1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, int); 85 static void fork_fail(proc_t *); 86 static void forklwp_fail(proc_t *); 87 88 int fork_fail_pending; 89 90 extern struct kmem_cache *process_cache; 91 92 /* 93 * forkall system call. 94 */ 95 int64_t 96 forkall(void) 97 { 98 return (cfork(0, 0, 0)); 99 } 100 101 /* 102 * The parent is stopped until the child invokes relvm(). 103 */ 104 int64_t 105 vfork(void) 106 { 107 curthread->t_post_sys = 1; /* so vfwait() will be called */ 108 return (cfork(1, 1, 0)); 109 } 110 111 /* 112 * fork system call, aka fork1. 113 */ 114 int64_t 115 fork1(void) 116 { 117 return (cfork(0, 1, 0)); 118 } 119 120 /* 121 * The forkall(), vfork(), and fork1() system calls are no longer 122 * invoked by libc. They are retained only for the benefit of 123 * old statically-linked applications. They should be eliminated 124 * when we no longer care about such old and broken applications. 125 */ 126 127 /* 128 * forksys system call - forkx, forkallx, vforkx. 129 * This is the interface now invoked by libc. 130 */ 131 int64_t 132 forksys(int subcode, int flags) 133 { 134 switch (subcode) { 135 case 0: 136 return (cfork(0, 1, flags)); /* forkx(flags) */ 137 case 1: 138 return (cfork(0, 0, flags)); /* forkallx(flags) */ 139 case 2: 140 curthread->t_post_sys = 1; /* so vfwait() will be called */ 141 return (cfork(1, 1, flags)); /* vforkx(flags) */ 142 default: 143 return ((int64_t)set_errno(EINVAL)); 144 } 145 } 146 147 /* ARGSUSED */ 148 static int64_t 149 cfork(int isvfork, int isfork1, int flags) 150 { 151 proc_t *p = ttoproc(curthread); 152 struct as *as; 153 proc_t *cp, **orphpp; 154 klwp_t *clone; 155 kthread_t *t; 156 task_t *tk; 157 rval_t r; 158 int error; 159 int i; 160 rctl_set_t *dup_set; 161 rctl_alloc_gp_t *dup_gp; 162 rctl_entity_p_t e; 163 lwpdir_t *ldp; 164 lwpent_t *lep; 165 lwpent_t *clep; 166 167 /* 168 * Allow only these two flags. 169 */ 170 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 171 error = EINVAL; 172 goto forkerr; 173 } 174 175 /* 176 * fork is not supported for the /proc agent lwp. 177 */ 178 if (curthread == p->p_agenttp) { 179 error = ENOTSUP; 180 goto forkerr; 181 } 182 183 if ((error = secpolicy_basic_fork(CRED())) != 0) 184 goto forkerr; 185 186 /* 187 * If the calling lwp is doing a fork1() then the 188 * other lwps in this process are not duplicated and 189 * don't need to be held where their kernel stacks can be 190 * cloned. If doing forkall(), the process is held with 191 * SHOLDFORK, so that the lwps are at a point where their 192 * stacks can be copied which is on entry or exit from 193 * the kernel. 194 */ 195 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 196 aston(curthread); 197 error = EINTR; 198 goto forkerr; 199 } 200 201 #if defined(__sparc) 202 /* 203 * Ensure that the user stack is fully constructed 204 * before creating the child process structure. 205 */ 206 (void) flush_user_windows_to_stack(NULL); 207 #endif 208 209 mutex_enter(&p->p_lock); 210 /* 211 * If this is vfork(), cancel any suspend request we might 212 * have gotten from some other thread via lwp_suspend(). 213 * Otherwise we could end up with a deadlock on return 214 * from the vfork() in both the parent and the child. 215 */ 216 if (isvfork) 217 curthread->t_proc_flag &= ~TP_HOLDLWP; 218 /* 219 * Prevent our resource set associations from being changed during fork. 220 */ 221 pool_barrier_enter(); 222 mutex_exit(&p->p_lock); 223 224 /* 225 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 226 */ 227 if (getproc(&cp, 0) < 0) { 228 mutex_enter(&p->p_lock); 229 pool_barrier_exit(); 230 continuelwps(p); 231 mutex_exit(&p->p_lock); 232 error = EAGAIN; 233 goto forkerr; 234 } 235 236 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 237 238 /* 239 * Assign an address space to child 240 */ 241 if (isvfork) { 242 /* 243 * Clear any watched areas and remember the 244 * watched pages for restoring in vfwait(). 245 */ 246 as = p->p_as; 247 if (avl_numnodes(&as->a_wpage) != 0) { 248 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 249 as_clearwatch(as); 250 p->p_wpage = as->a_wpage; 251 avl_create(&as->a_wpage, wp_compare, 252 sizeof (struct watched_page), 253 offsetof(struct watched_page, wp_link)); 254 AS_LOCK_EXIT(as, &as->a_lock); 255 } 256 cp->p_as = as; 257 cp->p_flag |= SVFORK; 258 } else { 259 /* 260 * We need to hold P_PR_LOCK until the address space has 261 * been duplicated and we've had a chance to remove from the 262 * child any DTrace probes that were in the parent. Holding 263 * P_PR_LOCK prevents any new probes from being added and any 264 * extant probes from being removed. 