1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/sysmacros.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/policy.h> 40 #include <sys/user.h> 41 #include <sys/systm.h> 42 #include <sys/cpuvar.h> 43 #include <sys/vfs.h> 44 #include <sys/vnode.h> 45 #include <sys/file.h> 46 #include <sys/errno.h> 47 #include <sys/time.h> 48 #include <sys/proc.h> 49 #include <sys/cmn_err.h> 50 #include <sys/acct.h> 51 #include <sys/tuneable.h> 52 #include <sys/class.h> 53 #include <sys/kmem.h> 54 #include <sys/session.h> 55 #include <sys/ucontext.h> 56 #include <sys/stack.h> 57 #include <sys/procfs.h> 58 #include <sys/prsystm.h> 59 #include <sys/vmsystm.h> 60 #include <sys/vtrace.h> 61 #include <sys/debug.h> 62 #include <sys/shm_impl.h> 63 #include <sys/door_data.h> 64 #include <vm/as.h> 65 #include <vm/rm.h> 66 #include <c2/audit.h> 67 #include <sys/var.h> 68 #include <sys/schedctl.h> 69 #include <sys/utrap.h> 70 #include <sys/task.h> 71 #include <sys/resource.h> 72 #include <sys/cyclic.h> 73 #include <sys/lgrp.h> 74 #include <sys/rctl.h> 75 #include <sys/contract_impl.h> 76 #include <sys/contract/process_impl.h> 77 #include <sys/list.h> 78 #include <sys/dtrace.h> 79 #include <sys/pool.h> 80 #include <sys/zone.h> 81 #include <sys/sdt.h> 82 #include <sys/class.h> 83 #include <sys/corectl.h> 84 85 static int64_t cfork(int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1)); 111 } 112 113 /* 114 * fork1 system call 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1)); 120 } 121 122 /* ARGSUSED */ 123 static int64_t 124 cfork(int isvfork, int isfork1) 125 { 126 proc_t *p = ttoproc(curthread); 127 struct as *as; 128 proc_t *cp, **orphpp; 129 klwp_t *clone; 130 kthread_t *t; 131 task_t *tk; 132 rval_t r; 133 int error; 134 int i; 135 rctl_set_t *dup_set; 136 rctl_alloc_gp_t *dup_gp; 137 rctl_entity_p_t e; 138 lwpdir_t *ldp; 139 lwpent_t *lep; 140 lwpent_t *clep; 141 142 /* 143 * fork is not supported for the /proc agent lwp. 144 */ 145 if (curthread == p->p_agenttp) { 146 error = ENOTSUP; 147 goto forkerr; 148 } 149 150 if ((error = secpolicy_basic_fork(CRED())) != 0) 151 goto forkerr; 152 153 /* 154 * If the calling lwp is doing a fork1() then the 155 * other lwps in this process are not duplicated and 156 * don't need to be held where their kernel stacks can be 157 * cloned. If doing forkall(), the process is held with 158 * SHOLDFORK, so that the lwps are at a point where their 159 * stacks can be copied which is on entry or exit from 160 * the kernel. 161 */ 162 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 163 aston(curthread); 164 error = EINTR; 165 goto forkerr; 166 } 167 168 /* 169 * If this is vfork(), cancel any suspend request we might 170 * have gotten from some other thread via lwp_suspend(). 171 * Otherwise we could end up with a deadlock on return 172 * from the vfork() in both the parent and the child. 173 */ 174 if (isvfork) 175 curthread->t_proc_flag &= ~TP_HOLDLWP; 176 177 #if defined(__sparc) 178 /* 179 * Ensure that the user stack is fully constructed 180 * before creating the child process structure. 181 */ 182 (void) flush_user_windows_to_stack(NULL); 183 #endif 184 185 /* 186 * Prevent our resource set associations from being changed during fork. 187 */ 188 mutex_enter(&p->p_lock); 189 pool_barrier_enter(); 190 mutex_exit(&p->p_lock); 191 192 /* 193 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 194 */ 195 if (getproc(&cp, 0) < 0) { 196 mutex_enter(&p->p_lock); 197 pool_barrier_exit(); 198 continuelwps(p); 199 mutex_exit(&p->p_lock); 200 error = EAGAIN; 201 goto forkerr; 202 } 203 204 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 205 206 /* 207 * Assign an address space to child 208 */ 209 if (isvfork) { 210 /* 211 * Clear any watched areas and remember the 212 * watched pages for restoring in vfwait(). 213 */ 214 as = p->p_as; 215 if (avl_numnodes(&as->a_wpage) != 0) { 216 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 217 as_clearwatch(as); 218 p->p_wpage = as->a_wpage; 219 avl_create(&as->a_wpage, wp_compare, 220 sizeof (struct watched_page), 221 offsetof(struct watched_page, wp_link)); 222 AS_LOCK_EXIT(as, &as->a_lock); 223 } 224 cp->p_as = as; 225 cp->p_flag |= SVFORK; 226 } else { 227 /* 228 * We need to hold P_PR_LOCK until the address space has 229 * been duplicated and we've had a chance to remove from the 230 * child any DTrace probes that were in the parent. Holding 231 * P_PR_LOCK prevents any new probes from being added and any 232 * extant probes from being removed. 