1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/policy.h> 38 #include <sys/user.h> 39 #include <sys/systm.h> 40 #include <sys/cpuvar.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/errno.h> 45 #include <sys/time.h> 46 #include <sys/proc.h> 47 #include <sys/cmn_err.h> 48 #include <sys/acct.h> 49 #include <sys/tuneable.h> 50 #include <sys/class.h> 51 #include <sys/kmem.h> 52 #include <sys/session.h> 53 #include <sys/ucontext.h> 54 #include <sys/stack.h> 55 #include <sys/procfs.h> 56 #include <sys/prsystm.h> 57 #include <sys/vmsystm.h> 58 #include <sys/vtrace.h> 59 #include <sys/debug.h> 60 #include <sys/shm_impl.h> 61 #include <sys/door_data.h> 62 #include <vm/as.h> 63 #include <vm/rm.h> 64 #include <c2/audit.h> 65 #include <sys/var.h> 66 #include <sys/schedctl.h> 67 #include <sys/utrap.h> 68 #include <sys/task.h> 69 #include <sys/resource.h> 70 #include <sys/cyclic.h> 71 #include <sys/lgrp.h> 72 #include <sys/rctl.h> 73 #include <sys/contract_impl.h> 74 #include <sys/contract/process_impl.h> 75 #include <sys/list.h> 76 #include <sys/dtrace.h> 77 #include <sys/pool.h> 78 #include <sys/zone.h> 79 #include <sys/sdt.h> 80 #include <sys/class.h> 81 #include <sys/corectl.h> 82 #include <sys/brand.h> 83 #include <sys/fork.h> 84 85 static int64_t cfork(int, int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1, 0)); 111 } 112 113 /* 114 * fork system call, aka fork1. 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1, 0)); 120 } 121 122 /* 123 * The forkall(), vfork(), and fork1() system calls are no longer 124 * invoked by libc. They are retained only for the benefit of 125 * old statically-linked applications. They should be eliminated 126 * when we no longer care about such old and broken applications. 127 */ 128 129 /* 130 * forksys system call - forkx, forkallx, vforkx. 131 * This is the interface now invoked by libc. 132 */ 133 int64_t 134 forksys(int subcode, int flags) 135 { 136 switch (subcode) { 137 case 0: 138 return (cfork(0, 1, flags)); /* forkx(flags) */ 139 case 1: 140 return (cfork(0, 0, flags)); /* forkallx(flags) */ 141 case 2: 142 curthread->t_post_sys = 1; /* so vfwait() will be called */ 143 return (cfork(1, 1, flags)); /* vforkx(flags) */ 144 default: 145 return ((int64_t)set_errno(EINVAL)); 146 } 147 } 148 149 /* ARGSUSED */ 150 static int64_t 151 cfork(int isvfork, int isfork1, int flags) 152 { 153 proc_t *p = ttoproc(curthread); 154 struct as *as; 155 proc_t *cp, **orphpp; 156 klwp_t *clone; 157 kthread_t *t; 158 task_t *tk; 159 rval_t r; 160 int error; 161 int i; 162 rctl_set_t *dup_set; 163 rctl_alloc_gp_t *dup_gp; 164 rctl_entity_p_t e; 165 lwpdir_t *ldp; 166 lwpent_t *lep; 167 lwpent_t *clep; 168 169 /* 170 * Allow only these two flags. 171 */ 172 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 173 error = EINVAL; 174 goto forkerr; 175 } 176 177 /* 178 * fork is not supported for the /proc agent lwp. 179 */ 180 if (curthread == p->p_agenttp) { 181 error = ENOTSUP; 182 goto forkerr; 183 } 184 185 if ((error = secpolicy_basic_fork(CRED())) != 0) 186 goto forkerr; 187 188 /* 189 * If the calling lwp is doing a fork1() then the 190 * other lwps in this process are not duplicated and 191 * don't need to be held where their kernel stacks can be 192 * cloned. If doing forkall(), the process is held with 193 * SHOLDFORK, so that the lwps are at a point where their 194 * stacks can be copied which is on entry or exit from 195 * the kernel. 196 */ 197 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 198 aston(curthread); 199 error = EINTR; 200 goto forkerr; 201 } 202 203 #if defined(__sparc) 204 /* 205 * Ensure that the user stack is fully constructed 206 * before creating the child process structure. 207 */ 208 (void) flush_user_windows_to_stack(NULL); 209 #endif 210 211 mutex_enter(&p->p_lock); 212 /* 213 * If this is vfork(), cancel any suspend request we might 214 * have gotten from some other thread via lwp_suspend(). 215 * Otherwise we could end up with a deadlock on return 216 * from the vfork() in both the parent and the child. 217 */ 218 if (isvfork) 219 curthread->t_proc_flag &= ~TP_HOLDLWP; 220 /* 221 * Prevent our resource set associations from being changed during fork. 222 */ 223 pool_barrier_enter(); 224 mutex_exit(&p->p_lock); 225 226 /* 227 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 228 */ 229 if (getproc(&cp, 0) < 0) { 230 mutex_enter(&p->p_lock); 231 pool_barrier_exit(); 232 continuelwps(p); 233 mutex_exit(&p->p_lock); 234 error = EAGAIN; 235 goto forkerr; 236 } 237 238 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 239 240 /* 241 * Assign an address space to child 242 */ 243 if (isvfork) { 244 /* 245 * Clear any watched areas and remember the 246 * watched pages for restoring in vfwait(). 