1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * The vfork() system call trap is no longer invoked by libc. 97 * It is retained only for the benefit of applications running 98 * within a solaris10 branded zone. It should be eliminated 99 * when we no longer support solaris10 branded zones. 100 */ 101 int64_t 102 vfork(void) 103 { 104 curthread->t_post_sys = 1; /* so vfwait() will be called */ 105 return (cfork(1, 1, 0)); 106 } 107 108 /* 109 * forksys system call - forkx, forkallx, vforkx. This is the 110 * interface invoked by libc for fork1(), forkall(), and vfork() 111 */ 112 int64_t 113 forksys(int subcode, int flags) 114 { 115 switch (subcode) { 116 case 0: 117 return (cfork(0, 1, flags)); /* forkx(flags) */ 118 case 1: 119 return (cfork(0, 0, flags)); /* forkallx(flags) */ 120 case 2: 121 curthread->t_post_sys = 1; /* so vfwait() will be called */ 122 return (cfork(1, 1, flags)); /* vforkx(flags) */ 123 default: 124 return ((int64_t)set_errno(EINVAL)); 125 } 126 } 127 128 /* ARGSUSED */ 129 static int64_t 130 cfork(int isvfork, int isfork1, int flags) 131 { 132 proc_t *p = ttoproc(curthread); 133 struct as *as; 134 proc_t *cp, **orphpp; 135 klwp_t *clone; 136 kthread_t *t; 137 task_t *tk; 138 rval_t r; 139 int error; 140 int i; 141 rctl_set_t *dup_set; 142 rctl_alloc_gp_t *dup_gp; 143 rctl_entity_p_t e; 144 lwpdir_t *ldp; 145 lwpent_t *lep; 146 lwpent_t *clep; 147 148 /* 149 * Allow only these two flags. 150 */ 151 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 152 error = EINVAL; 153 goto forkerr; 154 } 155 156 /* 157 * fork is not supported for the /proc agent lwp. 158 */ 159 if (curthread == p->p_agenttp) { 160 error = ENOTSUP; 161 goto forkerr; 162 } 163 164 if ((error = secpolicy_basic_fork(CRED())) != 0) 165 goto forkerr; 166 167 /* 168 * If the calling lwp is doing a fork1() then the 169 * other lwps in this process are not duplicated and 170 * don't need to be held where their kernel stacks can be 171 * cloned. If doing forkall(), the process is held with 172 * SHOLDFORK, so that the lwps are at a point where their 173 * stacks can be copied which is on entry or exit from 174 * the kernel. 175 */ 176 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 177 aston(curthread); 178 error = EINTR; 179 goto forkerr; 180 } 181 182 #if defined(__sparc) 183 /* 184 * Ensure that the user stack is fully constructed 185 * before creating the child process structure. 186 */ 187 (void) flush_user_windows_to_stack(NULL); 188 #endif 189 190 mutex_enter(&p->p_lock); 191 /* 192 * If this is vfork(), cancel any suspend request we might 193 * have gotten from some other thread via lwp_suspend(). 194 * Otherwise we could end up with a deadlock on return 195 * from the vfork() in both the parent and the child. 196 */ 197 if (isvfork) 198 curthread->t_proc_flag &= ~TP_HOLDLWP; 199 /* 200 * Prevent our resource set associations from being changed during fork. 201 */ 202 pool_barrier_enter(); 203 mutex_exit(&p->p_lock); 204 205 /* 206 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 207 */ 208 if (getproc(&cp, 0, GETPROC_USER) < 0) { 209 mutex_enter(&p->p_lock); 210 pool_barrier_exit(); 211 continuelwps(p); 212 mutex_exit(&p->p_lock); 213 error = EAGAIN; 214 goto forkerr; 215 } 216 217 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 218 219 /* 220 * Assign an address space to child 221 */ 222 if (isvfork) { 223 /* 224 * Clear any watched areas and remember the 225 * watched pages for restoring in vfwait(). 226 */ 227 as = p->p_as; 228 if (avl_numnodes(&as->a_wpage) != 0) { 229 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 230 as_clearwatch(as); 231 p->p_wpage = as->a_wpage; 232 avl_create(&as->a_wpage, wp_compare, 233 sizeof (struct watched_page), 234 offsetof(struct watched_page, wp_link)); 235 AS_LOCK_EXIT(as, &as->a_lock); 236 } 237 cp->p_as = as; 238 cp->p_flag |= SVFORK; 239 240 /* 241 * Use the parent's shm segment list information for 242 * the child as it uses its address space till it execs. 243 */ 244 cp->p_segacct = p->p_segacct; 245 } else { 246 /* 247 * We need to hold P_PR_LOCK until the address space has 248 * been duplicated and we've had a chance to remove from the 249 * child any DTrace probes that were in the parent. Holding 250 * P_PR_LOCK prevents any new probes from being added and any 251 * extant probes from being removed. 