1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * forkall system call. 97 */ 98 int64_t 99 forkall(void) 100 { 101 return (cfork(0, 0, 0)); 102 } 103 104 /* 105 * The parent is stopped until the child invokes relvm(). 106 */ 107 int64_t 108 vfork(void) 109 { 110 curthread->t_post_sys = 1; /* so vfwait() will be called */ 111 return (cfork(1, 1, 0)); 112 } 113 114 /* 115 * fork system call, aka fork1. 116 */ 117 int64_t 118 fork1(void) 119 { 120 return (cfork(0, 1, 0)); 121 } 122 123 /* 124 * The forkall(), vfork(), and fork1() system calls are no longer 125 * invoked by libc. They are retained only for the benefit of 126 * old statically-linked applications. They should be eliminated 127 * when we no longer care about such old and broken applications. 128 */ 129 130 /* 131 * forksys system call - forkx, forkallx, vforkx. 132 * This is the interface now invoked by libc. 133 */ 134 int64_t 135 forksys(int subcode, int flags) 136 { 137 switch (subcode) { 138 case 0: 139 return (cfork(0, 1, flags)); /* forkx(flags) */ 140 case 1: 141 return (cfork(0, 0, flags)); /* forkallx(flags) */ 142 case 2: 143 curthread->t_post_sys = 1; /* so vfwait() will be called */ 144 return (cfork(1, 1, flags)); /* vforkx(flags) */ 145 default: 146 return ((int64_t)set_errno(EINVAL)); 147 } 148 } 149 150 /* ARGSUSED */ 151 static int64_t 152 cfork(int isvfork, int isfork1, int flags) 153 { 154 proc_t *p = ttoproc(curthread); 155 struct as *as; 156 proc_t *cp, **orphpp; 157 klwp_t *clone; 158 kthread_t *t; 159 task_t *tk; 160 rval_t r; 161 int error; 162 int i; 163 rctl_set_t *dup_set; 164 rctl_alloc_gp_t *dup_gp; 165 rctl_entity_p_t e; 166 lwpdir_t *ldp; 167 lwpent_t *lep; 168 lwpent_t *clep; 169 170 /* 171 * Allow only these two flags. 172 */ 173 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 174 error = EINVAL; 175 goto forkerr; 176 } 177 178 /* 179 * fork is not supported for the /proc agent lwp. 180 */ 181 if (curthread == p->p_agenttp) { 182 error = ENOTSUP; 183 goto forkerr; 184 } 185 186 if ((error = secpolicy_basic_fork(CRED())) != 0) 187 goto forkerr; 188 189 /* 190 * If the calling lwp is doing a fork1() then the 191 * other lwps in this process are not duplicated and 192 * don't need to be held where their kernel stacks can be 193 * cloned. If doing forkall(), the process is held with 194 * SHOLDFORK, so that the lwps are at a point where their 195 * stacks can be copied which is on entry or exit from 196 * the kernel. 197 */ 198 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 199 aston(curthread); 200 error = EINTR; 201 goto forkerr; 202 } 203 204 #if defined(__sparc) 205 /* 206 * Ensure that the user stack is fully constructed 207 * before creating the child process structure. 208 */ 209 (void) flush_user_windows_to_stack(NULL); 210 #endif 211 212 mutex_enter(&p->p_lock); 213 /* 214 * If this is vfork(), cancel any suspend request we might 215 * have gotten from some other thread via lwp_suspend(). 216 * Otherwise we could end up with a deadlock on return 217 * from the vfork() in both the parent and the child. 218 */ 219 if (isvfork) 220 curthread->t_proc_flag &= ~TP_HOLDLWP; 221 /* 222 * Prevent our resource set associations from being changed during fork. 223 */ 224 pool_barrier_enter(); 225 mutex_exit(&p->p_lock); 226 227 /* 228 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 229 */ 230 if (getproc(&cp, 0, GETPROC_USER) < 0) { 231 mutex_enter(&p->p_lock); 232 pool_barrier_exit(); 233 continuelwps(p); 234 mutex_exit(&p->p_lock); 235 error = EAGAIN; 236 goto forkerr; 237 } 238 239 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 240 241 /* 242 * Assign an address space to child 243 */ 244 if (isvfork) { 245 /* 246 * Clear any watched areas and remember the 247 * watched pages for restoring in vfwait(). 248 */ 249 as = p->p_as; 250 if (avl_numnodes(&as->a_wpage) != 0) { 251 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 252 as_clearwatch(as); 253 p->p_wpage = as->a_wpage; 254 avl_create(&as->a_wpage, wp_compare, 255 sizeof (struct watched_page), 256 offsetof(struct watched_page, wp_link)); 257 AS_LOCK_EXIT(as, &as->a_lock); 258 } 259 cp->p_as = as; 260 cp->p_flag |= SVFORK; 261 262 /* 263 * Use the parent's shm segment list information for 264 * the child as it uses its address space till it execs. 265 */ 266 cp->p_segacct = p->p_segacct; 267 } else { 268 /* 269 * We need to hold P_PR_LOCK until the address space has 270 * been duplicated and we've had a chance to remove from the 271 * child any DTrace probes that were in the parent. Holding 272 * P_PR_LOCK prevents any new probes from being added and any 273 * extant probes from being removed. 