1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * forkall system call. 97 */ 98 int64_t 99 forkall(void) 100 { 101 return (cfork(0, 0, 0)); 102 } 103 104 /* 105 * The parent is stopped until the child invokes relvm(). 106 */ 107 int64_t 108 vfork(void) 109 { 110 curthread->t_post_sys = 1; /* so vfwait() will be called */ 111 return (cfork(1, 1, 0)); 112 } 113 114 /* 115 * fork system call, aka fork1. 116 */ 117 int64_t 118 fork1(void) 119 { 120 return (cfork(0, 1, 0)); 121 } 122 123 /* 124 * The forkall(), vfork(), and fork1() system calls are no longer 125 * invoked by libc. They are retained only for the benefit of 126 * old statically-linked applications. They should be eliminated 127 * when we no longer care about such old and broken applications. 128 */ 129 130 /* 131 * forksys system call - forkx, forkallx, vforkx. 132 * This is the interface now invoked by libc. 133 */ 134 int64_t 135 forksys(int subcode, int flags) 136 { 137 switch (subcode) { 138 case 0: 139 return (cfork(0, 1, flags)); /* forkx(flags) */ 140 case 1: 141 return (cfork(0, 0, flags)); /* forkallx(flags) */ 142 case 2: 143 curthread->t_post_sys = 1; /* so vfwait() will be called */ 144 return (cfork(1, 1, flags)); /* vforkx(flags) */ 145 default: 146 return ((int64_t)set_errno(EINVAL)); 147 } 148 } 149 150 /* ARGSUSED */ 151 static int64_t 152 cfork(int isvfork, int isfork1, int flags) 153 { 154 proc_t *p = ttoproc(curthread); 155 struct as *as; 156 proc_t *cp, **orphpp; 157 klwp_t *clone; 158 kthread_t *t; 159 task_t *tk; 160 rval_t r; 161 int error; 162 int i; 163 rctl_set_t *dup_set; 164 rctl_alloc_gp_t *dup_gp; 165 rctl_entity_p_t e; 166 lwpdir_t *ldp; 167 lwpent_t *lep; 168 lwpent_t *clep; 169 170 /* 171 * Allow only these two flags. 172 */ 173 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 174 error = EINVAL; 175 goto forkerr; 176 } 177 178 /* 179 * fork is not supported for the /proc agent lwp. 180 */ 181 if (curthread == p->p_agenttp) { 182 error = ENOTSUP; 183 goto forkerr; 184 } 185 186 if ((error = secpolicy_basic_fork(CRED())) != 0) 187 goto forkerr; 188 189 /* 190 * If the calling lwp is doing a fork1() then the 191 * other lwps in this process are not duplicated and 192 * don't need to be held where their kernel stacks can be 193 * cloned. If doing forkall(), the process is held with 194 * SHOLDFORK, so that the lwps are at a point where their 195 * stacks can be copied which is on entry or exit from 196 * the kernel. 197 */ 198 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 199 aston(curthread); 200 error = EINTR; 201 goto forkerr; 202 } 203 204 #if defined(__sparc) 205 /* 206 * Ensure that the user stack is fully constructed 207 * before creating the child process structure. 208 */ 209 (void) flush_user_windows_to_stack(NULL); 210 #endif 211 212 mutex_enter(&p->p_lock); 213 /* 214 * If this is vfork(), cancel any suspend request we might 215 * have gotten from some other thread via lwp_suspend(). 216 * Otherwise we could end up with a deadlock on return 217 * from the vfork() in both the parent and the child. 218 */ 219 if (isvfork) 220 curthread->t_proc_flag &= ~TP_HOLDLWP; 221 /* 222 * Prevent our resource set associations from being changed during fork. 223 */ 224 pool_barrier_enter(); 225 mutex_exit(&p->p_lock); 226 227 /* 228 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 229 */ 230 if (getproc(&cp, 0, GETPROC_USER) < 0) { 231 mutex_enter(&p->p_lock); 232 pool_barrier_exit(); 233 continuelwps(p); 234 mutex_exit(&p->p_lock); 235 error = EAGAIN; 236 goto forkerr; 237 } 238 239 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 240 241 /* 242 * Assign an address space to child 243 */ 244 if (isvfork) { 245 /* 246 * Clear any watched areas and remember the 247 * watched pages for restoring in vfwait(). 248 */ 249 as = p->p_as; 250 if (avl_numnodes(&as->a_wpage) != 0) { 251 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 252 as_clearwatch(as); 253 p->p_wpage = as->a_wpage; 254 avl_create(&as->a_wpage, wp_compare, 255 sizeof (struct watched_page), 256 offsetof(struct watched_page, wp_link)); 257 AS_LOCK_EXIT(as, &as->a_lock); 258 } 259 cp->p_as = as; 260 cp->p_flag |= SVFORK; 261 } else { 262 /* 263 * We need to hold P_PR_LOCK until the address space has 264 * been duplicated and we've had a chance to remove from the 265 * child any DTrace probes that were in the parent. Holding 266 * P_PR_LOCK prevents any new probes from being added and any 267 * extant probes from being removed. 