252 */ 253 mutex_enter(&p->p_lock); 254 sprlock_proc(p); 255 p->p_flag |= SFORKING; 256 mutex_exit(&p->p_lock); 257 258 error = as_dup(p->p_as, cp); 259 if (error != 0) { 260 mutex_enter(&p->p_lock); 261 sprunlock(p); 262 fork_fail(cp); 263 mutex_enter(&pidlock); 264 orphpp = &p->p_orphan; 265 while (*orphpp != cp) 266 orphpp = &(*orphpp)->p_nextorph; 267 *orphpp = cp->p_nextorph; 268 if (p->p_child == cp) 269 p->p_child = cp->p_sibling; 270 if (cp->p_sibling) 271 cp->p_sibling->p_psibling = cp->p_psibling; 272 if (cp->p_psibling) 273 cp->p_psibling->p_sibling = cp->p_sibling; 274 mutex_enter(&cp->p_lock); 275 tk = cp->p_task; 276 task_detach(cp); 277 ASSERT(cp->p_pool->pool_ref > 0); 278 atomic_add_32(&cp->p_pool->pool_ref, -1); 279 mutex_exit(&cp->p_lock); 280 pid_exit(cp); 281 mutex_exit(&pidlock); 282 task_rele(tk); 283 284 mutex_enter(&p->p_lock); 285 p->p_flag &= ~SFORKING; 286 pool_barrier_exit(); 287 continuelwps(p); 288 mutex_exit(&p->p_lock); 289 /* 290 * Preserve ENOMEM error condition but 291 * map all others to EAGAIN. 292 */ 293 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 294 goto forkerr; 295 } 296 297 /* 298 * Remove all DTrace tracepoints from the child process. We 299 * need to do this _before_ duplicating USDT providers since 300 * any associated probes may be immediately enabled. 301 */ 302 if (p->p_dtrace_count > 0) 303 dtrace_fasttrap_fork(p, cp); 304 305 mutex_enter(&p->p_lock); 306 sprunlock(p); 307 308 /* Duplicate parent's shared memory */ 309 if (p->p_segacct) 310 shmfork(p, cp); 311 312 /* 313 * Duplicate any helper actions and providers. The SFORKING 314 * we set above informs the code to enable USDT probes that 315 * sprlock() may fail because the child is being forked. 316 */ 317 if (p->p_dtrace_helpers != NULL) { 318 ASSERT(dtrace_helpers_fork != NULL); 319 (*dtrace_helpers_fork)(p, cp); 320 } 321 322 mutex_enter(&p->p_lock); 323 p->p_flag &= ~SFORKING; 324 mutex_exit(&p->p_lock); 325 } 326 327 /* 328 * Duplicate parent's resource controls. 329 */ 330 dup_set = rctl_set_create(); 331 for (;;) { 332 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 333 mutex_enter(&p->p_rctls->rcs_lock); 334 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 335 break; 336 mutex_exit(&p->p_rctls->rcs_lock); 337 rctl_prealloc_destroy(dup_gp); 338 } 339 e.rcep_p.proc = cp; 340 e.rcep_t = RCENTITY_PROCESS; 341 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 342 RCD_DUP | RCD_CALLBACK); 343 mutex_exit(&p->p_rctls->rcs_lock); 344 345 rctl_prealloc_destroy(dup_gp); 346 347 /* 348 * Allocate the child's lwp directory and lwpid hash table. 349 */ 350 if (isfork1) 351 cp->p_lwpdir_sz = 2; 352 else 353 cp->p_lwpdir_sz = p->p_lwpdir_sz; 354 cp->p_lwpdir = cp->p_lwpfree = ldp = 355 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 356 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 357 ldp->ld_next = ldp + 1; 358 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 359 cp->p_tidhash = 360 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 361 362 /* 363 * Duplicate parent's lwps. 364 * Mutual exclusion is not needed because the process is 365 * in the hold state and only the current lwp is running. 366 */ 367 klgrpset_clear(cp->p_lgrpset); 368 if (isfork1) { 369 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 370 if (clone == NULL) 371 goto forklwperr; 372 /* 373 * Inherit only the lwp_wait()able flag, 374 * Daemon threads should not call fork1(), but oh well... 375 */ 376 lwptot(clone)->t_proc_flag |= 377 (curthread->t_proc_flag & TP_TWAIT); 378 } else { 379 /* this is forkall(), no one can be in lwp_wait() */ 380 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 381 /* for each entry in the parent's lwp directory... */ 382 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 383 klwp_t *clwp; 384 kthread_t *ct; 385 386 if ((lep = ldp->ld_entry) == NULL) 387 continue; 388 389 if ((t = lep->le_thread) != NULL) { 390 clwp = forklwp(ttolwp(t), cp, t->t_tid); 391 if (clwp == NULL) 392 goto forklwperr; 393 ct = lwptot(clwp); 394 /* 395 * Inherit lwp_wait()able and daemon flags. 396 */ 397 ct->t_proc_flag |= 398 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 399 /* 400 * Keep track of the clone of curthread to 401 * post return values through lwp_setrval(). 402 * Mark other threads for special treatment 403 * by lwp_rtt() / post_syscall(). 404 */ 405 if (t == curthread) 406 clone = clwp; 407 else 408 ct->t_flag |= T_FORKALL; 409 } else { 410 /* 411 * Replicate zombie lwps in the child. 