247 */ 248 as = p->p_as; 249 if (avl_numnodes(&as->a_wpage) != 0) { 250 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 251 as_clearwatch(as); 252 p->p_wpage = as->a_wpage; 253 avl_create(&as->a_wpage, wp_compare, 254 sizeof (struct watched_page), 255 offsetof(struct watched_page, wp_link)); 256 AS_LOCK_EXIT(as, &as->a_lock); 257 } 258 cp->p_as = as; 259 cp->p_flag |= SVFORK; 260 } else { 261 /* 262 * We need to hold P_PR_LOCK until the address space has 263 * been duplicated and we've had a chance to remove from the 264 * child any DTrace probes that were in the parent. Holding 265 * P_PR_LOCK prevents any new probes from being added and any 266 * extant probes from being removed. 267 */ 268 mutex_enter(&p->p_lock); 269 sprlock_proc(p); 270 p->p_flag |= SFORKING; 271 mutex_exit(&p->p_lock); 272 273 error = as_dup(p->p_as, &cp->p_as); 274 if (error != 0) { 275 mutex_enter(&p->p_lock); 276 sprunlock(p); 277 fork_fail(cp); 278 mutex_enter(&pidlock); 279 orphpp = &p->p_orphan; 280 while (*orphpp != cp) 281 orphpp = &(*orphpp)->p_nextorph; 282 *orphpp = cp->p_nextorph; 283 if (p->p_child == cp) 284 p->p_child = cp->p_sibling; 285 if (cp->p_sibling) 286 cp->p_sibling->p_psibling = cp->p_psibling; 287 if (cp->p_psibling) 288 cp->p_psibling->p_sibling = cp->p_sibling; 289 mutex_enter(&cp->p_lock); 290 tk = cp->p_task; 291 task_detach(cp); 292 ASSERT(cp->p_pool->pool_ref > 0); 293 atomic_add_32(&cp->p_pool->pool_ref, -1); 294 mutex_exit(&cp->p_lock); 295 pid_exit(cp); 296 mutex_exit(&pidlock); 297 task_rele(tk); 298 299 mutex_enter(&p->p_lock); 300 p->p_flag &= ~SFORKING; 301 pool_barrier_exit(); 302 continuelwps(p); 303 mutex_exit(&p->p_lock); 304 /* 305 * Preserve ENOMEM error condition but 306 * map all others to EAGAIN. 307 */ 308 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 309 goto forkerr; 310 } 311 cp->p_as->a_proc = cp; 312 313 /* Duplicate parent's shared memory */ 314 if (p->p_segacct) 315 shmfork(p, cp); 316 317 /* 318 * Remove all DTrace tracepoints from the child process. We 319 * need to do this _before_ duplicating USDT providers since 320 * any associated probes may be immediately enabled. 321 */ 322 if (p->p_dtrace_count > 0) 323 dtrace_fasttrap_fork(p, cp); 324 325 /* 326 * Duplicate any helper actions and providers. The SFORKING 327 * we set above informs the code to enable USDT probes that 328 * sprlock() may fail because the child is being forked. 329 */ 330 if (p->p_dtrace_helpers != NULL) { 331 mutex_enter(&p->p_lock); 332 sprunlock(p); 333 334 ASSERT(dtrace_helpers_fork != NULL); 335 (*dtrace_helpers_fork)(p, cp); 336 337 mutex_enter(&p->p_lock); 338 p->p_flag &= ~SFORKING; 339 mutex_exit(&p->p_lock); 340 } else { 341 mutex_enter(&p->p_lock); 342 p->p_flag &= ~SFORKING; 343 sprunlock(p); 344 } 345 } 346 347 /* 348 * Duplicate parent's resource controls. 349 */ 350 dup_set = rctl_set_create(); 351 for (;;) { 352 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 353 mutex_enter(&p->p_rctls->rcs_lock); 354 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 355 break; 356 mutex_exit(&p->p_rctls->rcs_lock); 357 rctl_prealloc_destroy(dup_gp); 358 } 359 e.rcep_p.proc = cp; 360 e.rcep_t = RCENTITY_PROCESS; 361 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 362 RCD_DUP | RCD_CALLBACK); 363 mutex_exit(&p->p_rctls->rcs_lock); 364 365 rctl_prealloc_destroy(dup_gp); 366 367 /* 368 * Allocate the child's lwp directory and lwpid hash table. 369 */ 370 if (isfork1) 371 cp->p_lwpdir_sz = 2; 372 else 373 cp->p_lwpdir_sz = p->p_lwpdir_sz; 374 cp->p_lwpdir = cp->p_lwpfree = ldp = 375 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 376 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 377 ldp->ld_next = ldp + 1; 378 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 379 cp->p_tidhash = 380 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 381 382 /* 383 * Duplicate parent's lwps. 384 * Mutual exclusion is not needed because the process is 385 * in the hold state and only the current lwp is running. 