268 */ 269 mutex_enter(&p->p_lock); 270 sprlock_proc(p); 271 p->p_flag |= SFORKING; 272 mutex_exit(&p->p_lock); 273 274 error = as_dup(p->p_as, cp); 275 if (error != 0) { 276 mutex_enter(&p->p_lock); 277 sprunlock(p); 278 fork_fail(cp); 279 mutex_enter(&pidlock); 280 orphpp = &p->p_orphan; 281 while (*orphpp != cp) 282 orphpp = &(*orphpp)->p_nextorph; 283 *orphpp = cp->p_nextorph; 284 if (p->p_child == cp) 285 p->p_child = cp->p_sibling; 286 if (cp->p_sibling) 287 cp->p_sibling->p_psibling = cp->p_psibling; 288 if (cp->p_psibling) 289 cp->p_psibling->p_sibling = cp->p_sibling; 290 mutex_enter(&cp->p_lock); 291 tk = cp->p_task; 292 task_detach(cp); 293 ASSERT(cp->p_pool->pool_ref > 0); 294 atomic_add_32(&cp->p_pool->pool_ref, -1); 295 mutex_exit(&cp->p_lock); 296 pid_exit(cp); 297 mutex_exit(&pidlock); 298 task_rele(tk); 299 300 mutex_enter(&p->p_lock); 301 p->p_flag &= ~SFORKING; 302 pool_barrier_exit(); 303 continuelwps(p); 304 mutex_exit(&p->p_lock); 305 /* 306 * Preserve ENOMEM error condition but 307 * map all others to EAGAIN. 308 */ 309 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 310 goto forkerr; 311 } 312 313 /* 314 * Remove all DTrace tracepoints from the child process. We 315 * need to do this _before_ duplicating USDT providers since 316 * any associated probes may be immediately enabled. 317 */ 318 if (p->p_dtrace_count > 0) 319 dtrace_fasttrap_fork(p, cp); 320 321 mutex_enter(&p->p_lock); 322 sprunlock(p); 323 324 /* Duplicate parent's shared memory */ 325 if (p->p_segacct) 326 shmfork(p, cp); 327 328 /* 329 * Duplicate any helper actions and providers. The SFORKING 330 * we set above informs the code to enable USDT probes that 331 * sprlock() may fail because the child is being forked. 332 */ 333 if (p->p_dtrace_helpers != NULL) { 334 ASSERT(dtrace_helpers_fork != NULL); 335 (*dtrace_helpers_fork)(p, cp); 336 } 337 338 mutex_enter(&p->p_lock); 339 p->p_flag &= ~SFORKING; 340 mutex_exit(&p->p_lock); 341 } 342 343 /* 344 * Duplicate parent's resource controls. 345 */ 346 dup_set = rctl_set_create(); 347 for (;;) { 348 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 349 mutex_enter(&p->p_rctls->rcs_lock); 350 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 351 break; 352 mutex_exit(&p->p_rctls->rcs_lock); 353 rctl_prealloc_destroy(dup_gp); 354 } 355 e.rcep_p.proc = cp; 356 e.rcep_t = RCENTITY_PROCESS; 357 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 358 RCD_DUP | RCD_CALLBACK); 359 mutex_exit(&p->p_rctls->rcs_lock); 360 361 rctl_prealloc_destroy(dup_gp); 362 363 /* 364 * Allocate the child's lwp directory and lwpid hash table. 365 */ 366 if (isfork1) 367 cp->p_lwpdir_sz = 2; 368 else 369 cp->p_lwpdir_sz = p->p_lwpdir_sz; 370 cp->p_lwpdir = cp->p_lwpfree = ldp = 371 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 372 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 373 ldp->ld_next = ldp + 1; 374 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 375 cp->p_tidhash = 376 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 377 378 /* 379 * Duplicate parent's lwps. 380 * Mutual exclusion is not needed because the process is 381 * in the hold state and only the current lwp is running. 382 */ 383 klgrpset_clear(cp->p_lgrpset); 384 if (isfork1) { 385 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 386 if (clone == NULL) 387 goto forklwperr; 388 /* 389 * Inherit only the lwp_wait()able flag, 390 * Daemon threads should not call fork1(), but oh well... 391 */ 392 lwptot(clone)->t_proc_flag |= 393 (curthread->t_proc_flag & TP_TWAIT); 394 } else { 395 /* this is forkall(), no one can be in lwp_wait() */ 396 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 397 /* for each entry in the parent's lwp directory... */ 398 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 399 klwp_t *clwp; 400 kthread_t *ct; 401 402 if ((lep = ldp->ld_entry) == NULL) 403 continue; 404 405 if ((t = lep->le_thread) != NULL) { 406 clwp = forklwp(ttolwp(t), cp, t->t_tid); 407 if (clwp == NULL) 408 goto forklwperr; 409 ct = lwptot(clwp); 410 /* 411 * Inherit lwp_wait()able and daemon flags. 412 */ 413 ct->t_proc_flag |= 414 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 415 /* 416 * Keep track of the clone of curthread to 417 * post return values through lwp_setrval(). 418 * Mark other threads for special treatment 419 * by lwp_rtt() / post_syscall(). 420 */ 421 if (t == curthread) 422 clone = clwp; 423 else 424 ct->t_flag |= T_FORKALL; 425 } else { 426 /* 427 * Replicate zombie lwps in the child. 