412 */ 413 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 414 clep->le_lwpid = lep->le_lwpid; 415 clep->le_start = lep->le_start; 416 lwp_hash_in(cp, clep, 417 cp->p_tidhash, cp->p_tidhash_sz, 0); 418 } 419 } 420 } 421 422 /* 423 * Put new process in the parent's process contract, or put it 424 * in a new one if there is an active process template. Send a 425 * fork event (if requested) to whatever contract the child is 426 * a member of. Fails if the parent has been SIGKILLed. 427 */ 428 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 429 goto forklwperr; 430 431 /* 432 * No fork failures occur beyond this point. 433 */ 434 435 cp->p_lwpid = p->p_lwpid; 436 if (!isfork1) { 437 cp->p_lwpdaemon = p->p_lwpdaemon; 438 cp->p_zombcnt = p->p_zombcnt; 439 /* 440 * If the parent's lwp ids have wrapped around, so have the 441 * child's. 442 */ 443 cp->p_flag |= p->p_flag & SLWPWRAP; 444 } 445 446 mutex_enter(&p->p_lock); 447 corectl_path_hold(cp->p_corefile = p->p_corefile); 448 corectl_content_hold(cp->p_content = p->p_content); 449 mutex_exit(&p->p_lock); 450 451 /* 452 * Duplicate process context ops, if any. 453 */ 454 if (p->p_pctx) 455 forkpctx(p, cp); 456 457 #ifdef __sparc 458 utrap_dup(p, cp); 459 #endif 460 /* 461 * If the child process has been marked to stop on exit 462 * from this fork, arrange for all other lwps to stop in 463 * sympathy with the active lwp. 464 */ 465 if (PTOU(cp)->u_systrap && 466 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 467 mutex_enter(&cp->p_lock); 468 t = cp->p_tlist; 469 do { 470 t->t_proc_flag |= TP_PRSTOP; 471 aston(t); /* so TP_PRSTOP will be seen */ 472 } while ((t = t->t_forw) != cp->p_tlist); 473 mutex_exit(&cp->p_lock); 474 } 475 /* 476 * If the parent process has been marked to stop on exit 477 * from this fork, and its asynchronous-stop flag has not 478 * been set, arrange for all other lwps to stop before 479 * they return back to user level. 480 */ 481 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 482 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 483 mutex_enter(&p->p_lock); 484 t = p->p_tlist; 485 do { 486 t->t_proc_flag |= TP_PRSTOP; 487 aston(t); /* so TP_PRSTOP will be seen */ 488 } while ((t = t->t_forw) != p->p_tlist); 489 mutex_exit(&p->p_lock); 490 } 491 492 if (PROC_IS_BRANDED(p)) 493 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 494 else 495 lwp_setrval(clone, p->p_pid, 1); 496 497 /* set return values for parent */ 498 r.r_val1 = (int)cp->p_pid; 499 r.r_val2 = 0; 500 501 /* 502 * pool_barrier_exit() can now be called because the child process has: 503 * - all identifying features cloned or set (p_pid, p_task, p_pool) 504 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 505 * - any other fields set which are used in resource set binding. 506 */ 507 mutex_enter(&p->p_lock); 508 pool_barrier_exit(); 509 mutex_exit(&p->p_lock); 510 511 mutex_enter(&pidlock); 512 mutex_enter(&cp->p_lock); 513 514 /* 515 * Set flags telling the child what (not) to do on exit. 516 */ 517 if (flags & FORK_NOSIGCHLD) 518 cp->p_pidflag |= CLDNOSIGCHLD; 519 if (flags & FORK_WAITPID) 520 cp->p_pidflag |= CLDWAITPID; 521 522 /* 523 * Now that there are lwps and threads attached, add the new 524 * process to the process group. 525 */ 526 pgjoin(cp, p->p_pgidp); 527 cp->p_stat = SRUN; 528 /* 529 * We are now done with all the lwps in the child process. 530 */ 531 t = cp->p_tlist; 532 do { 533 /* 534 * Set the lwp_suspend()ed lwps running. 535 * They will suspend properly at syscall exit. 536 */ 537 if (t->t_proc_flag & TP_HOLDLWP) 538 lwp_create_done(t); 539 else { 540 /* set TS_CREATE to allow continuelwps() to work */ 541 thread_lock(t); 542 ASSERT(t->t_state == TS_STOPPED && 543 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 544 t->t_schedflag |= TS_CREATE; 545 thread_unlock(t); 546 } 547 } while ((t = t->t_forw) != cp->p_tlist); 548 mutex_exit(&cp->p_lock); 549 550 if (isvfork) { 551 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 552 mutex_enter(&p->p_lock); 553 p->p_flag |= SVFWAIT; 554 curthread->t_flag |= T_VFPARENT; 555 DTRACE_PROC1(create, proc_t *, cp); 556 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 557 mutex_exit(&p->p_lock); 558 /* 559 * Grab child's p_lock before dropping pidlock to ensure 560 * the process will not disappear before we set it running. 561 */ 562 mutex_enter(&cp->p_lock); 563 mutex_exit(&pidlock); 564 sigdefault(cp); 565 continuelwps(cp); 566 mutex_exit(&cp->p_lock); 567 } else { 568 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 569 DTRACE_PROC1(create, proc_t *, cp); 570 /* 571 * It is CL_FORKRET's job to drop pidlock. 572 * If we do it here, the process could be set running 573 * and disappear before CL_FORKRET() is called. 