386 */ 387 klgrpset_clear(cp->p_lgrpset); 388 if (isfork1) { 389 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 390 if (clone == NULL) 391 goto forklwperr; 392 /* 393 * Inherit only the lwp_wait()able flag, 394 * Daemon threads should not call fork1(), but oh well... 395 */ 396 lwptot(clone)->t_proc_flag |= 397 (curthread->t_proc_flag & TP_TWAIT); 398 } else { 399 /* this is forkall(), no one can be in lwp_wait() */ 400 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 401 /* for each entry in the parent's lwp directory... */ 402 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 403 klwp_t *clwp; 404 kthread_t *ct; 405 406 if ((lep = ldp->ld_entry) == NULL) 407 continue; 408 409 if ((t = lep->le_thread) != NULL) { 410 clwp = forklwp(ttolwp(t), cp, t->t_tid); 411 if (clwp == NULL) 412 goto forklwperr; 413 ct = lwptot(clwp); 414 /* 415 * Inherit lwp_wait()able and daemon flags. 416 */ 417 ct->t_proc_flag |= 418 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 419 /* 420 * Keep track of the clone of curthread to 421 * post return values through lwp_setrval(). 422 * Mark other threads for special treatment 423 * by lwp_rtt() / post_syscall(). 424 */ 425 if (t == curthread) 426 clone = clwp; 427 else 428 ct->t_flag |= T_FORKALL; 429 } else { 430 /* 431 * Replicate zombie lwps in the child. 432 */ 433 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 434 clep->le_lwpid = lep->le_lwpid; 435 clep->le_start = lep->le_start; 436 lwp_hash_in(cp, clep); 437 } 438 } 439 } 440 441 /* 442 * Put new process in the parent's process contract, or put it 443 * in a new one if there is an active process template. Send a 444 * fork event (if requested) to whatever contract the child is 445 * a member of. Fails if the parent has been SIGKILLed. 446 */ 447 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 448 goto forklwperr; 449 450 /* 451 * No fork failures occur beyond this point. 452 */ 453 454 cp->p_lwpid = p->p_lwpid; 455 if (!isfork1) { 456 cp->p_lwpdaemon = p->p_lwpdaemon; 457 cp->p_zombcnt = p->p_zombcnt; 458 /* 459 * If the parent's lwp ids have wrapped around, so have the 460 * child's. 461 */ 462 cp->p_flag |= p->p_flag & SLWPWRAP; 463 } 464 465 mutex_enter(&p->p_lock); 466 corectl_path_hold(cp->p_corefile = p->p_corefile); 467 corectl_content_hold(cp->p_content = p->p_content); 468 mutex_exit(&p->p_lock); 469 470 /* 471 * Duplicate process context ops, if any. 472 */ 473 if (p->p_pctx) 474 forkpctx(p, cp); 475 476 #ifdef __sparc 477 utrap_dup(p, cp); 478 #endif 479 /* 480 * If the child process has been marked to stop on exit 481 * from this fork, arrange for all other lwps to stop in 482 * sympathy with the active lwp. 483 */ 484 if (PTOU(cp)->u_systrap && 485 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 486 mutex_enter(&cp->p_lock); 487 t = cp->p_tlist; 488 do { 489 t->t_proc_flag |= TP_PRSTOP; 490 aston(t); /* so TP_PRSTOP will be seen */ 491 } while ((t = t->t_forw) != cp->p_tlist); 492 mutex_exit(&cp->p_lock); 493 } 494 /* 495 * If the parent process has been marked to stop on exit 496 * from this fork, and its asynchronous-stop flag has not 497 * been set, arrange for all other lwps to stop before 498 * they return back to user level. 499 */ 500 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 501 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 502 mutex_enter(&p->p_lock); 503 t = p->p_tlist; 504 do { 505 t->t_proc_flag |= TP_PRSTOP; 506 aston(t); /* so TP_PRSTOP will be seen */ 507 } while ((t = t->t_forw) != p->p_tlist); 508 mutex_exit(&p->p_lock); 509 } 510 511 if (PROC_IS_BRANDED(p)) 512 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 513 else 514 lwp_setrval(clone, p->p_pid, 1); 515 516 /* set return values for parent */ 517 r.r_val1 = (int)cp->p_pid; 518 r.r_val2 = 0; 519 520 /* 521 * pool_barrier_exit() can now be called because the child process has: 522 * - all identifying features cloned or set (p_pid, p_task, p_pool) 523 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 524 * - any other fields set which are used in resource set binding. 525 */ 526 mutex_enter(&p->p_lock); 527 pool_barrier_exit(); 528 mutex_exit(&p->p_lock); 529 530 mutex_enter(&pidlock); 531 mutex_enter(&cp->p_lock); 532 533 /* 534 * Set flags telling the child what (not) to do on exit. 535 */ 536 if (flags & FORK_NOSIGCHLD) 537 cp->p_pidflag |= CLDNOSIGCHLD; 538 if (flags & FORK_WAITPID) 539 cp->p_pidflag |= CLDWAITPID; 540 541 /* 542 * Now that there are lwps and threads attached, add the new 543 * process to the process group. 544 */ 545 pgjoin(cp, p->p_pgidp); 546 cp->p_stat = SRUN; 547 /* 548 * We are now done with all the lwps in the child process. 549 */ 550 t = cp->p_tlist; 551 do { 552 /* 553 * Set the lwp_suspend()ed lwps running. 