274 */ 275 mutex_enter(&p->p_lock); 276 sprlock_proc(p); 277 p->p_flag |= SFORKING; 278 mutex_exit(&p->p_lock); 279 280 error = as_dup(p->p_as, cp); 281 if (error != 0) { 282 mutex_enter(&p->p_lock); 283 sprunlock(p); 284 fork_fail(cp); 285 mutex_enter(&pidlock); 286 orphpp = &p->p_orphan; 287 while (*orphpp != cp) 288 orphpp = &(*orphpp)->p_nextorph; 289 *orphpp = cp->p_nextorph; 290 if (p->p_child == cp) 291 p->p_child = cp->p_sibling; 292 if (cp->p_sibling) 293 cp->p_sibling->p_psibling = cp->p_psibling; 294 if (cp->p_psibling) 295 cp->p_psibling->p_sibling = cp->p_sibling; 296 mutex_enter(&cp->p_lock); 297 tk = cp->p_task; 298 task_detach(cp); 299 ASSERT(cp->p_pool->pool_ref > 0); 300 atomic_add_32(&cp->p_pool->pool_ref, -1); 301 mutex_exit(&cp->p_lock); 302 pid_exit(cp); 303 mutex_exit(&pidlock); 304 task_rele(tk); 305 306 mutex_enter(&p->p_lock); 307 p->p_flag &= ~SFORKING; 308 pool_barrier_exit(); 309 continuelwps(p); 310 mutex_exit(&p->p_lock); 311 /* 312 * Preserve ENOMEM error condition but 313 * map all others to EAGAIN. 314 */ 315 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 316 goto forkerr; 317 } 318 319 /* 320 * Remove all DTrace tracepoints from the child process. We 321 * need to do this _before_ duplicating USDT providers since 322 * any associated probes may be immediately enabled. 323 */ 324 if (p->p_dtrace_count > 0) 325 dtrace_fasttrap_fork(p, cp); 326 327 mutex_enter(&p->p_lock); 328 sprunlock(p); 329 330 /* Duplicate parent's shared memory */ 331 if (p->p_segacct) 332 shmfork(p, cp); 333 334 /* 335 * Duplicate any helper actions and providers. The SFORKING 336 * we set above informs the code to enable USDT probes that 337 * sprlock() may fail because the child is being forked. 338 */ 339 if (p->p_dtrace_helpers != NULL) { 340 ASSERT(dtrace_helpers_fork != NULL); 341 (*dtrace_helpers_fork)(p, cp); 342 } 343 344 mutex_enter(&p->p_lock); 345 p->p_flag &= ~SFORKING; 346 mutex_exit(&p->p_lock); 347 } 348 349 /* 350 * Duplicate parent's resource controls. 351 */ 352 dup_set = rctl_set_create(); 353 for (;;) { 354 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 355 mutex_enter(&p->p_rctls->rcs_lock); 356 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 357 break; 358 mutex_exit(&p->p_rctls->rcs_lock); 359 rctl_prealloc_destroy(dup_gp); 360 } 361 e.rcep_p.proc = cp; 362 e.rcep_t = RCENTITY_PROCESS; 363 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 364 RCD_DUP | RCD_CALLBACK); 365 mutex_exit(&p->p_rctls->rcs_lock); 366 367 rctl_prealloc_destroy(dup_gp); 368 369 /* 370 * Allocate the child's lwp directory and lwpid hash table. 371 */ 372 if (isfork1) 373 cp->p_lwpdir_sz = 2; 374 else 375 cp->p_lwpdir_sz = p->p_lwpdir_sz; 376 cp->p_lwpdir = cp->p_lwpfree = ldp = 377 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 378 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 379 ldp->ld_next = ldp + 1; 380 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 381 cp->p_tidhash = 382 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 383 384 /* 385 * Duplicate parent's lwps. 386 * Mutual exclusion is not needed because the process is 387 * in the hold state and only the current lwp is running. 388 */ 389 klgrpset_clear(cp->p_lgrpset); 390 if (isfork1) { 391 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 392 if (clone == NULL) 393 goto forklwperr; 394 /* 395 * Inherit only the lwp_wait()able flag, 396 * Daemon threads should not call fork1(), but oh well... 397 */ 398 lwptot(clone)->t_proc_flag |= 399 (curthread->t_proc_flag & TP_TWAIT); 400 } else { 401 /* this is forkall(), no one can be in lwp_wait() */ 402 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 403 /* for each entry in the parent's lwp directory... */ 404 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 405 klwp_t *clwp; 406 kthread_t *ct; 407 408 if ((lep = ldp->ld_entry) == NULL) 409 continue; 410 411 if ((t = lep->le_thread) != NULL) { 412 clwp = forklwp(ttolwp(t), cp, t->t_tid); 413 if (clwp == NULL) 414 goto forklwperr; 415 ct = lwptot(clwp); 416 /* 417 * Inherit lwp_wait()able and daemon flags. 418 */ 419 ct->t_proc_flag |= 420 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 421 /* 422 * Keep track of the clone of curthread to 423 * post return values through lwp_setrval(). 424 * Mark other threads for special treatment 425 * by lwp_rtt() / post_syscall(). 