1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/sysmacros.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/policy.h> 40 #include <sys/user.h> 41 #include <sys/systm.h> 42 #include <sys/cpuvar.h> 43 #include <sys/vfs.h> 44 #include <sys/vnode.h> 45 #include <sys/file.h> 46 #include <sys/errno.h> 47 #include <sys/time.h> 48 #include <sys/proc.h> 49 #include <sys/cmn_err.h> 50 #include <sys/acct.h> 51 #include <sys/tuneable.h> 52 #include <sys/class.h> 53 #include <sys/kmem.h> 54 #include <sys/session.h> 55 #include <sys/ucontext.h> 56 #include <sys/stack.h> 57 #include <sys/procfs.h> 58 #include <sys/prsystm.h> 59 #include <sys/vmsystm.h> 60 #include <sys/vtrace.h> 61 #include <sys/debug.h> 62 #include <sys/shm_impl.h> 63 #include <sys/door_data.h> 64 #include <vm/as.h> 65 #include <vm/rm.h> 66 #include <c2/audit.h> 67 #include <sys/var.h> 68 #include <sys/schedctl.h> 69 #include <sys/utrap.h> 70 #include <sys/task.h> 71 #include <sys/resource.h> 72 #include <sys/cyclic.h> 73 #include <sys/lgrp.h> 74 #include <sys/rctl.h> 75 #include <sys/contract_impl.h> 76 #include <sys/contract/process_impl.h> 77 #include <sys/list.h> 78 #include <sys/dtrace.h> 79 #include <sys/pool.h> 80 #include <sys/zone.h> 81 #include <sys/sdt.h> 82 #include <sys/class.h> 83 #include <sys/corectl.h> 84 85 static int64_t cfork(int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1)); 111 } 112 113 /* 114 * fork1 system call 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1)); 120 } 121 122 /* ARGSUSED */ 123 static int64_t 124 cfork(int isvfork, int isfork1) 125 { 126 proc_t *p = ttoproc(curthread); 127 struct as *as; 128 proc_t *cp, **orphpp; 129 klwp_t *clone; 130 kthread_t *t; 131 task_t *tk; 132 rval_t r; 133 int error; 134 int i; 135 rctl_set_t *dup_set; 136 rctl_alloc_gp_t *dup_gp; 137 rctl_entity_p_t e; 138 lwpdir_t *ldp; 139 lwpent_t *lep; 140 lwpent_t *clep; 141 142 /* 143 * fork is not supported for the /proc agent lwp. 144 */ 145 if (curthread == p->p_agenttp) { 146 error = ENOTSUP; 147 goto forkerr; 148 } 149 150 if ((error = secpolicy_basic_fork(CRED())) != 0) 151 goto forkerr; 152 153 /* 154 * If the calling lwp is doing a fork1() then the 155 * other lwps in this process are not duplicated and 156 * don't need to be held where their kernel stacks can be 157 * cloned. If doing forkall(), the process is held with 158 * SHOLDFORK, so that the lwps are at a point where their 159 * stacks can be copied which is on entry or exit from 160 * the kernel. 161 */ 162 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 163 aston(curthread); 164 error = EINTR; 165 goto forkerr; 166 } 167 168 #if defined(__sparc) 169 /* 170 * Ensure that the user stack is fully constructed 171 * before creating the child process structure. 172 */ 173 (void) flush_user_windows_to_stack(NULL); 174 #endif 175 176 mutex_enter(&p->p_lock); 177 /* 178 * If this is vfork(), cancel any suspend request we might 179 * have gotten from some other thread via lwp_suspend(). 180 * Otherwise we could end up with a deadlock on return 181 * from the vfork() in both the parent and the child. 182 */ 183 if (isvfork) 184 curthread->t_proc_flag &= ~TP_HOLDLWP; 185 /* 186 * Prevent our resource set associations from being changed during fork. 187 */ 188 pool_barrier_enter(); 189 mutex_exit(&p->p_lock); 190 191 /* 192 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 193 */ 194 if (getproc(&cp, 0) < 0) { 195 mutex_enter(&p->p_lock); 196 pool_barrier_exit(); 197 continuelwps(p); 198 mutex_exit(&p->p_lock); 199 error = EAGAIN; 200 goto forkerr; 201 } 202 203 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 204 205 /* 206 * Assign an address space to child 207 */ 208 if (isvfork) { 209 /* 210 * Clear any watched areas and remember the 211 * watched pages for restoring in vfwait(). 212 */ 213 as = p->p_as; 214 if (avl_numnodes(&as->a_wpage) != 0) { 215 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 216 as_clearwatch(as); 217 p->p_wpage = as->a_wpage; 218 avl_create(&as->a_wpage, wp_compare, 219 sizeof (struct watched_page), 220 offsetof(struct watched_page, wp_link)); 221 AS_LOCK_EXIT(as, &as->a_lock); 222 } 223 cp->p_as = as; 224 cp->p_flag |= SVFORK; 225 } else { 226 /* 227 * We need to hold P_PR_LOCK until the address space has 228 * been duplicated and we've had a chance to remove from the 229 * child any DTrace probes that were in the parent. Holding 230 * P_PR_LOCK prevents any new probes from being added and any 231 * extant probes from being removed. 