428 */ 429 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 430 clep->le_lwpid = lep->le_lwpid; 431 clep->le_start = lep->le_start; 432 lwp_hash_in(cp, clep, 433 cp->p_tidhash, cp->p_tidhash_sz, 0); 434 } 435 } 436 } 437 438 /* 439 * Put new process in the parent's process contract, or put it 440 * in a new one if there is an active process template. Send a 441 * fork event (if requested) to whatever contract the child is 442 * a member of. Fails if the parent has been SIGKILLed. 443 */ 444 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 445 goto forklwperr; 446 447 /* 448 * No fork failures occur beyond this point. 449 */ 450 451 cp->p_lwpid = p->p_lwpid; 452 if (!isfork1) { 453 cp->p_lwpdaemon = p->p_lwpdaemon; 454 cp->p_zombcnt = p->p_zombcnt; 455 /* 456 * If the parent's lwp ids have wrapped around, so have the 457 * child's. 458 */ 459 cp->p_flag |= p->p_flag & SLWPWRAP; 460 } 461 462 mutex_enter(&p->p_lock); 463 corectl_path_hold(cp->p_corefile = p->p_corefile); 464 corectl_content_hold(cp->p_content = p->p_content); 465 mutex_exit(&p->p_lock); 466 467 /* 468 * Duplicate process context ops, if any. 469 */ 470 if (p->p_pctx) 471 forkpctx(p, cp); 472 473 #ifdef __sparc 474 utrap_dup(p, cp); 475 #endif 476 /* 477 * If the child process has been marked to stop on exit 478 * from this fork, arrange for all other lwps to stop in 479 * sympathy with the active lwp. 480 */ 481 if (PTOU(cp)->u_systrap && 482 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 483 mutex_enter(&cp->p_lock); 484 t = cp->p_tlist; 485 do { 486 t->t_proc_flag |= TP_PRSTOP; 487 aston(t); /* so TP_PRSTOP will be seen */ 488 } while ((t = t->t_forw) != cp->p_tlist); 489 mutex_exit(&cp->p_lock); 490 } 491 /* 492 * If the parent process has been marked to stop on exit 493 * from this fork, and its asynchronous-stop flag has not 494 * been set, arrange for all other lwps to stop before 495 * they return back to user level. 496 */ 497 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 498 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 499 mutex_enter(&p->p_lock); 500 t = p->p_tlist; 501 do { 502 t->t_proc_flag |= TP_PRSTOP; 503 aston(t); /* so TP_PRSTOP will be seen */ 504 } while ((t = t->t_forw) != p->p_tlist); 505 mutex_exit(&p->p_lock); 506 } 507 508 if (PROC_IS_BRANDED(p)) 509 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 510 else 511 lwp_setrval(clone, p->p_pid, 1); 512 513 /* set return values for parent */ 514 r.r_val1 = (int)cp->p_pid; 515 r.r_val2 = 0; 516 517 /* 518 * pool_barrier_exit() can now be called because the child process has: 519 * - all identifying features cloned or set (p_pid, p_task, p_pool) 520 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 521 * - any other fields set which are used in resource set binding. 522 */ 523 mutex_enter(&p->p_lock); 524 pool_barrier_exit(); 525 mutex_exit(&p->p_lock); 526 527 mutex_enter(&pidlock); 528 mutex_enter(&cp->p_lock); 529 530 /* 531 * Set flags telling the child what (not) to do on exit. 532 */ 533 if (flags & FORK_NOSIGCHLD) 534 cp->p_pidflag |= CLDNOSIGCHLD; 535 if (flags & FORK_WAITPID) 536 cp->p_pidflag |= CLDWAITPID; 537 538 /* 539 * Now that there are lwps and threads attached, add the new 540 * process to the process group. 541 */ 542 pgjoin(cp, p->p_pgidp); 543 cp->p_stat = SRUN; 544 /* 545 * We are now done with all the lwps in the child process. 546 */ 547 t = cp->p_tlist; 548 do { 549 /* 550 * Set the lwp_suspend()ed lwps running. 551 * They will suspend properly at syscall exit. 552 */ 553 if (t->t_proc_flag & TP_HOLDLWP) 554 lwp_create_done(t); 555 else { 556 /* set TS_CREATE to allow continuelwps() to work */ 557 thread_lock(t); 558 ASSERT(t->t_state == TS_STOPPED && 559 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 560 t->t_schedflag |= TS_CREATE; 561 thread_unlock(t); 562 } 563 } while ((t = t->t_forw) != cp->p_tlist); 564 mutex_exit(&cp->p_lock); 565 566 if (isvfork) { 567 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 568 mutex_enter(&p->p_lock); 569 p->p_flag |= SVFWAIT; 570 curthread->t_flag |= T_VFPARENT; 571 DTRACE_PROC1(create, proc_t *, cp); 572 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 573 mutex_exit(&p->p_lock); 574 /* 575 * Grab child's p_lock before dropping pidlock to ensure 576 * the process will not disappear before we set it running. 