574 */ 575 CL_FORKRET(curthread, cp->p_tlist); 576 schedctl_set_cidpri(curthread); 577 ASSERT(MUTEX_NOT_HELD(&pidlock)); 578 } 579 580 return (r.r_vals); 581 582 forklwperr: 583 if (isvfork) { 584 if (avl_numnodes(&p->p_wpage) != 0) { 585 /* restore watchpoints to parent */ 586 as = p->p_as; 587 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 588 as->a_wpage = p->p_wpage; 589 avl_create(&p->p_wpage, wp_compare, 590 sizeof (struct watched_page), 591 offsetof(struct watched_page, wp_link)); 592 as_setwatch(as); 593 AS_LOCK_EXIT(as, &as->a_lock); 594 } 595 } else { 596 if (cp->p_segacct) 597 shmexit(cp); 598 as = cp->p_as; 599 cp->p_as = &kas; 600 as_free(as); 601 } 602 603 if (cp->p_lwpdir) { 604 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 605 if ((lep = ldp->ld_entry) != NULL) 606 kmem_free(lep, sizeof (*lep)); 607 kmem_free(cp->p_lwpdir, 608 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 609 } 610 cp->p_lwpdir = NULL; 611 cp->p_lwpfree = NULL; 612 cp->p_lwpdir_sz = 0; 613 614 if (cp->p_tidhash) 615 kmem_free(cp->p_tidhash, 616 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 617 cp->p_tidhash = NULL; 618 cp->p_tidhash_sz = 0; 619 620 forklwp_fail(cp); 621 fork_fail(cp); 622 rctl_set_free(cp->p_rctls); 623 mutex_enter(&pidlock); 624 625 /* 626 * Detach failed child from task. 627 */ 628 mutex_enter(&cp->p_lock); 629 tk = cp->p_task; 630 task_detach(cp); 631 ASSERT(cp->p_pool->pool_ref > 0); 632 atomic_add_32(&cp->p_pool->pool_ref, -1); 633 mutex_exit(&cp->p_lock); 634 635 orphpp = &p->p_orphan; 636 while (*orphpp != cp) 637 orphpp = &(*orphpp)->p_nextorph; 638 *orphpp = cp->p_nextorph; 639 if (p->p_child == cp) 640 p->p_child = cp->p_sibling; 641 if (cp->p_sibling) 642 cp->p_sibling->p_psibling = cp->p_psibling; 643 if (cp->p_psibling) 644 cp->p_psibling->p_sibling = cp->p_sibling; 645 pid_exit(cp); 646 mutex_exit(&pidlock); 647 648 task_rele(tk); 649 650 mutex_enter(&p->p_lock); 651 pool_barrier_exit(); 652 continuelwps(p); 653 mutex_exit(&p->p_lock); 654 error = EAGAIN; 655 forkerr: 656 return ((int64_t)set_errno(error)); 657 } 658 659 /* 660 * Free allocated resources from getproc() if a fork failed. 661 */ 662 static void 663 fork_fail(proc_t *cp) 664 { 665 uf_info_t *fip = P_FINFO(cp); 666 667 fcnt_add(fip, -1); 668 sigdelq(cp, NULL, 0); 669 670 mutex_enter(&pidlock); 671 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 672 mutex_exit(&pidlock); 673 674 /* 675 * single threaded, so no locking needed here 676 */ 677 crfree(cp->p_cred); 678 679 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 680 681 VN_RELE(PTOU(curproc)->u_cdir); 682 if (PTOU(curproc)->u_rdir) 683 VN_RELE(PTOU(curproc)->u_rdir); 684 if (cp->p_exec) 685 VN_RELE(cp->p_exec); 686 if (cp->p_execdir) 687 VN_RELE(cp->p_execdir); 688 if (PTOU(curproc)->u_cwd) 689 refstr_rele(PTOU(curproc)->u_cwd); 690 } 691 692 /* 693 * Clean up the lwps already created for this child process. 694 * The fork failed while duplicating all the lwps of the parent 695 * and those lwps already created must be freed. 696 * This process is invisible to the rest of the system, 697 * so we don't need to hold p->p_lock to protect the list. 698 */ 699 static void 700 forklwp_fail(proc_t *p) 701 { 702 kthread_t *t; 703 task_t *tk; 704 705 while ((t = p->p_tlist) != NULL) { 706 /* 707 * First remove the lwp from the process's p_tlist. 708 */ 709 if (t != t->t_forw) 710 p->p_tlist = t->t_forw; 711 else 712 p->p_tlist = NULL; 713 p->p_lwpcnt--; 714 t->t_forw->t_back = t->t_back; 715 t->t_back->t_forw = t->t_forw; 716 717 tk = p->p_task; 718 mutex_enter(&p->p_zone->zone_nlwps_lock); 719 tk->tk_nlwps--; 720 tk->tk_proj->kpj_nlwps--; 721 p->p_zone->zone_nlwps--; 722 mutex_exit(&p->p_zone->zone_nlwps_lock); 723 724 ASSERT(t->t_schedctl == NULL); 725 726 if (t->t_door != NULL) { 727 kmem_free(t->t_door, sizeof (door_data_t)); 728 t->t_door = NULL; 729 } 730 lwp_ctmpl_clear(ttolwp(t)); 731 732 /* 733 * Remove the thread from the all threads list. 734 * We need to hold pidlock for this. 735 */ 736 mutex_enter(&pidlock); 737 t->t_next->t_prev = t->t_prev; 738 t->t_prev->t_next = t->t_next; 739 CL_EXIT(t); /* tell the scheduler that we're exiting */ 740 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 741 mutex_exit(&pidlock); 742 743 /* 744 * Let the lgroup load averages know that this thread isn't 745 * going to show up (i.e. un-do what was done on behalf of 746 * this thread by the earlier lgrp_move_thread()). 