233 */ 234 mutex_enter(&p->p_lock); 235 sprlock_proc(p); 236 mutex_exit(&p->p_lock); 237 238 error = as_dup(p->p_as, &cp->p_as); 239 if (error != 0) { 240 fork_fail(cp); 241 mutex_enter(&pidlock); 242 orphpp = &p->p_orphan; 243 while (*orphpp != cp) 244 orphpp = &(*orphpp)->p_nextorph; 245 *orphpp = cp->p_nextorph; 246 ASSERT(p->p_child == cp); 247 p->p_child = cp->p_sibling; 248 if (p->p_child) { 249 p->p_child->p_psibling = NULL; 250 } 251 mutex_enter(&cp->p_lock); 252 tk = cp->p_task; 253 task_detach(cp); 254 ASSERT(cp->p_pool->pool_ref > 0); 255 atomic_add_32(&cp->p_pool->pool_ref, -1); 256 mutex_exit(&cp->p_lock); 257 pid_exit(cp); 258 mutex_exit(&pidlock); 259 task_rele(tk); 260 261 mutex_enter(&p->p_lock); 262 pool_barrier_exit(); 263 continuelwps(p); 264 sprunlock(p); 265 /* 266 * Preserve ENOMEM error condition but 267 * map all others to EAGAIN. 268 */ 269 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 270 goto forkerr; 271 } 272 /* Duplicate parent's shared memory */ 273 if (p->p_segacct) 274 shmfork(p, cp); 275 276 if (p->p_dtrace_helpers != NULL) { 277 ASSERT(dtrace_helpers_fork != NULL); 278 (*dtrace_helpers_fork)(p, cp); 279 } 280 281 /* 282 * Remove all DTrace tracepoints from the child process. 283 */ 284 mutex_enter(&p->p_lock); 285 if (p->p_dtrace_count > 0) 286 dtrace_fasttrap_fork(p, cp); 287 sprunlock(p); 288 } 289 290 /* 291 * Duplicate parent's resource controls. 292 */ 293 dup_set = rctl_set_create(); 294 for (;;) { 295 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 296 mutex_enter(&p->p_rctls->rcs_lock); 297 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 298 break; 299 mutex_exit(&p->p_rctls->rcs_lock); 300 rctl_prealloc_destroy(dup_gp); 301 } 302 e.rcep_p.proc = cp; 303 e.rcep_t = RCENTITY_PROCESS; 304 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 305 RCD_DUP | RCD_CALLBACK); 306 mutex_exit(&p->p_rctls->rcs_lock); 307 308 rctl_prealloc_destroy(dup_gp); 309 310 /* 311 * Allocate the child's lwp directory and lwpid hash table. 312 */ 313 if (isfork1) 314 cp->p_lwpdir_sz = 2; 315 else 316 cp->p_lwpdir_sz = p->p_lwpdir_sz; 317 cp->p_lwpdir = cp->p_lwpfree = ldp = 318 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 319 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 320 ldp->ld_next = ldp + 1; 321 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 322 cp->p_tidhash = 323 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 324 325 /* 326 * Duplicate parent's lwps. 327 * Mutual exclusion is not needed because the process is 328 * in the hold state and only the current lwp is running. 329 */ 330 klgrpset_clear(cp->p_lgrpset); 331 if (isfork1) { 332 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 333 if (clone == NULL) 334 goto forklwperr; 335 /* 336 * Inherit only the lwp_wait()able flag, 337 * Daemon threads should not call fork1(), but oh well... 338 */ 339 lwptot(clone)->t_proc_flag |= 340 (curthread->t_proc_flag & TP_TWAIT); 341 } else { 342 /* this is forkall(), no one can be in lwp_wait() */ 343 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 344 /* for each entry in the parent's lwp directory... */ 345 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 346 klwp_t *clwp; 347 kthread_t *ct; 348 349 if ((lep = ldp->ld_entry) == NULL) 350 continue; 351 352 if ((t = lep->le_thread) != NULL) { 353 clwp = forklwp(ttolwp(t), cp, t->t_tid); 354 if (clwp == NULL) 355 goto forklwperr; 356 ct = lwptot(clwp); 357 /* 358 * Inherit lwp_wait()able and daemon flags. 359 */ 360 ct->t_proc_flag |= 361 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 362 /* 363 * Keep track of the clone of curthread to 364 * post return values through lwp_setrval(). 365 * Mark other threads for special treatment 366 * by lwp_rtt() / post_syscall(). 367 */ 368 if (t == curthread) 369 clone = clwp; 370 else 371 ct->t_flag |= T_FORKALL; 372 } else { 373 /* 374 * Replicate zombie lwps in the child. 