577 */ 578 mutex_enter(&cp->p_lock); 579 mutex_exit(&pidlock); 580 sigdefault(cp); 581 continuelwps(cp); 582 mutex_exit(&cp->p_lock); 583 } else { 584 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 585 DTRACE_PROC1(create, proc_t *, cp); 586 /* 587 * It is CL_FORKRET's job to drop pidlock. 588 * If we do it here, the process could be set running 589 * and disappear before CL_FORKRET() is called. 590 */ 591 CL_FORKRET(curthread, cp->p_tlist); 592 schedctl_set_cidpri(curthread); 593 ASSERT(MUTEX_NOT_HELD(&pidlock)); 594 } 595 596 return (r.r_vals); 597 598 forklwperr: 599 if (isvfork) { 600 if (avl_numnodes(&p->p_wpage) != 0) { 601 /* restore watchpoints to parent */ 602 as = p->p_as; 603 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 604 as->a_wpage = p->p_wpage; 605 avl_create(&p->p_wpage, wp_compare, 606 sizeof (struct watched_page), 607 offsetof(struct watched_page, wp_link)); 608 as_setwatch(as); 609 AS_LOCK_EXIT(as, &as->a_lock); 610 } 611 } else { 612 if (cp->p_segacct) 613 shmexit(cp); 614 as = cp->p_as; 615 cp->p_as = &kas; 616 as_free(as); 617 } 618 619 if (cp->p_lwpdir) { 620 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 621 if ((lep = ldp->ld_entry) != NULL) 622 kmem_free(lep, sizeof (*lep)); 623 kmem_free(cp->p_lwpdir, 624 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 625 } 626 cp->p_lwpdir = NULL; 627 cp->p_lwpfree = NULL; 628 cp->p_lwpdir_sz = 0; 629 630 if (cp->p_tidhash) 631 kmem_free(cp->p_tidhash, 632 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 633 cp->p_tidhash = NULL; 634 cp->p_tidhash_sz = 0; 635 636 forklwp_fail(cp); 637 fork_fail(cp); 638 rctl_set_free(cp->p_rctls); 639 mutex_enter(&pidlock); 640 641 /* 642 * Detach failed child from task. 643 */ 644 mutex_enter(&cp->p_lock); 645 tk = cp->p_task; 646 task_detach(cp); 647 ASSERT(cp->p_pool->pool_ref > 0); 648 atomic_add_32(&cp->p_pool->pool_ref, -1); 649 mutex_exit(&cp->p_lock); 650 651 orphpp = &p->p_orphan; 652 while (*orphpp != cp) 653 orphpp = &(*orphpp)->p_nextorph; 654 *orphpp = cp->p_nextorph; 655 if (p->p_child == cp) 656 p->p_child = cp->p_sibling; 657 if (cp->p_sibling) 658 cp->p_sibling->p_psibling = cp->p_psibling; 659 if (cp->p_psibling) 660 cp->p_psibling->p_sibling = cp->p_sibling; 661 pid_exit(cp); 662 mutex_exit(&pidlock); 663 664 task_rele(tk); 665 666 mutex_enter(&p->p_lock); 667 pool_barrier_exit(); 668 continuelwps(p); 669 mutex_exit(&p->p_lock); 670 error = EAGAIN; 671 forkerr: 672 return ((int64_t)set_errno(error)); 673 } 674 675 /* 676 * Free allocated resources from getproc() if a fork failed. 677 */ 678 static void 679 fork_fail(proc_t *cp) 680 { 681 uf_info_t *fip = P_FINFO(cp); 682 683 fcnt_add(fip, -1); 684 sigdelq(cp, NULL, 0); 685 686 mutex_enter(&pidlock); 687 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 688 mutex_exit(&pidlock); 689 690 /* 691 * single threaded, so no locking needed here 692 */ 693 crfree(cp->p_cred); 694 695 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 696 697 VN_RELE(PTOU(curproc)->u_cdir); 698 if (PTOU(curproc)->u_rdir) 699 VN_RELE(PTOU(curproc)->u_rdir); 700 if (cp->p_exec) 701 VN_RELE(cp->p_exec); 702 if (cp->p_execdir) 703 VN_RELE(cp->p_execdir); 704 if (PTOU(curproc)->u_cwd) 705 refstr_rele(PTOU(curproc)->u_cwd); 706 } 707 708 /* 709 * Clean up the lwps already created for this child process. 710 * The fork failed while duplicating all the lwps of the parent 711 * and those lwps already created must be freed. 712 * This process is invisible to the rest of the system, 713 * so we don't need to hold p->p_lock to protect the list. 714 */ 715 static void 716 forklwp_fail(proc_t *p) 717 { 718 kthread_t *t; 719 task_t *tk; 720 721 while ((t = p->p_tlist) != NULL) { 722 /* 723 * First remove the lwp from the process's p_tlist. 724 */ 725 if (t != t->t_forw) 726 p->p_tlist = t->t_forw; 727 else 728 p->p_tlist = NULL; 729 p->p_lwpcnt--; 730 t->t_forw->t_back = t->t_back; 731 t->t_back->t_forw = t->t_forw; 732 733 tk = p->p_task; 734 mutex_enter(&p->p_zone->zone_nlwps_lock); 735 tk->tk_nlwps--; 736 tk->tk_proj->kpj_nlwps--; 737 p->p_zone->zone_nlwps--; 738 mutex_exit(&p->p_zone->zone_nlwps_lock); 739 740 ASSERT(t->t_schedctl == NULL); 741 742 if (t->t_door != NULL) { 743 kmem_free(t->t_door, sizeof (door_data_t)); 744 t->t_door = NULL; 745 } 746 lwp_ctmpl_clear(ttolwp(t)); 747 748 /* 749 * Remove the thread from the all threads list. 750 * We need to hold pidlock for this. 751 */ 752 mutex_enter(&pidlock); 753 t->t_next->t_prev = t->t_prev; 754 t->t_prev->t_next = t->t_next; 755 CL_EXIT(t); /* tell the scheduler that we're exiting */ 756 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 757 mutex_exit(&pidlock); 758 759 /* 760 * Let the lgroup load averages know that this thread isn't 761 * going to show up (i.e. un-do what was done on behalf of 762 * this thread by the earlier lgrp_move_thread()). 