426 */ 427 if (t == curthread) 428 clone = clwp; 429 else 430 ct->t_flag |= T_FORKALL; 431 } else { 432 /* 433 * Replicate zombie lwps in the child. 434 */ 435 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 436 clep->le_lwpid = lep->le_lwpid; 437 clep->le_start = lep->le_start; 438 lwp_hash_in(cp, clep, 439 cp->p_tidhash, cp->p_tidhash_sz, 0); 440 } 441 } 442 } 443 444 /* 445 * Put new process in the parent's process contract, or put it 446 * in a new one if there is an active process template. Send a 447 * fork event (if requested) to whatever contract the child is 448 * a member of. Fails if the parent has been SIGKILLed. 449 */ 450 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 451 goto forklwperr; 452 453 /* 454 * No fork failures occur beyond this point. 455 */ 456 457 cp->p_lwpid = p->p_lwpid; 458 if (!isfork1) { 459 cp->p_lwpdaemon = p->p_lwpdaemon; 460 cp->p_zombcnt = p->p_zombcnt; 461 /* 462 * If the parent's lwp ids have wrapped around, so have the 463 * child's. 464 */ 465 cp->p_flag |= p->p_flag & SLWPWRAP; 466 } 467 468 mutex_enter(&p->p_lock); 469 corectl_path_hold(cp->p_corefile = p->p_corefile); 470 corectl_content_hold(cp->p_content = p->p_content); 471 mutex_exit(&p->p_lock); 472 473 /* 474 * Duplicate process context ops, if any. 475 */ 476 if (p->p_pctx) 477 forkpctx(p, cp); 478 479 #ifdef __sparc 480 utrap_dup(p, cp); 481 #endif 482 /* 483 * If the child process has been marked to stop on exit 484 * from this fork, arrange for all other lwps to stop in 485 * sympathy with the active lwp. 486 */ 487 if (PTOU(cp)->u_systrap && 488 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 489 mutex_enter(&cp->p_lock); 490 t = cp->p_tlist; 491 do { 492 t->t_proc_flag |= TP_PRSTOP; 493 aston(t); /* so TP_PRSTOP will be seen */ 494 } while ((t = t->t_forw) != cp->p_tlist); 495 mutex_exit(&cp->p_lock); 496 } 497 /* 498 * If the parent process has been marked to stop on exit 499 * from this fork, and its asynchronous-stop flag has not 500 * been set, arrange for all other lwps to stop before 501 * they return back to user level. 502 */ 503 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 504 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 505 mutex_enter(&p->p_lock); 506 t = p->p_tlist; 507 do { 508 t->t_proc_flag |= TP_PRSTOP; 509 aston(t); /* so TP_PRSTOP will be seen */ 510 } while ((t = t->t_forw) != p->p_tlist); 511 mutex_exit(&p->p_lock); 512 } 513 514 if (PROC_IS_BRANDED(p)) 515 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 516 else 517 lwp_setrval(clone, p->p_pid, 1); 518 519 /* set return values for parent */ 520 r.r_val1 = (int)cp->p_pid; 521 r.r_val2 = 0; 522 523 /* 524 * pool_barrier_exit() can now be called because the child process has: 525 * - all identifying features cloned or set (p_pid, p_task, p_pool) 526 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 527 * - any other fields set which are used in resource set binding. 528 */ 529 mutex_enter(&p->p_lock); 530 pool_barrier_exit(); 531 mutex_exit(&p->p_lock); 532 533 mutex_enter(&pidlock); 534 mutex_enter(&cp->p_lock); 535 536 /* 537 * Set flags telling the child what (not) to do on exit. 538 */ 539 if (flags & FORK_NOSIGCHLD) 540 cp->p_pidflag |= CLDNOSIGCHLD; 541 if (flags & FORK_WAITPID) 542 cp->p_pidflag |= CLDWAITPID; 543 544 /* 545 * Now that there are lwps and threads attached, add the new 546 * process to the process group. 547 */ 548 pgjoin(cp, p->p_pgidp); 549 cp->p_stat = SRUN; 550 /* 551 * We are now done with all the lwps in the child process. 552 */ 553 t = cp->p_tlist; 554 do { 555 /* 556 * Set the lwp_suspend()ed lwps running. 557 * They will suspend properly at syscall exit. 558 */ 559 if (t->t_proc_flag & TP_HOLDLWP) 560 lwp_create_done(t); 561 else { 562 /* set TS_CREATE to allow continuelwps() to work */ 563 thread_lock(t); 564 ASSERT(t->t_state == TS_STOPPED && 565 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 566 t->t_schedflag |= TS_CREATE; 567 thread_unlock(t); 568 } 569 } while ((t = t->t_forw) != cp->p_tlist); 570 mutex_exit(&cp->p_lock); 571 572 if (isvfork) { 573 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 574 mutex_enter(&p->p_lock); 575 p->p_flag |= SVFWAIT; 576 curthread->t_flag |= T_VFPARENT; 577 DTRACE_PROC1(create, proc_t *, cp); 578 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 579 mutex_exit(&p->p_lock); 580 /* 581 * Grab child's p_lock before dropping pidlock to ensure 582 * the process will not disappear before we set it running. 