554 * They will suspend properly at syscall exit. 555 */ 556 if (t->t_proc_flag & TP_HOLDLWP) 557 lwp_create_done(t); 558 else { 559 /* set TS_CREATE to allow continuelwps() to work */ 560 thread_lock(t); 561 ASSERT(t->t_state == TS_STOPPED && 562 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 563 t->t_schedflag |= TS_CREATE; 564 thread_unlock(t); 565 } 566 } while ((t = t->t_forw) != cp->p_tlist); 567 mutex_exit(&cp->p_lock); 568 569 if (isvfork) { 570 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 571 mutex_enter(&p->p_lock); 572 p->p_flag |= SVFWAIT; 573 curthread->t_flag |= T_VFPARENT; 574 DTRACE_PROC1(create, proc_t *, cp); 575 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 576 mutex_exit(&p->p_lock); 577 /* 578 * Grab child's p_lock before dropping pidlock to ensure 579 * the process will not disappear before we set it running. 580 */ 581 mutex_enter(&cp->p_lock); 582 mutex_exit(&pidlock); 583 sigdefault(cp); 584 continuelwps(cp); 585 mutex_exit(&cp->p_lock); 586 } else { 587 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 588 DTRACE_PROC1(create, proc_t *, cp); 589 /* 590 * It is CL_FORKRET's job to drop pidlock. 591 * If we do it here, the process could be set running 592 * and disappear before CL_FORKRET() is called. 593 */ 594 CL_FORKRET(curthread, cp->p_tlist); 595 ASSERT(MUTEX_NOT_HELD(&pidlock)); 596 } 597 598 return (r.r_vals); 599 600 forklwperr: 601 if (isvfork) { 602 if (avl_numnodes(&p->p_wpage) != 0) { 603 /* restore watchpoints to parent */ 604 as = p->p_as; 605 AS_LOCK_ENTER(as, &as->a_lock, 606 RW_WRITER); 607 as->a_wpage = p->p_wpage; 608 avl_create(&p->p_wpage, wp_compare, 609 sizeof (struct watched_page), 610 offsetof(struct watched_page, wp_link)); 611 as_setwatch(as); 612 AS_LOCK_EXIT(as, &as->a_lock); 613 } 614 } else { 615 if (cp->p_segacct) 616 shmexit(cp); 617 as = cp->p_as; 618 cp->p_as = &kas; 619 as_free(as); 620 } 621 622 if (cp->p_lwpdir) { 623 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 624 if ((lep = ldp->ld_entry) != NULL) 625 kmem_free(lep, sizeof (*lep)); 626 kmem_free(cp->p_lwpdir, 627 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 628 } 629 cp->p_lwpdir = NULL; 630 cp->p_lwpfree = NULL; 631 cp->p_lwpdir_sz = 0; 632 633 if (cp->p_tidhash) 634 kmem_free(cp->p_tidhash, 635 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 636 cp->p_tidhash = NULL; 637 cp->p_tidhash_sz = 0; 638 639 forklwp_fail(cp); 640 fork_fail(cp); 641 rctl_set_free(cp->p_rctls); 642 mutex_enter(&pidlock); 643 644 /* 645 * Detach failed child from task. 646 */ 647 mutex_enter(&cp->p_lock); 648 tk = cp->p_task; 649 task_detach(cp); 650 ASSERT(cp->p_pool->pool_ref > 0); 651 atomic_add_32(&cp->p_pool->pool_ref, -1); 652 mutex_exit(&cp->p_lock); 653 654 orphpp = &p->p_orphan; 655 while (*orphpp != cp) 656 orphpp = &(*orphpp)->p_nextorph; 657 *orphpp = cp->p_nextorph; 658 if (p->p_child == cp) 659 p->p_child = cp->p_sibling; 660 if (cp->p_sibling) 661 cp->p_sibling->p_psibling = cp->p_psibling; 662 if (cp->p_psibling) 663 cp->p_psibling->p_sibling = cp->p_sibling; 664 pid_exit(cp); 665 mutex_exit(&pidlock); 666 667 task_rele(tk); 668 669 mutex_enter(&p->p_lock); 670 pool_barrier_exit(); 671 continuelwps(p); 672 mutex_exit(&p->p_lock); 673 error = EAGAIN; 674 forkerr: 675 return ((int64_t)set_errno(error)); 676 } 677 678 /* 679 * Free allocated resources from getproc() if a fork failed. 680 */ 681 static void 682 fork_fail(proc_t *cp) 683 { 684 uf_info_t *fip = P_FINFO(cp); 685 686 fcnt_add(fip, -1); 687 sigdelq(cp, NULL, 0); 688 689 mutex_enter(&pidlock); 690 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 691 mutex_exit(&pidlock); 692 693 /* 694 * single threaded, so no locking needed here 695 */ 696 crfree(cp->p_cred); 697 698 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 699 700 VN_RELE(PTOU(curproc)->u_cdir); 701 if (PTOU(curproc)->u_rdir) 702 VN_RELE(PTOU(curproc)->u_rdir); 703 if (cp->p_exec) 704 VN_RELE(cp->p_exec); 705 if (cp->p_execdir) 706 VN_RELE(cp->p_execdir); 707 if (PTOU(curproc)->u_cwd) 708 refstr_rele(PTOU(curproc)->u_cwd); 709 } 710 711 /* 712 * Clean up the lwps already created for this child process. 713 * The fork failed while duplicating all the lwps of the parent 714 * and those lwps already created must be freed. 715 * This process is invisible to the rest of the system, 716 * so we don't need to hold p->p_lock to protect the list. 717 */ 718 static void 719 forklwp_fail(proc_t *p) 720 { 721 kthread_t *t; 722 task_t *tk; 723 724 while ((t = p->p_tlist) != NULL) { 725 /* 726 * First remove the lwp from the process's p_tlist. 