763 */ 764 kpreempt_disable(); 765 lgrp_move_thread(t, NULL, 1); 766 kpreempt_enable(); 767 768 /* 769 * The thread was created TS_STOPPED. 770 * We change it to TS_FREE to avoid an 771 * ASSERT() panic in thread_free(). 772 */ 773 t->t_state = TS_FREE; 774 thread_rele(t); 775 thread_free(t); 776 } 777 } 778 779 extern struct as kas; 780 781 /* 782 * fork a kernel process. 783 */ 784 int 785 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 786 pid_t pid) 787 { 788 proc_t *p; 789 struct user *up; 790 kthread_t *t; 791 cont_process_t *ctp = NULL; 792 rctl_entity_p_t e; 793 794 ASSERT(cid != sysdccid); 795 ASSERT(cid != syscid || ct == NULL); 796 if (CLASS_KERNEL(cid)) { 797 rctl_alloc_gp_t *init_gp; 798 rctl_set_t *init_set; 799 800 ASSERT(pid != 1); 801 802 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 803 return (EAGAIN); 804 805 /* 806 * Release the hold on the p_exec and p_execdir, these 807 * were acquired in getproc() 808 */ 809 if (p->p_execdir != NULL) 810 VN_RELE(p->p_execdir); 811 if (p->p_exec != NULL) 812 VN_RELE(p->p_exec); 813 p->p_flag |= SNOWAIT; 814 p->p_exec = NULL; 815 p->p_execdir = NULL; 816 817 init_set = rctl_set_create(); 818 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 819 820 /* 821 * kernel processes do not inherit /proc tracing flags. 822 */ 823 sigemptyset(&p->p_sigmask); 824 premptyset(&p->p_fltmask); 825 up = PTOU(p); 826 up->u_systrap = 0; 827 premptyset(&(up->u_entrymask)); 828 premptyset(&(up->u_exitmask)); 829 mutex_enter(&p->p_lock); 830 e.rcep_p.proc = p; 831 e.rcep_t = RCENTITY_PROCESS; 832 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 833 init_gp); 834 mutex_exit(&p->p_lock); 835 836 rctl_prealloc_destroy(init_gp); 837 838 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 839 } else { 840 rctl_alloc_gp_t *init_gp, *default_gp; 841 rctl_set_t *init_set; 842 task_t *tk, *tk_old; 843 klwp_t *lwp; 844 845 if (getproc(&p, pid, GETPROC_USER) < 0) 846 return (EAGAIN); 847 /* 848 * init creates a new task, distinct from the task 849 * containing kernel "processes". 850 */ 851 tk = task_create(0, p->p_zone); 852 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 853 tk->tk_proj->kpj_ntasks++; 854 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 855 856 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 857 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 858 init_set = rctl_set_create(); 859 860 mutex_enter(&pidlock); 861 mutex_enter(&p->p_lock); 862 tk_old = p->p_task; /* switch to new task */ 863 864 task_detach(p); 865 task_begin(tk, p); 866 mutex_exit(&pidlock); 867 868 e.rcep_p.proc = p; 869 e.rcep_t = RCENTITY_PROCESS; 870 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 871 init_gp); 872 rctlproc_default_init(p, default_gp); 873 mutex_exit(&p->p_lock); 874 875 task_rele(tk_old); 876 rctl_prealloc_destroy(default_gp); 877 rctl_prealloc_destroy(init_gp); 878 879 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 880 &curthread->t_hold, cid, 1)) == NULL) { 881 task_t *tk; 882 fork_fail(p); 883 mutex_enter(&pidlock); 884 mutex_enter(&p->p_lock); 885 tk = p->p_task; 886 task_detach(p); 887 ASSERT(p->p_pool->pool_ref > 0); 888 atomic_add_32(&p->p_pool->pool_ref, -1); 889 mutex_exit(&p->p_lock); 890 pid_exit(p); 891 mutex_exit(&pidlock); 892 task_rele(tk); 893 894 return (EAGAIN); 895 } 896 t = lwptot(lwp); 897 898 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 899 B_FALSE); 900 ASSERT(ctp != NULL); 901 if (ct != NULL) 902 *ct = &ctp->conp_contract; 903 } 904 905 ASSERT3U(t->t_tid, ==, 1); 906 p->p_lwpid = 1; 907 mutex_enter(&pidlock); 908 pgjoin(p, p->p_parent->p_pgidp); 909 p->p_stat = SRUN; 910 mutex_enter(&p->p_lock); 911 t->t_proc_flag &= ~TP_HOLDLWP; 912 lwp_create_done(t); 913 mutex_exit(&p->p_lock); 914 mutex_exit(&pidlock); 915 return (0); 916 } 917 918 /* 919 * create a child proc struct. 