic-gate {
26667c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping_idspace);
26677c478bd9Sstevel@tonic-gate }
26687c478bd9Sstevel@tonic-gate 
26697c478bd9Sstevel@tonic-gate /*
26707c478bd9Sstevel@tonic-gate  * Purge all magazines from a cache and set its magazine limit to zero.
26717c478bd9Sstevel@tonic-gate  * All calls are serialized by the kmem_taskq lock, except for the final
26727c478bd9Sstevel@tonic-gate  * call from kmem_cache_destroy().
26737c478bd9Sstevel@tonic-gate  */
26747c478bd9Sstevel@tonic-gate static void
26757c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(kmem_cache_t *cp)
26767c478bd9Sstevel@tonic-gate {
26777c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp;
26787c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp, *pmp;
26797c478bd9Sstevel@tonic-gate 	int rounds, prounds, cpu_seqid;
26807c478bd9Sstevel@tonic-gate 
2681b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2682b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
26837c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
26847c478bd9Sstevel@tonic-gate 
26857c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
26867c478bd9Sstevel@tonic-gate 		ccp = &cp->cache_cpu[cpu_seqid];
26877c478bd9Sstevel@tonic-gate 
26887c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
26897c478bd9Sstevel@tonic-gate 		mp = ccp->cc_loaded;
26907c478bd9Sstevel@tonic-gate 		pmp = ccp->cc_ploaded;
26917c478bd9Sstevel@tonic-gate 		rounds = ccp->cc_rounds;
26927c478bd9Sstevel@tonic-gate 		prounds = ccp->cc_prounds;
26937c478bd9Sstevel@tonic-gate 		ccp->cc_loaded = NULL;
26947c478bd9Sstevel@tonic-gate 		ccp->cc_ploaded = NULL;
26957c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
26967c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
26977c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = 0;
26987c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
26997c478bd9Sstevel@tonic-gate 
27007c478bd9Sstevel@tonic-gate 		if (mp)
27017c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, mp, rounds);
27027c478bd9Sstevel@tonic-gate 		if (pmp)
27037c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, pmp, prounds);
27047c478bd9Sstevel@tonic-gate 	}
27057c478bd9Sstevel@tonic-gate 
27067c478bd9Sstevel@tonic-gate 	/*
27077c478bd9Sstevel@tonic-gate 	 * Updating the working set statistics twice in a row has the
27087c478bd9Sstevel@tonic-gate 	 * effect of setting the working set size to zero, so everything
27097c478bd9Sstevel@tonic-gate 	 * is eligible for reaping.
27107c478bd9Sstevel@tonic-gate 	 */
27117c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
27127c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
27137c478bd9Sstevel@tonic-gate 
27147c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
27157c478bd9Sstevel@tonic-gate }
27167c478bd9Sstevel@tonic-gate 
27177c478bd9Sstevel@tonic-gate /*
27187c478bd9Sstevel@tonic-gate  * Enable per-cpu magazines on a cache.
27197c478bd9Sstevel@tonic-gate  */
27207c478bd9Sstevel@tonic-gate static void
27217c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(kmem_cache_t *cp)
27227c478bd9Sstevel@tonic-gate {
27237c478bd9Sstevel@tonic-gate 	int cpu_seqid;
27247c478bd9Sstevel@tonic-gate 
27257c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_NOMAGAZINE)
27267c478bd9Sstevel@tonic-gate 		return;
27277c478bd9Sstevel@tonic-gate 
27287c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
27297c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
27307c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
27317c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
27327c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
27337c478bd9Sstevel@tonic-gate 	}
27347c478bd9Sstevel@tonic-gate 
27357c478bd9Sstevel@tonic-gate }
27367c478bd9Sstevel@tonic-gate 
27377c478bd9Sstevel@tonic-gate /*
2738fa9e4066Sahrens  * Reap (almost) everything right now.  See kmem_cache_magazine_purge()
2739fa9e4066Sahrens  * for explanation of the back-to-back kmem_depot_ws_update() calls.
2740fa9e4066Sahrens  */
2741fa9e4066Sahrens void
2742fa9e4066Sahrens kmem_cache_reap_now(kmem_cache_t *cp)
2743fa9e4066Sahrens {
2744b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
2745b5fca8f8Stomee 
2746fa9e4066Sahrens 	kmem_depot_ws_update(cp);
2747fa9e4066Sahrens 	kmem_depot_ws_update(cp);
2748fa9e4066Sahrens 
2749fa9e4066Sahrens 	(void) taskq_dispatch(kmem_taskq,
2750fa9e4066Sahrens 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
2751fa9e4066Sahrens 	taskq_wait(kmem_taskq);
2752fa9e4066Sahrens }
2753fa9e4066Sahrens 
2754fa9e4066Sahrens /*
27557c478bd9Sstevel@tonic-gate  * Recompute a cache's magazine size.  The trade-off is that larger magazines
27567c478bd9Sstevel@tonic-gate  * provide a higher transfer rate with the depot, while smaller magazines
27577c478bd9Sstevel@tonic-gate  * reduce memory consumption.  Magazine resizing is an expensive operation;
27587c478bd9Sstevel@tonic-gate  * it should not be done frequently.
27597c478bd9Sstevel@tonic-gate  *
27607c478bd9Sstevel@tonic-gate  * Changes to the magazine size are serialized by the kmem_taskq lock.
27617c478bd9Sstevel@tonic-gate  *
27627c478bd9Sstevel@tonic-gate  * Note: at present this only grows the magazine size.  It might be useful
27637c478bd9Sstevel@tonic-gate  * to allow shrinkage too.
27647c478bd9Sstevel@tonic-gate  */
27657c478bd9Sstevel@tonic-gate static void
27667c478bd9Sstevel@tonic-gate kmem_cache_magazine_resize(kmem_cache_t *cp)
27677c478bd9Sstevel@tonic-gate {
27687c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp = cp->cache_magtype;
27697c478bd9Sstevel@tonic-gate 
27707c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
27717c478bd9Sstevel@tonic-gate 
27727c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
27737c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_purge(cp);
27747c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
27757c478bd9Sstevel@tonic-gate 		cp->cache_magtype = ++mtp;
27767c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention_prev =
27777c478bd9Sstevel@tonic-gate 		    cp->cache_depot_contention + INT_MAX;
27787c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_depot_lock);
27797c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
27807c478bd9Sstevel@tonic-gate 	}
27817c478bd9Sstevel@tonic-gate }
27827c478bd9Sstevel@tonic-gate 
27837c478bd9Sstevel@tonic-gate /*
27847c478bd9Sstevel@tonic-gate  * Rescale a cache's hash table, so that the table size is roughly the
27857c478bd9Sstevel@tonic-gate  * cache size.  We want the average lookup time to be extremely small.
27867c478bd9Sstevel@tonic-gate  */
27877c478bd9Sstevel@tonic-gate static void
27887c478bd9Sstevel@tonic-gate kmem_hash_rescale(kmem_cache_t *cp)
27897c478bd9Sstevel@tonic-gate {
27907c478bd9Sstevel@tonic-gate 	kmem_bufctl_t **old_table, **new_table, *bcp;
27917c478bd9Sstevel@tonic-gate 	size_t old_size, new_size, h;
27927c478bd9Sstevel@tonic-gate 
27937c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
27947c478bd9Sstevel@tonic-gate 
27957c478bd9Sstevel@tonic-gate 	new_size = MAX(KMEM_HASH_INITIAL,
27967c478bd9Sstevel@tonic-gate 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
27977c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
27987c478bd9Sstevel@tonic-gate 
27997c478bd9Sstevel@tonic-gate 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
28007c478bd9Sstevel@tonic-gate 		return;
28017c478bd9Sstevel@tonic-gate 
28027c478bd9Sstevel@tonic-gate 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
28037c478bd9Sstevel@tonic-gate 	    VM_NOSLEEP);
28047c478bd9Sstevel@tonic-gate 	if (new_table == NULL)
28057c478bd9Sstevel@tonic-gate 		return;
28067c478bd9Sstevel@tonic-gate 	bzero(new_table, new_size * sizeof (void *));
28077c478bd9Sstevel@tonic-gate 
28087c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
28097c478bd9Sstevel@tonic-gate 
28107c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
28117c478bd9Sstevel@tonic-gate 	old_table = cp->cache_hash_table;
28127c478bd9Sstevel@tonic-gate 
28137c478bd9Sstevel@tonic-gate 	cp->cache_hash_mask = new_size - 1;
28147c478bd9Sstevel@tonic-gate 	cp->cache_hash_table = new_table;
28157c478bd9Sstevel@tonic-gate 	cp->cache_rescale++;
28167c478bd9Sstevel@tonic-gate 
28177c478bd9Sstevel@tonic-gate 	for (h = 0; h < old_size; h++) {
28187c478bd9Sstevel@tonic-gate 		bcp = old_table[h];
28197c478bd9Sstevel@tonic-gate 		while (bcp != NULL) {
28207c478bd9Sstevel@tonic-gate 			void *addr = bcp->bc_addr;
28217c478bd9Sstevel@tonic-gate 			kmem_bufctl_t *next_bcp = bcp->bc_next;
28227c478bd9Sstevel@tonic-gate 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
28237c478bd9Sstevel@tonic-gate 			bcp->bc_next = *hash_bucket;
28247c478bd9Sstevel@tonic-gate 			*hash_bucket = bcp;
28257c478bd9Sstevel@tonic-gate 			bcp = next_bcp;
28267c478bd9Sstevel@tonic-gate 		}
28277c478bd9Sstevel@tonic-gate 	}
28287c478bd9Sstevel@tonic-gate 
28297c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
28307c478bd9Sstevel@tonic-gate 
28317c478bd9Sstevel@tonic-gate 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
28327c478bd9Sstevel@tonic-gate }
28337c478bd9Sstevel@tonic-gate 
28347c478bd9Sstevel@tonic-gate /*
2835b5fca8f8Stomee  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
2836b5fca8f8Stomee  * update, magazine resizing, and slab consolidation.
28377c478bd9Sstevel@tonic-gate  */
28387c478bd9Sstevel@tonic-gate static void
28397c478bd9Sstevel@tonic-gate kmem_cache_update(kmem_cache_t *cp)
28407c478bd9Sstevel@tonic-gate {
28417c478bd9Sstevel@tonic-gate 	int need_hash_rescale = 0;
28427c478bd9Sstevel@tonic-gate 	int need_magazine_resize = 0;
28437c478bd9Sstevel@tonic-gate 
28447c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
28457c478bd9Sstevel@tonic-gate 
28467c478bd9Sstevel@tonic-gate 	/*
28477c478bd9Sstevel@tonic-gate 	 * If the cache has become much larger or smaller than its hash table,
28487c478bd9Sstevel@tonic-gate 	 * fire off a request to rescale the hash table.
28497c478bd9Sstevel@tonic-gate 	 */
28507c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
28517c478bd9Sstevel@tonic-gate 
28527c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) &&
28537c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
28547c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
28557c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
28567c478bd9Sstevel@tonic-gate 		need_hash_rescale = 1;
28577c478bd9Sstevel@tonic-gate 
28587c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
28597c478bd9Sstevel@tonic-gate 
28607c478bd9Sstevel@tonic-gate 	/*
28617c478bd9Sstevel@tonic-gate 	 * Update the depot working set statistics.
28627c478bd9Sstevel@tonic-gate 	 */
28637c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
28647c478bd9Sstevel@tonic-gate 
28657c478bd9Sstevel@tonic-gate 	/*
28667c478bd9Sstevel@tonic-gate 	 * If there's a lot of contention in the depot,
28677c478bd9Sstevel@tonic-gate 	 * increase the magazine size.
28687c478bd9Sstevel@tonic-gate 	 */
28697c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
28707c478bd9Sstevel@tonic-gate 
28717c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
28727c478bd9Sstevel@tonic-gate 	    (int)(cp->cache_depot_contention -
28737c478bd9Sstevel@tonic-gate 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
28747c478bd9Sstevel@tonic-gate 		need_magazine_resize = 1;
28757c478bd9Sstevel@tonic-gate 
28767c478bd9Sstevel@tonic-gate 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
28777c478bd9Sstevel@tonic-gate 
28787c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
28797c478bd9Sstevel@tonic-gate 
28807c478bd9Sstevel@tonic-gate 	if (need_hash_rescale)
28817c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
28827c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
28837c478bd9Sstevel@tonic-gate 
28847c478bd9Sstevel@tonic-gate 	if (need_magazine_resize)
28857c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
28867c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
2887b5fca8f8Stomee 
2888b5fca8f8Stomee 	if (cp->cache_defrag != NULL)
2889b5fca8f8Stomee 		(void) taskq_dispatch(kmem_taskq,
2890b5fca8f8Stomee 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
28917c478bd9Sstevel@tonic-gate }
28927c478bd9Sstevel@tonic-gate 
28937c478bd9Sstevel@tonic-gate static void
28947c478bd9Sstevel@tonic-gate kmem_update_timeout(void *dummy)
28957c478bd9Sstevel@tonic-gate {
28967c478bd9Sstevel@tonic-gate 	static void kmem_update(void *);
28977c478bd9Sstevel@tonic-gate 
28987c478bd9Sstevel@tonic-gate 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
28997c478bd9Sstevel@tonic-gate }
29007c478bd9Sstevel@tonic-gate 
29017c478bd9Sstevel@tonic-gate static void
29027c478bd9Sstevel@tonic-gate kmem_update(void *dummy)
29037c478bd9Sstevel@tonic-gate {
29047c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
29057c478bd9Sstevel@tonic-gate 
29067c478bd9Sstevel@tonic-gate 	/*
29077c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to reschedule the timeout so that
29087c478bd9Sstevel@tonic-gate 	 * kmem_update() becomes self-throttling: it won't schedule
29097c478bd9Sstevel@tonic-gate 	 * new tasks until all previous tasks have completed.