747 */ 748 kpreempt_disable(); 749 lgrp_move_thread(t, NULL, 1); 750 kpreempt_enable(); 751 752 /* 753 * The thread was created TS_STOPPED. 754 * We change it to TS_FREE to avoid an 755 * ASSERT() panic in thread_free(). 756 */ 757 t->t_state = TS_FREE; 758 thread_rele(t); 759 thread_free(t); 760 } 761 } 762 763 extern struct as kas; 764 765 /* 766 * fork a kernel process. 767 */ 768 int 769 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 770 pid_t pid) 771 { 772 proc_t *p; 773 struct user *up; 774 kthread_t *t; 775 cont_process_t *ctp = NULL; 776 rctl_entity_p_t e; 777 778 ASSERT(cid != sysdccid); 779 ASSERT(cid != syscid || ct == NULL); 780 if (CLASS_KERNEL(cid)) { 781 rctl_alloc_gp_t *init_gp; 782 rctl_set_t *init_set; 783 784 ASSERT(pid != 1); 785 786 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 787 return (EAGAIN); 788 789 /* 790 * Release the hold on the p_exec and p_execdir, these 791 * were acquired in getproc() 792 */ 793 if (p->p_execdir != NULL) 794 VN_RELE(p->p_execdir); 795 if (p->p_exec != NULL) 796 VN_RELE(p->p_exec); 797 p->p_flag |= SNOWAIT; 798 p->p_exec = NULL; 799 p->p_execdir = NULL; 800 801 init_set = rctl_set_create(); 802 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 803 804 /* 805 * kernel processes do not inherit /proc tracing flags. 806 */ 807 sigemptyset(&p->p_sigmask); 808 premptyset(&p->p_fltmask); 809 up = PTOU(p); 810 up->u_systrap = 0; 811 premptyset(&(up->u_entrymask)); 812 premptyset(&(up->u_exitmask)); 813 mutex_enter(&p->p_lock); 814 e.rcep_p.proc = p; 815 e.rcep_t = RCENTITY_PROCESS; 816 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 817 init_gp); 818 mutex_exit(&p->p_lock); 819 820 rctl_prealloc_destroy(init_gp); 821 822 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 823 } else { 824 rctl_alloc_gp_t *init_gp, *default_gp; 825 rctl_set_t *init_set; 826 task_t *tk, *tk_old; 827 klwp_t *lwp; 828 829 if (getproc(&p, pid, GETPROC_USER) < 0) 830 return (EAGAIN); 831 /* 832 * init creates a new task, distinct from the task 833 * containing kernel "processes". 834 */ 835 tk = task_create(0, p->p_zone); 836 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 837 tk->tk_proj->kpj_ntasks++; 838 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 839 840 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 841 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 842 init_set = rctl_set_create(); 843 844 mutex_enter(&pidlock); 845 mutex_enter(&p->p_lock); 846 tk_old = p->p_task; /* switch to new task */ 847 848 task_detach(p); 849 task_begin(tk, p); 850 mutex_exit(&pidlock); 851 852 e.rcep_p.proc = p; 853 e.rcep_t = RCENTITY_PROCESS; 854 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 855 init_gp); 856 rctlproc_default_init(p, default_gp); 857 mutex_exit(&p->p_lock); 858 859 task_rele(tk_old); 860 rctl_prealloc_destroy(default_gp); 861 rctl_prealloc_destroy(init_gp); 862 863 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 864 &curthread->t_hold, cid, 1)) == NULL) { 865 task_t *tk; 866 fork_fail(p); 867 mutex_enter(&pidlock); 868 mutex_enter(&p->p_lock); 869 tk = p->p_task; 870 task_detach(p); 871 ASSERT(p->p_pool->pool_ref > 0); 872 atomic_add_32(&p->p_pool->pool_ref, -1); 873 mutex_exit(&p->p_lock); 874 pid_exit(p); 875 mutex_exit(&pidlock); 876 task_rele(tk); 877 878 return (EAGAIN); 879 } 880 t = lwptot(lwp); 881 882 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 883 B_FALSE); 884 ASSERT(ctp != NULL); 885 if (ct != NULL) 886 *ct = &ctp->conp_contract; 887 } 888 889 ASSERT3U(t->t_tid, ==, 1); 890 p->p_lwpid = 1; 891 mutex_enter(&pidlock); 892 pgjoin(p, p->p_parent->p_pgidp); 893 p->p_stat = SRUN; 894 mutex_enter(&p->p_lock); 895 t->t_proc_flag &= ~TP_HOLDLWP; 896 lwp_create_done(t); 897 mutex_exit(&p->p_lock); 898 mutex_exit(&pidlock); 899 return (0); 900 } 901 902 /* 903 * create a child proc struct. 904 */ 905 static int 906 getproc(proc_t **cpp, pid_t pid, uint_t flags) 907 { 908 proc_t *pp, *cp; 909 pid_t newpid; 910 struct user *uarea; 911 extern uint_t nproc; 912 struct cred *cr; 913 uid_t ruid; 914 zoneid_t zoneid; 915 916 if (!page_mem_avail(tune.t_minarmem)) 917 return (-1); 918 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 919 return (-1); /* no point in starting new processes */ 920 921 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 922 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 923 bzero(cp, sizeof (proc_t)); 924 925 /* 926 * Make proc entry for child process 927 */ 928 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 929 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 930 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 931 #if defined(__x86) 932 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 933 #endif 934 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 935 cp->p_stat = SIDL; 936 cp->p_mstart = gethrtime(); 937 cp->p_as = &kas; 938 /* 939 * p_zone must be set before we call pid_allocate since the process 940 * will be visible after that and code such as prfind_zone will 941 * look at the p_zone field. 