232 */ 233 mutex_enter(&p->p_lock); 234 sprlock_proc(p); 235 mutex_exit(&p->p_lock); 236 237 error = as_dup(p->p_as, &cp->p_as); 238 if (error != 0) { 239 fork_fail(cp); 240 mutex_enter(&pidlock); 241 orphpp = &p->p_orphan; 242 while (*orphpp != cp) 243 orphpp = &(*orphpp)->p_nextorph; 244 *orphpp = cp->p_nextorph; 245 ASSERT(p->p_child == cp); 246 p->p_child = cp->p_sibling; 247 if (p->p_child) { 248 p->p_child->p_psibling = NULL; 249 } 250 mutex_enter(&cp->p_lock); 251 tk = cp->p_task; 252 task_detach(cp); 253 ASSERT(cp->p_pool->pool_ref > 0); 254 atomic_add_32(&cp->p_pool->pool_ref, -1); 255 mutex_exit(&cp->p_lock); 256 pid_exit(cp); 257 mutex_exit(&pidlock); 258 task_rele(tk); 259 260 mutex_enter(&p->p_lock); 261 pool_barrier_exit(); 262 continuelwps(p); 263 sprunlock(p); 264 /* 265 * Preserve ENOMEM error condition but 266 * map all others to EAGAIN. 267 */ 268 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 269 goto forkerr; 270 } 271 /* Duplicate parent's shared memory */ 272 if (p->p_segacct) 273 shmfork(p, cp); 274 275 if (p->p_dtrace_helpers != NULL) { 276 ASSERT(dtrace_helpers_fork != NULL); 277 (*dtrace_helpers_fork)(p, cp); 278 } 279 280 /* 281 * Remove all DTrace tracepoints from the child process. 282 */ 283 mutex_enter(&p->p_lock); 284 if (p->p_dtrace_count > 0) 285 dtrace_fasttrap_fork(p, cp); 286 sprunlock(p); 287 } 288 289 /* 290 * Duplicate parent's resource controls. 291 */ 292 dup_set = rctl_set_create(); 293 for (;;) { 294 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 295 mutex_enter(&p->p_rctls->rcs_lock); 296 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 297 break; 298 mutex_exit(&p->p_rctls->rcs_lock); 299 rctl_prealloc_destroy(dup_gp); 300 } 301 e.rcep_p.proc = cp; 302 e.rcep_t = RCENTITY_PROCESS; 303 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 304 RCD_DUP | RCD_CALLBACK); 305 mutex_exit(&p->p_rctls->rcs_lock); 306 307 rctl_prealloc_destroy(dup_gp); 308 309 /* 310 * Allocate the child's lwp directory and lwpid hash table. 311 */ 312 if (isfork1) 313 cp->p_lwpdir_sz = 2; 314 else 315 cp->p_lwpdir_sz = p->p_lwpdir_sz; 316 cp->p_lwpdir = cp->p_lwpfree = ldp = 317 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 318 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 319 ldp->ld_next = ldp + 1; 320 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 321 cp->p_tidhash = 322 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 323 324 /* 325 * Duplicate parent's lwps. 326 * Mutual exclusion is not needed because the process is 327 * in the hold state and only the current lwp is running. 328 */ 329 klgrpset_clear(cp->p_lgrpset); 330 if (isfork1) { 331 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 332 if (clone == NULL) 333 goto forklwperr; 334 /* 335 * Inherit only the lwp_wait()able flag, 336 * Daemon threads should not call fork1(), but oh well... 337 */ 338 lwptot(clone)->t_proc_flag |= 339 (curthread->t_proc_flag & TP_TWAIT); 340 } else { 341 /* this is forkall(), no one can be in lwp_wait() */ 342 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 343 /* for each entry in the parent's lwp directory... */ 344 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 345 klwp_t *clwp; 346 kthread_t *ct; 347 348 if ((lep = ldp->ld_entry) == NULL) 349 continue; 350 351 if ((t = lep->le_thread) != NULL) { 352 clwp = forklwp(ttolwp(t), cp, t->t_tid); 353 if (clwp == NULL) 354 goto forklwperr; 355 ct = lwptot(clwp); 356 /* 357 * Inherit lwp_wait()able and daemon flags. 358 */ 359 ct->t_proc_flag |= 360 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 361 /* 362 * Keep track of the clone of curthread to 363 * post return values through lwp_setrval(). 364 * Mark other threads for special treatment 365 * by lwp_rtt() / post_syscall(). 366 */ 367 if (t == curthread) 368 clone = clwp; 369 else 370 ct->t_flag |= T_FORKALL; 371 } else { 372 /* 373 * Replicate zombie lwps in the child. 