375 */ 376 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 377 clep->le_lwpid = lep->le_lwpid; 378 clep->le_start = lep->le_start; 379 lwp_hash_in(cp, clep); 380 } 381 } 382 } 383 384 /* 385 * Put new process in the parent's process contract, or put it 386 * in a new one if there is an active process template. Send a 387 * fork event (if requested) to whatever contract the child is 388 * a member of. Fails if the parent has been SIGKILLed. 389 */ 390 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 391 goto forklwperr; 392 393 /* 394 * No fork failures occur beyond this point. 395 */ 396 397 cp->p_lwpid = p->p_lwpid; 398 if (!isfork1) { 399 cp->p_lwpdaemon = p->p_lwpdaemon; 400 cp->p_zombcnt = p->p_zombcnt; 401 /* 402 * If the parent's lwp ids have wrapped around, so have the 403 * child's. 404 */ 405 cp->p_flag |= p->p_flag & SLWPWRAP; 406 } 407 408 corectl_path_hold(cp->p_corefile = p->p_corefile); 409 corectl_content_hold(cp->p_content = p->p_content); 410 411 #if defined(__x86) 412 /* 413 * Get the right ldt descr for the child. 414 */ 415 (void) ldt_dup(p, cp); 416 #endif 417 418 #ifdef __sparc 419 utrap_dup(p, cp); 420 #endif 421 /* 422 * If the child process has been marked to stop on exit 423 * from this fork, arrange for all other lwps to stop in 424 * sympathy with the active lwp. 425 */ 426 if (PTOU(cp)->u_systrap && 427 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 428 mutex_enter(&cp->p_lock); 429 t = cp->p_tlist; 430 do { 431 t->t_proc_flag |= TP_PRSTOP; 432 aston(t); /* so TP_PRSTOP will be seen */ 433 } while ((t = t->t_forw) != cp->p_tlist); 434 mutex_exit(&cp->p_lock); 435 } 436 /* 437 * If the parent process has been marked to stop on exit 438 * from this fork, and its asynchronous-stop flag has not 439 * been set, arrange for all other lwps to stop before 440 * they return back to user level. 441 */ 442 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 443 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 444 mutex_enter(&p->p_lock); 445 t = p->p_tlist; 446 do { 447 t->t_proc_flag |= TP_PRSTOP; 448 aston(t); /* so TP_PRSTOP will be seen */ 449 } while ((t = t->t_forw) != p->p_tlist); 450 mutex_exit(&p->p_lock); 451 } 452 453 /* set return values for child */ 454 lwp_setrval(clone, p->p_pid, 1); 455 456 /* set return values for parent */ 457 r.r_val1 = (int)cp->p_pid; 458 r.r_val2 = 0; 459 460 /* 461 * pool_barrier_exit() can now be called because the child process has: 462 * - all identifying features cloned or set (p_pid, p_task, p_pool) 463 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 464 * - any other fields set which are used in resource set binding. 465 */ 466 mutex_enter(&p->p_lock); 467 pool_barrier_exit(); 468 mutex_exit(&p->p_lock); 469 470 mutex_enter(&pidlock); 471 mutex_enter(&cp->p_lock); 472 473 /* 474 * Now that there are lwps and threads attached, add the new 475 * process to the process group. 476 */ 477 pgjoin(cp, p->p_pgidp); 478 cp->p_stat = SRUN; 479 /* 480 * We are now done with all the lwps in the child process. 481 */ 482 t = cp->p_tlist; 483 do { 484 /* 485 * Set the lwp_suspend()ed lwps running. 486 * They will suspend properly at syscall exit. 487 */ 488 if (t->t_proc_flag & TP_HOLDLWP) 489 lwp_create_done(t); 490 else { 491 /* set TS_CREATE to allow continuelwps() to work */ 492 thread_lock(t); 493 ASSERT(t->t_state == TS_STOPPED && 494 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 495 t->t_schedflag |= TS_CREATE; 496 thread_unlock(t); 497 } 498 } while ((t = t->t_forw) != cp->p_tlist); 499 mutex_exit(&cp->p_lock); 500 501 if (isvfork) { 502 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 503 mutex_enter(&p->p_lock); 504 p->p_flag |= SVFWAIT; 505 DTRACE_PROC1(create, proc_t *, cp); 506 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 507 mutex_exit(&p->p_lock); 508 /* 509 * Grab child's p_lock before dropping pidlock to ensure 510 * the process will not disappear before we set it running. 511 */ 512 mutex_enter(&cp->p_lock); 513 mutex_exit(&pidlock); 514 sigdefault(cp); 515 continuelwps(cp); 516 mutex_exit(&cp->p_lock); 517 } else { 518 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 519 DTRACE_PROC1(create, proc_t *, cp); 520 /* 521 * It is CL_FORKRET's job to drop pidlock. 