583 */ 584 mutex_enter(&cp->p_lock); 585 mutex_exit(&pidlock); 586 sigdefault(cp); 587 continuelwps(cp); 588 mutex_exit(&cp->p_lock); 589 } else { 590 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 591 DTRACE_PROC1(create, proc_t *, cp); 592 /* 593 * It is CL_FORKRET's job to drop pidlock. 594 * If we do it here, the process could be set running 595 * and disappear before CL_FORKRET() is called. 596 */ 597 CL_FORKRET(curthread, cp->p_tlist); 598 schedctl_set_cidpri(curthread); 599 ASSERT(MUTEX_NOT_HELD(&pidlock)); 600 } 601 602 return (r.r_vals); 603 604 forklwperr: 605 if (isvfork) { 606 if (avl_numnodes(&p->p_wpage) != 0) { 607 /* restore watchpoints to parent */ 608 as = p->p_as; 609 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 610 as->a_wpage = p->p_wpage; 611 avl_create(&p->p_wpage, wp_compare, 612 sizeof (struct watched_page), 613 offsetof(struct watched_page, wp_link)); 614 as_setwatch(as); 615 AS_LOCK_EXIT(as, &as->a_lock); 616 } 617 } else { 618 if (cp->p_segacct) 619 shmexit(cp); 620 as = cp->p_as; 621 cp->p_as = &kas; 622 as_free(as); 623 } 624 625 if (cp->p_lwpdir) { 626 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 627 if ((lep = ldp->ld_entry) != NULL) 628 kmem_free(lep, sizeof (*lep)); 629 kmem_free(cp->p_lwpdir, 630 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 631 } 632 cp->p_lwpdir = NULL; 633 cp->p_lwpfree = NULL; 634 cp->p_lwpdir_sz = 0; 635 636 if (cp->p_tidhash) 637 kmem_free(cp->p_tidhash, 638 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 639 cp->p_tidhash = NULL; 640 cp->p_tidhash_sz = 0; 641 642 forklwp_fail(cp); 643 fork_fail(cp); 644 rctl_set_free(cp->p_rctls); 645 mutex_enter(&pidlock); 646 647 /* 648 * Detach failed child from task. 649 */ 650 mutex_enter(&cp->p_lock); 651 tk = cp->p_task; 652 task_detach(cp); 653 ASSERT(cp->p_pool->pool_ref > 0); 654 atomic_add_32(&cp->p_pool->pool_ref, -1); 655 mutex_exit(&cp->p_lock); 656 657 orphpp = &p->p_orphan; 658 while (*orphpp != cp) 659 orphpp = &(*orphpp)->p_nextorph; 660 *orphpp = cp->p_nextorph; 661 if (p->p_child == cp) 662 p->p_child = cp->p_sibling; 663 if (cp->p_sibling) 664 cp->p_sibling->p_psibling = cp->p_psibling; 665 if (cp->p_psibling) 666 cp->p_psibling->p_sibling = cp->p_sibling; 667 pid_exit(cp); 668 mutex_exit(&pidlock); 669 670 task_rele(tk); 671 672 mutex_enter(&p->p_lock); 673 pool_barrier_exit(); 674 continuelwps(p); 675 mutex_exit(&p->p_lock); 676 error = EAGAIN; 677 forkerr: 678 return ((int64_t)set_errno(error)); 679 } 680 681 /* 682 * Free allocated resources from getproc() if a fork failed. 683 */ 684 static void 685 fork_fail(proc_t *cp) 686 { 687 uf_info_t *fip = P_FINFO(cp); 688 689 fcnt_add(fip, -1); 690 sigdelq(cp, NULL, 0); 691 692 mutex_enter(&pidlock); 693 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 694 mutex_exit(&pidlock); 695 696 /* 697 * single threaded, so no locking needed here 698 */ 699 crfree(cp->p_cred); 700 701 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 702 703 VN_RELE(PTOU(curproc)->u_cdir); 704 if (PTOU(curproc)->u_rdir) 705 VN_RELE(PTOU(curproc)->u_rdir); 706 if (cp->p_exec) 707 VN_RELE(cp->p_exec); 708 if (cp->p_execdir) 709 VN_RELE(cp->p_execdir); 710 if (PTOU(curproc)->u_cwd) 711 refstr_rele(PTOU(curproc)->u_cwd); 712 } 713 714 /* 715 * Clean up the lwps already created for this child process. 716 * The fork failed while duplicating all the lwps of the parent 717 * and those lwps already created must be freed. 718 * This process is invisible to the rest of the system, 719 * so we don't need to hold p->p_lock to protect the list. 720 */ 721 static void 722 forklwp_fail(proc_t *p) 723 { 724 kthread_t *t; 725 task_t *tk; 726 727 while ((t = p->p_tlist) != NULL) { 728 /* 729 * First remove the lwp from the process's p_tlist. 730 */ 731 if (t != t->t_forw) 732 p->p_tlist = t->t_forw; 733 else 734 p->p_tlist = NULL; 735 p->p_lwpcnt--; 736 t->t_forw->t_back = t->t_back; 737 t->t_back->t_forw = t->t_forw; 738 739 tk = p->p_task; 740 mutex_enter(&p->p_zone->zone_nlwps_lock); 741 tk->tk_nlwps--; 742 tk->tk_proj->kpj_nlwps--; 743 p->p_zone->zone_nlwps--; 744 mutex_exit(&p->p_zone->zone_nlwps_lock); 745 746 ASSERT(t->t_schedctl == NULL); 747 748 if (t->t_door != NULL) { 749 kmem_free(t->t_door, sizeof (door_data_t)); 750 t->t_door = NULL; 751 } 752 lwp_ctmpl_clear(ttolwp(t)); 753 754 /* 755 * Remove the thread from the all threads list. 756 * We need to hold pidlock for this. 757 */ 758 mutex_enter(&pidlock); 759 t->t_next->t_prev = t->t_prev; 760 t->t_prev->t_next = t->t_next; 761 CL_EXIT(t); /* tell the scheduler that we're exiting */ 762 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 763 mutex_exit(&pidlock); 764 765 /* 766 * Let the lgroup load averages know that this thread isn't 767 * going to show up (i.e. un-do what was done on behalf of 768 * this thread by the earlier lgrp_move_thread()). 