374 */ 375 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 376 clep->le_lwpid = lep->le_lwpid; 377 clep->le_start = lep->le_start; 378 lwp_hash_in(cp, clep); 379 } 380 } 381 } 382 383 /* 384 * Put new process in the parent's process contract, or put it 385 * in a new one if there is an active process template. Send a 386 * fork event (if requested) to whatever contract the child is 387 * a member of. Fails if the parent has been SIGKILLed. 388 */ 389 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 390 goto forklwperr; 391 392 /* 393 * No fork failures occur beyond this point. 394 */ 395 396 cp->p_lwpid = p->p_lwpid; 397 if (!isfork1) { 398 cp->p_lwpdaemon = p->p_lwpdaemon; 399 cp->p_zombcnt = p->p_zombcnt; 400 /* 401 * If the parent's lwp ids have wrapped around, so have the 402 * child's. 403 */ 404 cp->p_flag |= p->p_flag & SLWPWRAP; 405 } 406 407 corectl_path_hold(cp->p_corefile = p->p_corefile); 408 corectl_content_hold(cp->p_content = p->p_content); 409 410 #if defined(__x86) 411 /* 412 * Get the right ldt descr for the child. 413 */ 414 (void) ldt_dup(p, cp); 415 #endif 416 417 #ifdef __sparc 418 utrap_dup(p, cp); 419 #endif 420 /* 421 * If the child process has been marked to stop on exit 422 * from this fork, arrange for all other lwps to stop in 423 * sympathy with the active lwp. 424 */ 425 if (PTOU(cp)->u_systrap && 426 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 427 mutex_enter(&cp->p_lock); 428 t = cp->p_tlist; 429 do { 430 t->t_proc_flag |= TP_PRSTOP; 431 aston(t); /* so TP_PRSTOP will be seen */ 432 } while ((t = t->t_forw) != cp->p_tlist); 433 mutex_exit(&cp->p_lock); 434 } 435 /* 436 * If the parent process has been marked to stop on exit 437 * from this fork, and its asynchronous-stop flag has not 438 * been set, arrange for all other lwps to stop before 439 * they return back to user level. 440 */ 441 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 442 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 443 mutex_enter(&p->p_lock); 444 t = p->p_tlist; 445 do { 446 t->t_proc_flag |= TP_PRSTOP; 447 aston(t); /* so TP_PRSTOP will be seen */ 448 } while ((t = t->t_forw) != p->p_tlist); 449 mutex_exit(&p->p_lock); 450 } 451 452 /* set return values for child */ 453 lwp_setrval(clone, p->p_pid, 1); 454 455 /* set return values for parent */ 456 r.r_val1 = (int)cp->p_pid; 457 r.r_val2 = 0; 458 459 /* 460 * pool_barrier_exit() can now be called because the child process has: 461 * - all identifying features cloned or set (p_pid, p_task, p_pool) 462 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 463 * - any other fields set which are used in resource set binding. 464 */ 465 mutex_enter(&p->p_lock); 466 pool_barrier_exit(); 467 mutex_exit(&p->p_lock); 468 469 mutex_enter(&pidlock); 470 mutex_enter(&cp->p_lock); 471 472 /* 473 * Now that there are lwps and threads attached, add the new 474 * process to the process group. 475 */ 476 pgjoin(cp, p->p_pgidp); 477 cp->p_stat = SRUN; 478 /* 479 * We are now done with all the lwps in the child process. 480 */ 481 t = cp->p_tlist; 482 do { 483 /* 484 * Set the lwp_suspend()ed lwps running. 485 * They will suspend properly at syscall exit. 486 */ 487 if (t->t_proc_flag & TP_HOLDLWP) 488 lwp_create_done(t); 489 else { 490 /* set TS_CREATE to allow continuelwps() to work */ 491 thread_lock(t); 492 ASSERT(t->t_state == TS_STOPPED && 493 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 494 t->t_schedflag |= TS_CREATE; 495 thread_unlock(t); 496 } 497 } while ((t = t->t_forw) != cp->p_tlist); 498 mutex_exit(&cp->p_lock); 499 500 if (isvfork) { 501 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 502 mutex_enter(&p->p_lock); 503 p->p_flag |= SVFWAIT; 504 DTRACE_PROC1(create, proc_t *, cp); 505 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 506 mutex_exit(&p->p_lock); 507 /* 508 * Grab child's p_lock before dropping pidlock to ensure 509 * the process will not disappear before we set it running. 510 */ 511 mutex_enter(&cp->p_lock); 512 mutex_exit(&pidlock); 513 sigdefault(cp); 514 continuelwps(cp); 515 mutex_exit(&cp->p_lock); 516 } else { 517 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 518 DTRACE_PROC1(create, proc_t *, cp); 519 /* 520 * It is CL_FORKRET's job to drop pidlock. 