522 * If we do it here, the process could be set running 523 * and disappear before CL_FORKRET() is called. 524 */ 525 CL_FORKRET(curthread, cp->p_tlist); 526 ASSERT(MUTEX_NOT_HELD(&pidlock)); 527 } 528 529 return (r.r_vals); 530 531 forklwperr: 532 if (isvfork) { 533 if (avl_numnodes(&p->p_wpage) != 0) { 534 /* restore watchpoints to parent */ 535 as = p->p_as; 536 AS_LOCK_ENTER(as, &as->a_lock, 537 RW_WRITER); 538 as->a_wpage = p->p_wpage; 539 avl_create(&p->p_wpage, wp_compare, 540 sizeof (struct watched_page), 541 offsetof(struct watched_page, wp_link)); 542 as_setwatch(as); 543 AS_LOCK_EXIT(as, &as->a_lock); 544 } 545 } else { 546 if (cp->p_segacct) 547 shmexit(cp); 548 as = cp->p_as; 549 cp->p_as = &kas; 550 as_free(as); 551 } 552 553 if (cp->p_lwpdir) { 554 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 555 if ((lep = ldp->ld_entry) != NULL) 556 kmem_free(lep, sizeof (*lep)); 557 kmem_free(cp->p_lwpdir, 558 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 559 } 560 cp->p_lwpdir = NULL; 561 cp->p_lwpfree = NULL; 562 cp->p_lwpdir_sz = 0; 563 564 if (cp->p_tidhash) 565 kmem_free(cp->p_tidhash, 566 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 567 cp->p_tidhash = NULL; 568 cp->p_tidhash_sz = 0; 569 570 forklwp_fail(cp); 571 fork_fail(cp); 572 rctl_set_free(cp->p_rctls); 573 mutex_enter(&pidlock); 574 575 /* 576 * Detach failed child from task. 577 */ 578 mutex_enter(&cp->p_lock); 579 tk = cp->p_task; 580 task_detach(cp); 581 ASSERT(cp->p_pool->pool_ref > 0); 582 atomic_add_32(&cp->p_pool->pool_ref, -1); 583 mutex_exit(&cp->p_lock); 584 585 orphpp = &p->p_orphan; 586 while (*orphpp != cp) 587 orphpp = &(*orphpp)->p_nextorph; 588 *orphpp = cp->p_nextorph; 589 ASSERT(p->p_child == cp); 590 p->p_child = cp->p_sibling; 591 if (p->p_child) { 592 p->p_child->p_psibling = NULL; 593 } 594 pid_exit(cp); 595 mutex_exit(&pidlock); 596 597 task_rele(tk); 598 599 mutex_enter(&p->p_lock); 600 pool_barrier_exit(); 601 continuelwps(p); 602 mutex_exit(&p->p_lock); 603 error = EAGAIN; 604 forkerr: 605 return ((int64_t)set_errno(error)); 606 } 607 608 /* 609 * Free allocated resources from getproc() if a fork failed. 610 */ 611 static void 612 fork_fail(proc_t *cp) 613 { 614 uf_info_t *fip = P_FINFO(cp); 615 616 fcnt_add(fip, -1); 617 sigdelq(cp, NULL, 0); 618 619 mutex_enter(&pidlock); 620 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 621 mutex_exit(&pidlock); 622 623 /* 624 * single threaded, so no locking needed here 625 */ 626 crfree(cp->p_cred); 627 628 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 629 630 VN_RELE(u.u_cdir); 631 if (u.u_rdir) 632 VN_RELE(u.u_rdir); 633 if (cp->p_exec) 634 VN_RELE(cp->p_exec); 635 if (cp->p_execdir) 636 VN_RELE(cp->p_execdir); 637 if (u.u_cwd) 638 refstr_rele(u.u_cwd); 639 } 640 641 /* 642 * Clean up the lwps already created for this child process. 643 * The fork failed while duplicating all the lwps of the parent 644 * and those lwps already created must be freed. 645 * This process is invisible to the rest of the system, 646 * so we don't need to hold p->p_lock to protect the list. 647 */ 648 static void 649 forklwp_fail(proc_t *p) 650 { 651 kthread_t *t; 652 task_t *tk; 653 654 while ((t = p->p_tlist) != NULL) { 655 /* 656 * First remove the lwp from the process's p_tlist. 657 */ 658 if (t != t->t_forw) 659 p->p_tlist = t->t_forw; 660 else 661 p->p_tlist = NULL; 662 p->p_lwpcnt--; 663 t->t_forw->t_back = t->t_back; 664 t->t_back->t_forw = t->t_forw; 665 666 tk = p->p_task; 667 mutex_enter(&p->p_zone->zone_nlwps_lock); 668 tk->tk_nlwps--; 669 tk->tk_proj->kpj_nlwps--; 670 p->p_zone->zone_nlwps--; 671 mutex_exit(&p->p_zone->zone_nlwps_lock); 672 673 ASSERT(t->t_schedctl == NULL); 674 675 if (t->t_door != NULL) { 676 kmem_free(t->t_door, sizeof (door_data_t)); 677 t->t_door = NULL; 678 } 679 lwp_ctmpl_clear(ttolwp(t)); 680 681 /* 682 * Remove the thread from the all threads list. 683 * We need to hold pidlock for this. 684 */ 685 mutex_enter(&pidlock); 686 t->t_next->t_prev = t->t_prev; 687 t->t_prev->t_next = t->t_next; 688 CL_EXIT(t); /* tell the scheduler that we're exiting */ 689 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 690 mutex_exit(&pidlock); 691 692 /* 693 * Let the lgroup load averages know that this thread isn't 694 * going to show up (i.e. un-do what was done on behalf of 695 * this thread by the earlier lgrp_move_thread()). 