942 */ 943 cp->p_zone = pp->p_zone; 944 cp->p_t1_lgrpid = LGRP_NONE; 945 cp->p_tr_lgrpid = LGRP_NONE; 946 947 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 948 if (nproc == v.v_proc) { 949 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 950 cmn_err(CE_WARN, "out of processes"); 951 } 952 goto bad; 953 } 954 955 mutex_enter(&pp->p_lock); 956 cp->p_exec = pp->p_exec; 957 cp->p_execdir = pp->p_execdir; 958 mutex_exit(&pp->p_lock); 959 960 if (cp->p_exec) { 961 VN_HOLD(cp->p_exec); 962 /* 963 * Each VOP_OPEN() must be paired with a corresponding 964 * VOP_CLOSE(). In this case, the executable will be 965 * closed for the child in either proc_exit() or gexec(). 966 */ 967 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) { 968 VN_RELE(cp->p_exec); 969 cp->p_exec = NULLVP; 970 cp->p_execdir = NULLVP; 971 goto bad; 972 } 973 } 974 if (cp->p_execdir) 975 VN_HOLD(cp->p_execdir); 976 977 /* 978 * If not privileged make sure that this user hasn't exceeded 979 * v.v_maxup processes, and that users collectively haven't 980 * exceeded v.v_maxupttl processes. 981 */ 982 mutex_enter(&pidlock); 983 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 984 cr = CRED(); 985 ruid = crgetruid(cr); 986 zoneid = crgetzoneid(cr); 987 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 988 (nproc >= v.v_maxupttl || 989 upcount_get(ruid, zoneid) >= v.v_maxup) && 990 secpolicy_newproc(cr) != 0) { 991 mutex_exit(&pidlock); 992 zcmn_err(zoneid, CE_NOTE, 993 "out of per-user processes for uid %d", ruid); 994 goto bad; 995 } 996 997 /* 998 * Everything is cool, put the new proc on the active process list. 999 * It is already on the pid list and in /proc. 1000 * Increment the per uid process count (upcount). 1001 */ 1002 nproc++; 1003 upcount_inc(ruid, zoneid); 1004 1005 cp->p_next = practive; 1006 practive->p_prev = cp; 1007 practive = cp; 1008 1009 cp->p_ignore = pp->p_ignore; 1010 cp->p_siginfo = pp->p_siginfo; 1011 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1012 cp->p_sessp = pp->p_sessp; 1013 sess_hold(pp); 1014 cp->p_brand = pp->p_brand; 1015 if (PROC_IS_BRANDED(pp)) 1016 BROP(pp)->b_copy_procdata(cp, pp); 1017 cp->p_bssbase = pp->p_bssbase; 1018 cp->p_brkbase = pp->p_brkbase; 1019 cp->p_brksize = pp->p_brksize; 1020 cp->p_brkpageszc = pp->p_brkpageszc; 1021 cp->p_stksize = pp->p_stksize; 1022 cp->p_stkpageszc = pp->p_stkpageszc; 1023 cp->p_stkprot = pp->p_stkprot; 1024 cp->p_datprot = pp->p_datprot; 1025 cp->p_usrstack = pp->p_usrstack; 1026 cp->p_model = pp->p_model; 1027 cp->p_ppid = pp->p_pid; 1028 cp->p_ancpid = pp->p_pid; 1029 cp->p_portcnt = pp->p_portcnt; 1030 1031 /* 1032 * Initialize watchpoint structures 1033 */ 1034 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1035 offsetof(struct watched_area, wa_link)); 1036 1037 /* 1038 * Initialize immediate resource control values. 1039 */ 1040 cp->p_stk_ctl = pp->p_stk_ctl; 1041 cp->p_fsz_ctl = pp->p_fsz_ctl; 1042 cp->p_vmem_ctl = pp->p_vmem_ctl; 1043 cp->p_fno_ctl = pp->p_fno_ctl; 1044 1045 /* 1046 * Link up to parent-child-sibling chain. No need to lock 1047 * in general since only a call to freeproc() (done by the 1048 * same parent as newproc()) diddles with the child chain. 1049 */ 1050 cp->p_sibling = pp->p_child; 1051 if (pp->p_child) 1052 pp->p_child->p_psibling = cp; 1053 1054 cp->p_parent = pp; 1055 pp->p_child = cp; 1056 1057 cp->p_child_ns = NULL; 1058 cp->p_sibling_ns = NULL; 1059 1060 cp->p_nextorph = pp->p_orphan; 1061 cp->p_nextofkin = pp; 1062 pp->p_orphan = cp; 1063 1064 /* 1065 * Inherit profiling state; do not inherit REALPROF profiling state. 1066 */ 1067 cp->p_prof = pp->p_prof; 1068 cp->p_rprof_cyclic = CYCLIC_NONE; 1069 1070 /* 1071 * Inherit pool pointer from the parent. Kernel processes are 1072 * always bound to the default pool. 1073 */ 1074 mutex_enter(&pp->p_lock); 1075 if (flags & GETPROC_KERNEL) { 1076 cp->p_pool = pool_default; 1077 cp->p_flag |= SSYS; 1078 } else { 1079 cp->p_pool = pp->p_pool; 1080 } 1081 atomic_add_32(&cp->p_pool->pool_ref, 1); 1082 mutex_exit(&pp->p_lock); 1083 1084 /* 1085 * Add the child process to the current task. Kernel processes 1086 * are always attached to task0. 