29107c478bd9Sstevel@tonic-gate 	 */
29117c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
29127c478bd9Sstevel@tonic-gate 		kmem_update_timeout(NULL);
29137c478bd9Sstevel@tonic-gate }
29147c478bd9Sstevel@tonic-gate 
29157c478bd9Sstevel@tonic-gate static int
29167c478bd9Sstevel@tonic-gate kmem_cache_kstat_update(kstat_t *ksp, int rw)
29177c478bd9Sstevel@tonic-gate {
29187c478bd9Sstevel@tonic-gate 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
29197c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = ksp->ks_private;
29207c478bd9Sstevel@tonic-gate 	uint64_t cpu_buf_avail;
29217c478bd9Sstevel@tonic-gate 	uint64_t buf_avail = 0;
29227c478bd9Sstevel@tonic-gate 	int cpu_seqid;
29237c478bd9Sstevel@tonic-gate 
29247c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
29257c478bd9Sstevel@tonic-gate 
29267c478bd9Sstevel@tonic-gate 	if (rw == KSTAT_WRITE)
29277c478bd9Sstevel@tonic-gate 		return (EACCES);
29287c478bd9Sstevel@tonic-gate 
29297c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
29307c478bd9Sstevel@tonic-gate 
29317c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
29327c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
29337c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
29347c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
29357c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
29367c478bd9Sstevel@tonic-gate 
29377c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
29387c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
29397c478bd9Sstevel@tonic-gate 
29407c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
29417c478bd9Sstevel@tonic-gate 
29427c478bd9Sstevel@tonic-gate 		cpu_buf_avail = 0;
29437c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0)
29447c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_rounds;
29457c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0)
29467c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_prounds;
29477c478bd9Sstevel@tonic-gate 
29487c478bd9Sstevel@tonic-gate 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
29497c478bd9Sstevel@tonic-gate 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
29507c478bd9Sstevel@tonic-gate 		buf_avail			+= cpu_buf_avail;
29517c478bd9Sstevel@tonic-gate 
29527c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
29537c478bd9Sstevel@tonic-gate 	}
29547c478bd9Sstevel@tonic-gate 
29557c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
29567c478bd9Sstevel@tonic-gate 
29577c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
29587c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
29597c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
29607c478bd9Sstevel@tonic-gate 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
29617c478bd9Sstevel@tonic-gate 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
29627c478bd9Sstevel@tonic-gate 	kmcp->kmc_magazine_size.value.ui64	=
29637c478bd9Sstevel@tonic-gate 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
29647c478bd9Sstevel@tonic-gate 	    0 : cp->cache_magtype->mt_magsize;
29657c478bd9Sstevel@tonic-gate 
29667c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
29677c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
29687c478bd9Sstevel@tonic-gate 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
29697c478bd9Sstevel@tonic-gate 
29707c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
29717c478bd9Sstevel@tonic-gate 
29727c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
29737c478bd9Sstevel@tonic-gate 	kmcp->kmc_align.value.ui64	= cp->cache_align;
29747c478bd9Sstevel@tonic-gate 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
29757c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
29767c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
29779f1b636aStomee 	buf_avail += cp->cache_bufslab;
29787c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
29797c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
29807c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
29817c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
29827c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
29837c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
29847c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
29857c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask + 1 : 0;
29867c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
29877c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
29887c478bd9Sstevel@tonic-gate 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
29897c478bd9Sstevel@tonic-gate 
2990b5fca8f8Stomee 	if (cp->cache_defrag == NULL) {
2991b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= 0;
2992b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= 0;
2993b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= 0;
2994b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= 0;
2995b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= 0;
2996b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= 0;
2997b5fca8f8Stomee 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
2998b5fca8f8Stomee 	} else {
2999b5fca8f8Stomee 		kmem_defrag_t *kd = cp->cache_defrag;
3000b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3001b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3002b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3003b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3004b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3005b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3006b5fca8f8Stomee 		kmcp->kmc_move_hunt_found.value.ui64	= kd->kmd_hunt_found;
3007b5fca8f8Stomee 	}
3008b5fca8f8Stomee 
30097c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
30107c478bd9Sstevel@tonic-gate 	return (0);
30117c478bd9Sstevel@tonic-gate }
30127c478bd9Sstevel@tonic-gate 
30137c478bd9Sstevel@tonic-gate /*
30147c478bd9Sstevel@tonic-gate  * Return a named statistic about a particular cache.
30157c478bd9Sstevel@tonic-gate  * This shouldn't be called very often, so it's currently designed for
30167c478bd9Sstevel@tonic-gate  * simplicity (leverages existing kstat support) rather than efficiency.
30177c478bd9Sstevel@tonic-gate  */
30187c478bd9Sstevel@tonic-gate uint64_t
30197c478bd9Sstevel@tonic-gate kmem_cache_stat(kmem_cache_t *cp, char *name)
30207c478bd9Sstevel@tonic-gate {
30217c478bd9Sstevel@tonic-gate 	int i;
30227c478bd9Sstevel@tonic-gate 	kstat_t *ksp = cp->cache_kstat;
30237c478bd9Sstevel@tonic-gate 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
30247c478bd9Sstevel@tonic-gate 	uint64_t value = 0;
30257c478bd9Sstevel@tonic-gate 
30267c478bd9Sstevel@tonic-gate 	if (ksp != NULL) {
30277c478bd9Sstevel@tonic-gate 		mutex_enter(&kmem_cache_kstat_lock);
30287c478bd9Sstevel@tonic-gate 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
30297c478bd9Sstevel@tonic-gate 		for (i = 0; i < ksp->ks_ndata; i++) {
30307c478bd9Sstevel@tonic-gate 			if (strcmp(knp[i].name, name) == 0) {
30317c478bd9Sstevel@tonic-gate 				value = knp[i].value.ui64;
30327c478bd9Sstevel@tonic-gate 				break;
30337c478bd9Sstevel@tonic-gate 			}
30347c478bd9Sstevel@tonic-gate 		}
30357c478bd9Sstevel@tonic-gate 		mutex_exit(&kmem_cache_kstat_lock);
30367c478bd9Sstevel@tonic-gate 	}
30377c478bd9Sstevel@tonic-gate 	return (value);
30387c478bd9Sstevel@tonic-gate }
30397c478bd9Sstevel@tonic-gate 
30407c478bd9Sstevel@tonic-gate /*
30417c478bd9Sstevel@tonic-gate  * Return an estimate of currently available kernel heap memory.
30427c478bd9Sstevel@tonic-gate  * On 32-bit systems, physical memory may exceed virtual memory,
30437c478bd9Sstevel@tonic-gate  * we just truncate the result at 1GB.
30447c478bd9Sstevel@tonic-gate  */
30457c478bd9Sstevel@tonic-gate size_t
30467c478bd9Sstevel@tonic-gate kmem_avail(void)
30477c478bd9Sstevel@tonic-gate {
30487c478bd9Sstevel@tonic-gate 	spgcnt_t rmem = availrmem - tune.t_minarmem;
30497c478bd9Sstevel@tonic-gate 	spgcnt_t fmem = freemem - minfree;
30507c478bd9Sstevel@tonic-gate 
30517c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
30527c478bd9Sstevel@tonic-gate 	    1 << (30 - PAGESHIFT))));
30537c478bd9Sstevel@tonic-gate }
30547c478bd9Sstevel@tonic-gate 
30557c478bd9Sstevel@tonic-gate /*
30567c478bd9Sstevel@tonic-gate  * Return the maximum amount of memory that is (in theory) allocatable
30577c478bd9Sstevel@tonic-gate  * from the heap. This may be used as an estimate only since there
30587c478bd9Sstevel@tonic-gate  * is no guarentee this space will still be available when an allocation
30597c478bd9Sstevel@tonic-gate  * request is made, nor that the space may be allocated in one big request
30607c478bd9Sstevel@tonic-gate  * due to kernel heap fragmentation.
30617c478bd9Sstevel@tonic-gate  */
30627c478bd9Sstevel@tonic-gate size_t
30637c478bd9Sstevel@tonic-gate kmem_maxavail(void)
30647c478bd9Sstevel@tonic-gate {
30657c478bd9Sstevel@tonic-gate 	spgcnt_t pmem = availrmem - tune.t_minarmem;
30667c478bd9Sstevel@tonic-gate 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
30677c478bd9Sstevel@tonic-gate 
30687c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
30697c478bd9Sstevel@tonic-gate }
30707c478bd9Sstevel@tonic-gate 
3071fa9e4066Sahrens /*
3072fa9e4066Sahrens  * Indicate whether memory-intensive kmem debugging is enabled.
3073fa9e4066Sahrens  */
3074fa9e4066Sahrens int
3075fa9e4066Sahrens kmem_debugging(void)
3076fa9e4066Sahrens {
3077fa9e4066Sahrens 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3078fa9e4066Sahrens }
3079fa9e4066Sahrens 
3080b5fca8f8Stomee /* binning function, sorts finely at the two extremes */
3081b5fca8f8Stomee #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3082b5fca8f8Stomee 	((((sp)->slab_refcnt <= (binshift)) ||				\
3083b5fca8f8Stomee 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3084b5fca8f8Stomee 	    ? -(sp)->slab_refcnt					\
3085b5fca8f8Stomee 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3086b5fca8f8Stomee 
3087b5fca8f8Stomee /*
3088b5fca8f8Stomee  * Minimizing the number of partial slabs on the freelist minimizes
3089b5fca8f8Stomee  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3090b5fca8f8Stomee  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3091b5fca8f8Stomee  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3092b5fca8f8Stomee  * the most-used slabs at the front of the list where they have the best chance
3093b5fca8f8Stomee  * of being completely allocated, and the least-used slabs at a safe distance
3094b5fca8f8Stomee  * from the front to improve the odds that the few remaining buffers will all be
3095b5fca8f8Stomee  * freed before another allocation can tie up the slab. For that reason a slab
3096b5fca8f8Stomee  * with a higher slab_refcnt sorts less than than a slab with a lower
3097b5fca8f8Stomee  * slab_refcnt.
3098b5fca8f8Stomee  *
3099b5fca8f8Stomee  * However, if a slab has at least one buffer that is deemed unfreeable, we
3100b5fca8f8Stomee  * would rather have that slab at the front of the list regardless of
3101b5fca8f8Stomee  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3102b5fca8f8Stomee  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3103b5fca8f8Stomee  * callback, the slab is marked unfreeable for as long as it remains on the
3104b5fca8f8Stomee  * freelist.
3105b5fca8f8Stomee  */
3106b5fca8f8Stomee static int
3107b5fca8f8Stomee kmem_partial_slab_cmp(const void *p0, const void *p1)
3108b5fca8f8Stomee {
3109b5fca8f8Stomee 	const kmem_cache_t *cp;
3110b5fca8f8Stomee 	const kmem_slab_t *s0 = p0;
3111b5fca8f8Stomee 	const kmem_slab_t *s1 = p1;
3112b5fca8f8Stomee 	int w0, w1;
3113b5fca8f8Stomee 	size_t binshift;
3114b5fca8f8Stomee 
3115b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3116b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3117b5fca8f8Stomee 	ASSERT(s0->slab_cache == s1->slab_cache);
3118b5fca8f8Stomee 	cp = s1->slab_cache;
3119b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3120b5fca8f8Stomee 	binshift = cp->cache_partial_binshift;
3121b5fca8f8Stomee 
3122b5fca8f8Stomee 	/* weight of first slab */
3123b5fca8f8Stomee 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3124b5fca8f8Stomee 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3125b5fca8f8Stomee 		w0 -= cp->cache_maxchunks;
3126b5fca8f8Stomee 	}
3127b5fca8f8Stomee 
3128b5fca8f8Stomee 	/* weight of second slab */
3129b5fca8f8Stomee 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3130b5fca8f8Stomee 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3131b5fca8f8Stomee 		w1 -= cp->cache_maxchunks;
3132b5fca8f8Stomee 	}
3133b5fca8f8Stomee 
3134b5fca8f8Stomee 	if (w0 < w1)
3135b5fca8f8Stomee 		return (-1);
3136b5fca8f8Stomee 	if (w0 > w1)
3137b5fca8f8Stomee 		return (1);
3138b5fca8f8Stomee 
3139b5fca8f8Stomee 	/* compare pointer values */
3140b5fca8f8Stomee 	if ((uintptr_t)s0 < (uintptr_t)s1)
3141b5fca8f8Stomee 		return (-1);
3142b5fca8f8Stomee 	if ((uintptr_t)s0 > (uintptr_t)s1)
3143b5fca8f8Stomee 		return (1);
3144b5fca8f8Stomee 
3145b5fca8f8Stomee 	return (0);
3146b5fca8f8Stomee }
3147b5fca8f8Stomee 
3148b5fca8f8Stomee static void
3149b5fca8f8Stomee kmem_check_destructor(kmem_cache_t *cp)
3150b5fca8f8Stomee {
3151*eb697d4eStomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
3152*eb697d4eStomee 
3153b5fca8f8Stomee 	if (cp->cache_destructor == NULL)
3154b5fca8f8Stomee 		return;
3155b5fca8f8Stomee 
3156b5fca8f8Stomee 	/*
3157b5fca8f8Stomee 	 * Assert that it is valid to call the destructor on a newly constructed
3158b5fca8f8Stomee 	 * object without any intervening client code using the object.
3159b5fca8f8Stomee 	 * Allocate from the slab layer to ensure that the client has not
3160b5fca8f8Stomee 	 * touched the buffer.
3161b5fca8f8Stomee 	 */
3162b5fca8f8Stomee 	void *buf = kmem_slab_alloc(cp, KM_NOSLEEP);
3163b5fca8f8Stomee 	if (buf == NULL)
3164b5fca8f8Stomee 		return;
3165b5fca8f8Stomee 
3166b5fca8f8Stomee 	if (cp->cache_flags & KMF_BUFTAG) {
3167b5fca8f8Stomee 		if (kmem_cache_alloc_debug(cp, buf, KM_NOSLEEP, 1,
3168b5fca8f8Stomee 		    caller()) != 0)
3169b5fca8f8Stomee 			return;
3170b5fca8f8Stomee 	} else if (cp->cache_constructor != NULL &&
3171b5fca8f8Stomee 	    cp->cache_constructor(buf, cp->cache_private, KM_NOSLEEP) != 0) {
3172b5fca8f8Stomee 		atomic_add_64(&cp->cache_alloc_fail, 1);
3173b5fca8f8Stomee 		kmem_slab_free(cp, buf);
3174b5fca8f8Stomee 		return;
3175b5fca8f8Stomee 	}
3176b5fca8f8Stomee 
3177b5fca8f8Stomee 	kmem_slab_free_constructed(cp, buf, B_FALSE);
3178b5fca8f8Stomee }
3179b5fca8f8Stomee 
3180b5fca8f8Stomee /*
3181b5fca8f8Stomee  * It must be valid to call the destructor (if any) on a newly created object.
3182b5fca8f8Stomee  * That is, the constructor (if any) must leave the object in a valid state for
3183b5fca8f8Stomee  * the destructor.
3184b5fca8f8Stomee  */
31857c478bd9Sstevel@tonic-gate kmem_cache_t *
31867c478bd9Sstevel@tonic-gate kmem_cache_create(
31877c478bd9Sstevel@tonic-gate 	char *name,		/* descriptive name for this cache */
31887c478bd9Sstevel@tonic-gate 	size_t bufsize,		/* size of the objects it manages */
31897c478bd9Sstevel@tonic-gate 	size_t align,		/* required object alignment */
31907c478bd9Sstevel@tonic-gate 	int (*constructor)(void *, void *, int), /* object constructor */
31917c478bd9Sstevel@tonic-gate 	void (*destructor)(void *, void *),	/* object destructor */
31927c478bd9Sstevel@tonic-gate 	void (*reclaim)(void *), /* memory reclaim callback */
31937c478bd9Sstevel@tonic-gate 	void *private,		/* pass-thru arg for constr/destr/reclaim */
31947c478bd9Sstevel@tonic-gate 	vmem_t *vmp,		/* vmem source for slab allocation */
31957c478bd9Sstevel@tonic-gate 	int cflags)		/* cache creation flags */
31967c478bd9Sstevel@tonic-gate {
31977c478bd9Sstevel@tonic-gate 	int cpu_seqid;
31987c478bd9Sstevel@tonic-gate 	size_t chunksize;
3199b5fca8f8Stomee 	kmem_cache_t *cp;
32007c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
32017c478bd9Sstevel@tonic-gate 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
32027c478bd9Sstevel@tonic-gate 
32037c478bd9Sstevel@tonic-gate #ifdef	DEBUG
32047c478bd9Sstevel@tonic-gate 	/*
32057c478bd9Sstevel@tonic-gate 	 * Cache names should conform to the rules for valid C identifiers
32067c478bd9Sstevel@tonic-gate 	 */
32077c478bd9Sstevel@tonic-gate 	if (!strident_valid(name)) {
32087c478bd9Sstevel@tonic-gate 		cmn_err(CE_CONT,
32097c478bd9Sstevel@tonic-gate 		    "kmem_cache_create: '%s' is an invalid cache name\n"
32107c478bd9Sstevel@tonic-gate 		    "cache names must conform to the rules for "
32117c478bd9Sstevel@tonic-gate 		    "C identifiers\n", name);
32127c478bd9Sstevel@tonic-gate 	}
32137c478bd9Sstevel@tonic-gate #endif	/* DEBUG */
32147c478bd9Sstevel@tonic-gate 
32157c478bd9Sstevel@tonic-gate 	if (vmp == NULL)
32167c478bd9Sstevel@tonic-gate 		vmp = kmem_default_arena;
32177c478bd9Sstevel@tonic-gate 
32187c478bd9Sstevel@tonic-gate 	/*
32197c478bd9Sstevel@tonic-gate 	 * If this kmem cache has an identifier vmem arena as its source, mark
32207c478bd9Sstevel@tonic-gate 	 * it such to allow kmem_reap_idspace().