696 */ 697 kpreempt_disable(); 698 lgrp_move_thread(t, NULL, 1); 699 kpreempt_enable(); 700 701 /* 702 * The thread was created TS_STOPPED. 703 * We change it to TS_FREE to avoid an 704 * ASSERT() panic in thread_free(). 705 */ 706 t->t_state = TS_FREE; 707 thread_rele(t); 708 thread_free(t); 709 } 710 } 711 712 extern struct as kas; 713 714 /* 715 * fork a kernel process. 716 */ 717 int 718 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 719 { 720 proc_t *p; 721 struct user *up; 722 klwp_t *lwp; 723 cont_process_t *ctp = NULL; 724 rctl_entity_p_t e; 725 726 ASSERT(!(cid == syscid && ct != NULL)); 727 if (cid == syscid) { 728 rctl_alloc_gp_t *init_gp; 729 rctl_set_t *init_set; 730 731 if (getproc(&p, 1) < 0) 732 return (EAGAIN); 733 734 p->p_flag |= SNOWAIT; 735 p->p_exec = NULL; 736 p->p_execdir = NULL; 737 738 init_set = rctl_set_create(); 739 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 740 741 /* 742 * kernel processes do not inherit /proc tracing flags. 743 */ 744 sigemptyset(&p->p_sigmask); 745 premptyset(&p->p_fltmask); 746 up = PTOU(p); 747 up->u_systrap = 0; 748 premptyset(&(up->u_entrymask)); 749 premptyset(&(up->u_exitmask)); 750 mutex_enter(&p->p_lock); 751 e.rcep_p.proc = p; 752 e.rcep_t = RCENTITY_PROCESS; 753 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 754 init_gp); 755 mutex_exit(&p->p_lock); 756 757 rctl_prealloc_destroy(init_gp); 758 } else { 759 rctl_alloc_gp_t *init_gp, *default_gp; 760 rctl_set_t *init_set; 761 task_t *tk, *tk_old; 762 763 if (getproc(&p, 0) < 0) 764 return (EAGAIN); 765 /* 766 * init creates a new task, distinct from the task 767 * containing kernel "processes". 768 */ 769 tk = task_create(0, p->p_zone); 770 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 771 tk->tk_proj->kpj_ntasks++; 772 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 773 774 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 775 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 776 init_set = rctl_set_create(); 777 778 mutex_enter(&pidlock); 779 mutex_enter(&p->p_lock); 780 tk_old = p->p_task; /* switch to new task */ 781 782 task_detach(p); 783 task_begin(tk, p); 784 mutex_exit(&pidlock); 785 786 e.rcep_p.proc = p; 787 e.rcep_t = RCENTITY_PROCESS; 788 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 789 init_gp); 790 rctlproc_default_init(p, default_gp); 791 mutex_exit(&p->p_lock); 792 793 task_rele(tk_old); 794 rctl_prealloc_destroy(default_gp); 795 rctl_prealloc_destroy(init_gp); 796 } 797 798 p->p_as = &kas; 799 800 #if defined(__x86) 801 (void) ldt_dup(&p0, p); /* Get the default ldt descr */ 802 #endif 803 804 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 805 &curthread->t_hold, cid, 1)) == NULL) { 806 task_t *tk; 807 fork_fail(p); 808 mutex_enter(&pidlock); 809 mutex_enter(&p->p_lock); 810 tk = p->p_task; 811 task_detach(p); 812 ASSERT(p->p_pool->pool_ref > 0); 813 atomic_add_32(&p->p_pool->pool_ref, -1); 814 mutex_exit(&p->p_lock); 815 pid_exit(p); 816 mutex_exit(&pidlock); 817 task_rele(tk); 818 819 return (EAGAIN); 820 } 821 822 if (cid != syscid) { 823 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 824 B_FALSE); 825 ASSERT(ctp != NULL); 826 if (ct != NULL) 827 *ct = &ctp->conp_contract; 828 } 829 830 p->p_lwpid = 1; 831 mutex_enter(&pidlock); 832 pgjoin(p, curproc->p_pgidp); 833 p->p_stat = SRUN; 834 mutex_enter(&p->p_lock); 835 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 836 lwp_create_done(lwptot(lwp)); 837 mutex_exit(&p->p_lock); 838 mutex_exit(&pidlock); 839 return (0); 840 } 841 842 /* 843 * create a child proc struct. 