265 */ 266 mutex_enter(&p->p_lock); 267 sprlock_proc(p); 268 p->p_flag |= SFORKING; 269 mutex_exit(&p->p_lock); 270 271 error = as_dup(p->p_as, cp); 272 if (error != 0) { 273 mutex_enter(&p->p_lock); 274 sprunlock(p); 275 fork_fail(cp); 276 mutex_enter(&pidlock); 277 orphpp = &p->p_orphan; 278 while (*orphpp != cp) 279 orphpp = &(*orphpp)->p_nextorph; 280 *orphpp = cp->p_nextorph; 281 if (p->p_child == cp) 282 p->p_child = cp->p_sibling; 283 if (cp->p_sibling) 284 cp->p_sibling->p_psibling = cp->p_psibling; 285 if (cp->p_psibling) 286 cp->p_psibling->p_sibling = cp->p_sibling; 287 mutex_enter(&cp->p_lock); 288 tk = cp->p_task; 289 task_detach(cp); 290 ASSERT(cp->p_pool->pool_ref > 0); 291 atomic_add_32(&cp->p_pool->pool_ref, -1); 292 mutex_exit(&cp->p_lock); 293 pid_exit(cp); 294 mutex_exit(&pidlock); 295 task_rele(tk); 296 297 mutex_enter(&p->p_lock); 298 p->p_flag &= ~SFORKING; 299 pool_barrier_exit(); 300 continuelwps(p); 301 mutex_exit(&p->p_lock); 302 /* 303 * Preserve ENOMEM error condition but 304 * map all others to EAGAIN. 305 */ 306 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 307 goto forkerr; 308 } 309 310 /* 311 * Remove all DTrace tracepoints from the child process. We 312 * need to do this _before_ duplicating USDT providers since 313 * any associated probes may be immediately enabled. 314 */ 315 if (p->p_dtrace_count > 0) 316 dtrace_fasttrap_fork(p, cp); 317 318 mutex_enter(&p->p_lock); 319 sprunlock(p); 320 321 /* Duplicate parent's shared memory */ 322 if (p->p_segacct) 323 shmfork(p, cp); 324 325 /* 326 * Duplicate any helper actions and providers. The SFORKING 327 * we set above informs the code to enable USDT probes that 328 * sprlock() may fail because the child is being forked. 329 */ 330 if (p->p_dtrace_helpers != NULL) { 331 ASSERT(dtrace_helpers_fork != NULL); 332 (*dtrace_helpers_fork)(p, cp); 333 } 334 335 mutex_enter(&p->p_lock); 336 p->p_flag &= ~SFORKING; 337 mutex_exit(&p->p_lock); 338 } 339 340 /* 341 * Duplicate parent's resource controls. 342 */ 343 dup_set = rctl_set_create(); 344 for (;;) { 345 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 346 mutex_enter(&p->p_rctls->rcs_lock); 347 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 348 break; 349 mutex_exit(&p->p_rctls->rcs_lock); 350 rctl_prealloc_destroy(dup_gp); 351 } 352 e.rcep_p.proc = cp; 353 e.rcep_t = RCENTITY_PROCESS; 354 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 355 RCD_DUP | RCD_CALLBACK); 356 mutex_exit(&p->p_rctls->rcs_lock); 357 358 rctl_prealloc_destroy(dup_gp); 359 360 /* 361 * Allocate the child's lwp directory and lwpid hash table. 362 */ 363 if (isfork1) 364 cp->p_lwpdir_sz = 2; 365 else 366 cp->p_lwpdir_sz = p->p_lwpdir_sz; 367 cp->p_lwpdir = cp->p_lwpfree = ldp = 368 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 369 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 370 ldp->ld_next = ldp + 1; 371 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 372 cp->p_tidhash = 373 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 374 375 /* 376 * Duplicate parent's lwps. 377 * Mutual exclusion is not needed because the process is 378 * in the hold state and only the current lwp is running. 379 */ 380 klgrpset_clear(cp->p_lgrpset); 381 if (isfork1) { 382 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 383 if (clone == NULL) 384 goto forklwperr; 385 /* 386 * Inherit only the lwp_wait()able flag, 387 * Daemon threads should not call fork1(), but oh well... 388 */ 389 lwptot(clone)->t_proc_flag |= 390 (curthread->t_proc_flag & TP_TWAIT); 391 } else { 392 /* this is forkall(), no one can be in lwp_wait() */ 393 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 394 /* for each entry in the parent's lwp directory... */ 395 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 396 klwp_t *clwp; 397 kthread_t *ct; 398 399 if ((lep = ldp->ld_entry) == NULL) 400 continue; 401 402 if ((t = lep->le_thread) != NULL) { 403 clwp = forklwp(ttolwp(t), cp, t->t_tid); 404 if (clwp == NULL) 405 goto forklwperr; 406 ct = lwptot(clwp); 407 /* 408 * Inherit lwp_wait()able and daemon flags. 