32217c478bd9Sstevel@tonic-gate 	 */
32227c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
32237c478bd9Sstevel@tonic-gate 	if (vmp->vm_cflags & VMC_IDENTIFIER)
32247c478bd9Sstevel@tonic-gate 		cflags |= KMC_IDENTIFIER;
32257c478bd9Sstevel@tonic-gate 
32267c478bd9Sstevel@tonic-gate 	/*
32277c478bd9Sstevel@tonic-gate 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
32287c478bd9Sstevel@tonic-gate 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
32297c478bd9Sstevel@tonic-gate 	 * false sharing of per-CPU data.
32307c478bd9Sstevel@tonic-gate 	 */
32317c478bd9Sstevel@tonic-gate 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
32327c478bd9Sstevel@tonic-gate 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
32337c478bd9Sstevel@tonic-gate 	bzero(cp, csize);
3234b5fca8f8Stomee 	list_link_init(&cp->cache_link);
32357c478bd9Sstevel@tonic-gate 
32367c478bd9Sstevel@tonic-gate 	if (align == 0)
32377c478bd9Sstevel@tonic-gate 		align = KMEM_ALIGN;
32387c478bd9Sstevel@tonic-gate 
32397c478bd9Sstevel@tonic-gate 	/*
32407c478bd9Sstevel@tonic-gate 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
32417c478bd9Sstevel@tonic-gate 	 * memory to hold bufctl information (because we can't safely
32427c478bd9Sstevel@tonic-gate 	 * perform word loads and stores on it).
32437c478bd9Sstevel@tonic-gate 	 */
32447c478bd9Sstevel@tonic-gate 	if (align < KMEM_ALIGN)
32457c478bd9Sstevel@tonic-gate 		cflags |= KMC_NOTOUCH;
32467c478bd9Sstevel@tonic-gate 
32477c478bd9Sstevel@tonic-gate 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
32487c478bd9Sstevel@tonic-gate 		panic("kmem_cache_create: bad alignment %lu", align);
32497c478bd9Sstevel@tonic-gate 
32507c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_flags_lock);
32517c478bd9Sstevel@tonic-gate 	if (kmem_flags & KMF_RANDOMIZE)
32527c478bd9Sstevel@tonic-gate 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
32537c478bd9Sstevel@tonic-gate 		    KMF_RANDOMIZE;
32547c478bd9Sstevel@tonic-gate 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
32557c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_flags_lock);
32567c478bd9Sstevel@tonic-gate 
32577c478bd9Sstevel@tonic-gate 	/*
32587c478bd9Sstevel@tonic-gate 	 * Make sure all the various flags are reasonable.
32597c478bd9Sstevel@tonic-gate 	 */
32607c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
32617c478bd9Sstevel@tonic-gate 
32627c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_LITE) {
32637c478bd9Sstevel@tonic-gate 		if (bufsize >= kmem_lite_minsize &&
32647c478bd9Sstevel@tonic-gate 		    align <= kmem_lite_maxalign &&
32657c478bd9Sstevel@tonic-gate 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
32667c478bd9Sstevel@tonic-gate 			cp->cache_flags |= KMF_BUFTAG;
32677c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
32687c478bd9Sstevel@tonic-gate 		} else {
32697c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~KMF_DEBUG;
32707c478bd9Sstevel@tonic-gate 		}
32717c478bd9Sstevel@tonic-gate 	}
32727c478bd9Sstevel@tonic-gate 
32737c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF)
32747c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
32757c478bd9Sstevel@tonic-gate 
32767c478bd9Sstevel@tonic-gate 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
32777c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
32787c478bd9Sstevel@tonic-gate 
32797c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NODEBUG)
32807c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_DEBUG;
32817c478bd9Sstevel@tonic-gate 
32827c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOTOUCH)
32837c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_TOUCH;
32847c478bd9Sstevel@tonic-gate 
32857c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOHASH)
32867c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
32877c478bd9Sstevel@tonic-gate 
32887c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOMAGAZINE)
32897c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
32907c478bd9Sstevel@tonic-gate 
32917c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
32927c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
32937c478bd9Sstevel@tonic-gate 
32947c478bd9Sstevel@tonic-gate 	if (!(cp->cache_flags & KMF_AUDIT))
32957c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_CONTENTS;
32967c478bd9Sstevel@tonic-gate 
32977c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
32987c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
32997c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_FIREWALL;
33007c478bd9Sstevel@tonic-gate 
33017c478bd9Sstevel@tonic-gate 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
33027c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_FIREWALL;
33037c478bd9Sstevel@tonic-gate 
33047c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_FIREWALL) {
33057c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_BUFTAG;
33067c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
33077c478bd9Sstevel@tonic-gate 		ASSERT(vmp == kmem_default_arena);
33087c478bd9Sstevel@tonic-gate 		vmp = kmem_firewall_arena;
33097c478bd9Sstevel@tonic-gate 	}
33107c478bd9Sstevel@tonic-gate 
33117c478bd9Sstevel@tonic-gate 	/*
33127c478bd9Sstevel@tonic-gate 	 * Set cache properties.
33137c478bd9Sstevel@tonic-gate 	 */
33147c478bd9Sstevel@tonic-gate 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3315b5fca8f8Stomee 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
33167c478bd9Sstevel@tonic-gate 	cp->cache_bufsize = bufsize;
33177c478bd9Sstevel@tonic-gate 	cp->cache_align = align;
33187c478bd9Sstevel@tonic-gate 	cp->cache_constructor = constructor;
33197c478bd9Sstevel@tonic-gate 	cp->cache_destructor = destructor;
33207c478bd9Sstevel@tonic-gate 	cp->cache_reclaim = reclaim;
33217c478bd9Sstevel@tonic-gate 	cp->cache_private = private;
33227c478bd9Sstevel@tonic-gate 	cp->cache_arena = vmp;
33237c478bd9Sstevel@tonic-gate 	cp->cache_cflags = cflags;
33247c478bd9Sstevel@tonic-gate 
33257c478bd9Sstevel@tonic-gate 	/*
33267c478bd9Sstevel@tonic-gate 	 * Determine the chunk size.
33277c478bd9Sstevel@tonic-gate 	 */
33287c478bd9Sstevel@tonic-gate 	chunksize = bufsize;
33297c478bd9Sstevel@tonic-gate 
33307c478bd9Sstevel@tonic-gate 	if (align >= KMEM_ALIGN) {
33317c478bd9Sstevel@tonic-gate 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
33327c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
33337c478bd9Sstevel@tonic-gate 	}
33347c478bd9Sstevel@tonic-gate 
33357c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
33367c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize;
33377c478bd9Sstevel@tonic-gate 		cp->cache_buftag = chunksize;
33387c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
33397c478bd9Sstevel@tonic-gate 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
33407c478bd9Sstevel@tonic-gate 		else
33417c478bd9Sstevel@tonic-gate 			chunksize += sizeof (kmem_buftag_t);
33427c478bd9Sstevel@tonic-gate 	}
33437c478bd9Sstevel@tonic-gate 
33447c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
33457c478bd9Sstevel@tonic-gate 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
33467c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
33477c478bd9Sstevel@tonic-gate 			cp->cache_verify = sizeof (uint64_t);
33487c478bd9Sstevel@tonic-gate 	}
33497c478bd9Sstevel@tonic-gate 
33507c478bd9Sstevel@tonic-gate 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
33517c478bd9Sstevel@tonic-gate 
33527c478bd9Sstevel@tonic-gate 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
33537c478bd9Sstevel@tonic-gate 
33547c478bd9Sstevel@tonic-gate 	/*
33557c478bd9Sstevel@tonic-gate 	 * Now that we know the chunk size, determine the optimal slab size.
33567c478bd9Sstevel@tonic-gate 	 */
33577c478bd9Sstevel@tonic-gate 	if (vmp == kmem_firewall_arena) {
33587c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
33597c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
33607c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = cp->cache_mincolor;
33617c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
33627c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
33637c478bd9Sstevel@tonic-gate 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
33647c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_AUDIT) &&
33657c478bd9Sstevel@tonic-gate 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
33667c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = vmp->vm_quantum;
33677c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
33687c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor =
33697c478bd9Sstevel@tonic-gate 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
33707c478bd9Sstevel@tonic-gate 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
33717c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
33727c478bd9Sstevel@tonic-gate 	} else {
33737c478bd9Sstevel@tonic-gate 		size_t chunks, bestfit, waste, slabsize;
33747c478bd9Sstevel@tonic-gate 		size_t minwaste = LONG_MAX;
33757c478bd9Sstevel@tonic-gate 
33767c478bd9Sstevel@tonic-gate 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
33777c478bd9Sstevel@tonic-gate 			slabsize = P2ROUNDUP(chunksize * chunks,
33787c478bd9Sstevel@tonic-gate 			    vmp->vm_quantum);
33797c478bd9Sstevel@tonic-gate 			chunks = slabsize / chunksize;
33807c478bd9Sstevel@tonic-gate 			waste = (slabsize % chunksize) / chunks;
33817c478bd9Sstevel@tonic-gate 			if (waste < minwaste) {
33827c478bd9Sstevel@tonic-gate 				minwaste = waste;
33837c478bd9Sstevel@tonic-gate 				bestfit = slabsize;
33847c478bd9Sstevel@tonic-gate 			}
33857c478bd9Sstevel@tonic-gate 		}
33867c478bd9Sstevel@tonic-gate 		if (cflags & KMC_QCACHE)
33877c478bd9Sstevel@tonic-gate 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
33887c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = bestfit;
33897c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
33907c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = bestfit % chunksize;
33917c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
33927c478bd9Sstevel@tonic-gate 	}
33937c478bd9Sstevel@tonic-gate 
3394b5fca8f8Stomee 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3395b5fca8f8Stomee 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3396b5fca8f8Stomee 
33977c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
33987c478bd9Sstevel@tonic-gate 		ASSERT(!(cflags & KMC_NOHASH));
33997c478bd9Sstevel@tonic-gate 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
34007c478bd9Sstevel@tonic-gate 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
34017c478bd9Sstevel@tonic-gate 	}
34027c478bd9Sstevel@tonic-gate 
34037c478bd9Sstevel@tonic-gate 	if (cp->cache_maxcolor >= vmp->vm_quantum)
34047c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = vmp->vm_quantum - 1;
34057c478bd9Sstevel@tonic-gate 
34067c478bd9Sstevel@tonic-gate 	cp->cache_color = cp->cache_mincolor;
34077c478bd9Sstevel@tonic-gate 
34087c478bd9Sstevel@tonic-gate 	/*
34097c478bd9Sstevel@tonic-gate 	 * Initialize the rest of the slab layer.
34107c478bd9Sstevel@tonic-gate 	 */
34117c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
34127c478bd9Sstevel@tonic-gate 
3413b5fca8f8Stomee 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3414b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3415b5fca8f8Stomee 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3416b5fca8f8Stomee 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3417b5fca8f8Stomee 	/* reuse partial slab AVL linkage for complete slab list linkage */
3418b5fca8f8Stomee 	list_create(&cp->cache_complete_slabs,
3419b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
34207c478bd9Sstevel@tonic-gate 
34217c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
34227c478bd9Sstevel@tonic-gate 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
34237c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
34247c478bd9Sstevel@tonic-gate 		bzero(cp->cache_hash_table,
34257c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *));
34267c478bd9Sstevel@tonic-gate 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
34277c478bd9Sstevel@tonic-gate 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
34287c478bd9Sstevel@tonic-gate 	}
34297c478bd9Sstevel@tonic-gate 
34307c478bd9Sstevel@tonic-gate 	/*
34317c478bd9Sstevel@tonic-gate 	 * Initialize the depot.
34327c478bd9Sstevel@tonic-gate 	 */
34337c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
34347c478bd9Sstevel@tonic-gate 
34357c478bd9Sstevel@tonic-gate 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
34367c478bd9Sstevel@tonic-gate 		continue;
34377c478bd9Sstevel@tonic-gate 
34387c478bd9Sstevel@tonic-gate 	cp->cache_magtype = mtp;
34397c478bd9Sstevel@tonic-gate 
34407c478bd9Sstevel@tonic-gate 	/*
34417c478bd9Sstevel@tonic-gate 	 * Initialize the CPU layer.
34427c478bd9Sstevel@tonic-gate 	 */
34437c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
34447c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
34457c478bd9Sstevel@tonic-gate 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
34467c478bd9Sstevel@tonic-gate 		ccp->cc_flags = cp->cache_flags;
34477c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
34487c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
34497c478bd9Sstevel@tonic-gate 	}
34507c478bd9Sstevel@tonic-gate 
34517c478bd9Sstevel@tonic-gate 	/*
34527c478bd9Sstevel@tonic-gate 	 * Create the cache's kstats.
34537c478bd9Sstevel@tonic-gate 	 */
34547c478bd9Sstevel@tonic-gate 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
34557c478bd9Sstevel@tonic-gate 	    "kmem_cache", KSTAT_TYPE_NAMED,
34567c478bd9Sstevel@tonic-gate 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
34577c478bd9Sstevel@tonic-gate 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
34587c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
34597c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
34607c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_private = cp;
34617c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
34627c478bd9Sstevel@tonic-gate 		kstat_install(cp->cache_kstat);
34637c478bd9Sstevel@tonic-gate 	}
34647c478bd9Sstevel@tonic-gate 
34657c478bd9Sstevel@tonic-gate 	/*
34667c478bd9Sstevel@tonic-gate 	 * Add the cache to the global list.  This makes it visible
34677c478bd9Sstevel@tonic-gate 	 * to kmem_update(), so the cache must be ready for business.
34687c478bd9Sstevel@tonic-gate 	 */
34697c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
3470b5fca8f8Stomee 	list_insert_tail(&kmem_caches, cp);
34717c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
34727c478bd9Sstevel@tonic-gate 
34737c478bd9Sstevel@tonic-gate 	if (kmem_ready)
34747c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
34757c478bd9Sstevel@tonic-gate 
3476b5fca8f8Stomee 	if (kmem_move_taskq != NULL && cp->cache_destructor != NULL) {
3477b5fca8f8Stomee 		(void) taskq_dispatch(kmem_move_taskq,
3478b5fca8f8Stomee 		    (task_func_t *)kmem_check_destructor, cp,
3479b5fca8f8Stomee 		    TQ_NOSLEEP);
3480b5fca8f8Stomee 	}
3481b5fca8f8Stomee 
34827c478bd9Sstevel@tonic-gate 	return (cp);
34837c478bd9Sstevel@tonic-gate }
34847c478bd9Sstevel@tonic-gate 
3485b5fca8f8Stomee static int
3486b5fca8f8Stomee kmem_move_cmp(const void *buf, const void *p)
3487b5fca8f8Stomee {
3488b5fca8f8Stomee 	const kmem_move_t *kmm = p;
3489b5fca8f8Stomee 	uintptr_t v1 = (uintptr_t)buf;
3490b5fca8f8Stomee 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3491b5fca8f8Stomee 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3492b5fca8f8Stomee }
3493b5fca8f8Stomee 
3494b5fca8f8Stomee static void
3495b5fca8f8Stomee kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3496b5fca8f8Stomee {
3497b5fca8f8Stomee 	kmd->kmd_reclaim_numer = 1;
3498b5fca8f8Stomee }
3499b5fca8f8Stomee 
3500b5fca8f8Stomee /*
3501b5fca8f8Stomee  * Initially, when choosing candidate slabs for buffers to move, we want to be
3502b5fca8f8Stomee  * very selective and take only slabs that are less than
3503b5fca8f8Stomee  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3504b5fca8f8Stomee  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3505b5fca8f8Stomee  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3506b5fca8f8Stomee  * longer fragmented.