769 */ 770 kpreempt_disable(); 771 lgrp_move_thread(t, NULL, 1); 772 kpreempt_enable(); 773 774 /* 775 * The thread was created TS_STOPPED. 776 * We change it to TS_FREE to avoid an 777 * ASSERT() panic in thread_free(). 778 */ 779 t->t_state = TS_FREE; 780 thread_rele(t); 781 thread_free(t); 782 } 783 } 784 785 extern struct as kas; 786 787 /* 788 * fork a kernel process. 789 */ 790 int 791 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 792 pid_t pid) 793 { 794 proc_t *p; 795 struct user *up; 796 kthread_t *t; 797 cont_process_t *ctp = NULL; 798 rctl_entity_p_t e; 799 800 ASSERT(cid != sysdccid); 801 ASSERT(cid != syscid || ct == NULL); 802 if (CLASS_KERNEL(cid)) { 803 rctl_alloc_gp_t *init_gp; 804 rctl_set_t *init_set; 805 806 ASSERT(pid != 1); 807 808 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 809 return (EAGAIN); 810 811 /* 812 * Release the hold on the p_exec and p_execdir, these 813 * were acquired in getproc() 814 */ 815 if (p->p_execdir != NULL) 816 VN_RELE(p->p_execdir); 817 if (p->p_exec != NULL) 818 VN_RELE(p->p_exec); 819 p->p_flag |= SNOWAIT; 820 p->p_exec = NULL; 821 p->p_execdir = NULL; 822 823 init_set = rctl_set_create(); 824 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 825 826 /* 827 * kernel processes do not inherit /proc tracing flags. 828 */ 829 sigemptyset(&p->p_sigmask); 830 premptyset(&p->p_fltmask); 831 up = PTOU(p); 832 up->u_systrap = 0; 833 premptyset(&(up->u_entrymask)); 834 premptyset(&(up->u_exitmask)); 835 mutex_enter(&p->p_lock); 836 e.rcep_p.proc = p; 837 e.rcep_t = RCENTITY_PROCESS; 838 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 839 init_gp); 840 mutex_exit(&p->p_lock); 841 842 rctl_prealloc_destroy(init_gp); 843 844 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 845 } else { 846 rctl_alloc_gp_t *init_gp, *default_gp; 847 rctl_set_t *init_set; 848 task_t *tk, *tk_old; 849 klwp_t *lwp; 850 851 if (getproc(&p, pid, GETPROC_USER) < 0) 852 return (EAGAIN); 853 /* 854 * init creates a new task, distinct from the task 855 * containing kernel "processes". 856 */ 857 tk = task_create(0, p->p_zone); 858 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 859 tk->tk_proj->kpj_ntasks++; 860 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 861 862 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 863 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 864 init_set = rctl_set_create(); 865 866 mutex_enter(&pidlock); 867 mutex_enter(&p->p_lock); 868 tk_old = p->p_task; /* switch to new task */ 869 870 task_detach(p); 871 task_begin(tk, p); 872 mutex_exit(&pidlock); 873 874 e.rcep_p.proc = p; 875 e.rcep_t = RCENTITY_PROCESS; 876 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 877 init_gp); 878 rctlproc_default_init(p, default_gp); 879 mutex_exit(&p->p_lock); 880 881 task_rele(tk_old); 882 rctl_prealloc_destroy(default_gp); 883 rctl_prealloc_destroy(init_gp); 884 885 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 886 &curthread->t_hold, cid, 1)) == NULL) { 887 task_t *tk; 888 fork_fail(p); 889 mutex_enter(&pidlock); 890 mutex_enter(&p->p_lock); 891 tk = p->p_task; 892 task_detach(p); 893 ASSERT(p->p_pool->pool_ref > 0); 894 atomic_add_32(&p->p_pool->pool_ref, -1); 895 mutex_exit(&p->p_lock); 896 pid_exit(p); 897 mutex_exit(&pidlock); 898 task_rele(tk); 899 900 return (EAGAIN); 901 } 902 t = lwptot(lwp); 903 904 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 905 B_FALSE); 906 ASSERT(ctp != NULL); 907 if (ct != NULL) 908 *ct = &ctp->conp_contract; 909 } 910 911 ASSERT3U(t->t_tid, ==, 1); 912 p->p_lwpid = 1; 913 mutex_enter(&pidlock); 914 pgjoin(p, p->p_parent->p_pgidp); 915 p->p_stat = SRUN; 916 mutex_enter(&p->p_lock); 917 t->t_proc_flag &= ~TP_HOLDLWP; 918 lwp_create_done(t); 919 mutex_exit(&p->p_lock); 920 mutex_exit(&pidlock); 921 return (0); 922 } 923 924 /* 925 * create a child proc struct. 