1087 */ 1088 mutex_enter(&cp->p_lock); 1089 if (flags & GETPROC_KERNEL) 1090 task_attach(task0p, cp); 1091 else 1092 task_attach(pp->p_task, cp); 1093 mutex_exit(&cp->p_lock); 1094 mutex_exit(&pidlock); 1095 1096 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1097 offsetof(contract_t, ct_ctlist)); 1098 1099 /* 1100 * Duplicate any audit information kept in the process table 1101 */ 1102 if (audit_active) /* copy audit data to cp */ 1103 audit_newproc(cp); 1104 1105 crhold(cp->p_cred = cr); 1106 1107 /* 1108 * Bump up the counts on the file structures pointed at by the 1109 * parent's file table since the child will point at them too. 1110 */ 1111 fcnt_add(P_FINFO(pp), 1); 1112 1113 if (PTOU(pp)->u_cdir) { 1114 VN_HOLD(PTOU(pp)->u_cdir); 1115 } else { 1116 ASSERT(pp == &p0); 1117 /* 1118 * We must be at or before vfs_mountroot(); it will take care of 1119 * assigning our current directory. 1120 */ 1121 } 1122 if (PTOU(pp)->u_rdir) 1123 VN_HOLD(PTOU(pp)->u_rdir); 1124 if (PTOU(pp)->u_cwd) 1125 refstr_hold(PTOU(pp)->u_cwd); 1126 1127 /* 1128 * copy the parent's uarea. 1129 */ 1130 uarea = PTOU(cp); 1131 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1132 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1133 1134 gethrestime(&uarea->u_start); 1135 uarea->u_ticks = ddi_get_lbolt(); 1136 uarea->u_mem = rm_asrss(pp->p_as); 1137 uarea->u_acflag = AFORK; 1138 1139 /* 1140 * If inherit-on-fork, copy /proc tracing flags to child. 1141 */ 1142 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1143 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1144 cp->p_sigmask = pp->p_sigmask; 1145 cp->p_fltmask = pp->p_fltmask; 1146 } else { 1147 sigemptyset(&cp->p_sigmask); 1148 premptyset(&cp->p_fltmask); 1149 uarea->u_systrap = 0; 1150 premptyset(&uarea->u_entrymask); 1151 premptyset(&uarea->u_exitmask); 1152 } 1153 /* 1154 * If microstate accounting is being inherited, mark child 1155 */ 1156 if ((pp->p_flag & SMSFORK) != 0) 1157 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1158 1159 /* 1160 * Inherit fixalignment flag from the parent 1161 */ 1162 cp->p_fixalignment = pp->p_fixalignment; 1163 1164 *cpp = cp; 1165 return (0); 1166 1167 bad: 1168 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1169 1170 mutex_destroy(&cp->p_crlock); 1171 mutex_destroy(&cp->p_pflock); 1172 #if defined(__x86) 1173 mutex_destroy(&cp->p_ldtlock); 1174 #endif 1175 if (newpid != -1) { 1176 proc_entry_free(cp->p_pidp); 1177 (void) pid_rele(cp->p_pidp); 1178 } 1179 kmem_cache_free(process_cache, cp); 1180 1181 /* 1182 * We most likely got into this situation because some process is 1183 * forking out of control. As punishment, put it to sleep for a 1184 * bit so it can't eat the machine alive. Sleep interval is chosen 1185 * to allow no more than one fork failure per cpu per clock tick 1186 * on average (yes, I just made this up). This has two desirable 1187 * properties: (1) it sets a constant limit on the fork failure 1188 * rate, and (2) the busier the system is, the harsher the penalty 1189 * for abusing it becomes. 1190 */ 1191 INCR_COUNT(&fork_fail_pending, &pidlock); 1192 delay(fork_fail_pending / ncpus + 1); 1193 DECR_COUNT(&fork_fail_pending, &pidlock); 1194 1195 return (-1); /* out of memory or proc slots */ 1196 } 1197 1198 /* 1199 * Release virtual memory. 1200 * In the case of vfork(), the child was given exclusive access to its 1201 * parent's address space. The parent is waiting in vfwait() for the 1202 * child to release its exclusive claim via relvm(). 1203 */ 1204 void 1205 relvm() 1206 { 1207 proc_t *p = curproc; 1208 1209 ASSERT((unsigned)p->p_lwpcnt <= 1); 1210 1211 prrelvm(); /* inform /proc */ 1212 1213 if (p->p_flag & SVFORK) { 1214 proc_t *pp = p->p_parent; 1215 /* 1216 * The child process is either exec'ing or exit'ing. 1217 * The child is now separated from the parent's address 1218 * space. The parent process is made dispatchable. 1219 * 1220 * This is a delicate locking maneuver, involving 1221 * both the parent's p_lock and the child's p_lock. 1222 * As soon as the SVFORK flag is turned off, the 1223 * parent is free to run, but it must not run until 1224 * we wake it up using its p_cv because it might 1225 * exit and we would be referencing invalid memory. 