3507b5fca8f8Stomee  */
3508b5fca8f8Stomee static void
3509b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3510b5fca8f8Stomee {
3511b5fca8f8Stomee 	if (direction > 0) {
3512b5fca8f8Stomee 		/* make it easier to find a candidate slab */
3513b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3514b5fca8f8Stomee 			kmd->kmd_reclaim_numer++;
3515b5fca8f8Stomee 		}
3516b5fca8f8Stomee 	} else {
3517b5fca8f8Stomee 		/* be more selective */
3518b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer > 1) {
3519b5fca8f8Stomee 			kmd->kmd_reclaim_numer--;
3520b5fca8f8Stomee 		}
3521b5fca8f8Stomee 	}
3522b5fca8f8Stomee }
3523b5fca8f8Stomee 
3524b5fca8f8Stomee void
3525b5fca8f8Stomee kmem_cache_set_move(kmem_cache_t *cp,
3526b5fca8f8Stomee     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3527b5fca8f8Stomee {
3528b5fca8f8Stomee 	kmem_defrag_t *defrag;
3529b5fca8f8Stomee 
3530b5fca8f8Stomee 	ASSERT(move != NULL);
3531b5fca8f8Stomee 	/*
3532b5fca8f8Stomee 	 * The consolidator does not support NOTOUCH caches because kmem cannot
3533b5fca8f8Stomee 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3534b5fca8f8Stomee 	 * a low order bit usable by clients to distinguish uninitialized memory
3535b5fca8f8Stomee 	 * from known objects (see kmem_slab_create).
3536b5fca8f8Stomee 	 */
3537b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
3538b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
3539b5fca8f8Stomee 
3540b5fca8f8Stomee 	/*
3541b5fca8f8Stomee 	 * We should not be holding anyone's cache lock when calling
3542b5fca8f8Stomee 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
3543b5fca8f8Stomee 	 * lock.
3544b5fca8f8Stomee 	 */
3545b5fca8f8Stomee 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
3546b5fca8f8Stomee 
3547b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
3548b5fca8f8Stomee 
3549b5fca8f8Stomee 	if (KMEM_IS_MOVABLE(cp)) {
3550b5fca8f8Stomee 		if (cp->cache_move == NULL) {
3551b5fca8f8Stomee 			/*
3552*eb697d4eStomee 			 * We want to assert that the client has not allocated
3553*eb697d4eStomee 			 * any objects from this cache before setting a move
3554*eb697d4eStomee 			 * callback function. However, it's possible that
3555*eb697d4eStomee 			 * kmem_check_destructor() has created a slab between
3556*eb697d4eStomee 			 * the time that the client called kmem_cache_create()
3557*eb697d4eStomee 			 * and this call to kmem_cache_set_move(). Currently
3558*eb697d4eStomee 			 * there are no correctness issues involved; the client
3559*eb697d4eStomee 			 * could allocate many objects before setting a
3560*eb697d4eStomee 			 * callback, but we want to enforce the rule anyway to
3561*eb697d4eStomee 			 * allow the greatest flexibility for the consolidator
3562*eb697d4eStomee 			 * in the future.
3563*eb697d4eStomee 			 *
3564*eb697d4eStomee 			 * It's possible that kmem_check_destructor() can be
3565*eb697d4eStomee 			 * called twice for the same cache.
3566b5fca8f8Stomee 			 */
3567*eb697d4eStomee 			ASSERT(cp->cache_slab_alloc <= 2);
3568b5fca8f8Stomee 
3569b5fca8f8Stomee 			cp->cache_defrag = defrag;
3570b5fca8f8Stomee 			defrag = NULL; /* nothing to free */
3571b5fca8f8Stomee 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
3572b5fca8f8Stomee 			avl_create(&cp->cache_defrag->kmd_moves_pending,
3573b5fca8f8Stomee 			    kmem_move_cmp, sizeof (kmem_move_t),
3574b5fca8f8Stomee 			    offsetof(kmem_move_t, kmm_entry));
3575b5fca8f8Stomee 			/* LINTED: E_TRUE_LOGICAL_EXPR */
3576b5fca8f8Stomee 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3577b5fca8f8Stomee 			/* reuse the slab's AVL linkage for deadlist linkage */
3578b5fca8f8Stomee 			list_create(&cp->cache_defrag->kmd_deadlist,
3579b5fca8f8Stomee 			    sizeof (kmem_slab_t),
3580b5fca8f8Stomee 			    offsetof(kmem_slab_t, slab_link));
3581b5fca8f8Stomee 			kmem_reset_reclaim_threshold(cp->cache_defrag);
3582b5fca8f8Stomee 		}
3583b5fca8f8Stomee 		cp->cache_move = move;
3584b5fca8f8Stomee 	}
3585b5fca8f8Stomee 
3586b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
3587b5fca8f8Stomee 
3588b5fca8f8Stomee 	if (defrag != NULL) {
3589b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
3590b5fca8f8Stomee 	}
3591b5fca8f8Stomee }
3592b5fca8f8Stomee 
35937c478bd9Sstevel@tonic-gate void
35947c478bd9Sstevel@tonic-gate kmem_cache_destroy(kmem_cache_t *cp)
35957c478bd9Sstevel@tonic-gate {
35967c478bd9Sstevel@tonic-gate 	int cpu_seqid;
35977c478bd9Sstevel@tonic-gate 
35987c478bd9Sstevel@tonic-gate 	/*
35997c478bd9Sstevel@tonic-gate 	 * Remove the cache from the global cache list so that no one else
36007c478bd9Sstevel@tonic-gate 	 * can schedule tasks on its behalf, wait for any pending tasks to
36017c478bd9Sstevel@tonic-gate 	 * complete, purge the cache, and then destroy it.
36027c478bd9Sstevel@tonic-gate 	 */
36037c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
3604b5fca8f8Stomee 	list_remove(&kmem_caches, cp);
36057c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
36067c478bd9Sstevel@tonic-gate 
36077c478bd9Sstevel@tonic-gate 	if (kmem_taskq != NULL)
36087c478bd9Sstevel@tonic-gate 		taskq_wait(kmem_taskq);
3609b5fca8f8Stomee 	if (kmem_move_taskq != NULL)
3610b5fca8f8Stomee 		taskq_wait(kmem_move_taskq);
36117c478bd9Sstevel@tonic-gate 
36127c478bd9Sstevel@tonic-gate 	kmem_cache_magazine_purge(cp);
36137c478bd9Sstevel@tonic-gate 
36147c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
36157c478bd9Sstevel@tonic-gate 	if (cp->cache_buftotal != 0)
36167c478bd9Sstevel@tonic-gate 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
36177c478bd9Sstevel@tonic-gate 		    cp->cache_name, (void *)cp);
3618b5fca8f8Stomee 	if (cp->cache_defrag != NULL) {
3619b5fca8f8Stomee 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
3620b5fca8f8Stomee 		list_destroy(&cp->cache_defrag->kmd_deadlist);
3621b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
3622b5fca8f8Stomee 		cp->cache_defrag = NULL;
3623b5fca8f8Stomee 	}
36247c478bd9Sstevel@tonic-gate 	/*
3625b5fca8f8Stomee 	 * The cache is now dead.  There should be no further activity.  We
3626b5fca8f8Stomee 	 * enforce this by setting land mines in the constructor, destructor,
3627b5fca8f8Stomee 	 * reclaim, and move routines that induce a kernel text fault if
3628b5fca8f8Stomee 	 * invoked.
36297c478bd9Sstevel@tonic-gate 	 */
36307c478bd9Sstevel@tonic-gate 	cp->cache_constructor = (int (*)(void *, void *, int))1;
36317c478bd9Sstevel@tonic-gate 	cp->cache_destructor = (void (*)(void *, void *))2;
3632b5fca8f8Stomee 	cp->cache_reclaim = (void (*)(void *))3;
3633b5fca8f8Stomee 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
36347c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
36357c478bd9Sstevel@tonic-gate 
36367c478bd9Sstevel@tonic-gate 	kstat_delete(cp->cache_kstat);
36377c478bd9Sstevel@tonic-gate 
36387c478bd9Sstevel@tonic-gate 	if (cp->cache_hash_table != NULL)
36397c478bd9Sstevel@tonic-gate 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
36407c478bd9Sstevel@tonic-gate 		    (cp->cache_hash_mask + 1) * sizeof (void *));
36417c478bd9Sstevel@tonic-gate 
36427c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
36437c478bd9Sstevel@tonic-gate 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
36447c478bd9Sstevel@tonic-gate 
36457c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_depot_lock);
36467c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_lock);
36477c478bd9Sstevel@tonic-gate 
36487c478bd9Sstevel@tonic-gate 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
36497c478bd9Sstevel@tonic-gate }
36507c478bd9Sstevel@tonic-gate 
36517c478bd9Sstevel@tonic-gate /*ARGSUSED*/
36527c478bd9Sstevel@tonic-gate static int
36537c478bd9Sstevel@tonic-gate kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
36547c478bd9Sstevel@tonic-gate {
36557c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
36567c478bd9Sstevel@tonic-gate 	if (what == CPU_UNCONFIG) {
36577c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_purge,
36587c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
36597c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_enable,
36607c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
36617c478bd9Sstevel@tonic-gate 	}
36627c478bd9Sstevel@tonic-gate 	return (0);
36637c478bd9Sstevel@tonic-gate }
36647c478bd9Sstevel@tonic-gate 
36657c478bd9Sstevel@tonic-gate static void
36667c478bd9Sstevel@tonic-gate kmem_cache_init(int pass, int use_large_pages)
36677c478bd9Sstevel@tonic-gate {
36687c478bd9Sstevel@tonic-gate 	int i;
36697c478bd9Sstevel@tonic-gate 	size_t size;
36707c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
36717c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
36727c478bd9Sstevel@tonic-gate 	char name[KMEM_CACHE_NAMELEN + 1];
36737c478bd9Sstevel@tonic-gate 
36747c478bd9Sstevel@tonic-gate 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
36757c478bd9Sstevel@tonic-gate 		mtp = &kmem_magtype[i];
36767c478bd9Sstevel@tonic-gate 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
36777c478bd9Sstevel@tonic-gate 		mtp->mt_cache = kmem_cache_create(name,
36787c478bd9Sstevel@tonic-gate 		    (mtp->mt_magsize + 1) * sizeof (void *),
36797c478bd9Sstevel@tonic-gate 		    mtp->mt_align, NULL, NULL, NULL, NULL,
36807c478bd9Sstevel@tonic-gate 		    kmem_msb_arena, KMC_NOHASH);
36817c478bd9Sstevel@tonic-gate 	}
36827c478bd9Sstevel@tonic-gate 
36837c478bd9Sstevel@tonic-gate 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
36847c478bd9Sstevel@tonic-gate 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
36857c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
36867c478bd9Sstevel@tonic-gate 
36877c478bd9Sstevel@tonic-gate 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
36887c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
36897c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
36907c478bd9Sstevel@tonic-gate 
36917c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
36927c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
36937c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
36947c478bd9Sstevel@tonic-gate 
36957c478bd9Sstevel@tonic-gate 	if (pass == 2) {
36967c478bd9Sstevel@tonic-gate 		kmem_va_arena = vmem_create("kmem_va",
36977c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
36987c478bd9Sstevel@tonic-gate 		    vmem_alloc, vmem_free, heap_arena,
36997c478bd9Sstevel@tonic-gate 		    8 * PAGESIZE, VM_SLEEP);
37007c478bd9Sstevel@tonic-gate 
37017c478bd9Sstevel@tonic-gate 		if (use_large_pages) {
37027c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_xcreate("kmem_default",
37037c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
37047c478bd9Sstevel@tonic-gate 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
37057c478bd9Sstevel@tonic-gate 			    0, VM_SLEEP);
37067c478bd9Sstevel@tonic-gate 		} else {
37077c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_create("kmem_default",
37087c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
37097c478bd9Sstevel@tonic-gate 			    segkmem_alloc, segkmem_free, kmem_va_arena,
37107c478bd9Sstevel@tonic-gate 			    0, VM_SLEEP);
37117c478bd9Sstevel@tonic-gate 		}
37127c478bd9Sstevel@tonic-gate 	} else {
37137c478bd9Sstevel@tonic-gate 		/*
37147c478bd9Sstevel@tonic-gate 		 * During the first pass, the kmem_alloc_* caches
37157c478bd9Sstevel@tonic-gate 		 * are treated as metadata.
37167c478bd9Sstevel@tonic-gate 		 */
37177c478bd9Sstevel@tonic-gate 		kmem_default_arena = kmem_msb_arena;
37187c478bd9Sstevel@tonic-gate 	}
37197c478bd9Sstevel@tonic-gate 
37207c478bd9Sstevel@tonic-gate 	/*
37217c478bd9Sstevel@tonic-gate 	 * Set up the default caches to back kmem_alloc()
37227c478bd9Sstevel@tonic-gate 	 */
37237c478bd9Sstevel@tonic-gate 	size = KMEM_ALIGN;
37247c478bd9Sstevel@tonic-gate 	for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) {
37257c478bd9Sstevel@tonic-gate 		size_t align = KMEM_ALIGN;
37267c478bd9Sstevel@tonic-gate 		size_t cache_size = kmem_alloc_sizes[i];
37277c478bd9Sstevel@tonic-gate 		/*
37287c478bd9Sstevel@tonic-gate 		 * If they allocate a multiple of the coherency granularity,
37297c478bd9Sstevel@tonic-gate 		 * they get a coherency-granularity-aligned address.
37307c478bd9Sstevel@tonic-gate 		 */
37317c478bd9Sstevel@tonic-gate 		if (IS_P2ALIGNED(cache_size, 64))
37327c478bd9Sstevel@tonic-gate 			align = 64;
37337c478bd9Sstevel@tonic-gate 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
37347c478bd9Sstevel@tonic-gate 			align = PAGESIZE;
37357c478bd9Sstevel@tonic-gate 		(void) sprintf(name, "kmem_alloc_%lu", cache_size);
37367c478bd9Sstevel@tonic-gate 		cp = kmem_cache_create(name, cache_size, align,
37377c478bd9Sstevel@tonic-gate 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
37387c478bd9Sstevel@tonic-gate 		while (size <= cache_size) {
37397c478bd9Sstevel@tonic-gate 			kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp;
37407c478bd9Sstevel@tonic-gate 			size += KMEM_ALIGN;
37417c478bd9Sstevel@tonic-gate 		}
37427c478bd9Sstevel@tonic-gate 	}
37437c478bd9Sstevel@tonic-gate }
37447c478bd9Sstevel@tonic-gate 
37457c478bd9Sstevel@tonic-gate void
37467c478bd9Sstevel@tonic-gate kmem_init(void)
37477c478bd9Sstevel@tonic-gate {
37487c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
37497c478bd9Sstevel@tonic-gate 	int old_kmem_flags = kmem_flags;
37507c478bd9Sstevel@tonic-gate 	int use_large_pages = 0;
37517c478bd9Sstevel@tonic-gate 	size_t maxverify, minfirewall;
37527c478bd9Sstevel@tonic-gate 
37537c478bd9Sstevel@tonic-gate 	kstat_init();
37547c478bd9Sstevel@tonic-gate 
37557c478bd9Sstevel@tonic-gate 	/*
37567c478bd9Sstevel@tonic-gate 	 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
37577c478bd9Sstevel@tonic-gate 	 */
37587c478bd9Sstevel@tonic-gate 	if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
37597c478bd9Sstevel@tonic-gate 		kmem_flags = 0;
37607c478bd9Sstevel@tonic-gate 
37617c478bd9Sstevel@tonic-gate 	/*
37627c478bd9Sstevel@tonic-gate 	 * Don't do firewalled allocations if the heap is less than 1TB
37637c478bd9Sstevel@tonic-gate 	 * (i.e. on a 32-bit kernel)
37647c478bd9Sstevel@tonic-gate 	 * The resulting VM_NEXTFIT allocations would create too much
37657c478bd9Sstevel@tonic-gate 	 * fragmentation in a small heap.