521 * If we do it here, the process could be set running 522 * and disappear before CL_FORKRET() is called. 523 */ 524 CL_FORKRET(curthread, cp->p_tlist); 525 ASSERT(MUTEX_NOT_HELD(&pidlock)); 526 } 527 528 return (r.r_vals); 529 530 forklwperr: 531 if (isvfork) { 532 if (avl_numnodes(&p->p_wpage) != 0) { 533 /* restore watchpoints to parent */ 534 as = p->p_as; 535 AS_LOCK_ENTER(as, &as->a_lock, 536 RW_WRITER); 537 as->a_wpage = p->p_wpage; 538 avl_create(&p->p_wpage, wp_compare, 539 sizeof (struct watched_page), 540 offsetof(struct watched_page, wp_link)); 541 as_setwatch(as); 542 AS_LOCK_EXIT(as, &as->a_lock); 543 } 544 } else { 545 if (cp->p_segacct) 546 shmexit(cp); 547 as = cp->p_as; 548 cp->p_as = &kas; 549 as_free(as); 550 } 551 552 if (cp->p_lwpdir) { 553 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 554 if ((lep = ldp->ld_entry) != NULL) 555 kmem_free(lep, sizeof (*lep)); 556 kmem_free(cp->p_lwpdir, 557 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 558 } 559 cp->p_lwpdir = NULL; 560 cp->p_lwpfree = NULL; 561 cp->p_lwpdir_sz = 0; 562 563 if (cp->p_tidhash) 564 kmem_free(cp->p_tidhash, 565 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 566 cp->p_tidhash = NULL; 567 cp->p_tidhash_sz = 0; 568 569 forklwp_fail(cp); 570 fork_fail(cp); 571 rctl_set_free(cp->p_rctls); 572 mutex_enter(&pidlock); 573 574 /* 575 * Detach failed child from task. 576 */ 577 mutex_enter(&cp->p_lock); 578 tk = cp->p_task; 579 task_detach(cp); 580 ASSERT(cp->p_pool->pool_ref > 0); 581 atomic_add_32(&cp->p_pool->pool_ref, -1); 582 mutex_exit(&cp->p_lock); 583 584 orphpp = &p->p_orphan; 585 while (*orphpp != cp) 586 orphpp = &(*orphpp)->p_nextorph; 587 *orphpp = cp->p_nextorph; 588 ASSERT(p->p_child == cp); 589 p->p_child = cp->p_sibling; 590 if (p->p_child) { 591 p->p_child->p_psibling = NULL; 592 } 593 pid_exit(cp); 594 mutex_exit(&pidlock); 595 596 task_rele(tk); 597 598 mutex_enter(&p->p_lock); 599 pool_barrier_exit(); 600 continuelwps(p); 601 mutex_exit(&p->p_lock); 602 error = EAGAIN; 603 forkerr: 604 return ((int64_t)set_errno(error)); 605 } 606 607 /* 608 * Free allocated resources from getproc() if a fork failed. 609 */ 610 static void 611 fork_fail(proc_t *cp) 612 { 613 uf_info_t *fip = P_FINFO(cp); 614 615 fcnt_add(fip, -1); 616 sigdelq(cp, NULL, 0); 617 618 mutex_enter(&pidlock); 619 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 620 mutex_exit(&pidlock); 621 622 /* 623 * single threaded, so no locking needed here 624 */ 625 crfree(cp->p_cred); 626 627 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 628 629 VN_RELE(u.u_cdir); 630 if (u.u_rdir) 631 VN_RELE(u.u_rdir); 632 if (cp->p_exec) 633 VN_RELE(cp->p_exec); 634 if (cp->p_execdir) 635 VN_RELE(cp->p_execdir); 636 if (u.u_cwd) 637 refstr_rele(u.u_cwd); 638 } 639 640 /* 641 * Clean up the lwps already created for this child process. 642 * The fork failed while duplicating all the lwps of the parent 643 * and those lwps already created must be freed. 644 * This process is invisible to the rest of the system, 645 * so we don't need to hold p->p_lock to protect the list. 646 */ 647 static void 648 forklwp_fail(proc_t *p) 649 { 650 kthread_t *t; 651 task_t *tk; 652 653 while ((t = p->p_tlist) != NULL) { 654 /* 655 * First remove the lwp from the process's p_tlist. 656 */ 657 if (t != t->t_forw) 658 p->p_tlist = t->t_forw; 659 else 660 p->p_tlist = NULL; 661 p->p_lwpcnt--; 662 t->t_forw->t_back = t->t_back; 663 t->t_back->t_forw = t->t_forw; 664 665 tk = p->p_task; 666 mutex_enter(&p->p_zone->zone_nlwps_lock); 667 tk->tk_nlwps--; 668 tk->tk_proj->kpj_nlwps--; 669 p->p_zone->zone_nlwps--; 670 mutex_exit(&p->p_zone->zone_nlwps_lock); 671 672 ASSERT(t->t_schedctl == NULL); 673 674 if (t->t_door != NULL) { 675 kmem_free(t->t_door, sizeof (door_data_t)); 676 t->t_door = NULL; 677 } 678 lwp_ctmpl_clear(ttolwp(t)); 679 680 /* 681 * Remove the thread from the all threads list. 682 * We need to hold pidlock for this. 683 */ 684 mutex_enter(&pidlock); 685 t->t_next->t_prev = t->t_prev; 686 t->t_prev->t_next = t->t_next; 687 CL_EXIT(t); /* tell the scheduler that we're exiting */ 688 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 689 mutex_exit(&pidlock); 690 691 /* 692 * Let the lgroup load averages know that this thread isn't 693 * going to show up (i.e. un-do what was done on behalf of 694 * this thread by the earlier lgrp_move_thread()). 