926 */ 927 static int 928 getproc(proc_t **cpp, pid_t pid, uint_t flags) 929 { 930 proc_t *pp, *cp; 931 pid_t newpid; 932 struct user *uarea; 933 extern uint_t nproc; 934 struct cred *cr; 935 uid_t ruid; 936 zoneid_t zoneid; 937 938 if (!page_mem_avail(tune.t_minarmem)) 939 return (-1); 940 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 941 return (-1); /* no point in starting new processes */ 942 943 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 944 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 945 bzero(cp, sizeof (proc_t)); 946 947 /* 948 * Make proc entry for child process 949 */ 950 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 951 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 952 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 953 #if defined(__x86) 954 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 955 #endif 956 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 957 cp->p_stat = SIDL; 958 cp->p_mstart = gethrtime(); 959 cp->p_as = &kas; 960 /* 961 * p_zone must be set before we call pid_allocate since the process 962 * will be visible after that and code such as prfind_zone will 963 * look at the p_zone field. 964 */ 965 cp->p_zone = pp->p_zone; 966 cp->p_t1_lgrpid = LGRP_NONE; 967 cp->p_tr_lgrpid = LGRP_NONE; 968 969 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 970 if (nproc == v.v_proc) { 971 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 972 cmn_err(CE_WARN, "out of processes"); 973 } 974 goto bad; 975 } 976 977 /* 978 * If not privileged make sure that this user hasn't exceeded 979 * v.v_maxup processes, and that users collectively haven't 980 * exceeded v.v_maxupttl processes. 981 */ 982 mutex_enter(&pidlock); 983 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 984 cr = CRED(); 985 ruid = crgetruid(cr); 986 zoneid = crgetzoneid(cr); 987 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 988 (nproc >= v.v_maxupttl || 989 upcount_get(ruid, zoneid) >= v.v_maxup) && 990 secpolicy_newproc(cr) != 0) { 991 mutex_exit(&pidlock); 992 zcmn_err(zoneid, CE_NOTE, 993 "out of per-user processes for uid %d", ruid); 994 goto bad; 995 } 996 997 /* 998 * Everything is cool, put the new proc on the active process list. 999 * It is already on the pid list and in /proc. 1000 * Increment the per uid process count (upcount). 1001 */ 1002 nproc++; 1003 upcount_inc(ruid, zoneid); 1004 1005 cp->p_next = practive; 1006 practive->p_prev = cp; 1007 practive = cp; 1008 1009 cp->p_ignore = pp->p_ignore; 1010 cp->p_siginfo = pp->p_siginfo; 1011 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1012 cp->p_sessp = pp->p_sessp; 1013 sess_hold(pp); 1014 cp->p_exec = pp->p_exec; 1015 cp->p_execdir = pp->p_execdir; 1016 cp->p_brand = pp->p_brand; 1017 if (PROC_IS_BRANDED(pp)) 1018 BROP(pp)->b_copy_procdata(cp, pp); 1019 1020 cp->p_bssbase = pp->p_bssbase; 1021 cp->p_brkbase = pp->p_brkbase; 1022 cp->p_brksize = pp->p_brksize; 1023 cp->p_brkpageszc = pp->p_brkpageszc; 1024 cp->p_stksize = pp->p_stksize; 1025 cp->p_stkpageszc = pp->p_stkpageszc; 1026 cp->p_stkprot = pp->p_stkprot; 1027 cp->p_datprot = pp->p_datprot; 1028 cp->p_usrstack = pp->p_usrstack; 1029 cp->p_model = pp->p_model; 1030 cp->p_ppid = pp->p_pid; 1031 cp->p_ancpid = pp->p_pid; 1032 cp->p_portcnt = pp->p_portcnt; 1033 1034 /* 1035 * Initialize watchpoint structures 1036 */ 1037 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1038 offsetof(struct watched_area, wa_link)); 1039 1040 /* 1041 * Initialize immediate resource control values. 1042 */ 1043 cp->p_stk_ctl = pp->p_stk_ctl; 1044 cp->p_fsz_ctl = pp->p_fsz_ctl; 1045 cp->p_vmem_ctl = pp->p_vmem_ctl; 1046 cp->p_fno_ctl = pp->p_fno_ctl; 1047 1048 /* 1049 * Link up to parent-child-sibling chain. No need to lock 1050 * in general since only a call to freeproc() (done by the 1051 * same parent as newproc()) diddles with the child chain. 1052 */ 1053 cp->p_sibling = pp->p_child; 1054 if (pp->p_child) 1055 pp->p_child->p_psibling = cp; 1056 1057 cp->p_parent = pp; 1058 pp->p_child = cp; 1059 1060 cp->p_child_ns = NULL; 1061 cp->p_sibling_ns = NULL; 1062 1063 cp->p_nextorph = pp->p_orphan; 1064 cp->p_nextofkin = pp; 1065 pp->p_orphan = cp; 1066 1067 /* 1068 * Inherit profiling state; do not inherit REALPROF profiling state. 1069 */ 1070 cp->p_prof = pp->p_prof; 1071 cp->p_rprof_cyclic = CYCLIC_NONE; 1072 1073 /* 1074 * Inherit pool pointer from the parent. Kernel processes are 1075 * always bound to the default pool. 1076 */ 1077 mutex_enter(&pp->p_lock); 1078 if (flags & GETPROC_KERNEL) { 1079 cp->p_pool = pool_default; 1080 cp->p_flag |= SSYS; 1081 } else { 1082 cp->p_pool = pp->p_pool; 1083 } 1084 atomic_add_32(&cp->p_pool->pool_ref, 1); 1085 mutex_exit(&pp->p_lock); 1086 1087 /* 1088 * Add the child process to the current task. Kernel processes 1089 * are always attached to task0. 