727 */ 728 if (t != t->t_forw) 729 p->p_tlist = t->t_forw; 730 else 731 p->p_tlist = NULL; 732 p->p_lwpcnt--; 733 t->t_forw->t_back = t->t_back; 734 t->t_back->t_forw = t->t_forw; 735 736 tk = p->p_task; 737 mutex_enter(&p->p_zone->zone_nlwps_lock); 738 tk->tk_nlwps--; 739 tk->tk_proj->kpj_nlwps--; 740 p->p_zone->zone_nlwps--; 741 mutex_exit(&p->p_zone->zone_nlwps_lock); 742 743 ASSERT(t->t_schedctl == NULL); 744 745 if (t->t_door != NULL) { 746 kmem_free(t->t_door, sizeof (door_data_t)); 747 t->t_door = NULL; 748 } 749 lwp_ctmpl_clear(ttolwp(t)); 750 751 /* 752 * Remove the thread from the all threads list. 753 * We need to hold pidlock for this. 754 */ 755 mutex_enter(&pidlock); 756 t->t_next->t_prev = t->t_prev; 757 t->t_prev->t_next = t->t_next; 758 CL_EXIT(t); /* tell the scheduler that we're exiting */ 759 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 760 mutex_exit(&pidlock); 761 762 /* 763 * Let the lgroup load averages know that this thread isn't 764 * going to show up (i.e. un-do what was done on behalf of 765 * this thread by the earlier lgrp_move_thread()). 766 */ 767 kpreempt_disable(); 768 lgrp_move_thread(t, NULL, 1); 769 kpreempt_enable(); 770 771 /* 772 * The thread was created TS_STOPPED. 773 * We change it to TS_FREE to avoid an 774 * ASSERT() panic in thread_free(). 775 */ 776 t->t_state = TS_FREE; 777 thread_rele(t); 778 thread_free(t); 779 } 780 } 781 782 extern struct as kas; 783 784 /* 785 * fork a kernel process. 786 */ 787 int 788 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 789 { 790 proc_t *p; 791 struct user *up; 792 klwp_t *lwp; 793 cont_process_t *ctp = NULL; 794 rctl_entity_p_t e; 795 796 ASSERT(!(cid == syscid && ct != NULL)); 797 if (cid == syscid) { 798 rctl_alloc_gp_t *init_gp; 799 rctl_set_t *init_set; 800 801 if (getproc(&p, 1) < 0) 802 return (EAGAIN); 803 804 p->p_flag |= SNOWAIT; 805 p->p_exec = NULL; 806 p->p_execdir = NULL; 807 808 init_set = rctl_set_create(); 809 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 810 811 /* 812 * kernel processes do not inherit /proc tracing flags. 813 */ 814 sigemptyset(&p->p_sigmask); 815 premptyset(&p->p_fltmask); 816 up = PTOU(p); 817 up->u_systrap = 0; 818 premptyset(&(up->u_entrymask)); 819 premptyset(&(up->u_exitmask)); 820 mutex_enter(&p->p_lock); 821 e.rcep_p.proc = p; 822 e.rcep_t = RCENTITY_PROCESS; 823 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 824 init_gp); 825 mutex_exit(&p->p_lock); 826 827 rctl_prealloc_destroy(init_gp); 828 } else { 829 rctl_alloc_gp_t *init_gp, *default_gp; 830 rctl_set_t *init_set; 831 task_t *tk, *tk_old; 832 833 if (getproc(&p, 0) < 0) 834 return (EAGAIN); 835 /* 836 * init creates a new task, distinct from the task 837 * containing kernel "processes". 838 */ 839 tk = task_create(0, p->p_zone); 840 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 841 tk->tk_proj->kpj_ntasks++; 842 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 843 844 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 845 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 846 init_set = rctl_set_create(); 847 848 mutex_enter(&pidlock); 849 mutex_enter(&p->p_lock); 850 tk_old = p->p_task; /* switch to new task */ 851 852 task_detach(p); 853 task_begin(tk, p); 854 mutex_exit(&pidlock); 855 856 e.rcep_p.proc = p; 857 e.rcep_t = RCENTITY_PROCESS; 858 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 859 init_gp); 860 rctlproc_default_init(p, default_gp); 861 mutex_exit(&p->p_lock); 862 863 task_rele(tk_old); 864 rctl_prealloc_destroy(default_gp); 865 rctl_prealloc_destroy(init_gp); 866 } 867 868 p->p_as = &kas; 869 870 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 871 &curthread->t_hold, cid, 1)) == NULL) { 872 task_t *tk; 873 fork_fail(p); 874 mutex_enter(&pidlock); 875 mutex_enter(&p->p_lock); 876 tk = p->p_task; 877 task_detach(p); 878 ASSERT(p->p_pool->pool_ref > 0); 879 atomic_add_32(&p->p_pool->pool_ref, -1); 880 mutex_exit(&p->p_lock); 881 pid_exit(p); 882 mutex_exit(&pidlock); 883 task_rele(tk); 884 885 return (EAGAIN); 886 } 887 888 if (cid != syscid) { 889 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 890 B_FALSE); 891 ASSERT(ctp != NULL); 892 if (ct != NULL) 893 *ct = &ctp->conp_contract; 894 } 895 896 p->p_lwpid = 1; 897 mutex_enter(&pidlock); 898 pgjoin(p, curproc->p_pgidp); 899 p->p_stat = SRUN; 900 mutex_enter(&p->p_lock); 901 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 902 lwp_create_done(lwptot(lwp)); 903 mutex_exit(&p->p_lock); 904 mutex_exit(&pidlock); 905 return (0); 906 } 907 908 /* 909 * create a child proc struct. 