920 */ 921 static int 922 getproc(proc_t **cpp, pid_t pid, uint_t flags) 923 { 924 proc_t *pp, *cp; 925 pid_t newpid; 926 struct user *uarea; 927 extern uint_t nproc; 928 struct cred *cr; 929 uid_t ruid; 930 zoneid_t zoneid; 931 932 if (!page_mem_avail(tune.t_minarmem)) 933 return (-1); 934 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 935 return (-1); /* no point in starting new processes */ 936 937 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 938 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 939 bzero(cp, sizeof (proc_t)); 940 941 /* 942 * Make proc entry for child process 943 */ 944 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 945 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 946 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 947 #if defined(__x86) 948 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 949 #endif 950 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 951 cp->p_stat = SIDL; 952 cp->p_mstart = gethrtime(); 953 cp->p_as = &kas; 954 /* 955 * p_zone must be set before we call pid_allocate since the process 956 * will be visible after that and code such as prfind_zone will 957 * look at the p_zone field. 958 */ 959 cp->p_zone = pp->p_zone; 960 cp->p_t1_lgrpid = LGRP_NONE; 961 cp->p_tr_lgrpid = LGRP_NONE; 962 963 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 964 if (nproc == v.v_proc) { 965 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 966 cmn_err(CE_WARN, "out of processes"); 967 } 968 goto bad; 969 } 970 971 /* 972 * If not privileged make sure that this user hasn't exceeded 973 * v.v_maxup processes, and that users collectively haven't 974 * exceeded v.v_maxupttl processes. 975 */ 976 mutex_enter(&pidlock); 977 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 978 cr = CRED(); 979 ruid = crgetruid(cr); 980 zoneid = crgetzoneid(cr); 981 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 982 (nproc >= v.v_maxupttl || 983 upcount_get(ruid, zoneid) >= v.v_maxup) && 984 secpolicy_newproc(cr) != 0) { 985 mutex_exit(&pidlock); 986 zcmn_err(zoneid, CE_NOTE, 987 "out of per-user processes for uid %d", ruid); 988 goto bad; 989 } 990 991 /* 992 * Everything is cool, put the new proc on the active process list. 993 * It is already on the pid list and in /proc. 994 * Increment the per uid process count (upcount). 995 */ 996 nproc++; 997 upcount_inc(ruid, zoneid); 998 999 cp->p_next = practive; 1000 practive->p_prev = cp; 1001 practive = cp; 1002 1003 cp->p_ignore = pp->p_ignore; 1004 cp->p_siginfo = pp->p_siginfo; 1005 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1006 cp->p_sessp = pp->p_sessp; 1007 sess_hold(pp); 1008 cp->p_exec = pp->p_exec; 1009 cp->p_execdir = pp->p_execdir; 1010 cp->p_brand = pp->p_brand; 1011 if (PROC_IS_BRANDED(pp)) 1012 BROP(pp)->b_copy_procdata(cp, pp); 1013 1014 cp->p_bssbase = pp->p_bssbase; 1015 cp->p_brkbase = pp->p_brkbase; 1016 cp->p_brksize = pp->p_brksize; 1017 cp->p_brkpageszc = pp->p_brkpageszc; 1018 cp->p_stksize = pp->p_stksize; 1019 cp->p_stkpageszc = pp->p_stkpageszc; 1020 cp->p_stkprot = pp->p_stkprot; 1021 cp->p_datprot = pp->p_datprot; 1022 cp->p_usrstack = pp->p_usrstack; 1023 cp->p_model = pp->p_model; 1024 cp->p_ppid = pp->p_pid; 1025 cp->p_ancpid = pp->p_pid; 1026 cp->p_portcnt = pp->p_portcnt; 1027 1028 /* 1029 * Initialize watchpoint structures 1030 */ 1031 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1032 offsetof(struct watched_area, wa_link)); 1033 1034 /* 1035 * Initialize immediate resource control values. 1036 */ 1037 cp->p_stk_ctl = pp->p_stk_ctl; 1038 cp->p_fsz_ctl = pp->p_fsz_ctl; 1039 cp->p_vmem_ctl = pp->p_vmem_ctl; 1040 cp->p_fno_ctl = pp->p_fno_ctl; 1041 1042 /* 1043 * Link up to parent-child-sibling chain. No need to lock 1044 * in general since only a call to freeproc() (done by the 1045 * same parent as newproc()) diddles with the child chain. 1046 */ 1047 cp->p_sibling = pp->p_child; 1048 if (pp->p_child) 1049 pp->p_child->p_psibling = cp; 1050 1051 cp->p_parent = pp; 1052 pp->p_child = cp; 1053 1054 cp->p_child_ns = NULL; 1055 cp->p_sibling_ns = NULL; 1056 1057 cp->p_nextorph = pp->p_orphan; 1058 cp->p_nextofkin = pp; 1059 pp->p_orphan = cp; 1060 1061 /* 1062 * Inherit profiling state; do not inherit REALPROF profiling state. 1063 */ 1064 cp->p_prof = pp->p_prof; 1065 cp->p_rprof_cyclic = CYCLIC_NONE; 1066 1067 /* 1068 * Inherit pool pointer from the parent. Kernel processes are 1069 * always bound to the default pool. 1070 */ 1071 mutex_enter(&pp->p_lock); 1072 if (flags & GETPROC_KERNEL) { 1073 cp->p_pool = pool_default; 1074 cp->p_flag |= SSYS; 1075 } else { 1076 cp->p_pool = pp->p_pool; 1077 } 1078 atomic_add_32(&cp->p_pool->pool_ref, 1); 1079 mutex_exit(&pp->p_lock); 1080 1081 /* 1082 * Add the child process to the current task. Kernel processes 1083 * are always attached to task0. 