844 */ 845 static int 846 getproc(proc_t **cpp, int kernel) 847 { 848 proc_t *pp, *cp; 849 pid_t newpid; 850 struct user *uarea; 851 extern uint_t nproc; 852 struct cred *cr; 853 uid_t ruid; 854 zoneid_t zoneid; 855 856 if (!page_mem_avail(tune.t_minarmem)) 857 return (-1); 858 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 859 return (-1); /* no point in starting new processes */ 860 861 pp = curproc; 862 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 863 bzero(cp, sizeof (proc_t)); 864 865 /* 866 * Make proc entry for child process 867 */ 868 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 869 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 870 #if defined(__x86) 871 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 872 #endif 873 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 874 cp->p_stat = SIDL; 875 cp->p_mstart = gethrtime(); 876 877 if ((newpid = pid_assign(cp)) == -1) { 878 if (nproc == v.v_proc) { 879 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 880 cmn_err(CE_WARN, "out of processes"); 881 } 882 goto bad; 883 } 884 885 /* 886 * If not privileged make sure that this user hasn't exceeded 887 * v.v_maxup processes, and that users collectively haven't 888 * exceeded v.v_maxupttl processes. 889 */ 890 mutex_enter(&pidlock); 891 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 892 cr = CRED(); 893 ruid = crgetruid(cr); 894 zoneid = crgetzoneid(cr); 895 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 896 (nproc >= v.v_maxupttl || 897 upcount_get(ruid, zoneid) >= v.v_maxup) && 898 secpolicy_newproc(cr) != 0) { 899 mutex_exit(&pidlock); 900 zcmn_err(zoneid, CE_NOTE, 901 "out of per-user processes for uid %d", ruid); 902 goto bad; 903 } 904 905 /* 906 * Everything is cool, put the new proc on the active process list. 907 * It is already on the pid list and in /proc. 908 * Increment the per uid process count (upcount). 909 */ 910 nproc++; 911 upcount_inc(ruid, zoneid); 912 913 cp->p_next = practive; 914 practive->p_prev = cp; 915 practive = cp; 916 917 cp->p_ignore = pp->p_ignore; 918 cp->p_siginfo = pp->p_siginfo; 919 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 920 cp->p_sessp = pp->p_sessp; 921 SESS_HOLD(pp->p_sessp); 922 cp->p_exec = pp->p_exec; 923 cp->p_execdir = pp->p_execdir; 924 cp->p_zone = pp->p_zone; 925 926 cp->p_bssbase = pp->p_bssbase; 927 cp->p_brkbase = pp->p_brkbase; 928 cp->p_brksize = pp->p_brksize; 929 cp->p_brkpageszc = pp->p_brkpageszc; 930 cp->p_stksize = pp->p_stksize; 931 cp->p_stkpageszc = pp->p_stkpageszc; 932 cp->p_stkprot = pp->p_stkprot; 933 cp->p_datprot = pp->p_datprot; 934 cp->p_usrstack = pp->p_usrstack; 935 cp->p_model = pp->p_model; 936 cp->p_ppid = pp->p_pid; 937 cp->p_ancpid = pp->p_pid; 938 cp->p_portcnt = pp->p_portcnt; 939 940 /* 941 * Initialize watchpoint structures 942 */ 943 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 944 offsetof(struct watched_area, wa_link)); 945 946 /* 947 * Initialize immediate resource control values. 948 */ 949 cp->p_stk_ctl = pp->p_stk_ctl; 950 cp->p_fsz_ctl = pp->p_fsz_ctl; 951 cp->p_vmem_ctl = pp->p_vmem_ctl; 952 cp->p_fno_ctl = pp->p_fno_ctl; 953 954 /* 955 * Link up to parent-child-sibling chain. No need to lock 956 * in general since only a call to freeproc() (done by the 957 * same parent as newproc()) diddles with the child chain. 958 */ 959 cp->p_sibling = pp->p_child; 960 if (pp->p_child) 961 pp->p_child->p_psibling = cp; 962 963 cp->p_parent = pp; 964 pp->p_child = cp; 965 966 cp->p_child_ns = NULL; 967 cp->p_sibling_ns = NULL; 968 969 cp->p_nextorph = pp->p_orphan; 970 cp->p_nextofkin = pp; 971 pp->p_orphan = cp; 972 973 /* 974 * Inherit profiling state; do not inherit REALPROF profiling state. 975 */ 976 cp->p_prof = pp->p_prof; 977 cp->p_rprof_cyclic = CYCLIC_NONE; 978 979 /* 980 * Inherit pool pointer from the parent. Kernel processes are 981 * always bound to the default pool. 982 */ 983 mutex_enter(&pp->p_lock); 984 if (kernel) { 985 cp->p_pool = pool_default; 986 cp->p_flag |= SSYS; 987 } else { 988 cp->p_pool = pp->p_pool; 989 } 990 atomic_add_32(&cp->p_pool->pool_ref, 1); 991 mutex_exit(&pp->p_lock); 992 993 /* 994 * Add the child process to the current task. Kernel processes 995 * are always attached to task0. 