910 */ 911 static int 912 getproc(proc_t **cpp, int kernel) 913 { 914 proc_t *pp, *cp; 915 pid_t newpid; 916 struct user *uarea; 917 extern uint_t nproc; 918 struct cred *cr; 919 uid_t ruid; 920 zoneid_t zoneid; 921 922 if (!page_mem_avail(tune.t_minarmem)) 923 return (-1); 924 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 925 return (-1); /* no point in starting new processes */ 926 927 pp = curproc; 928 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 929 bzero(cp, sizeof (proc_t)); 930 931 /* 932 * Make proc entry for child process 933 */ 934 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 935 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 936 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 937 #if defined(__x86) 938 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 939 #endif 940 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 941 cp->p_stat = SIDL; 942 cp->p_mstart = gethrtime(); 943 /* 944 * p_zone must be set before we call pid_allocate since the process 945 * will be visible after that and code such as prfind_zone will 946 * look at the p_zone field. 947 */ 948 cp->p_zone = pp->p_zone; 949 cp->p_t1_lgrpid = LGRP_NONE; 950 cp->p_tr_lgrpid = LGRP_NONE; 951 952 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 953 if (nproc == v.v_proc) { 954 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 955 cmn_err(CE_WARN, "out of processes"); 956 } 957 goto bad; 958 } 959 960 /* 961 * If not privileged make sure that this user hasn't exceeded 962 * v.v_maxup processes, and that users collectively haven't 963 * exceeded v.v_maxupttl processes. 964 */ 965 mutex_enter(&pidlock); 966 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 967 cr = CRED(); 968 ruid = crgetruid(cr); 969 zoneid = crgetzoneid(cr); 970 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 971 (nproc >= v.v_maxupttl || 972 upcount_get(ruid, zoneid) >= v.v_maxup) && 973 secpolicy_newproc(cr) != 0) { 974 mutex_exit(&pidlock); 975 zcmn_err(zoneid, CE_NOTE, 976 "out of per-user processes for uid %d", ruid); 977 goto bad; 978 } 979 980 /* 981 * Everything is cool, put the new proc on the active process list. 982 * It is already on the pid list and in /proc. 983 * Increment the per uid process count (upcount). 984 */ 985 nproc++; 986 upcount_inc(ruid, zoneid); 987 988 cp->p_next = practive; 989 practive->p_prev = cp; 990 practive = cp; 991 992 cp->p_ignore = pp->p_ignore; 993 cp->p_siginfo = pp->p_siginfo; 994 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 995 cp->p_sessp = pp->p_sessp; 996 sess_hold(pp); 997 cp->p_exec = pp->p_exec; 998 cp->p_execdir = pp->p_execdir; 999 cp->p_brand = pp->p_brand; 1000 if (PROC_IS_BRANDED(pp)) 1001 BROP(pp)->b_copy_procdata(cp, pp); 1002 1003 cp->p_bssbase = pp->p_bssbase; 1004 cp->p_brkbase = pp->p_brkbase; 1005 cp->p_brksize = pp->p_brksize; 1006 cp->p_brkpageszc = pp->p_brkpageszc; 1007 cp->p_stksize = pp->p_stksize; 1008 cp->p_stkpageszc = pp->p_stkpageszc; 1009 cp->p_stkprot = pp->p_stkprot; 1010 cp->p_datprot = pp->p_datprot; 1011 cp->p_usrstack = pp->p_usrstack; 1012 cp->p_model = pp->p_model; 1013 cp->p_ppid = pp->p_pid; 1014 cp->p_ancpid = pp->p_pid; 1015 cp->p_portcnt = pp->p_portcnt; 1016 1017 /* 1018 * Initialize watchpoint structures 1019 */ 1020 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1021 offsetof(struct watched_area, wa_link)); 1022 1023 /* 1024 * Initialize immediate resource control values. 1025 */ 1026 cp->p_stk_ctl = pp->p_stk_ctl; 1027 cp->p_fsz_ctl = pp->p_fsz_ctl; 1028 cp->p_vmem_ctl = pp->p_vmem_ctl; 1029 cp->p_fno_ctl = pp->p_fno_ctl; 1030 1031 /* 1032 * Link up to parent-child-sibling chain. No need to lock 1033 * in general since only a call to freeproc() (done by the 1034 * same parent as newproc()) diddles with the child chain. 1035 */ 1036 cp->p_sibling = pp->p_child; 1037 if (pp->p_child) 1038 pp->p_child->p_psibling = cp; 1039 1040 cp->p_parent = pp; 1041 pp->p_child = cp; 1042 1043 cp->p_child_ns = NULL; 1044 cp->p_sibling_ns = NULL; 1045 1046 cp->p_nextorph = pp->p_orphan; 1047 cp->p_nextofkin = pp; 1048 pp->p_orphan = cp; 1049 1050 /* 1051 * Inherit profiling state; do not inherit REALPROF profiling state. 