1084 */ 1085 mutex_enter(&cp->p_lock); 1086 if (flags & GETPROC_KERNEL) 1087 task_attach(task0p, cp); 1088 else 1089 task_attach(pp->p_task, cp); 1090 mutex_exit(&cp->p_lock); 1091 mutex_exit(&pidlock); 1092 1093 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1094 offsetof(contract_t, ct_ctlist)); 1095 1096 /* 1097 * Duplicate any audit information kept in the process table 1098 */ 1099 if (audit_active) /* copy audit data to cp */ 1100 audit_newproc(cp); 1101 1102 crhold(cp->p_cred = cr); 1103 1104 /* 1105 * Bump up the counts on the file structures pointed at by the 1106 * parent's file table since the child will point at them too. 1107 */ 1108 fcnt_add(P_FINFO(pp), 1); 1109 1110 if (PTOU(pp)->u_cdir) { 1111 VN_HOLD(PTOU(pp)->u_cdir); 1112 } else { 1113 ASSERT(pp == &p0); 1114 /* 1115 * We must be at or before vfs_mountroot(); it will take care of 1116 * assigning our current directory. 1117 */ 1118 } 1119 if (PTOU(pp)->u_rdir) 1120 VN_HOLD(PTOU(pp)->u_rdir); 1121 if (PTOU(pp)->u_cwd) 1122 refstr_hold(PTOU(pp)->u_cwd); 1123 1124 /* 1125 * copy the parent's uarea. 1126 */ 1127 uarea = PTOU(cp); 1128 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1129 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1130 1131 gethrestime(&uarea->u_start); 1132 uarea->u_ticks = ddi_get_lbolt(); 1133 uarea->u_mem = rm_asrss(pp->p_as); 1134 uarea->u_acflag = AFORK; 1135 1136 /* 1137 * If inherit-on-fork, copy /proc tracing flags to child. 1138 */ 1139 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1140 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1141 cp->p_sigmask = pp->p_sigmask; 1142 cp->p_fltmask = pp->p_fltmask; 1143 } else { 1144 sigemptyset(&cp->p_sigmask); 1145 premptyset(&cp->p_fltmask); 1146 uarea->u_systrap = 0; 1147 premptyset(&uarea->u_entrymask); 1148 premptyset(&uarea->u_exitmask); 1149 } 1150 /* 1151 * If microstate accounting is being inherited, mark child 1152 */ 1153 if ((pp->p_flag & SMSFORK) != 0) 1154 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1155 1156 /* 1157 * Inherit fixalignment flag from the parent 1158 */ 1159 cp->p_fixalignment = pp->p_fixalignment; 1160 1161 if (cp->p_exec) 1162 VN_HOLD(cp->p_exec); 1163 if (cp->p_execdir) 1164 VN_HOLD(cp->p_execdir); 1165 *cpp = cp; 1166 return (0); 1167 1168 bad: 1169 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1170 1171 mutex_destroy(&cp->p_crlock); 1172 mutex_destroy(&cp->p_pflock); 1173 #if defined(__x86) 1174 mutex_destroy(&cp->p_ldtlock); 1175 #endif 1176 if (newpid != -1) { 1177 proc_entry_free(cp->p_pidp); 1178 (void) pid_rele(cp->p_pidp); 1179 } 1180 kmem_cache_free(process_cache, cp); 1181 1182 /* 1183 * We most likely got into this situation because some process is 1184 * forking out of control. As punishment, put it to sleep for a 1185 * bit so it can't eat the machine alive. Sleep interval is chosen 1186 * to allow no more than one fork failure per cpu per clock tick 1187 * on average (yes, I just made this up). This has two desirable 1188 * properties: (1) it sets a constant limit on the fork failure 1189 * rate, and (2) the busier the system is, the harsher the penalty 1190 * for abusing it becomes. 1191 */ 1192 INCR_COUNT(&fork_fail_pending, &pidlock); 1193 delay(fork_fail_pending / ncpus + 1); 1194 DECR_COUNT(&fork_fail_pending, &pidlock); 1195 1196 return (-1); /* out of memory or proc slots */ 1197 } 1198 1199 /* 1200 * Release virtual memory. 1201 * In the case of vfork(), the child was given exclusive access to its 1202 * parent's address space. The parent is waiting in vfwait() for the 1203 * child to release its exclusive claim via relvm(). 1204 */ 1205 void 1206 relvm() 1207 { 1208 proc_t *p = curproc; 1209 1210 ASSERT((unsigned)p->p_lwpcnt <= 1); 1211 1212 prrelvm(); /* inform /proc */ 1213 1214 if (p->p_flag & SVFORK) { 1215 proc_t *pp = p->p_parent; 1216 /* 1217 * The child process is either exec'ing or exit'ing. 1218 * The child is now separated from the parent's address 1219 * space. The parent process is made dispatchable. 1220 * 1221 * This is a delicate locking maneuver, involving 1222 * both the parent's p_lock and the child's p_lock. 1223 * As soon as the SVFORK flag is turned off, the 1224 * parent is free to run, but it must not run until 1225 * we wake it up using its p_cv because it might 1226 * exit and we would be referencing invalid memory. 