996 */ 997 mutex_enter(&cp->p_lock); 998 if (kernel) 999 task_attach(task0p, cp); 1000 else 1001 task_attach(pp->p_task, cp); 1002 mutex_exit(&cp->p_lock); 1003 mutex_exit(&pidlock); 1004 1005 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1006 offsetof(contract_t, ct_ctlist)); 1007 1008 /* 1009 * Duplicate any audit information kept in the process table 1010 */ 1011 #ifdef C2_AUDIT 1012 if (audit_active) /* copy audit data to cp */ 1013 audit_newproc(cp); 1014 #endif 1015 1016 crhold(cp->p_cred = cr); 1017 1018 /* 1019 * Bump up the counts on the file structures pointed at by the 1020 * parent's file table since the child will point at them too. 1021 */ 1022 fcnt_add(P_FINFO(pp), 1); 1023 1024 VN_HOLD(u.u_cdir); 1025 if (u.u_rdir) 1026 VN_HOLD(u.u_rdir); 1027 if (u.u_cwd) 1028 refstr_hold(u.u_cwd); 1029 1030 /* 1031 * copy the parent's uarea. 1032 */ 1033 uarea = PTOU(cp); 1034 bcopy(PTOU(pp), uarea, sizeof (user_t)); 1035 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1036 1037 gethrestime(&uarea->u_start); 1038 uarea->u_ticks = lbolt; 1039 uarea->u_mem = rm_asrss(pp->p_as); 1040 uarea->u_acflag = AFORK; 1041 1042 /* 1043 * If inherit-on-fork, copy /proc tracing flags to child. 1044 */ 1045 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1046 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1047 cp->p_sigmask = pp->p_sigmask; 1048 cp->p_fltmask = pp->p_fltmask; 1049 } else { 1050 sigemptyset(&cp->p_sigmask); 1051 premptyset(&cp->p_fltmask); 1052 uarea->u_systrap = 0; 1053 premptyset(&uarea->u_entrymask); 1054 premptyset(&uarea->u_exitmask); 1055 } 1056 /* 1057 * If microstate accounting is being inherited, mark child 1058 */ 1059 if ((pp->p_flag & SMSFORK) != 0) 1060 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1061 1062 /* 1063 * Inherit fixalignment flag from the parent 1064 */ 1065 cp->p_fixalignment = pp->p_fixalignment; 1066 1067 if (cp->p_exec) 1068 VN_HOLD(cp->p_exec); 1069 if (cp->p_execdir) 1070 VN_HOLD(cp->p_execdir); 1071 *cpp = cp; 1072 return (0); 1073 1074 bad: 1075 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1076 1077 mutex_destroy(&cp->p_crlock); 1078 mutex_destroy(&cp->p_pflock); 1079 #if defined(__x86) 1080 mutex_destroy(&cp->p_ldtlock); 1081 #endif 1082 if (newpid != -1) { 1083 proc_entry_free(cp->p_pidp); 1084 (void) pid_rele(cp->p_pidp); 1085 } 1086 kmem_cache_free(process_cache, cp); 1087 1088 /* 1089 * We most likely got into this situation because some process is 1090 * forking out of control. As punishment, put it to sleep for a 1091 * bit so it can't eat the machine alive. Sleep interval is chosen 1092 * to allow no more than one fork failure per cpu per clock tick 1093 * on average (yes, I just made this up). This has two desirable 1094 * properties: (1) it sets a constant limit on the fork failure 1095 * rate, and (2) the busier the system is, the harsher the penalty 1096 * for abusing it becomes. 1097 */ 1098 INCR_COUNT(&fork_fail_pending, &pidlock); 1099 delay(fork_fail_pending / ncpus + 1); 1100 DECR_COUNT(&fork_fail_pending, &pidlock); 1101 1102 return (-1); /* out of memory or proc slots */ 1103 } 1104 1105 /* 1106 * Release virtual memory. 1107 * In the case of vfork(), the child was given exclusive access to its 1108 * parent's address space. The parent is waiting in vfwait() for the 1109 * child to release its exclusive claim via relvm(). 1110 */ 1111 void 1112 relvm() 1113 { 1114 proc_t *p = curproc; 1115 1116 ASSERT((unsigned)p->p_lwpcnt <= 1); 1117 1118 prrelvm(); /* inform /proc */ 1119 1120 if (p->p_flag & SVFORK) { 1121 proc_t *pp = p->p_parent; 1122 /* 1123 * The child process is either exec'ing or exit'ing. 1124 * The child is now separated from the parent's address 1125 * space. The parent process is made dispatchable. 1126 * 1127 * This is a delicate locking maneuver, involving 1128 * both the parent's p_lock and the child's p_lock. 1129 * As soon as the SVFORK flag is turned off, the 1130 * parent is free to run, but it must not run until 1131 * we wake it up using its p_cv because it might 1132 * exit and we would be referencing invalid memory. 1133 * Therefore, we hold the parent with its p_lock 1134 * while protecting our p_flags with our own p_lock. 1135 */ 1136 try_again: 1137 mutex_enter(&p->p_lock); /* grab child's lock first */ 1138 prbarrier(p); /* make sure /proc is blocked out */ 1139 mutex_enter(&pp->p_lock); 1140 1141 /* 1142 * Check if parent is locked by /proc. 1143 */ 1144 if (pp->p_proc_flag & P_PR_LOCK) { 1145 /* 1146 * Delay until /proc is done with the parent. 