1052 */ 1053 cp->p_prof = pp->p_prof; 1054 cp->p_rprof_cyclic = CYCLIC_NONE; 1055 1056 /* 1057 * Inherit pool pointer from the parent. Kernel processes are 1058 * always bound to the default pool. 1059 */ 1060 mutex_enter(&pp->p_lock); 1061 if (kernel) { 1062 cp->p_pool = pool_default; 1063 cp->p_flag |= SSYS; 1064 } else { 1065 cp->p_pool = pp->p_pool; 1066 } 1067 atomic_add_32(&cp->p_pool->pool_ref, 1); 1068 mutex_exit(&pp->p_lock); 1069 1070 /* 1071 * Add the child process to the current task. Kernel processes 1072 * are always attached to task0. 1073 */ 1074 mutex_enter(&cp->p_lock); 1075 if (kernel) 1076 task_attach(task0p, cp); 1077 else 1078 task_attach(pp->p_task, cp); 1079 mutex_exit(&cp->p_lock); 1080 mutex_exit(&pidlock); 1081 1082 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1083 offsetof(contract_t, ct_ctlist)); 1084 1085 /* 1086 * Duplicate any audit information kept in the process table 1087 */ 1088 if (audit_active) /* copy audit data to cp */ 1089 audit_newproc(cp); 1090 1091 crhold(cp->p_cred = cr); 1092 1093 /* 1094 * Bump up the counts on the file structures pointed at by the 1095 * parent's file table since the child will point at them too. 1096 */ 1097 fcnt_add(P_FINFO(pp), 1); 1098 1099 VN_HOLD(PTOU(pp)->u_cdir); 1100 if (PTOU(pp)->u_rdir) 1101 VN_HOLD(PTOU(pp)->u_rdir); 1102 if (PTOU(pp)->u_cwd) 1103 refstr_hold(PTOU(pp)->u_cwd); 1104 1105 /* 1106 * copy the parent's uarea. 1107 */ 1108 uarea = PTOU(cp); 1109 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1110 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1111 1112 gethrestime(&uarea->u_start); 1113 uarea->u_ticks = lbolt; 1114 uarea->u_mem = rm_asrss(pp->p_as); 1115 uarea->u_acflag = AFORK; 1116 1117 /* 1118 * If inherit-on-fork, copy /proc tracing flags to child. 1119 */ 1120 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1121 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1122 cp->p_sigmask = pp->p_sigmask; 1123 cp->p_fltmask = pp->p_fltmask; 1124 } else { 1125 sigemptyset(&cp->p_sigmask); 1126 premptyset(&cp->p_fltmask); 1127 uarea->u_systrap = 0; 1128 premptyset(&uarea->u_entrymask); 1129 premptyset(&uarea->u_exitmask); 1130 } 1131 /* 1132 * If microstate accounting is being inherited, mark child 1133 */ 1134 if ((pp->p_flag & SMSFORK) != 0) 1135 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1136 1137 /* 1138 * Inherit fixalignment flag from the parent 1139 */ 1140 cp->p_fixalignment = pp->p_fixalignment; 1141 1142 if (cp->p_exec) 1143 VN_HOLD(cp->p_exec); 1144 if (cp->p_execdir) 1145 VN_HOLD(cp->p_execdir); 1146 *cpp = cp; 1147 return (0); 1148 1149 bad: 1150 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1151 1152 mutex_destroy(&cp->p_crlock); 1153 mutex_destroy(&cp->p_pflock); 1154 #if defined(__x86) 1155 mutex_destroy(&cp->p_ldtlock); 1156 #endif 1157 if (newpid != -1) { 1158 proc_entry_free(cp->p_pidp); 1159 (void) pid_rele(cp->p_pidp); 1160 } 1161 kmem_cache_free(process_cache, cp); 1162 1163 /* 1164 * We most likely got into this situation because some process is 1165 * forking out of control. As punishment, put it to sleep for a 1166 * bit so it can't eat the machine alive. Sleep interval is chosen 1167 * to allow no more than one fork failure per cpu per clock tick 1168 * on average (yes, I just made this up). This has two desirable 1169 * properties: (1) it sets a constant limit on the fork failure 1170 * rate, and (2) the busier the system is, the harsher the penalty 1171 * for abusing it becomes. 1172 */ 1173 INCR_COUNT(&fork_fail_pending, &pidlock); 1174 delay(fork_fail_pending / ncpus + 1); 1175 DECR_COUNT(&fork_fail_pending, &pidlock); 1176 1177 return (-1); /* out of memory or proc slots */ 1178 } 1179 1180 /* 1181 * Release virtual memory. 1182 * In the case of vfork(), the child was given exclusive access to its 1183 * parent's address space. The parent is waiting in vfwait() for the 1184 * child to release its exclusive claim via relvm(). 1185 */ 1186 void 1187 relvm() 1188 { 1189 proc_t *p = curproc; 1190 1191 ASSERT((unsigned)p->p_lwpcnt <= 1); 1192 1193 prrelvm(); /* inform /proc */ 1194 1195 if (p->p_flag & SVFORK) { 1196 proc_t *pp = p->p_parent; 1197 /* 1198 * The child process is either exec'ing or exit'ing. 1199 * The child is now separated from the parent's address 1200 * space. The parent process is made dispatchable. 1201 * 1202 * This is a delicate locking maneuver, involving 1203 * both the parent's p_lock and the child's p_lock. 1204 * As soon as the SVFORK flag is turned off, the 1205 * parent is free to run, but it must not run until 1206 * we wake it up using its p_cv because it might 1207 * exit and we would be referencing invalid memory. 