1227 * Therefore, we hold the parent with its p_lock 1228 * while protecting our p_flags with our own p_lock. 1229 */ 1230 try_again: 1231 mutex_enter(&p->p_lock); /* grab child's lock first */ 1232 prbarrier(p); /* make sure /proc is blocked out */ 1233 mutex_enter(&pp->p_lock); 1234 1235 /* 1236 * Check if parent is locked by /proc. 1237 */ 1238 if (pp->p_proc_flag & P_PR_LOCK) { 1239 /* 1240 * Delay until /proc is done with the parent. 1241 * We must drop our (the child's) p->p_lock, wait 1242 * via prbarrier() on the parent, then start over. 1243 */ 1244 mutex_exit(&p->p_lock); 1245 prbarrier(pp); 1246 mutex_exit(&pp->p_lock); 1247 goto try_again; 1248 } 1249 p->p_flag &= ~SVFORK; 1250 kpreempt_disable(); 1251 p->p_as = &kas; 1252 1253 /* 1254 * notify hat of change in thread's address space 1255 */ 1256 hat_thread_exit(curthread); 1257 kpreempt_enable(); 1258 1259 /* 1260 * child sizes are copied back to parent because 1261 * child may have grown. 1262 */ 1263 pp->p_brkbase = p->p_brkbase; 1264 pp->p_brksize = p->p_brksize; 1265 pp->p_stksize = p->p_stksize; 1266 /* 1267 * The parent is no longer waiting for the vfork()d child. 1268 * Restore the parent's watched pages, if any. This is 1269 * safe because we know the parent is not locked by /proc 1270 */ 1271 pp->p_flag &= ~SVFWAIT; 1272 if (avl_numnodes(&pp->p_wpage) != 0) { 1273 pp->p_as->a_wpage = pp->p_wpage; 1274 avl_create(&pp->p_wpage, wp_compare, 1275 sizeof (struct watched_page), 1276 offsetof(struct watched_page, wp_link)); 1277 } 1278 cv_signal(&pp->p_cv); 1279 mutex_exit(&pp->p_lock); 1280 mutex_exit(&p->p_lock); 1281 } else { 1282 if (p->p_as != &kas) { 1283 struct as *as; 1284 1285 if (p->p_segacct) 1286 shmexit(p); 1287 1288 /* 1289 * We grab p_lock for the benefit of /proc 1290 */ 1291 kpreempt_disable(); 1292 mutex_enter(&p->p_lock); 1293 prbarrier(p); /* make sure /proc is blocked out */ 1294 as = p->p_as; 1295 p->p_as = &kas; 1296 mutex_exit(&p->p_lock); 1297 1298 /* 1299 * notify hat of change in thread's address space 1300 */ 1301 hat_thread_exit(curthread); 1302 kpreempt_enable(); 1303 1304 as_free(as); 1305 p->p_tr_lgrpid = LGRP_NONE; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * Wait for child to exec or exit. 1312 * Called by parent of vfork'ed process. 1313 * See important comments in relvm(), above. 1314 */ 1315 void 1316 vfwait(pid_t pid) 1317 { 1318 int signalled = 0; 1319 proc_t *pp = ttoproc(curthread); 1320 proc_t *cp; 1321 1322 /* 1323 * Wait for child to exec or exit. 1324 */ 1325 for (;;) { 1326 mutex_enter(&pidlock); 1327 cp = prfind(pid); 1328 if (cp == NULL || cp->p_parent != pp) { 1329 /* 1330 * Child has exit()ed. 1331 */ 1332 mutex_exit(&pidlock); 1333 break; 1334 } 1335 /* 1336 * Grab the child's p_lock before releasing pidlock. 1337 * Otherwise, the child could exit and we would be 1338 * referencing invalid memory. 1339 */ 1340 mutex_enter(&cp->p_lock); 1341 mutex_exit(&pidlock); 1342 if (!(cp->p_flag & SVFORK)) { 1343 /* 1344 * Child has exec()ed or is exit()ing. 1345 */ 1346 mutex_exit(&cp->p_lock); 1347 break; 1348 } 1349 mutex_enter(&pp->p_lock); 1350 mutex_exit(&cp->p_lock); 1351 /* 1352 * We might be waked up spuriously from the cv_wait(). 1353 * We have to do the whole operation over again to be 1354 * sure the child's SVFORK flag really is turned off. 1355 * We cannot make reference to the child because it can 1356 * exit before we return and we would be referencing 1357 * invalid memory. 1358 * 1359 * Because this is potentially a very long-term wait, 1360 * we call cv_wait_sig() (for its jobcontrol and /proc 1361 * side-effects) unless there is a current signal, in 1362 * which case we use cv_wait() because we cannot return 1363 * from this function until the child has released the 1364 * address space. Calling cv_wait_sig() with a current 1365 * signal would lead to an indefinite loop here because 1366 * cv_wait_sig() returns immediately in this case. 1367 */ 1368 if (signalled) 1369 cv_wait(&pp->p_cv, &pp->p_lock); 1370 else 1371 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1372 mutex_exit(&pp->p_lock); 1373 } 1374 1375 /* restore watchpoints to parent */ 1376 if (pr_watch_active(pp)) { 1377 struct as *as = pp->p_as; 1378 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1379 as_setwatch(as); 1380 AS_LOCK_EXIT(as, &as->a_lock); 1381 } 1382 1383 mutex_enter(&pp->p_lock); 1384 prbarrier(pp); /* barrier against /proc locking */ 1385 continuelwps(pp); 1386 mutex_exit(&pp->p_lock); 1387 } 1388