1147 * We must drop our (the child's) p->p_lock, wait 1148 * via prbarrier() on the parent, then start over. 1149 */ 1150 mutex_exit(&p->p_lock); 1151 prbarrier(pp); 1152 mutex_exit(&pp->p_lock); 1153 goto try_again; 1154 } 1155 p->p_flag &= ~SVFORK; 1156 kpreempt_disable(); 1157 p->p_as = &kas; 1158 1159 /* 1160 * notify hat of change in thread's address space 1161 */ 1162 hat_thread_exit(curthread); 1163 kpreempt_enable(); 1164 1165 /* 1166 * child sizes are copied back to parent because 1167 * child may have grown. 1168 */ 1169 pp->p_brkbase = p->p_brkbase; 1170 pp->p_brksize = p->p_brksize; 1171 pp->p_stksize = p->p_stksize; 1172 /* 1173 * The parent is no longer waiting for the vfork()d child. 1174 * Restore the parent's watched pages, if any. This is 1175 * safe because we know the parent is not locked by /proc 1176 */ 1177 pp->p_flag &= ~SVFWAIT; 1178 if (avl_numnodes(&pp->p_wpage) != 0) { 1179 pp->p_as->a_wpage = pp->p_wpage; 1180 avl_create(&pp->p_wpage, wp_compare, 1181 sizeof (struct watched_page), 1182 offsetof(struct watched_page, wp_link)); 1183 } 1184 cv_signal(&pp->p_cv); 1185 mutex_exit(&pp->p_lock); 1186 mutex_exit(&p->p_lock); 1187 } else { 1188 if (p->p_as != &kas) { 1189 struct as *as; 1190 1191 if (p->p_segacct) 1192 shmexit(p); 1193 /* 1194 * We grab p_lock for the benefit of /proc 1195 */ 1196 kpreempt_disable(); 1197 mutex_enter(&p->p_lock); 1198 prbarrier(p); /* make sure /proc is blocked out */ 1199 as = p->p_as; 1200 p->p_as = &kas; 1201 mutex_exit(&p->p_lock); 1202 1203 /* 1204 * notify hat of change in thread's address space 1205 */ 1206 hat_thread_exit(curthread); 1207 kpreempt_enable(); 1208 1209 as_free(as); 1210 } 1211 } 1212 } 1213 1214 /* 1215 * Wait for child to exec or exit. 1216 * Called by parent of vfork'ed process. 1217 * See important comments in relvm(), above. 1218 */ 1219 void 1220 vfwait(pid_t pid) 1221 { 1222 int signalled = 0; 1223 proc_t *pp = ttoproc(curthread); 1224 proc_t *cp; 1225 1226 /* 1227 * Wait for child to exec or exit. 1228 */ 1229 for (;;) { 1230 mutex_enter(&pidlock); 1231 cp = prfind(pid); 1232 if (cp == NULL || cp->p_parent != pp) { 1233 /* 1234 * Child has exit()ed. 1235 */ 1236 mutex_exit(&pidlock); 1237 break; 1238 } 1239 /* 1240 * Grab the child's p_lock before releasing pidlock. 1241 * Otherwise, the child could exit and we would be 1242 * referencing invalid memory. 1243 */ 1244 mutex_enter(&cp->p_lock); 1245 mutex_exit(&pidlock); 1246 if (!(cp->p_flag & SVFORK)) { 1247 /* 1248 * Child has exec()ed or is exit()ing. 1249 */ 1250 mutex_exit(&cp->p_lock); 1251 break; 1252 } 1253 mutex_enter(&pp->p_lock); 1254 mutex_exit(&cp->p_lock); 1255 /* 1256 * We might be waked up spuriously from the cv_wait(). 1257 * We have to do the whole operation over again to be 1258 * sure the child's SVFORK flag really is turned off. 1259 * We cannot make reference to the child because it can 1260 * exit before we return and we would be referencing 1261 * invalid memory. 1262 * 1263 * Because this is potentially a very long-term wait, 1264 * we call cv_wait_sig() (for its jobcontrol and /proc 1265 * side-effects) unless there is a current signal, in 1266 * which case we use cv_wait() because we cannot return 1267 * from this function until the child has released the 1268 * address space. Calling cv_wait_sig() with a current 1269 * signal would lead to an indefinite loop here because 1270 * cv_wait_sig() returns immediately in this case. 1271 */ 1272 if (signalled) 1273 cv_wait(&pp->p_cv, &pp->p_lock); 1274 else 1275 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1276 mutex_exit(&pp->p_lock); 1277 } 1278 1279 /* restore watchpoints to parent */ 1280 if (pr_watch_active(pp)) { 1281 struct as *as = pp->p_as; 1282 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1283 as_setwatch(as); 1284 AS_LOCK_EXIT(as, &as->a_lock); 1285 } 1286 1287 mutex_enter(&pp->p_lock); 1288 prbarrier(pp); /* barrier against /proc locking */ 1289 continuelwps(pp); 1290 mutex_exit(&pp->p_lock); 1291 } 1292