37667c478bd9Sstevel@tonic-gate 	 */
37677c478bd9Sstevel@tonic-gate #if defined(_LP64)
37687c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = PAGESIZE / 2;
37697c478bd9Sstevel@tonic-gate #else
37707c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = ULONG_MAX;
37717c478bd9Sstevel@tonic-gate #endif
37727c478bd9Sstevel@tonic-gate 
37737c478bd9Sstevel@tonic-gate 	/* LINTED */
37747c478bd9Sstevel@tonic-gate 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
37757c478bd9Sstevel@tonic-gate 
3776b5fca8f8Stomee 	list_create(&kmem_caches, sizeof (kmem_cache_t),
3777b5fca8f8Stomee 	    offsetof(kmem_cache_t, cache_link));
37787c478bd9Sstevel@tonic-gate 
37797c478bd9Sstevel@tonic-gate 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
37807c478bd9Sstevel@tonic-gate 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
37817c478bd9Sstevel@tonic-gate 	    VM_SLEEP | VMC_NO_QCACHE);
37827c478bd9Sstevel@tonic-gate 
37837c478bd9Sstevel@tonic-gate 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
37847c478bd9Sstevel@tonic-gate 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
37857c478bd9Sstevel@tonic-gate 	    VM_SLEEP);
37867c478bd9Sstevel@tonic-gate 
37877c478bd9Sstevel@tonic-gate 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
37887c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
37897c478bd9Sstevel@tonic-gate 
37907c478bd9Sstevel@tonic-gate 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
37917c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
37927c478bd9Sstevel@tonic-gate 
37937c478bd9Sstevel@tonic-gate 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
37947c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
37957c478bd9Sstevel@tonic-gate 
37967c478bd9Sstevel@tonic-gate 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
37977c478bd9Sstevel@tonic-gate 	    NULL, 0, PAGESIZE,
37987c478bd9Sstevel@tonic-gate 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
37997c478bd9Sstevel@tonic-gate 	    0, VM_SLEEP);
38007c478bd9Sstevel@tonic-gate 
38017c478bd9Sstevel@tonic-gate 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
38027c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP);
38037c478bd9Sstevel@tonic-gate 
38047c478bd9Sstevel@tonic-gate 	/* temporary oversize arena for mod_read_system_file */
38057c478bd9Sstevel@tonic-gate 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
38067c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
38077c478bd9Sstevel@tonic-gate 
38087c478bd9Sstevel@tonic-gate 	kmem_reap_interval = 15 * hz;
38097c478bd9Sstevel@tonic-gate 
38107c478bd9Sstevel@tonic-gate 	/*
38117c478bd9Sstevel@tonic-gate 	 * Read /etc/system.  This is a chicken-and-egg problem because
38127c478bd9Sstevel@tonic-gate 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
38137c478bd9Sstevel@tonic-gate 	 * needs to use the allocator.  The simplest solution is to create
38147c478bd9Sstevel@tonic-gate 	 * all the standard kmem caches, read /etc/system, destroy all the
38157c478bd9Sstevel@tonic-gate 	 * caches we just created, and then create them all again in light
38167c478bd9Sstevel@tonic-gate 	 * of the (possibly) new kmem_flags and other kmem tunables.
38177c478bd9Sstevel@tonic-gate 	 */
38187c478bd9Sstevel@tonic-gate 	kmem_cache_init(1, 0);
38197c478bd9Sstevel@tonic-gate 
38207c478bd9Sstevel@tonic-gate 	mod_read_system_file(boothowto & RB_ASKNAME);
38217c478bd9Sstevel@tonic-gate 
3822b5fca8f8Stomee 	while ((cp = list_tail(&kmem_caches)) != NULL)
38237c478bd9Sstevel@tonic-gate 		kmem_cache_destroy(cp);
38247c478bd9Sstevel@tonic-gate 
38257c478bd9Sstevel@tonic-gate 	vmem_destroy(kmem_oversize_arena);
38267c478bd9Sstevel@tonic-gate 
38277c478bd9Sstevel@tonic-gate 	if (old_kmem_flags & KMF_STICKY)
38287c478bd9Sstevel@tonic-gate 		kmem_flags = old_kmem_flags;
38297c478bd9Sstevel@tonic-gate 
38307c478bd9Sstevel@tonic-gate 	if (!(kmem_flags & KMF_AUDIT))
38317c478bd9Sstevel@tonic-gate 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
38327c478bd9Sstevel@tonic-gate 
38337c478bd9Sstevel@tonic-gate 	if (kmem_maxverify == 0)
38347c478bd9Sstevel@tonic-gate 		kmem_maxverify = maxverify;
38357c478bd9Sstevel@tonic-gate 
38367c478bd9Sstevel@tonic-gate 	if (kmem_minfirewall == 0)
38377c478bd9Sstevel@tonic-gate 		kmem_minfirewall = minfirewall;
38387c478bd9Sstevel@tonic-gate 
38397c478bd9Sstevel@tonic-gate 	/*
38407c478bd9Sstevel@tonic-gate 	 * give segkmem a chance to figure out if we are using large pages
38417c478bd9Sstevel@tonic-gate 	 * for the kernel heap
38427c478bd9Sstevel@tonic-gate 	 */
38437c478bd9Sstevel@tonic-gate 	use_large_pages = segkmem_lpsetup();
38447c478bd9Sstevel@tonic-gate 
38457c478bd9Sstevel@tonic-gate 	/*
38467c478bd9Sstevel@tonic-gate 	 * To protect against corruption, we keep the actual number of callers
38477c478bd9Sstevel@tonic-gate 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
38487c478bd9Sstevel@tonic-gate 	 * to 16, since the overhead for small buffers quickly gets out of
38497c478bd9Sstevel@tonic-gate 	 * hand.
38507c478bd9Sstevel@tonic-gate 	 *
38517c478bd9Sstevel@tonic-gate 	 * The real limit would depend on the needs of the largest KMC_NOHASH
38527c478bd9Sstevel@tonic-gate 	 * cache.
38537c478bd9Sstevel@tonic-gate 	 */
38547c478bd9Sstevel@tonic-gate 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
38557c478bd9Sstevel@tonic-gate 	kmem_lite_pcs = kmem_lite_count;
38567c478bd9Sstevel@tonic-gate 
38577c478bd9Sstevel@tonic-gate 	/*
38587c478bd9Sstevel@tonic-gate 	 * Normally, we firewall oversized allocations when possible, but
38597c478bd9Sstevel@tonic-gate 	 * if we are using large pages for kernel memory, and we don't have
38607c478bd9Sstevel@tonic-gate 	 * any non-LITE debugging flags set, we want to allocate oversized
38617c478bd9Sstevel@tonic-gate 	 * buffers from large pages, and so skip the firewalling.
38627c478bd9Sstevel@tonic-gate 	 */
38637c478bd9Sstevel@tonic-gate 	if (use_large_pages &&
38647c478bd9Sstevel@tonic-gate 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
38657c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
38667c478bd9Sstevel@tonic-gate 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
38677c478bd9Sstevel@tonic-gate 		    0, VM_SLEEP);
38687c478bd9Sstevel@tonic-gate 	} else {
38697c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_create("kmem_oversize",
38707c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
38717c478bd9Sstevel@tonic-gate 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
38727c478bd9Sstevel@tonic-gate 		    kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP);
38737c478bd9Sstevel@tonic-gate 	}
38747c478bd9Sstevel@tonic-gate 
38757c478bd9Sstevel@tonic-gate 	kmem_cache_init(2, use_large_pages);
38767c478bd9Sstevel@tonic-gate 
38777c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
38787c478bd9Sstevel@tonic-gate 		if (kmem_transaction_log_size == 0)
38797c478bd9Sstevel@tonic-gate 			kmem_transaction_log_size = kmem_maxavail() / 50;
38807c478bd9Sstevel@tonic-gate 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
38817c478bd9Sstevel@tonic-gate 	}
38827c478bd9Sstevel@tonic-gate 
38837c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
38847c478bd9Sstevel@tonic-gate 		if (kmem_content_log_size == 0)
38857c478bd9Sstevel@tonic-gate 			kmem_content_log_size = kmem_maxavail() / 50;
38867c478bd9Sstevel@tonic-gate 		kmem_content_log = kmem_log_init(kmem_content_log_size);
38877c478bd9Sstevel@tonic-gate 	}
38887c478bd9Sstevel@tonic-gate 
38897c478bd9Sstevel@tonic-gate 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
38907c478bd9Sstevel@tonic-gate 
38917c478bd9Sstevel@tonic-gate 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
38927c478bd9Sstevel@tonic-gate 
38937c478bd9Sstevel@tonic-gate 	/*
38947c478bd9Sstevel@tonic-gate 	 * Initialize STREAMS message caches so allocb() is available.
38957c478bd9Sstevel@tonic-gate 	 * This allows us to initialize the logging framework (cmn_err(9F),
38967c478bd9Sstevel@tonic-gate 	 * strlog(9F), etc) so we can start recording messages.
38977c478bd9Sstevel@tonic-gate 	 */
38987c478bd9Sstevel@tonic-gate 	streams_msg_init();
38997d692464Sdp201428 
39007c478bd9Sstevel@tonic-gate 	/*
39017c478bd9Sstevel@tonic-gate 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
39027c478bd9Sstevel@tonic-gate 	 * can register their callbacks.
39037c478bd9Sstevel@tonic-gate 	 */
39047c478bd9Sstevel@tonic-gate 	zone_zsd_init();
3905f4b3ec61Sdh155122 
39067c478bd9Sstevel@tonic-gate 	log_init();
39077c478bd9Sstevel@tonic-gate 	taskq_init();
39087c478bd9Sstevel@tonic-gate 
39097d692464Sdp201428 	/*
39107d692464Sdp201428 	 * Warn about invalid or dangerous values of kmem_flags.
39117d692464Sdp201428 	 * Always warn about unsupported values.
39127d692464Sdp201428 	 */
39137d692464Sdp201428 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
39147d692464Sdp201428 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
39157d692464Sdp201428 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
39167d692464Sdp201428 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
39177d692464Sdp201428 		    "See the Solaris Tunable Parameters Reference Manual.",
39187d692464Sdp201428 		    kmem_flags);
39197d692464Sdp201428 
39207d692464Sdp201428 #ifdef DEBUG
39217d692464Sdp201428 	if ((kmem_flags & KMF_DEBUG) == 0)
39227d692464Sdp201428 		cmn_err(CE_NOTE, "kmem debugging disabled.");
39237d692464Sdp201428 #else
39247d692464Sdp201428 	/*
39257d692464Sdp201428 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
39267d692464Sdp201428 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
39277d692464Sdp201428 	 * if KMF_AUDIT is set). We should warn the user about the performance
39287d692464Sdp201428 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
39297d692464Sdp201428 	 * isn't set (since that disables AUDIT).
39307d692464Sdp201428 	 */
39317d692464Sdp201428 	if (!(kmem_flags & KMF_LITE) &&
39327d692464Sdp201428 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
39337d692464Sdp201428 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
39347d692464Sdp201428 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
39357d692464Sdp201428 		    "and large memory overhead possible. See the Solaris "
39367d692464Sdp201428 		    "Tunable Parameters Reference Manual.", kmem_flags);
39377d692464Sdp201428 #endif /* not DEBUG */
39387d692464Sdp201428 
39397c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
39407c478bd9Sstevel@tonic-gate 
39417c478bd9Sstevel@tonic-gate 	kmem_ready = 1;
39427c478bd9Sstevel@tonic-gate 
39437c478bd9Sstevel@tonic-gate 	/*
39447c478bd9Sstevel@tonic-gate 	 * Initialize the platform-specific aligned/DMA memory allocator.
39457c478bd9Sstevel@tonic-gate 	 */
39467c478bd9Sstevel@tonic-gate 	ka_init();
39477c478bd9Sstevel@tonic-gate 
39487c478bd9Sstevel@tonic-gate 	/*
39497c478bd9Sstevel@tonic-gate 	 * Initialize 32-bit ID cache.
39507c478bd9Sstevel@tonic-gate 	 */
39517c478bd9Sstevel@tonic-gate 	id32_init();
3952f4b3ec61Sdh155122 
3953f4b3ec61Sdh155122 	/*
3954f4b3ec61Sdh155122 	 * Initialize the networking stack so modules loaded can
3955f4b3ec61Sdh155122 	 * register their callbacks.
3956f4b3ec61Sdh155122 	 */
3957f4b3ec61Sdh155122 	netstack_init();
39587c478bd9Sstevel@tonic-gate }
39597c478bd9Sstevel@tonic-gate 
3960b5fca8f8Stomee static void
3961b5fca8f8Stomee kmem_move_init(void)
3962b5fca8f8Stomee {
3963b5fca8f8Stomee 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
3964b5fca8f8Stomee 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
3965b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
3966b5fca8f8Stomee 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
3967b5fca8f8Stomee 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
3968b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
3969b5fca8f8Stomee 
3970b5fca8f8Stomee 	/*
3971b5fca8f8Stomee 	 * kmem guarantees that move callbacks are sequential and that even
3972b5fca8f8Stomee 	 * across multiple caches no two moves ever execute simultaneously.
3973b5fca8f8Stomee 	 * Move callbacks are processed on a separate taskq so that client code
3974b5fca8f8Stomee 	 * does not interfere with internal maintenance tasks.
3975b5fca8f8Stomee 	 */
3976b5fca8f8Stomee 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
3977b5fca8f8Stomee 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
3978b5fca8f8Stomee }
3979b5fca8f8Stomee 
39807c478bd9Sstevel@tonic-gate void
39817c478bd9Sstevel@tonic-gate kmem_thread_init(void)
39827c478bd9Sstevel@tonic-gate {
3983b5fca8f8Stomee 	kmem_move_init();
39847c478bd9Sstevel@tonic-gate 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
39857c478bd9Sstevel@tonic-gate 	    300, INT_MAX, TASKQ_PREPOPULATE);
3986b5fca8f8Stomee 	kmem_cache_applyall(kmem_check_destructor, kmem_move_taskq,
3987b5fca8f8Stomee 	    TQ_NOSLEEP);
39887c478bd9Sstevel@tonic-gate }
39897c478bd9Sstevel@tonic-gate 
39907c478bd9Sstevel@tonic-gate void
39917c478bd9Sstevel@tonic-gate kmem_mp_init(void)
39927c478bd9Sstevel@tonic-gate {
39937c478bd9Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
39947c478bd9Sstevel@tonic-gate 	register_cpu_setup_func(kmem_cpu_setup, NULL);
39957c478bd9Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
39967c478bd9Sstevel@tonic-gate 
39977c478bd9Sstevel@tonic-gate 	kmem_update_timeout(NULL);
39987c478bd9Sstevel@tonic-gate }
3999b5fca8f8Stomee 
4000b5fca8f8Stomee /*
4001b5fca8f8Stomee  * Return the slab of the allocated buffer, or NULL if the buffer is not
4002b5fca8f8Stomee  * allocated. This function may be called with a known slab address to determine
4003b5fca8f8Stomee  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4004b5fca8f8Stomee  * an allocated buffer's slab.