695 */ 696 kpreempt_disable(); 697 lgrp_move_thread(t, NULL, 1); 698 kpreempt_enable(); 699 700 /* 701 * The thread was created TS_STOPPED. 702 * We change it to TS_FREE to avoid an 703 * ASSERT() panic in thread_free(). 704 */ 705 t->t_state = TS_FREE; 706 thread_rele(t); 707 thread_free(t); 708 } 709 } 710 711 extern struct as kas; 712 713 /* 714 * fork a kernel process. 715 */ 716 int 717 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 718 { 719 proc_t *p; 720 struct user *up; 721 klwp_t *lwp; 722 cont_process_t *ctp = NULL; 723 rctl_entity_p_t e; 724 725 ASSERT(!(cid == syscid && ct != NULL)); 726 if (cid == syscid) { 727 rctl_alloc_gp_t *init_gp; 728 rctl_set_t *init_set; 729 730 if (getproc(&p, 1) < 0) 731 return (EAGAIN); 732 733 p->p_flag |= SNOWAIT; 734 p->p_exec = NULL; 735 p->p_execdir = NULL; 736 737 init_set = rctl_set_create(); 738 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 739 740 /* 741 * kernel processes do not inherit /proc tracing flags. 742 */ 743 sigemptyset(&p->p_sigmask); 744 premptyset(&p->p_fltmask); 745 up = PTOU(p); 746 up->u_systrap = 0; 747 premptyset(&(up->u_entrymask)); 748 premptyset(&(up->u_exitmask)); 749 mutex_enter(&p->p_lock); 750 e.rcep_p.proc = p; 751 e.rcep_t = RCENTITY_PROCESS; 752 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 753 init_gp); 754 mutex_exit(&p->p_lock); 755 756 rctl_prealloc_destroy(init_gp); 757 } else { 758 rctl_alloc_gp_t *init_gp, *default_gp; 759 rctl_set_t *init_set; 760 task_t *tk, *tk_old; 761 762 if (getproc(&p, 0) < 0) 763 return (EAGAIN); 764 /* 765 * init creates a new task, distinct from the task 766 * containing kernel "processes". 767 */ 768 tk = task_create(0, p->p_zone); 769 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 770 tk->tk_proj->kpj_ntasks++; 771 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 772 773 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 774 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 775 init_set = rctl_set_create(); 776 777 mutex_enter(&pidlock); 778 mutex_enter(&p->p_lock); 779 tk_old = p->p_task; /* switch to new task */ 780 781 task_detach(p); 782 task_begin(tk, p); 783 mutex_exit(&pidlock); 784 785 e.rcep_p.proc = p; 786 e.rcep_t = RCENTITY_PROCESS; 787 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 788 init_gp); 789 rctlproc_default_init(p, default_gp); 790 mutex_exit(&p->p_lock); 791 792 task_rele(tk_old); 793 rctl_prealloc_destroy(default_gp); 794 rctl_prealloc_destroy(init_gp); 795 } 796 797 p->p_as = &kas; 798 799 #if defined(__x86) 800 (void) ldt_dup(&p0, p); /* Get the default ldt descr */ 801 #endif 802 803 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 804 &curthread->t_hold, cid, 1)) == NULL) { 805 task_t *tk; 806 fork_fail(p); 807 mutex_enter(&pidlock); 808 mutex_enter(&p->p_lock); 809 tk = p->p_task; 810 task_detach(p); 811 ASSERT(p->p_pool->pool_ref > 0); 812 atomic_add_32(&p->p_pool->pool_ref, -1); 813 mutex_exit(&p->p_lock); 814 pid_exit(p); 815 mutex_exit(&pidlock); 816 task_rele(tk); 817 818 return (EAGAIN); 819 } 820 821 if (cid != syscid) { 822 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 823 B_FALSE); 824 ASSERT(ctp != NULL); 825 if (ct != NULL) 826 *ct = &ctp->conp_contract; 827 } 828 829 p->p_lwpid = 1; 830 mutex_enter(&pidlock); 831 pgjoin(p, curproc->p_pgidp); 832 p->p_stat = SRUN; 833 mutex_enter(&p->p_lock); 834 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 835 lwp_create_done(lwptot(lwp)); 836 mutex_exit(&p->p_lock); 837 mutex_exit(&pidlock); 838 return (0); 839 } 840 841 /* 842 * create a child proc struct. 