1090 */ 1091 mutex_enter(&cp->p_lock); 1092 if (flags & GETPROC_KERNEL) 1093 task_attach(task0p, cp); 1094 else 1095 task_attach(pp->p_task, cp); 1096 mutex_exit(&cp->p_lock); 1097 mutex_exit(&pidlock); 1098 1099 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1100 offsetof(contract_t, ct_ctlist)); 1101 1102 /* 1103 * Duplicate any audit information kept in the process table 1104 */ 1105 if (audit_active) /* copy audit data to cp */ 1106 audit_newproc(cp); 1107 1108 crhold(cp->p_cred = cr); 1109 1110 /* 1111 * Bump up the counts on the file structures pointed at by the 1112 * parent's file table since the child will point at them too. 1113 */ 1114 fcnt_add(P_FINFO(pp), 1); 1115 1116 if (PTOU(pp)->u_cdir) { 1117 VN_HOLD(PTOU(pp)->u_cdir); 1118 } else { 1119 ASSERT(pp == &p0); 1120 /* 1121 * We must be at or before vfs_mountroot(); it will take care of 1122 * assigning our current directory. 1123 */ 1124 } 1125 if (PTOU(pp)->u_rdir) 1126 VN_HOLD(PTOU(pp)->u_rdir); 1127 if (PTOU(pp)->u_cwd) 1128 refstr_hold(PTOU(pp)->u_cwd); 1129 1130 /* 1131 * copy the parent's uarea. 1132 */ 1133 uarea = PTOU(cp); 1134 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1135 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1136 1137 gethrestime(&uarea->u_start); 1138 uarea->u_ticks = ddi_get_lbolt(); 1139 uarea->u_mem = rm_asrss(pp->p_as); 1140 uarea->u_acflag = AFORK; 1141 1142 /* 1143 * If inherit-on-fork, copy /proc tracing flags to child. 1144 */ 1145 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1146 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1147 cp->p_sigmask = pp->p_sigmask; 1148 cp->p_fltmask = pp->p_fltmask; 1149 } else { 1150 sigemptyset(&cp->p_sigmask); 1151 premptyset(&cp->p_fltmask); 1152 uarea->u_systrap = 0; 1153 premptyset(&uarea->u_entrymask); 1154 premptyset(&uarea->u_exitmask); 1155 } 1156 /* 1157 * If microstate accounting is being inherited, mark child 1158 */ 1159 if ((pp->p_flag & SMSFORK) != 0) 1160 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1161 1162 /* 1163 * Inherit fixalignment flag from the parent 1164 */ 1165 cp->p_fixalignment = pp->p_fixalignment; 1166 1167 if (cp->p_exec) 1168 VN_HOLD(cp->p_exec); 1169 if (cp->p_execdir) 1170 VN_HOLD(cp->p_execdir); 1171 *cpp = cp; 1172 return (0); 1173 1174 bad: 1175 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1176 1177 mutex_destroy(&cp->p_crlock); 1178 mutex_destroy(&cp->p_pflock); 1179 #if defined(__x86) 1180 mutex_destroy(&cp->p_ldtlock); 1181 #endif 1182 if (newpid != -1) { 1183 proc_entry_free(cp->p_pidp); 1184 (void) pid_rele(cp->p_pidp); 1185 } 1186 kmem_cache_free(process_cache, cp); 1187 1188 /* 1189 * We most likely got into this situation because some process is 1190 * forking out of control. As punishment, put it to sleep for a 1191 * bit so it can't eat the machine alive. Sleep interval is chosen 1192 * to allow no more than one fork failure per cpu per clock tick 1193 * on average (yes, I just made this up). This has two desirable 1194 * properties: (1) it sets a constant limit on the fork failure 1195 * rate, and (2) the busier the system is, the harsher the penalty 1196 * for abusing it becomes. 1197 */ 1198 INCR_COUNT(&fork_fail_pending, &pidlock); 1199 delay(fork_fail_pending / ncpus + 1); 1200 DECR_COUNT(&fork_fail_pending, &pidlock); 1201 1202 return (-1); /* out of memory or proc slots */ 1203 } 1204 1205 /* 1206 * Release virtual memory. 1207 * In the case of vfork(), the child was given exclusive access to its 1208 * parent's address space. The parent is waiting in vfwait() for the 1209 * child to release its exclusive claim via relvm(). 1210 */ 1211 void 1212 relvm() 1213 { 1214 proc_t *p = curproc; 1215 1216 ASSERT((unsigned)p->p_lwpcnt <= 1); 1217 1218 prrelvm(); /* inform /proc */ 1219 1220 if (p->p_flag & SVFORK) { 1221 proc_t *pp = p->p_parent; 1222 /* 1223 * The child process is either exec'ing or exit'ing. 1224 * The child is now separated from the parent's address 1225 * space. The parent process is made dispatchable. 1226 * 1227 * This is a delicate locking maneuver, involving 1228 * both the parent's p_lock and the child's p_lock. 1229 * As soon as the SVFORK flag is turned off, the 1230 * parent is free to run, but it must not run until 1231 * we wake it up using its p_cv because it might 1232 * exit and we would be referencing invalid memory. 