1226 * Therefore, we hold the parent with its p_lock 1227 * while protecting our p_flags with our own p_lock. 1228 */ 1229 try_again: 1230 mutex_enter(&p->p_lock); /* grab child's lock first */ 1231 prbarrier(p); /* make sure /proc is blocked out */ 1232 mutex_enter(&pp->p_lock); 1233 1234 /* 1235 * Check if parent is locked by /proc. 1236 */ 1237 if (pp->p_proc_flag & P_PR_LOCK) { 1238 /* 1239 * Delay until /proc is done with the parent. 1240 * We must drop our (the child's) p->p_lock, wait 1241 * via prbarrier() on the parent, then start over. 1242 */ 1243 mutex_exit(&p->p_lock); 1244 prbarrier(pp); 1245 mutex_exit(&pp->p_lock); 1246 goto try_again; 1247 } 1248 p->p_flag &= ~SVFORK; 1249 kpreempt_disable(); 1250 p->p_as = &kas; 1251 1252 /* 1253 * notify hat of change in thread's address space 1254 */ 1255 hat_thread_exit(curthread); 1256 kpreempt_enable(); 1257 1258 /* 1259 * child sizes are copied back to parent because 1260 * child may have grown. 1261 */ 1262 pp->p_brkbase = p->p_brkbase; 1263 pp->p_brksize = p->p_brksize; 1264 pp->p_stksize = p->p_stksize; 1265 1266 /* 1267 * Copy back the shm accounting information 1268 * to the parent process. 1269 */ 1270 pp->p_segacct = p->p_segacct; 1271 p->p_segacct = NULL; 1272 1273 /* 1274 * The parent is no longer waiting for the vfork()d child. 1275 * Restore the parent's watched pages, if any. This is 1276 * safe because we know the parent is not locked by /proc 1277 */ 1278 pp->p_flag &= ~SVFWAIT; 1279 if (avl_numnodes(&pp->p_wpage) != 0) { 1280 pp->p_as->a_wpage = pp->p_wpage; 1281 avl_create(&pp->p_wpage, wp_compare, 1282 sizeof (struct watched_page), 1283 offsetof(struct watched_page, wp_link)); 1284 } 1285 cv_signal(&pp->p_cv); 1286 mutex_exit(&pp->p_lock); 1287 mutex_exit(&p->p_lock); 1288 } else { 1289 if (p->p_as != &kas) { 1290 struct as *as; 1291 1292 if (p->p_segacct) 1293 shmexit(p); 1294 1295 /* 1296 * We grab p_lock for the benefit of /proc 1297 */ 1298 kpreempt_disable(); 1299 mutex_enter(&p->p_lock); 1300 prbarrier(p); /* make sure /proc is blocked out */ 1301 as = p->p_as; 1302 p->p_as = &kas; 1303 mutex_exit(&p->p_lock); 1304 1305 /* 1306 * notify hat of change in thread's address space 1307 */ 1308 hat_thread_exit(curthread); 1309 kpreempt_enable(); 1310 1311 as_free(as); 1312 p->p_tr_lgrpid = LGRP_NONE; 1313 } 1314 } 1315 } 1316 1317 /* 1318 * Wait for child to exec or exit. 1319 * Called by parent of vfork'ed process. 1320 * See important comments in relvm(), above. 1321 */ 1322 void 1323 vfwait(pid_t pid) 1324 { 1325 int signalled = 0; 1326 proc_t *pp = ttoproc(curthread); 1327 proc_t *cp; 1328 1329 /* 1330 * Wait for child to exec or exit. 1331 */ 1332 for (;;) { 1333 mutex_enter(&pidlock); 1334 cp = prfind(pid); 1335 if (cp == NULL || cp->p_parent != pp) { 1336 /* 1337 * Child has exit()ed. 1338 */ 1339 mutex_exit(&pidlock); 1340 break; 1341 } 1342 /* 1343 * Grab the child's p_lock before releasing pidlock. 1344 * Otherwise, the child could exit and we would be 1345 * referencing invalid memory. 1346 */ 1347 mutex_enter(&cp->p_lock); 1348 mutex_exit(&pidlock); 1349 if (!(cp->p_flag & SVFORK)) { 1350 /* 1351 * Child has exec()ed or is exit()ing. 1352 */ 1353 mutex_exit(&cp->p_lock); 1354 break; 1355 } 1356 mutex_enter(&pp->p_lock); 1357 mutex_exit(&cp->p_lock); 1358 /* 1359 * We might be waked up spuriously from the cv_wait(). 1360 * We have to do the whole operation over again to be 1361 * sure the child's SVFORK flag really is turned off. 1362 * We cannot make reference to the child because it can 1363 * exit before we return and we would be referencing 1364 * invalid memory. 1365 * 1366 * Because this is potentially a very long-term wait, 1367 * we call cv_wait_sig() (for its jobcontrol and /proc 1368 * side-effects) unless there is a current signal, in 1369 * which case we use cv_wait() because we cannot return 1370 * from this function until the child has released the 1371 * address space. Calling cv_wait_sig() with a current 1372 * signal would lead to an indefinite loop here because 1373 * cv_wait_sig() returns immediately in this case. 1374 */ 1375 if (signalled) 1376 cv_wait(&pp->p_cv, &pp->p_lock); 1377 else 1378 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1379 mutex_exit(&pp->p_lock); 1380 } 1381 1382 /* restore watchpoints to parent */ 1383 if (pr_watch_active(pp)) { 1384 struct as *as = pp->p_as; 1385 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1386 as_setwatch(as); 1387 AS_LOCK_EXIT(as, &as->a_lock); 1388 } 1389 1390 mutex_enter(&pp->p_lock); 1391 prbarrier(pp); /* barrier against /proc locking */ 1392 continuelwps(pp); 1393 mutex_exit(&pp->p_lock); 1394 } 1395