4005b5fca8f8Stomee  */
4006b5fca8f8Stomee static kmem_slab_t *
4007b5fca8f8Stomee kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4008b5fca8f8Stomee {
4009b5fca8f8Stomee 	kmem_bufctl_t *bcp, *bufbcp;
4010b5fca8f8Stomee 
4011b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4012b5fca8f8Stomee 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4013b5fca8f8Stomee 
4014b5fca8f8Stomee 	if (cp->cache_flags & KMF_HASH) {
4015b5fca8f8Stomee 		for (bcp = *KMEM_HASH(cp, buf);
4016b5fca8f8Stomee 		    (bcp != NULL) && (bcp->bc_addr != buf);
4017b5fca8f8Stomee 		    bcp = bcp->bc_next) {
4018b5fca8f8Stomee 			continue;
4019b5fca8f8Stomee 		}
4020b5fca8f8Stomee 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4021b5fca8f8Stomee 		return (bcp == NULL ? NULL : bcp->bc_slab);
4022b5fca8f8Stomee 	}
4023b5fca8f8Stomee 
4024b5fca8f8Stomee 	if (sp == NULL) {
4025b5fca8f8Stomee 		sp = KMEM_SLAB(cp, buf);
4026b5fca8f8Stomee 	}
4027b5fca8f8Stomee 	bufbcp = KMEM_BUFCTL(cp, buf);
4028b5fca8f8Stomee 	for (bcp = sp->slab_head;
4029b5fca8f8Stomee 	    (bcp != NULL) && (bcp != bufbcp);
4030b5fca8f8Stomee 	    bcp = bcp->bc_next) {
4031b5fca8f8Stomee 		continue;
4032b5fca8f8Stomee 	}
4033b5fca8f8Stomee 	return (bcp == NULL ? sp : NULL);
4034b5fca8f8Stomee }
4035b5fca8f8Stomee 
4036b5fca8f8Stomee static boolean_t
4037b5fca8f8Stomee kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4038b5fca8f8Stomee {
4039b5fca8f8Stomee 	long refcnt;
4040b5fca8f8Stomee 
4041b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4042b5fca8f8Stomee 
4043b5fca8f8Stomee 	/* If we're desperate, we don't care if the client said NO. */
4044b5fca8f8Stomee 	refcnt = sp->slab_refcnt;
4045b5fca8f8Stomee 	if (flags & KMM_DESPERATE) {
4046b5fca8f8Stomee 		return (refcnt < sp->slab_chunks); /* any partial */
4047b5fca8f8Stomee 	}
4048b5fca8f8Stomee 
4049b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4050b5fca8f8Stomee 		return (B_FALSE);
4051b5fca8f8Stomee 	}
4052b5fca8f8Stomee 
4053b5fca8f8Stomee 	if (kmem_move_any_partial) {
4054b5fca8f8Stomee 		return (refcnt < sp->slab_chunks);
4055b5fca8f8Stomee 	}
4056b5fca8f8Stomee 
4057b5fca8f8Stomee 	if ((refcnt == 1) && (refcnt < sp->slab_chunks)) {
4058b5fca8f8Stomee 		return (B_TRUE);
4059b5fca8f8Stomee 	}
4060b5fca8f8Stomee 
4061b5fca8f8Stomee 	/*
4062b5fca8f8Stomee 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4063b5fca8f8Stomee 	 * slabs with a progressively higher percentage of used buffers can be
4064b5fca8f8Stomee 	 * reclaimed until the cache as a whole is no longer fragmented.
4065b5fca8f8Stomee 	 *
4066b5fca8f8Stomee 	 *	sp->slab_refcnt   kmd_reclaim_numer
4067b5fca8f8Stomee 	 *	--------------- < ------------------
4068b5fca8f8Stomee 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4069b5fca8f8Stomee 	 */
4070b5fca8f8Stomee 	return ((refcnt * KMEM_VOID_FRACTION) <
4071b5fca8f8Stomee 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4072b5fca8f8Stomee }
4073b5fca8f8Stomee 
4074b5fca8f8Stomee static void *
4075b5fca8f8Stomee kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4076b5fca8f8Stomee     void *tbuf)
4077b5fca8f8Stomee {
4078b5fca8f8Stomee 	int i;		/* magazine round index */
4079b5fca8f8Stomee 
4080b5fca8f8Stomee 	for (i = 0; i < n; i++) {
4081b5fca8f8Stomee 		if (buf == m->mag_round[i]) {
4082b5fca8f8Stomee 			if (cp->cache_flags & KMF_BUFTAG) {
4083b5fca8f8Stomee 				(void) kmem_cache_free_debug(cp, tbuf,
4084b5fca8f8Stomee 				    caller());
4085b5fca8f8Stomee 			}
4086b5fca8f8Stomee 			m->mag_round[i] = tbuf;
4087b5fca8f8Stomee 			return (buf);
4088b5fca8f8Stomee 		}
4089b5fca8f8Stomee 	}
4090b5fca8f8Stomee 
4091b5fca8f8Stomee 	return (NULL);
4092b5fca8f8Stomee }
4093b5fca8f8Stomee 
4094b5fca8f8Stomee /*
4095b5fca8f8Stomee  * Hunt the magazine layer for the given buffer. If found, the buffer is
4096b5fca8f8Stomee  * removed from the magazine layer and returned, otherwise NULL is returned.
4097b5fca8f8Stomee  * The state of the returned buffer is freed and constructed.
4098b5fca8f8Stomee  */
4099b5fca8f8Stomee static void *
4100b5fca8f8Stomee kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4101b5fca8f8Stomee {
4102b5fca8f8Stomee 	kmem_cpu_cache_t *ccp;
4103b5fca8f8Stomee 	kmem_magazine_t	*m;
4104b5fca8f8Stomee 	int cpu_seqid;
4105b5fca8f8Stomee 	int n;		/* magazine rounds */
4106b5fca8f8Stomee 	void *tbuf;	/* temporary swap buffer */
4107b5fca8f8Stomee 
4108b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4109b5fca8f8Stomee 
4110b5fca8f8Stomee 	/*
4111b5fca8f8Stomee 	 * Allocated a buffer to swap with the one we hope to pull out of a
4112b5fca8f8Stomee 	 * magazine when found.
4113b5fca8f8Stomee 	 */
4114b5fca8f8Stomee 	tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4115b5fca8f8Stomee 	if (tbuf == NULL) {
4116b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4117b5fca8f8Stomee 		return (NULL);
4118b5fca8f8Stomee 	}
4119b5fca8f8Stomee 	if (tbuf == buf) {
4120b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4121b5fca8f8Stomee 		if (cp->cache_flags & KMF_BUFTAG) {
4122b5fca8f8Stomee 			(void) kmem_cache_free_debug(cp, buf, caller());
4123b5fca8f8Stomee 		}
4124b5fca8f8Stomee 		return (buf);
4125b5fca8f8Stomee 	}
4126b5fca8f8Stomee 
4127b5fca8f8Stomee 	/* Hunt the depot. */
4128b5fca8f8Stomee 	mutex_enter(&cp->cache_depot_lock);
4129b5fca8f8Stomee 	n = cp->cache_magtype->mt_magsize;
4130b5fca8f8Stomee 	for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4131b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4132b5fca8f8Stomee 			mutex_exit(&cp->cache_depot_lock);
4133b5fca8f8Stomee 			return (buf);
4134b5fca8f8Stomee 		}
4135b5fca8f8Stomee 	}
4136b5fca8f8Stomee 	mutex_exit(&cp->cache_depot_lock);
4137b5fca8f8Stomee 
4138b5fca8f8Stomee 	/* Hunt the per-CPU magazines. */
4139b5fca8f8Stomee 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4140b5fca8f8Stomee 		ccp = &cp->cache_cpu[cpu_seqid];
4141b5fca8f8Stomee 
4142b5fca8f8Stomee 		mutex_enter(&ccp->cc_lock);
4143b5fca8f8Stomee 		m = ccp->cc_loaded;
4144b5fca8f8Stomee 		n = ccp->cc_rounds;
4145b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4146b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
4147b5fca8f8Stomee 			return (buf);
4148b5fca8f8Stomee 		}
4149b5fca8f8Stomee 		m = ccp->cc_ploaded;
4150b5fca8f8Stomee 		n = ccp->cc_prounds;
4151b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4152b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
4153b5fca8f8Stomee 			return (buf);
4154b5fca8f8Stomee 		}
4155b5fca8f8Stomee 		mutex_exit(&ccp->cc_lock);
4156b5fca8f8Stomee 	}
4157b5fca8f8Stomee 
4158b5fca8f8Stomee 	kmem_cache_free(cp, tbuf);
4159b5fca8f8Stomee 	return (NULL);
4160b5fca8f8Stomee }
4161b5fca8f8Stomee 
4162b5fca8f8Stomee /*
4163b5fca8f8Stomee  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4164b5fca8f8Stomee  * or when the buffer is freed.
4165b5fca8f8Stomee  */
4166b5fca8f8Stomee static void
4167b5fca8f8Stomee kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4168b5fca8f8Stomee {
4169b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4170b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4171b5fca8f8Stomee 
4172b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4173b5fca8f8Stomee 		return;
4174b5fca8f8Stomee 	}
4175b5fca8f8Stomee 
4176b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4177b5fca8f8Stomee 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4178b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
4179b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4180b5fca8f8Stomee 			sp->slab_stuck_offset = (uint32_t)-1;
4181b5fca8f8Stomee 			avl_add(&cp->cache_partial_slabs, sp);
4182b5fca8f8Stomee 		}
4183b5fca8f8Stomee 	} else {
4184b5fca8f8Stomee 		sp->slab_later_count = 0;
4185b5fca8f8Stomee 		sp->slab_stuck_offset = (uint32_t)-1;
4186b5fca8f8Stomee 	}
4187b5fca8f8Stomee }
4188b5fca8f8Stomee 
4189b5fca8f8Stomee static void
4190b5fca8f8Stomee kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4191b5fca8f8Stomee {
4192b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4193b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4194b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4195b5fca8f8Stomee 
4196b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4197b5fca8f8Stomee 		return;
4198b5fca8f8Stomee 	}
4199b5fca8f8Stomee 
4200b5fca8f8Stomee 	avl_remove(&cp->cache_partial_slabs, sp);
4201b5fca8f8Stomee 	sp->slab_later_count = 0;
4202b5fca8f8Stomee 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4203b5fca8f8Stomee 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4204b5fca8f8Stomee 	avl_add(&cp->cache_partial_slabs, sp);
4205b5fca8f8Stomee }
4206b5fca8f8Stomee 
4207b5fca8f8Stomee static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4208b5fca8f8Stomee 
4209b5fca8f8Stomee /*
4210b5fca8f8Stomee  * The move callback takes two buffer addresses, the buffer to be moved, and a
4211b5fca8f8Stomee  * newly allocated and constructed buffer selected by kmem as the destination.
4212b5fca8f8Stomee  * It also takes the size of the buffer and an optional user argument specified
4213b5fca8f8Stomee  * at cache creation time. kmem guarantees that the buffer to be moved has not
4214b5fca8f8Stomee  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4215b5fca8f8Stomee  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4216b5fca8f8Stomee  * the client to safely determine whether or not it is still using the buffer.
4217b5fca8f8Stomee  * The client must not free either of the buffers passed to the move callback,
4218b5fca8f8Stomee  * since kmem wants to free them directly to the slab layer. The client response
4219b5fca8f8Stomee  * tells kmem which of the two buffers to free:
4220b5fca8f8Stomee  *
4221b5fca8f8Stomee  * YES		kmem frees the old buffer (the move was successful)
4222b5fca8f8Stomee  * NO		kmem frees the new buffer, marks the slab of the old buffer
4223b5fca8f8Stomee  *              non-reclaimable to avoid bothering the client again
4224b5fca8f8Stomee  * LATER	kmem frees the new buffer, increments slab_later_count
4225b5fca8f8Stomee  * DONT_KNOW	kmem frees the new buffer, searches mags for the old buffer
4226b5fca8f8Stomee  * DONT_NEED	kmem frees both the old buffer and the new buffer
4227b5fca8f8Stomee  *
4228b5fca8f8Stomee  * The pending callback argument now being processed contains both of the
4229b5fca8f8Stomee  * buffers (old and new) passed to the move callback function, the slab of the
4230b5fca8f8Stomee  * old buffer, and flags related to the move request, such as whether or not the
4231b5fca8f8Stomee  * system was desperate for memory.
4232b5fca8f8Stomee  */
4233b5fca8f8Stomee static void
4234b5fca8f8Stomee kmem_move_buffer(kmem_move_t *callback)
4235b5fca8f8Stomee {
4236b5fca8f8Stomee 	kmem_cbrc_t response;
4237b5fca8f8Stomee 	kmem_slab_t *sp = callback->kmm_from_slab;
4238b5fca8f8Stomee 	kmem_cache_t *cp = sp->slab_cache;
4239b5fca8f8Stomee 	boolean_t free_on_slab;
4240b5fca8f8Stomee 
4241b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4242b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4243b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4244b5fca8f8Stomee 
4245b5fca8f8Stomee 	/*
4246b5fca8f8Stomee 	 * The number of allocated buffers on the slab may have changed since we
4247b5fca8f8Stomee 	 * last checked the slab's reclaimability (when the pending move was
4248b5fca8f8Stomee 	 * enqueued), or the client may have responded NO when asked to move
4249b5fca8f8Stomee 	 * another buffer on the same slab.
4250b5fca8f8Stomee 	 */
4251b5fca8f8Stomee 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4252b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4253b5fca8f8Stomee 		KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4254b5fca8f8Stomee 		    kmem_move_stats.kms_notify_no_longer_reclaimable);
4255b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4256b5fca8f8Stomee 		kmem_move_end(cp, callback);
4257b5fca8f8Stomee 		return;
4258b5fca8f8Stomee 	}
4259b5fca8f8Stomee 
4260b5fca8f8Stomee 	/*
4261b5fca8f8Stomee 	 * Hunting magazines is expensive, so we'll wait to do that until the
4262b5fca8f8Stomee 	 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4263b5fca8f8Stomee 	 * is cheap, so we might as well do that here in case we can avoid
4264b5fca8f8Stomee 	 * bothering the client.