843 */ 844 static int 845 getproc(proc_t **cpp, int kernel) 846 { 847 proc_t *pp, *cp; 848 pid_t newpid; 849 struct user *uarea; 850 extern uint_t nproc; 851 struct cred *cr; 852 uid_t ruid; 853 zoneid_t zoneid; 854 855 if (!page_mem_avail(tune.t_minarmem)) 856 return (-1); 857 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 858 return (-1); /* no point in starting new processes */ 859 860 pp = curproc; 861 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 862 bzero(cp, sizeof (proc_t)); 863 864 /* 865 * Make proc entry for child process 866 */ 867 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 868 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 869 #if defined(__x86) 870 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 871 #endif 872 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 873 cp->p_stat = SIDL; 874 cp->p_mstart = gethrtime(); 875 876 if ((newpid = pid_assign(cp)) == -1) { 877 if (nproc == v.v_proc) { 878 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 879 cmn_err(CE_WARN, "out of processes"); 880 } 881 goto bad; 882 } 883 884 /* 885 * If not privileged make sure that this user hasn't exceeded 886 * v.v_maxup processes, and that users collectively haven't 887 * exceeded v.v_maxupttl processes. 888 */ 889 mutex_enter(&pidlock); 890 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 891 cr = CRED(); 892 ruid = crgetruid(cr); 893 zoneid = crgetzoneid(cr); 894 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 895 (nproc >= v.v_maxupttl || 896 upcount_get(ruid, zoneid) >= v.v_maxup) && 897 secpolicy_newproc(cr) != 0) { 898 mutex_exit(&pidlock); 899 zcmn_err(zoneid, CE_NOTE, 900 "out of per-user processes for uid %d", ruid); 901 goto bad; 902 } 903 904 /* 905 * Everything is cool, put the new proc on the active process list. 906 * It is already on the pid list and in /proc. 907 * Increment the per uid process count (upcount). 908 */ 909 nproc++; 910 upcount_inc(ruid, zoneid); 911 912 cp->p_next = practive; 913 practive->p_prev = cp; 914 practive = cp; 915 916 cp->p_ignore = pp->p_ignore; 917 cp->p_siginfo = pp->p_siginfo; 918 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 919 cp->p_sessp = pp->p_sessp; 920 SESS_HOLD(pp->p_sessp); 921 cp->p_exec = pp->p_exec; 922 cp->p_execdir = pp->p_execdir; 923 cp->p_zone = pp->p_zone; 924 925 cp->p_bssbase = pp->p_bssbase; 926 cp->p_brkbase = pp->p_brkbase; 927 cp->p_brksize = pp->p_brksize; 928 cp->p_brkpageszc = pp->p_brkpageszc; 929 cp->p_stksize = pp->p_stksize; 930 cp->p_stkpageszc = pp->p_stkpageszc; 931 cp->p_stkprot = pp->p_stkprot; 932 cp->p_datprot = pp->p_datprot; 933 cp->p_usrstack = pp->p_usrstack; 934 cp->p_model = pp->p_model; 935 cp->p_ppid = pp->p_pid; 936 cp->p_ancpid = pp->p_pid; 937 cp->p_portcnt = pp->p_portcnt; 938 939 /* 940 * Initialize watchpoint structures 941 */ 942 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 943 offsetof(struct watched_area, wa_link)); 944 945 /* 946 * Initialize immediate resource control values. 947 */ 948 cp->p_stk_ctl = pp->p_stk_ctl; 949 cp->p_fsz_ctl = pp->p_fsz_ctl; 950 cp->p_vmem_ctl = pp->p_vmem_ctl; 951 cp->p_fno_ctl = pp->p_fno_ctl; 952 953 /* 954 * Link up to parent-child-sibling chain. No need to lock 955 * in general since only a call to freeproc() (done by the 956 * same parent as newproc()) diddles with the child chain. 957 */ 958 cp->p_sibling = pp->p_child; 959 if (pp->p_child) 960 pp->p_child->p_psibling = cp; 961 962 cp->p_parent = pp; 963 pp->p_child = cp; 964 965 cp->p_child_ns = NULL; 966 cp->p_sibling_ns = NULL; 967 968 cp->p_nextorph = pp->p_orphan; 969 cp->p_nextofkin = pp; 970 pp->p_orphan = cp; 971 972 /* 973 * Inherit profiling state; do not inherit REALPROF profiling state. 974 */ 975 cp->p_prof = pp->p_prof; 976 cp->p_rprof_cyclic = CYCLIC_NONE; 977 978 /* 979 * Inherit pool pointer from the parent. Kernel processes are 980 * always bound to the default pool. 981 */ 982 mutex_enter(&pp->p_lock); 983 if (kernel) { 984 cp->p_pool = pool_default; 985 cp->p_flag |= SSYS; 986 } else { 987 cp->p_pool = pp->p_pool; 988 } 989 atomic_add_32(&cp->p_pool->pool_ref, 1); 990 mutex_exit(&pp->p_lock); 991 992 /* 993 * Add the child process to the current task. Kernel processes 994 * are always attached to task0. 