1208 * Therefore, we hold the parent with its p_lock 1209 * while protecting our p_flags with our own p_lock. 1210 */ 1211 try_again: 1212 mutex_enter(&p->p_lock); /* grab child's lock first */ 1213 prbarrier(p); /* make sure /proc is blocked out */ 1214 mutex_enter(&pp->p_lock); 1215 1216 /* 1217 * Check if parent is locked by /proc. 1218 */ 1219 if (pp->p_proc_flag & P_PR_LOCK) { 1220 /* 1221 * Delay until /proc is done with the parent. 1222 * We must drop our (the child's) p->p_lock, wait 1223 * via prbarrier() on the parent, then start over. 1224 */ 1225 mutex_exit(&p->p_lock); 1226 prbarrier(pp); 1227 mutex_exit(&pp->p_lock); 1228 goto try_again; 1229 } 1230 p->p_flag &= ~SVFORK; 1231 kpreempt_disable(); 1232 p->p_as = &kas; 1233 1234 /* 1235 * notify hat of change in thread's address space 1236 */ 1237 hat_thread_exit(curthread); 1238 kpreempt_enable(); 1239 1240 /* 1241 * child sizes are copied back to parent because 1242 * child may have grown. 1243 */ 1244 pp->p_brkbase = p->p_brkbase; 1245 pp->p_brksize = p->p_brksize; 1246 pp->p_stksize = p->p_stksize; 1247 /* 1248 * The parent is no longer waiting for the vfork()d child. 1249 * Restore the parent's watched pages, if any. This is 1250 * safe because we know the parent is not locked by /proc 1251 */ 1252 pp->p_flag &= ~SVFWAIT; 1253 if (avl_numnodes(&pp->p_wpage) != 0) { 1254 pp->p_as->a_wpage = pp->p_wpage; 1255 avl_create(&pp->p_wpage, wp_compare, 1256 sizeof (struct watched_page), 1257 offsetof(struct watched_page, wp_link)); 1258 } 1259 cv_signal(&pp->p_cv); 1260 mutex_exit(&pp->p_lock); 1261 mutex_exit(&p->p_lock); 1262 } else { 1263 if (p->p_as != &kas) { 1264 struct as *as; 1265 1266 if (p->p_segacct) 1267 shmexit(p); 1268 1269 /* 1270 * We grab p_lock for the benefit of /proc 1271 */ 1272 kpreempt_disable(); 1273 mutex_enter(&p->p_lock); 1274 prbarrier(p); /* make sure /proc is blocked out */ 1275 as = p->p_as; 1276 p->p_as = &kas; 1277 mutex_exit(&p->p_lock); 1278 1279 /* 1280 * notify hat of change in thread's address space 1281 */ 1282 hat_thread_exit(curthread); 1283 kpreempt_enable(); 1284 1285 as_free(as); 1286 p->p_tr_lgrpid = LGRP_NONE; 1287 } 1288 } 1289 } 1290 1291 /* 1292 * Wait for child to exec or exit. 1293 * Called by parent of vfork'ed process. 1294 * See important comments in relvm(), above. 1295 */ 1296 void 1297 vfwait(pid_t pid) 1298 { 1299 int signalled = 0; 1300 proc_t *pp = ttoproc(curthread); 1301 proc_t *cp; 1302 1303 /* 1304 * Wait for child to exec or exit. 1305 */ 1306 for (;;) { 1307 mutex_enter(&pidlock); 1308 cp = prfind(pid); 1309 if (cp == NULL || cp->p_parent != pp) { 1310 /* 1311 * Child has exit()ed. 1312 */ 1313 mutex_exit(&pidlock); 1314 break; 1315 } 1316 /* 1317 * Grab the child's p_lock before releasing pidlock. 1318 * Otherwise, the child could exit and we would be 1319 * referencing invalid memory. 1320 */ 1321 mutex_enter(&cp->p_lock); 1322 mutex_exit(&pidlock); 1323 if (!(cp->p_flag & SVFORK)) { 1324 /* 1325 * Child has exec()ed or is exit()ing. 1326 */ 1327 mutex_exit(&cp->p_lock); 1328 break; 1329 } 1330 mutex_enter(&pp->p_lock); 1331 mutex_exit(&cp->p_lock); 1332 /* 1333 * We might be waked up spuriously from the cv_wait(). 1334 * We have to do the whole operation over again to be 1335 * sure the child's SVFORK flag really is turned off. 1336 * We cannot make reference to the child because it can 1337 * exit before we return and we would be referencing 1338 * invalid memory. 1339 * 1340 * Because this is potentially a very long-term wait, 1341 * we call cv_wait_sig() (for its jobcontrol and /proc 1342 * side-effects) unless there is a current signal, in 1343 * which case we use cv_wait() because we cannot return 1344 * from this function until the child has released the 1345 * address space. Calling cv_wait_sig() with a current 1346 * signal would lead to an indefinite loop here because 1347 * cv_wait_sig() returns immediately in this case. 1348 */ 1349 if (signalled) 1350 cv_wait(&pp->p_cv, &pp->p_lock); 1351 else 1352 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1353 mutex_exit(&pp->p_lock); 1354 } 1355 1356 /* restore watchpoints to parent */ 1357 if (pr_watch_active(pp)) { 1358 struct as *as = pp->p_as; 1359 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1360 as_setwatch(as); 1361 AS_LOCK_EXIT(as, &as->a_lock); 1362 } 1363 1364 mutex_enter(&pp->p_lock); 1365 prbarrier(pp); /* barrier against /proc locking */ 1366 continuelwps(pp); 1367 mutex_exit(&pp->p_lock); 1368 } 1369