4265b5fca8f8Stomee 	 */
4266b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4267b5fca8f8Stomee 	free_on_slab = (kmem_slab_allocated(cp, sp,
4268b5fca8f8Stomee 	    callback->kmm_from_buf) == NULL);
4269b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4270b5fca8f8Stomee 
4271b5fca8f8Stomee 	if (free_on_slab) {
4272b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4273b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4274b5fca8f8Stomee 		kmem_move_end(cp, callback);
4275b5fca8f8Stomee 		return;
4276b5fca8f8Stomee 	}
4277b5fca8f8Stomee 
4278b5fca8f8Stomee 	if (cp->cache_flags & KMF_BUFTAG) {
4279b5fca8f8Stomee 		/*
4280b5fca8f8Stomee 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4281b5fca8f8Stomee 		 */
4282b5fca8f8Stomee 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4283b5fca8f8Stomee 		    KM_NOSLEEP, 1, caller()) != 0) {
4284b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4285b5fca8f8Stomee 			kmem_move_end(cp, callback);
4286b5fca8f8Stomee 			return;
4287b5fca8f8Stomee 		}
4288b5fca8f8Stomee 	} else if (cp->cache_constructor != NULL &&
4289b5fca8f8Stomee 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4290b5fca8f8Stomee 	    KM_NOSLEEP) != 0) {
4291b5fca8f8Stomee 		atomic_add_64(&cp->cache_alloc_fail, 1);
4292b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4293b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4294b5fca8f8Stomee 		kmem_move_end(cp, callback);
4295b5fca8f8Stomee 		return;
4296b5fca8f8Stomee 	}
4297b5fca8f8Stomee 
4298b5fca8f8Stomee 	KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4299b5fca8f8Stomee 	KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4300b5fca8f8Stomee 	    kmem_move_stats.kms_notify_callbacks);
4301b5fca8f8Stomee 	cp->cache_defrag->kmd_callbacks++;
4302b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = curthread;
4303b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4304b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4305b5fca8f8Stomee 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4306b5fca8f8Stomee 	    callback);
4307b5fca8f8Stomee 
4308b5fca8f8Stomee 	response = cp->cache_move(callback->kmm_from_buf,
4309b5fca8f8Stomee 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4310b5fca8f8Stomee 
4311b5fca8f8Stomee 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4312b5fca8f8Stomee 	    callback, kmem_cbrc_t, response);
4313b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = NULL;
4314b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = NULL;
4315b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = NULL;
4316b5fca8f8Stomee 
4317b5fca8f8Stomee 	if (response == KMEM_CBRC_YES) {
4318b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4319b5fca8f8Stomee 		cp->cache_defrag->kmd_yes++;
4320b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4321b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4322b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4323b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4324b5fca8f8Stomee 		kmem_move_end(cp, callback);
4325b5fca8f8Stomee 		return;
4326b5fca8f8Stomee 	}
4327b5fca8f8Stomee 
4328b5fca8f8Stomee 	switch (response) {
4329b5fca8f8Stomee 	case KMEM_CBRC_NO:
4330b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_no);
4331b5fca8f8Stomee 		cp->cache_defrag->kmd_no++;
4332b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4333b5fca8f8Stomee 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4334b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4335b5fca8f8Stomee 		break;
4336b5fca8f8Stomee 	case KMEM_CBRC_LATER:
4337b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_later);
4338b5fca8f8Stomee 		cp->cache_defrag->kmd_later++;
4339b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4340b5fca8f8Stomee 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4341b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4342b5fca8f8Stomee 			break;
4343b5fca8f8Stomee 		}
4344b5fca8f8Stomee 
4345b5fca8f8Stomee 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4346b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4347b5fca8f8Stomee 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4348b5fca8f8Stomee 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4349b5fca8f8Stomee 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4350b5fca8f8Stomee 			    callback->kmm_from_buf);
4351b5fca8f8Stomee 		}
4352b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4353b5fca8f8Stomee 		break;
4354b5fca8f8Stomee 	case KMEM_CBRC_DONT_NEED:
4355b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4356b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_need++;
4357b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4358b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4359b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4360b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4361b5fca8f8Stomee 		break;
4362b5fca8f8Stomee 	case KMEM_CBRC_DONT_KNOW:
4363b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4364b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_know++;
4365b5fca8f8Stomee 		if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4366b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4367b5fca8f8Stomee 			cp->cache_defrag->kmd_hunt_found++;
4368b5fca8f8Stomee 			kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4369b5fca8f8Stomee 			    B_TRUE);
4370b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4371b5fca8f8Stomee 			kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4372b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4373b5fca8f8Stomee 		}
4374b5fca8f8Stomee 		break;
4375b5fca8f8Stomee 	default:
4376b5fca8f8Stomee 		panic("'%s' (%p) unexpected move callback response %d\n",
4377b5fca8f8Stomee 		    cp->cache_name, (void *)cp, response);
4378b5fca8f8Stomee 	}
4379b5fca8f8Stomee 
4380b5fca8f8Stomee 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4381b5fca8f8Stomee 	kmem_move_end(cp, callback);
4382b5fca8f8Stomee }
4383b5fca8f8Stomee 
4384b5fca8f8Stomee /* Return B_FALSE if there is insufficient memory for the move request. */
4385b5fca8f8Stomee static boolean_t
4386b5fca8f8Stomee kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4387b5fca8f8Stomee {
4388b5fca8f8Stomee 	void *to_buf;
4389b5fca8f8Stomee 	avl_index_t index;
4390b5fca8f8Stomee 	kmem_move_t *callback, *pending;
4391b5fca8f8Stomee 
4392b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4393b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4394b5fca8f8Stomee 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4395b5fca8f8Stomee 
4396b5fca8f8Stomee 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4397b5fca8f8Stomee 	if (callback == NULL) {
4398b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4399b5fca8f8Stomee 		return (B_FALSE);
4400b5fca8f8Stomee 	}
4401b5fca8f8Stomee 
4402b5fca8f8Stomee 	callback->kmm_from_slab = sp;
4403b5fca8f8Stomee 	callback->kmm_from_buf = buf;
4404b5fca8f8Stomee 	callback->kmm_flags = flags;
4405b5fca8f8Stomee 
4406b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4407b5fca8f8Stomee 
4408b5fca8f8Stomee 	if (avl_numnodes(&cp->cache_partial_slabs) <= 1) {
4409b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4410b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4411b5fca8f8Stomee 		return (B_TRUE); /* there is no need for the move request */
4412b5fca8f8Stomee 	}
4413b5fca8f8Stomee 
4414b5fca8f8Stomee 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4415b5fca8f8Stomee 	if (pending != NULL) {
4416b5fca8f8Stomee 		/*
4417b5fca8f8Stomee 		 * If the move is already pending and we're desperate now,
4418b5fca8f8Stomee 		 * update the move flags.
4419b5fca8f8Stomee 		 */
4420b5fca8f8Stomee 		if (flags & KMM_DESPERATE) {
4421b5fca8f8Stomee 			pending->kmm_flags |= KMM_DESPERATE;
4422b5fca8f8Stomee 		}
4423b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4424b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
4425b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4426b5fca8f8Stomee 		return (B_TRUE);
4427b5fca8f8Stomee 	}
4428b5fca8f8Stomee 
4429b5fca8f8Stomee 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs));
4430b5fca8f8Stomee 	callback->kmm_to_buf = to_buf;
4431b5fca8f8Stomee 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4432b5fca8f8Stomee 
4433b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4434b5fca8f8Stomee 
4435b5fca8f8Stomee 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4436b5fca8f8Stomee 	    callback, TQ_NOSLEEP)) {
4437b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4438b5fca8f8Stomee 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4439b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4440b5fca8f8Stomee 		kmem_slab_free_constructed(cp, to_buf, B_FALSE);
4441b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4442b5fca8f8Stomee 		return (B_FALSE);
4443b5fca8f8Stomee 	}
4444b5fca8f8Stomee 
4445b5fca8f8Stomee 	return (B_TRUE);
4446b5fca8f8Stomee }
4447b5fca8f8Stomee 
4448b5fca8f8Stomee static void
4449b5fca8f8Stomee kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4450b5fca8f8Stomee {
4451b5fca8f8Stomee 	avl_index_t index;
4452b5fca8f8Stomee 
4453b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4454b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4455b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4456b5fca8f8Stomee 
4457b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4458b5fca8f8Stomee 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4459b5fca8f8Stomee 	    callback->kmm_from_buf, &index) != NULL);
4460b5fca8f8Stomee 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4461b5fca8f8Stomee 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4462b5fca8f8Stomee 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4463b5fca8f8Stomee 		kmem_slab_t *sp;
4464b5fca8f8Stomee 
4465b5fca8f8Stomee 		/*
4466b5fca8f8Stomee 		 * The last pending move completed. Release all slabs from the
4467b5fca8f8Stomee 		 * front of the dead list except for any slab at the tail that
4468b5fca8f8Stomee 		 * needs to be released from the context of kmem_move_buffers().
4469b5fca8f8Stomee 		 * kmem deferred unmapping the buffers on these slabs in order
4470b5fca8f8Stomee 		 * to guarantee that buffers passed to the move callback have
4471b5fca8f8Stomee 		 * been touched only by kmem or by the client itself.
4472b5fca8f8Stomee 		 */
4473b5fca8f8Stomee 		while ((sp = list_remove_head(deadlist)) != NULL) {
4474b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4475b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
4476b5fca8f8Stomee 				break;
4477b5fca8f8Stomee 			}
4478b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
4479b5fca8f8Stomee 			cp->cache_slab_destroy++;
4480b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4481b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
4482b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4483b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4484b5fca8f8Stomee 		}
4485b5fca8f8Stomee 	}
4486b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4487b5fca8f8Stomee 	kmem_cache_free(kmem_move_cache, callback);
4488b5fca8f8Stomee }
4489b5fca8f8Stomee 
4490b5fca8f8Stomee /*
4491b5fca8f8Stomee  * Move buffers from least used slabs first by scanning backwards from the end
4492b5fca8f8Stomee  * of the partial slab list. Scan at most max_scan candidate slabs and move
4493b5fca8f8Stomee  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4494b5fca8f8Stomee  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4495b5fca8f8Stomee  * skip slabs with a ratio of allocated buffers at or above the current
4496b5fca8f8Stomee  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4497b5fca8f8Stomee  * scan is aborted) so that the caller can adjust the reclaimability threshold
4498b5fca8f8Stomee  * depending on how many reclaimable slabs it finds.
4499b5fca8f8Stomee  *
4500b5fca8f8Stomee  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4501b5fca8f8Stomee  * move request, since it is not valid for kmem_move_begin() to call
4502b5fca8f8Stomee  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4503b5fca8f8Stomee  */
4504b5fca8f8Stomee static int
4505b5fca8f8Stomee kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4506b5fca8f8Stomee     int flags)
4507b5fca8f8Stomee {
4508b5fca8f8Stomee 	kmem_slab_t *sp;
4509b5fca8f8Stomee 	void *buf;
4510b5fca8f8Stomee 	int i, j; /* slab index, buffer index */
4511b5fca8f8Stomee 	int s; /* reclaimable slabs */
4512b5fca8f8Stomee 	int b; /* allocated (movable) buffers on reclaimable slab */
4513b5fca8f8Stomee 	boolean_t success;
4514b5fca8f8Stomee 	int refcnt;
4515b5fca8f8Stomee 	int nomove;
4516b5fca8f8Stomee 
4517b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4518b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4519b5fca8f8Stomee 	ASSERT(kmem_move_cache != NULL);
4520b5fca8f8Stomee 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4521b5fca8f8Stomee 	ASSERT(avl_numnodes(&cp->cache_partial_slabs) > 1);
4522b5fca8f8Stomee 
4523b5fca8f8Stomee 	if (kmem_move_blocked) {
4524b5fca8f8Stomee 		return (0);
4525b5fca8f8Stomee 	}
4526b5fca8f8Stomee 
4527b5fca8f8Stomee 	if (kmem_move_fulltilt) {
4528b5fca8f8Stomee 		max_slabs = 0;
4529b5fca8f8Stomee 		flags |= KMM_DESPERATE;
4530b5fca8f8Stomee 	}
4531b5fca8f8Stomee 
4532b5fca8f8Stomee 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4533b5fca8f8Stomee 		/*
4534b5fca8f8Stomee 		 * Scan as many slabs as needed to find the desired number of
4535b5fca8f8Stomee 		 * candidate slabs.
4536b5fca8f8Stomee 		 */
4537b5fca8f8Stomee 		max_scan = (size_t)-1;
4538b5fca8f8Stomee 	}
4539b5fca8f8Stomee 
4540b5fca8f8Stomee 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4541b5fca8f8Stomee 		/* Find as many candidate slabs as possible. */
4542b5fca8f8Stomee 		max_slabs = (size_t)-1;
4543b5fca8f8Stomee 	}
4544b5fca8f8Stomee 
4545b5fca8f8Stomee 	sp = avl_last(&cp->cache_partial_slabs);
4546b5fca8f8Stomee 	ASSERT(sp != NULL && KMEM_SLAB_IS_PARTIAL(sp));
4547b5fca8f8Stomee 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) &&
4548b5fca8f8Stomee 	    (sp != avl_first(&cp->cache_partial_slabs));
4549b5fca8f8Stomee 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4550b5fca8f8Stomee 
4551b5fca8f8Stomee 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4552b5fca8f8Stomee 			continue;
4553b5fca8f8Stomee 		}
4554b5fca8f8Stomee 		s++;
4555b5fca8f8Stomee 
4556b5fca8f8Stomee 		/* Look for allocated buffers to move. */
4557b5fca8f8Stomee 		for (j = 0, b = 0, buf = sp->slab_base;
4558b5fca8f8Stomee 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4559b5fca8f8Stomee 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4560b5fca8f8Stomee 
4561b5fca8f8Stomee 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4562b5fca8f8Stomee 				continue;
4563b5fca8f8Stomee 			}
4564b5fca8f8Stomee 
4565b5fca8f8Stomee 			b++;
4566b5fca8f8Stomee 
4567b5fca8f8Stomee 			/*
4568b5fca8f8Stomee 			 * Prevent the slab from being destroyed while we drop
4569b5fca8f8Stomee 			 * cache_lock and while the pending move is not yet
4570b5fca8f8Stomee 			 * registered. Flag the pending move while
4571b5fca8f8Stomee 			 * kmd_moves_pending may still be empty, since we can't
4572b5fca8f8Stomee 			 * yet rely on a non-zero pending move count to prevent
4573b5fca8f8Stomee 			 * the slab from being destroyed.
4574b5fca8f8Stomee 			 */
4575b5fca8f8Stomee 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4576b5fca8f8Stomee 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4577b5fca8f8Stomee 			/*
4578b5fca8f8Stomee 			 * Recheck refcnt and nomove after reacquiring the lock,
4579b5fca8f8Stomee 			 * since these control the order of partial slabs, and
4580b5fca8f8Stomee 			 * we want to know if we can pick up the scan where we
4581b5fca8f8Stomee 			 * left off.
4582b5fca8f8Stomee 			 */
4583b5fca8f8Stomee 			refcnt = sp->slab_refcnt;
4584b5fca8f8Stomee 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
4585b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4586b5fca8f8Stomee 
4587b5fca8f8Stomee 			success = kmem_move_begin(cp, sp, buf, flags);
4588b5fca8f8Stomee 
4589b5fca8f8Stomee 			/*
4590b5fca8f8Stomee 			 * Now, before the lock is reacquired, kmem could
4591b5fca8f8Stomee 			 * process all pending move requests and purge the
4592b5fca8f8Stomee 			 * deadlist, so that upon reacquiring the lock, sp has
4593b5fca8f8Stomee 			 * been remapped. Therefore, the KMEM_SLAB_MOVE_PENDING
4594b5fca8f8Stomee 			 * flag causes the slab to be put at the end of the
4595b5fca8f8Stomee 			 * deadlist and prevents it from being purged, since we
4596b5fca8f8Stomee 			 * plan to destroy it here after reacquiring the lock.
4597b5fca8f8Stomee 			 */
4598b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4599b5fca8f8Stomee 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4600b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4601b5fca8f8Stomee 
4602b5fca8f8Stomee 			/*
4603b5fca8f8Stomee 			 * Destroy the slab now if it was completely freed while
4604b5fca8f8Stomee 			 * we dropped cache_lock.
4605b5fca8f8Stomee 			 */
4606b5fca8f8Stomee 			if (sp->slab_refcnt == 0) {
4607b5fca8f8Stomee 				list_t *deadlist =
4608b5fca8f8Stomee 				    &cp->cache_defrag->kmd_deadlist;
4609b5fca8f8Stomee 
4610b5fca8f8Stomee 				ASSERT(!list_is_empty(deadlist));
4611b5fca8f8Stomee 				ASSERT(list_link_active((list_node_t *)
4612b5fca8f8Stomee 				    &sp->slab_link));
4613b5fca8f8Stomee 
4614b5fca8f8Stomee 				list_remove(deadlist, sp);
4615b5fca8f8Stomee 				cp->cache_defrag->kmd_deadcount--;
4616b5fca8f8Stomee 				cp->cache_slab_destroy++;
4617b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
4618b5fca8f8Stomee 				kmem_slab_destroy(cp, sp);
4619b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.
4620b5fca8f8Stomee 				    kms_dead_slabs_freed);
4621b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.
4622b5fca8f8Stomee 				    kms_endscan_slab_destroyed);
4623b5fca8f8Stomee 				mutex_enter(&cp->cache_lock);
4624b5fca8f8Stomee 				/*
4625b5fca8f8Stomee 				 * Since we can't pick up the scan where we left
4626b5fca8f8Stomee 				 * off, abort the scan and say nothing about the
4627b5fca8f8Stomee 				 * number of reclaimable slabs.
4628b5fca8f8Stomee 				 */
4629b5fca8f8Stomee 				return (-1);
4630b5fca8f8Stomee 			}
4631b5fca8f8Stomee 
4632b5fca8f8Stomee 			if (!success) {
4633b5fca8f8Stomee 				/*
4634b5fca8f8Stomee 				 * Abort the scan if there is not enough memory
4635b5fca8f8Stomee 				 * for the request and say nothing about the
4636b5fca8f8Stomee 				 * number of reclaimable slabs.