995 */ 996 mutex_enter(&cp->p_lock); 997 if (kernel) 998 task_attach(task0p, cp); 999 else 1000 task_attach(pp->p_task, cp); 1001 mutex_exit(&cp->p_lock); 1002 mutex_exit(&pidlock); 1003 1004 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1005 offsetof(contract_t, ct_ctlist)); 1006 1007 /* 1008 * Duplicate any audit information kept in the process table 1009 */ 1010 #ifdef C2_AUDIT 1011 if (audit_active) /* copy audit data to cp */ 1012 audit_newproc(cp); 1013 #endif 1014 1015 crhold(cp->p_cred = cr); 1016 1017 /* 1018 * Bump up the counts on the file structures pointed at by the 1019 * parent's file table since the child will point at them too. 1020 */ 1021 fcnt_add(P_FINFO(pp), 1); 1022 1023 VN_HOLD(u.u_cdir); 1024 if (u.u_rdir) 1025 VN_HOLD(u.u_rdir); 1026 if (u.u_cwd) 1027 refstr_hold(u.u_cwd); 1028 1029 /* 1030 * copy the parent's uarea. 1031 */ 1032 uarea = PTOU(cp); 1033 bcopy(PTOU(pp), uarea, sizeof (user_t)); 1034 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1035 1036 gethrestime(&uarea->u_start); 1037 uarea->u_ticks = lbolt; 1038 uarea->u_mem = rm_asrss(pp->p_as); 1039 uarea->u_acflag = AFORK; 1040 1041 /* 1042 * If inherit-on-fork, copy /proc tracing flags to child. 1043 */ 1044 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1045 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1046 cp->p_sigmask = pp->p_sigmask; 1047 cp->p_fltmask = pp->p_fltmask; 1048 } else { 1049 sigemptyset(&cp->p_sigmask); 1050 premptyset(&cp->p_fltmask); 1051 uarea->u_systrap = 0; 1052 premptyset(&uarea->u_entrymask); 1053 premptyset(&uarea->u_exitmask); 1054 } 1055 /* 1056 * If microstate accounting is being inherited, mark child 1057 */ 1058 if ((pp->p_flag & SMSFORK) != 0) 1059 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1060 1061 /* 1062 * Inherit fixalignment flag from the parent 1063 */ 1064 cp->p_fixalignment = pp->p_fixalignment; 1065 1066 if (cp->p_exec) 1067 VN_HOLD(cp->p_exec); 1068 if (cp->p_execdir) 1069 VN_HOLD(cp->p_execdir); 1070 *cpp = cp; 1071 return (0); 1072 1073 bad: 1074 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1075 1076 mutex_destroy(&cp->p_crlock); 1077 mutex_destroy(&cp->p_pflock); 1078 #if defined(__x86) 1079 mutex_destroy(&cp->p_ldtlock); 1080 #endif 1081 if (newpid != -1) { 1082 proc_entry_free(cp->p_pidp); 1083 (void) pid_rele(cp->p_pidp); 1084 } 1085 kmem_cache_free(process_cache, cp); 1086 1087 /* 1088 * We most likely got into this situation because some process is 1089 * forking out of control. As punishment, put it to sleep for a 1090 * bit so it can't eat the machine alive. Sleep interval is chosen 1091 * to allow no more than one fork failure per cpu per clock tick 1092 * on average (yes, I just made this up). This has two desirable 1093 * properties: (1) it sets a constant limit on the fork failure 1094 * rate, and (2) the busier the system is, the harsher the penalty 1095 * for abusing it becomes. 1096 */ 1097 INCR_COUNT(&fork_fail_pending, &pidlock); 1098 delay(fork_fail_pending / ncpus + 1); 1099 DECR_COUNT(&fork_fail_pending, &pidlock); 1100 1101 return (-1); /* out of memory or proc slots */ 1102 } 1103 1104 /* 1105 * Release virtual memory. 1106 * In the case of vfork(), the child was given exclusive access to its 1107 * parent's address space. The parent is waiting in vfwait() for the 1108 * child to release its exclusive claim via relvm(). 1109 */ 1110 void 1111 relvm() 1112 { 1113 proc_t *p = curproc; 1114 1115 ASSERT((unsigned)p->p_lwpcnt <= 1); 1116 1117 prrelvm(); /* inform /proc */ 1118 1119 if (p->p_flag & SVFORK) { 1120 proc_t *pp = p->p_parent; 1121 /* 1122 * The child process is either exec'ing or exit'ing. 1123 * The child is now separated from the parent's address 1124 * space. The parent process is made dispatchable. 1125 * 1126 * This is a delicate locking maneuver, involving 1127 * both the parent's p_lock and the child's p_lock. 1128 * As soon as the SVFORK flag is turned off, the 1129 * parent is free to run, but it must not run until 1130 * we wake it up using its p_cv because it might 1131 * exit and we would be referencing invalid memory. 1132 * Therefore, we hold the parent with its p_lock 1133 * while protecting our p_flags with our own p_lock. 1134 */ 1135 try_again: 1136 mutex_enter(&p->p_lock); /* grab child's lock first */ 1137 prbarrier(p); /* make sure /proc is blocked out */ 1138 mutex_enter(&pp->p_lock); 1139 1140 /* 1141 * Check if parent is locked by /proc. 1142 */ 1143 if (pp->p_proc_flag & P_PR_LOCK) { 1144 /* 1145 * Delay until /proc is done with the parent. 