1233 * Therefore, we hold the parent with its p_lock 1234 * while protecting our p_flags with our own p_lock. 1235 */ 1236 try_again: 1237 mutex_enter(&p->p_lock); /* grab child's lock first */ 1238 prbarrier(p); /* make sure /proc is blocked out */ 1239 mutex_enter(&pp->p_lock); 1240 1241 /* 1242 * Check if parent is locked by /proc. 1243 */ 1244 if (pp->p_proc_flag & P_PR_LOCK) { 1245 /* 1246 * Delay until /proc is done with the parent. 1247 * We must drop our (the child's) p->p_lock, wait 1248 * via prbarrier() on the parent, then start over. 1249 */ 1250 mutex_exit(&p->p_lock); 1251 prbarrier(pp); 1252 mutex_exit(&pp->p_lock); 1253 goto try_again; 1254 } 1255 p->p_flag &= ~SVFORK; 1256 kpreempt_disable(); 1257 p->p_as = &kas; 1258 1259 /* 1260 * notify hat of change in thread's address space 1261 */ 1262 hat_thread_exit(curthread); 1263 kpreempt_enable(); 1264 1265 /* 1266 * child sizes are copied back to parent because 1267 * child may have grown. 1268 */ 1269 pp->p_brkbase = p->p_brkbase; 1270 pp->p_brksize = p->p_brksize; 1271 pp->p_stksize = p->p_stksize; 1272 1273 /* 1274 * Copy back the shm accounting information 1275 * to the parent process. 1276 */ 1277 pp->p_segacct = p->p_segacct; 1278 p->p_segacct = NULL; 1279 1280 /* 1281 * The parent is no longer waiting for the vfork()d child. 1282 * Restore the parent's watched pages, if any. This is 1283 * safe because we know the parent is not locked by /proc 1284 */ 1285 pp->p_flag &= ~SVFWAIT; 1286 if (avl_numnodes(&pp->p_wpage) != 0) { 1287 pp->p_as->a_wpage = pp->p_wpage; 1288 avl_create(&pp->p_wpage, wp_compare, 1289 sizeof (struct watched_page), 1290 offsetof(struct watched_page, wp_link)); 1291 } 1292 cv_signal(&pp->p_cv); 1293 mutex_exit(&pp->p_lock); 1294 mutex_exit(&p->p_lock); 1295 } else { 1296 if (p->p_as != &kas) { 1297 struct as *as; 1298 1299 if (p->p_segacct) 1300 shmexit(p); 1301 1302 /* 1303 * We grab p_lock for the benefit of /proc 1304 */ 1305 kpreempt_disable(); 1306 mutex_enter(&p->p_lock); 1307 prbarrier(p); /* make sure /proc is blocked out */ 1308 as = p->p_as; 1309 p->p_as = &kas; 1310 mutex_exit(&p->p_lock); 1311 1312 /* 1313 * notify hat of change in thread's address space 1314 */ 1315 hat_thread_exit(curthread); 1316 kpreempt_enable(); 1317 1318 as_free(as); 1319 p->p_tr_lgrpid = LGRP_NONE; 1320 } 1321 } 1322 } 1323 1324 /* 1325 * Wait for child to exec or exit. 1326 * Called by parent of vfork'ed process. 1327 * See important comments in relvm(), above. 1328 */ 1329 void 1330 vfwait(pid_t pid) 1331 { 1332 int signalled = 0; 1333 proc_t *pp = ttoproc(curthread); 1334 proc_t *cp; 1335 1336 /* 1337 * Wait for child to exec or exit. 1338 */ 1339 for (;;) { 1340 mutex_enter(&pidlock); 1341 cp = prfind(pid); 1342 if (cp == NULL || cp->p_parent != pp) { 1343 /* 1344 * Child has exit()ed. 1345 */ 1346 mutex_exit(&pidlock); 1347 break; 1348 } 1349 /* 1350 * Grab the child's p_lock before releasing pidlock. 1351 * Otherwise, the child could exit and we would be 1352 * referencing invalid memory. 1353 */ 1354 mutex_enter(&cp->p_lock); 1355 mutex_exit(&pidlock); 1356 if (!(cp->p_flag & SVFORK)) { 1357 /* 1358 * Child has exec()ed or is exit()ing. 1359 */ 1360 mutex_exit(&cp->p_lock); 1361 break; 1362 } 1363 mutex_enter(&pp->p_lock); 1364 mutex_exit(&cp->p_lock); 1365 /* 1366 * We might be waked up spuriously from the cv_wait(). 1367 * We have to do the whole operation over again to be 1368 * sure the child's SVFORK flag really is turned off. 1369 * We cannot make reference to the child because it can 1370 * exit before we return and we would be referencing 1371 * invalid memory. 1372 * 1373 * Because this is potentially a very long-term wait, 1374 * we call cv_wait_sig() (for its jobcontrol and /proc 1375 * side-effects) unless there is a current signal, in 1376 * which case we use cv_wait() because we cannot return 1377 * from this function until the child has released the 1378 * address space. Calling cv_wait_sig() with a current 1379 * signal would lead to an indefinite loop here because 1380 * cv_wait_sig() returns immediately in this case. 1381 */ 1382 if (signalled) 1383 cv_wait(&pp->p_cv, &pp->p_lock); 1384 else 1385 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1386 mutex_exit(&pp->p_lock); 1387 } 1388 1389 /* restore watchpoints to parent */ 1390 if (pr_watch_active(pp)) { 1391 struct as *as = pp->p_as; 1392 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1393 as_setwatch(as); 1394 AS_LOCK_EXIT(as, &as->a_lock); 1395 } 1396 1397 mutex_enter(&pp->p_lock); 1398 prbarrier(pp); /* barrier against /proc locking */ 1399 continuelwps(pp); 1400 mutex_exit(&pp->p_lock); 1401 } 1402