4637b5fca8f8Stomee 				 */
4638b5fca8f8Stomee 				KMEM_STAT_ADD(
4639b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_nomem);
4640b5fca8f8Stomee 				return (-1);
4641b5fca8f8Stomee 			}
4642b5fca8f8Stomee 
4643b5fca8f8Stomee 			/*
4644b5fca8f8Stomee 			 * The slab may have been completely allocated while the
4645b5fca8f8Stomee 			 * lock was dropped.
4646b5fca8f8Stomee 			 */
4647b5fca8f8Stomee 			if (KMEM_SLAB_IS_ALL_USED(sp)) {
4648b5fca8f8Stomee 				KMEM_STAT_ADD(
4649b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_slab_all_used);
4650b5fca8f8Stomee 				return (-1);
4651b5fca8f8Stomee 			}
4652b5fca8f8Stomee 
4653b5fca8f8Stomee 			/*
4654b5fca8f8Stomee 			 * The slab's position changed while the lock was
4655b5fca8f8Stomee 			 * dropped, so we don't know where we are in the
4656b5fca8f8Stomee 			 * sequence any more.
4657b5fca8f8Stomee 			 */
4658b5fca8f8Stomee 			if (sp->slab_refcnt != refcnt) {
4659b5fca8f8Stomee 				KMEM_STAT_ADD(
4660b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_refcnt_changed);
4661b5fca8f8Stomee 				return (-1);
4662b5fca8f8Stomee 			}
4663b5fca8f8Stomee 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
4664b5fca8f8Stomee 				KMEM_STAT_ADD(
4665b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_nomove_changed);
4666b5fca8f8Stomee 				return (-1);
4667b5fca8f8Stomee 			}
4668b5fca8f8Stomee 
4669b5fca8f8Stomee 			/*
4670b5fca8f8Stomee 			 * Generating a move request allocates a destination
4671b5fca8f8Stomee 			 * buffer from the slab layer, bumping the first slab if
4672b5fca8f8Stomee 			 * it is completely allocated.
4673b5fca8f8Stomee 			 */
4674b5fca8f8Stomee 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
4675b5fca8f8Stomee 			if (sp == avl_first(&cp->cache_partial_slabs)) {
4676b5fca8f8Stomee 				goto end_scan;
4677b5fca8f8Stomee 			}
4678b5fca8f8Stomee 		}
4679b5fca8f8Stomee 	}
4680b5fca8f8Stomee end_scan:
4681b5fca8f8Stomee 
4682b5fca8f8Stomee 	KMEM_STAT_COND_ADD(sp == avl_first(&cp->cache_partial_slabs),
4683b5fca8f8Stomee 	    kmem_move_stats.kms_endscan_freelist);
4684b5fca8f8Stomee 
4685b5fca8f8Stomee 	return (s);
4686b5fca8f8Stomee }
4687b5fca8f8Stomee 
4688b5fca8f8Stomee typedef struct kmem_move_notify_args {
4689b5fca8f8Stomee 	kmem_cache_t *kmna_cache;
4690b5fca8f8Stomee 	void *kmna_buf;
4691b5fca8f8Stomee } kmem_move_notify_args_t;
4692b5fca8f8Stomee 
4693b5fca8f8Stomee static void
4694b5fca8f8Stomee kmem_cache_move_notify_task(void *arg)
4695b5fca8f8Stomee {
4696b5fca8f8Stomee 	kmem_move_notify_args_t *args = arg;
4697b5fca8f8Stomee 	kmem_cache_t *cp = args->kmna_cache;
4698b5fca8f8Stomee 	void *buf = args->kmna_buf;
4699b5fca8f8Stomee 	kmem_slab_t *sp;
4700b5fca8f8Stomee 
4701b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4702b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
4703b5fca8f8Stomee 
4704b5fca8f8Stomee 	kmem_free(args, sizeof (kmem_move_notify_args_t));
4705b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4706b5fca8f8Stomee 	sp = kmem_slab_allocated(cp, NULL, buf);
4707b5fca8f8Stomee 
4708b5fca8f8Stomee 	/* Ignore the notification if the buffer is no longer allocated. */
4709b5fca8f8Stomee 	if (sp == NULL) {
4710b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4711b5fca8f8Stomee 		return;
4712b5fca8f8Stomee 	}
4713b5fca8f8Stomee 
4714b5fca8f8Stomee 	/* Ignore the notification if there's no reason to move the buffer. */
4715b5fca8f8Stomee 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4716b5fca8f8Stomee 		/*
4717b5fca8f8Stomee 		 * So far the notification is not ignored. Ignore the
4718b5fca8f8Stomee 		 * notification if the slab is not marked by an earlier refusal
4719b5fca8f8Stomee 		 * to move a buffer.
4720b5fca8f8Stomee 		 */
4721b5fca8f8Stomee 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
4722b5fca8f8Stomee 		    (sp->slab_later_count == 0)) {
4723b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4724b5fca8f8Stomee 			return;
4725b5fca8f8Stomee 		}
4726b5fca8f8Stomee 
4727b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
4728b5fca8f8Stomee 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4729b5fca8f8Stomee 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4730b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4731b5fca8f8Stomee 		/* see kmem_move_buffers() about dropping the lock */
4732b5fca8f8Stomee 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
4733b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4734b5fca8f8Stomee 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4735b5fca8f8Stomee 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4736b5fca8f8Stomee 		if (sp->slab_refcnt == 0) {
4737b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4738b5fca8f8Stomee 
4739b5fca8f8Stomee 			ASSERT(!list_is_empty(deadlist));
4740b5fca8f8Stomee 			ASSERT(list_link_active((list_node_t *)
4741b5fca8f8Stomee 			    &sp->slab_link));
4742b5fca8f8Stomee 
4743b5fca8f8Stomee 			list_remove(deadlist, sp);
4744b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
4745b5fca8f8Stomee 			cp->cache_slab_destroy++;
4746b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4747b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
4748b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4749b5fca8f8Stomee 			return;
4750b5fca8f8Stomee 		}
4751b5fca8f8Stomee 	} else {
4752b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
4753b5fca8f8Stomee 	}
4754b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4755b5fca8f8Stomee }
4756b5fca8f8Stomee 
4757b5fca8f8Stomee void
4758b5fca8f8Stomee kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
4759b5fca8f8Stomee {
4760b5fca8f8Stomee 	kmem_move_notify_args_t *args;
4761b5fca8f8Stomee 
4762b5fca8f8Stomee 	KMEM_STAT_ADD(kmem_move_stats.kms_notify);
4763b5fca8f8Stomee 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
4764b5fca8f8Stomee 	if (args != NULL) {
4765b5fca8f8Stomee 		args->kmna_cache = cp;
4766b5fca8f8Stomee 		args->kmna_buf = buf;
4767*eb697d4eStomee 		if (!taskq_dispatch(kmem_taskq,
4768b5fca8f8Stomee 		    (task_func_t *)kmem_cache_move_notify_task, args,
4769*eb697d4eStomee 		    TQ_NOSLEEP))
4770*eb697d4eStomee 			kmem_free(args, sizeof (kmem_move_notify_args_t));
4771b5fca8f8Stomee 	}
4772b5fca8f8Stomee }
4773b5fca8f8Stomee 
4774b5fca8f8Stomee static void
4775b5fca8f8Stomee kmem_cache_defrag(kmem_cache_t *cp)
4776b5fca8f8Stomee {
4777b5fca8f8Stomee 	size_t n;
4778b5fca8f8Stomee 
4779b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4780b5fca8f8Stomee 
4781b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4782b5fca8f8Stomee 	n = avl_numnodes(&cp->cache_partial_slabs);
4783b5fca8f8Stomee 	if (n > 1) {
4784b5fca8f8Stomee 		/* kmem_move_buffers() drops and reacquires cache_lock */
4785b5fca8f8Stomee 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
4786b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
4787b5fca8f8Stomee 	}
4788b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4789b5fca8f8Stomee }
4790b5fca8f8Stomee 
4791b5fca8f8Stomee /* Is this cache above the fragmentation threshold? */
4792b5fca8f8Stomee static boolean_t
4793b5fca8f8Stomee kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
4794b5fca8f8Stomee {
4795b5fca8f8Stomee 	if (avl_numnodes(&cp->cache_partial_slabs) <= 1)
4796b5fca8f8Stomee 		return (B_FALSE);
4797b5fca8f8Stomee 
4798b5fca8f8Stomee 	/*
4799b5fca8f8Stomee 	 *	nfree		kmem_frag_numer
4800b5fca8f8Stomee 	 * ------------------ > ---------------
4801b5fca8f8Stomee 	 * cp->cache_buftotal	kmem_frag_denom
4802b5fca8f8Stomee 	 */
4803b5fca8f8Stomee 	return ((nfree * kmem_frag_denom) >
4804b5fca8f8Stomee 	    (cp->cache_buftotal * kmem_frag_numer));
4805b5fca8f8Stomee }
4806b5fca8f8Stomee 
4807b5fca8f8Stomee static boolean_t
4808b5fca8f8Stomee kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
4809b5fca8f8Stomee {
4810b5fca8f8Stomee 	boolean_t fragmented;
4811b5fca8f8Stomee 	uint64_t nfree;
4812b5fca8f8Stomee 
4813b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4814b5fca8f8Stomee 	*doreap = B_FALSE;
4815b5fca8f8Stomee 
4816b5fca8f8Stomee 	if (!kmem_move_fulltilt && ((cp->cache_complete_slab_count +
4817b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs)) < kmem_frag_minslabs))
4818b5fca8f8Stomee 		return (B_FALSE);
4819b5fca8f8Stomee 
4820b5fca8f8Stomee 	nfree = cp->cache_bufslab;
4821b5fca8f8Stomee 	fragmented = kmem_cache_frag_threshold(cp, nfree);
4822b5fca8f8Stomee 	/*
4823b5fca8f8Stomee 	 * Free buffers in the magazine layer appear allocated from the point of
4824b5fca8f8Stomee 	 * view of the slab layer. We want to know if the slab layer would
4825b5fca8f8Stomee 	 * appear fragmented if we included free buffers from magazines that
4826b5fca8f8Stomee 	 * have fallen out of the working set.
4827b5fca8f8Stomee 	 */
4828b5fca8f8Stomee 	if (!fragmented) {
4829b5fca8f8Stomee 		long reap;
4830b5fca8f8Stomee 
4831b5fca8f8Stomee 		mutex_enter(&cp->cache_depot_lock);
4832b5fca8f8Stomee 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
4833b5fca8f8Stomee 		reap = MIN(reap, cp->cache_full.ml_total);
4834b5fca8f8Stomee 		mutex_exit(&cp->cache_depot_lock);
4835b5fca8f8Stomee 
4836b5fca8f8Stomee 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
4837b5fca8f8Stomee 		if (kmem_cache_frag_threshold(cp, nfree)) {
4838b5fca8f8Stomee 			*doreap = B_TRUE;
4839b5fca8f8Stomee 		}
4840b5fca8f8Stomee 	}
4841b5fca8f8Stomee 
4842b5fca8f8Stomee 	return (fragmented);
4843b5fca8f8Stomee }
4844b5fca8f8Stomee 
4845b5fca8f8Stomee /* Called periodically from kmem_taskq */
4846b5fca8f8Stomee static void
4847b5fca8f8Stomee kmem_cache_scan(kmem_cache_t *cp)
4848b5fca8f8Stomee {
4849b5fca8f8Stomee 	boolean_t reap = B_FALSE;
4850b5fca8f8Stomee 
4851b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4852b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4853b5fca8f8Stomee 
4854b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4855b5fca8f8Stomee 
4856b5fca8f8Stomee 	if (kmem_cache_is_fragmented(cp, &reap)) {
4857b5fca8f8Stomee 		kmem_defrag_t *kmd = cp->cache_defrag;
4858b5fca8f8Stomee 		size_t slabs_found;
4859b5fca8f8Stomee 
4860b5fca8f8Stomee 		/*
4861b5fca8f8Stomee 		 * Consolidate reclaimable slabs from the end of the partial
4862b5fca8f8Stomee 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
4863b5fca8f8Stomee 		 * reclaimable slabs). Keep track of how many candidate slabs we
4864b5fca8f8Stomee 		 * looked for and how many we actually found so we can adjust
4865b5fca8f8Stomee 		 * the definition of a candidate slab if we're having trouble
4866b5fca8f8Stomee 		 * finding them.
4867b5fca8f8Stomee 		 *
4868b5fca8f8Stomee 		 * kmem_move_buffers() drops and reacquires cache_lock.
4869b5fca8f8Stomee 		 */
4870b5fca8f8Stomee 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
4871b5fca8f8Stomee 		    kmem_reclaim_max_slabs, 0);
4872b5fca8f8Stomee 		if (slabs_found >= 0) {
4873b5fca8f8Stomee 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
4874b5fca8f8Stomee 			kmd->kmd_slabs_found += slabs_found;
4875b5fca8f8Stomee 		}
4876b5fca8f8Stomee 
4877b5fca8f8Stomee 		if (++kmd->kmd_scans >= kmem_reclaim_scan_range) {
4878b5fca8f8Stomee 			kmd->kmd_scans = 0;
4879b5fca8f8Stomee 
4880b5fca8f8Stomee 			/*
4881b5fca8f8Stomee 			 * If we had difficulty finding candidate slabs in
4882b5fca8f8Stomee 			 * previous scans, adjust the threshold so that
4883b5fca8f8Stomee 			 * candidates are easier to find.
4884b5fca8f8Stomee 			 */
4885b5fca8f8Stomee 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
4886b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, -1);
4887b5fca8f8Stomee 			} else if ((kmd->kmd_slabs_found * 2) <
4888b5fca8f8Stomee 			    kmd->kmd_slabs_sought) {
4889b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, 1);
4890b5fca8f8Stomee 			}
4891b5fca8f8Stomee 			kmd->kmd_slabs_sought = 0;
4892b5fca8f8Stomee 			kmd->kmd_slabs_found = 0;
4893b5fca8f8Stomee 		}
4894b5fca8f8Stomee 	} else {
4895b5fca8f8Stomee 		kmem_reset_reclaim_threshold(cp->cache_defrag);
4896b5fca8f8Stomee #ifdef	DEBUG
4897b5fca8f8Stomee 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4898b5fca8f8Stomee 			/*
4899b5fca8f8Stomee 			 * In a debug kernel we want the consolidator to
4900b5fca8f8Stomee 			 * run occasionally even when there is plenty of
4901b5fca8f8Stomee 			 * memory.
4902b5fca8f8Stomee 			 */
4903b5fca8f8Stomee 			uint32_t debug_rand;
4904b5fca8f8Stomee 
4905b5fca8f8Stomee 			(void) random_get_bytes((uint8_t *)&debug_rand, 4);
4906b5fca8f8Stomee 			if (!kmem_move_noreap &&
4907b5fca8f8Stomee 			    ((debug_rand % kmem_mtb_reap) == 0)) {
4908b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
4909b5fca8f8Stomee 				kmem_cache_reap(cp);
4910b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
4911b5fca8f8Stomee 				return;
4912b5fca8f8Stomee 			} else if ((debug_rand % kmem_mtb_move) == 0) {
4913b5fca8f8Stomee 				(void) kmem_move_buffers(cp,
4914b5fca8f8Stomee 				    kmem_reclaim_scan_range, 1, 0);
4915b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.
4916b5fca8f8Stomee 				    kms_debug_move_scans);
4917b5fca8f8Stomee 			}
4918b5fca8f8Stomee 		}
4919b5fca8f8Stomee #endif	/* DEBUG */
4920b5fca8f8Stomee 	}
4921b5fca8f8Stomee 
4922b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4923b5fca8f8Stomee 
4924b5fca8f8Stomee 	if (reap) {
4925b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
4926b5fca8f8Stomee 		kmem_depot_ws_reap(cp);
4927b5fca8f8Stomee 	}
4928b5fca8f8Stomee }
4929