1146 * We must drop our (the child's) p->p_lock, wait 1147 * via prbarrier() on the parent, then start over. 1148 */ 1149 mutex_exit(&p->p_lock); 1150 prbarrier(pp); 1151 mutex_exit(&pp->p_lock); 1152 goto try_again; 1153 } 1154 p->p_flag &= ~SVFORK; 1155 kpreempt_disable(); 1156 p->p_as = &kas; 1157 1158 /* 1159 * notify hat of change in thread's address space 1160 */ 1161 hat_thread_exit(curthread); 1162 kpreempt_enable(); 1163 1164 /* 1165 * child sizes are copied back to parent because 1166 * child may have grown. 1167 */ 1168 pp->p_brkbase = p->p_brkbase; 1169 pp->p_brksize = p->p_brksize; 1170 pp->p_stksize = p->p_stksize; 1171 /* 1172 * The parent is no longer waiting for the vfork()d child. 1173 * Restore the parent's watched pages, if any. This is 1174 * safe because we know the parent is not locked by /proc 1175 */ 1176 pp->p_flag &= ~SVFWAIT; 1177 if (avl_numnodes(&pp->p_wpage) != 0) { 1178 pp->p_as->a_wpage = pp->p_wpage; 1179 avl_create(&pp->p_wpage, wp_compare, 1180 sizeof (struct watched_page), 1181 offsetof(struct watched_page, wp_link)); 1182 } 1183 cv_signal(&pp->p_cv); 1184 mutex_exit(&pp->p_lock); 1185 mutex_exit(&p->p_lock); 1186 } else { 1187 if (p->p_as != &kas) { 1188 struct as *as; 1189 1190 if (p->p_segacct) 1191 shmexit(p); 1192 /* 1193 * We grab p_lock for the benefit of /proc 1194 */ 1195 kpreempt_disable(); 1196 mutex_enter(&p->p_lock); 1197 prbarrier(p); /* make sure /proc is blocked out */ 1198 as = p->p_as; 1199 p->p_as = &kas; 1200 mutex_exit(&p->p_lock); 1201 1202 /* 1203 * notify hat of change in thread's address space 1204 */ 1205 hat_thread_exit(curthread); 1206 kpreempt_enable(); 1207 1208 as_free(as); 1209 } 1210 } 1211 } 1212 1213 /* 1214 * Wait for child to exec or exit. 1215 * Called by parent of vfork'ed process. 1216 * See important comments in relvm(), above. 1217 */ 1218 void 1219 vfwait(pid_t pid) 1220 { 1221 int signalled = 0; 1222 proc_t *pp = ttoproc(curthread); 1223 proc_t *cp; 1224 1225 /* 1226 * Wait for child to exec or exit. 1227 */ 1228 for (;;) { 1229 mutex_enter(&pidlock); 1230 cp = prfind(pid); 1231 if (cp == NULL || cp->p_parent != pp) { 1232 /* 1233 * Child has exit()ed. 1234 */ 1235 mutex_exit(&pidlock); 1236 break; 1237 } 1238 /* 1239 * Grab the child's p_lock before releasing pidlock. 1240 * Otherwise, the child could exit and we would be 1241 * referencing invalid memory. 1242 */ 1243 mutex_enter(&cp->p_lock); 1244 mutex_exit(&pidlock); 1245 if (!(cp->p_flag & SVFORK)) { 1246 /* 1247 * Child has exec()ed or is exit()ing. 1248 */ 1249 mutex_exit(&cp->p_lock); 1250 break; 1251 } 1252 mutex_enter(&pp->p_lock); 1253 mutex_exit(&cp->p_lock); 1254 /* 1255 * We might be waked up spuriously from the cv_wait(). 1256 * We have to do the whole operation over again to be 1257 * sure the child's SVFORK flag really is turned off. 1258 * We cannot make reference to the child because it can 1259 * exit before we return and we would be referencing 1260 * invalid memory. 1261 * 1262 * Because this is potentially a very long-term wait, 1263 * we call cv_wait_sig() (for its jobcontrol and /proc 1264 * side-effects) unless there is a current signal, in 1265 * which case we use cv_wait() because we cannot return 1266 * from this function until the child has released the 1267 * address space. Calling cv_wait_sig() with a current 1268 * signal would lead to an indefinite loop here because 1269 * cv_wait_sig() returns immediately in this case. 1270 */ 1271 if (signalled) 1272 cv_wait(&pp->p_cv, &pp->p_lock); 1273 else 1274 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1275 mutex_exit(&pp->p_lock); 1276 } 1277 1278 /* restore watchpoints to parent */ 1279 if (pr_watch_active(pp)) { 1280 struct as *as = pp->p_as; 1281 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1282 as_setwatch(as); 1283 AS_LOCK_EXIT(as, &as->a_lock); 1284 } 1285 1286 mutex_enter(&pp->p_lock); 1287 prbarrier(pp); /* barrier against /proc locking */ 1288 continuelwps(pp); 1289 mutex_exit(&pp->p_lock); 1290 } 1291