409 */ 410 ct->t_proc_flag |= 411 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 412 /* 413 * Keep track of the clone of curthread to 414 * post return values through lwp_setrval(). 415 * Mark other threads for special treatment 416 * by lwp_rtt() / post_syscall(). 417 */ 418 if (t == curthread) 419 clone = clwp; 420 else 421 ct->t_flag |= T_FORKALL; 422 } else { 423 /* 424 * Replicate zombie lwps in the child. 425 */ 426 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 427 clep->le_lwpid = lep->le_lwpid; 428 clep->le_start = lep->le_start; 429 lwp_hash_in(cp, clep, 430 cp->p_tidhash, cp->p_tidhash_sz, 0); 431 } 432 } 433 } 434 435 /* 436 * Put new process in the parent's process contract, or put it 437 * in a new one if there is an active process template. Send a 438 * fork event (if requested) to whatever contract the child is 439 * a member of. Fails if the parent has been SIGKILLed. 440 */ 441 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 442 goto forklwperr; 443 444 /* 445 * No fork failures occur beyond this point. 446 */ 447 448 cp->p_lwpid = p->p_lwpid; 449 if (!isfork1) { 450 cp->p_lwpdaemon = p->p_lwpdaemon; 451 cp->p_zombcnt = p->p_zombcnt; 452 /* 453 * If the parent's lwp ids have wrapped around, so have the 454 * child's. 455 */ 456 cp->p_flag |= p->p_flag & SLWPWRAP; 457 } 458 459 mutex_enter(&p->p_lock); 460 corectl_path_hold(cp->p_corefile = p->p_corefile); 461 corectl_content_hold(cp->p_content = p->p_content); 462 mutex_exit(&p->p_lock); 463 464 /* 465 * Duplicate process context ops, if any. 466 */ 467 if (p->p_pctx) 468 forkpctx(p, cp); 469 470 #ifdef __sparc 471 utrap_dup(p, cp); 472 #endif 473 /* 474 * If the child process has been marked to stop on exit 475 * from this fork, arrange for all other lwps to stop in 476 * sympathy with the active lwp. 477 */ 478 if (PTOU(cp)->u_systrap && 479 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 480 mutex_enter(&cp->p_lock); 481 t = cp->p_tlist; 482 do { 483 t->t_proc_flag |= TP_PRSTOP; 484 aston(t); /* so TP_PRSTOP will be seen */ 485 } while ((t = t->t_forw) != cp->p_tlist); 486 mutex_exit(&cp->p_lock); 487 } 488 /* 489 * If the parent process has been marked to stop on exit 490 * from this fork, and its asynchronous-stop flag has not 491 * been set, arrange for all other lwps to stop before 492 * they return back to user level. 493 */ 494 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 495 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 496 mutex_enter(&p->p_lock); 497 t = p->p_tlist; 498 do { 499 t->t_proc_flag |= TP_PRSTOP; 500 aston(t); /* so TP_PRSTOP will be seen */ 501 } while ((t = t->t_forw) != p->p_tlist); 502 mutex_exit(&p->p_lock); 503 } 504 505 if (PROC_IS_BRANDED(p)) 506 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 507 else 508 lwp_setrval(clone, p->p_pid, 1); 509 510 /* set return values for parent */ 511 r.r_val1 = (int)cp->p_pid; 512 r.r_val2 = 0; 513 514 /* 515 * pool_barrier_exit() can now be called because the child process has: 516 * - all identifying features cloned or set (p_pid, p_task, p_pool) 517 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 518 * - any other fields set which are used in resource set binding. 519 */ 520 mutex_enter(&p->p_lock); 521 pool_barrier_exit(); 522 mutex_exit(&p->p_lock); 523 524 mutex_enter(&pidlock); 525 mutex_enter(&cp->p_lock); 526 527 /* 528 * Set flags telling the child what (not) to do on exit. 529 */ 530 if (flags & FORK_NOSIGCHLD) 531 cp->p_pidflag |= CLDNOSIGCHLD; 532 if (flags & FORK_WAITPID) 533 cp->p_pidflag |= CLDWAITPID; 534 535 /* 536 * Now that there are lwps and threads attached, add the new 537 * process to the process group. 538 */ 539 pgjoin(cp, p->p_pgidp); 540 cp->p_stat = SRUN; 541 /* 542 * We are now done with all the lwps in the child process. 543 */ 544 t = cp->p_tlist; 545 do { 546 /* 547 * Set the lwp_suspend()ed lwps running. 548 * They will suspend properly at syscall exit. 549 */ 550 if (t->t_proc_flag & TP_HOLDLWP) 551 lwp_create_done(t); 552 else { 553 /* set TS_CREATE to allow continuelwps() to work */ 554 thread_lock(t); 555 ASSERT(t->t_state == TS_STOPPED && 556 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 557 t->t_schedflag |= TS_CREATE; 558 thread_unlock(t); 559 } 560 } while ((t = t->t_forw) != cp->p_tlist); 561 mutex_exit(&cp->p_lock); 562 563 if (isvfork) { 564 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 565 mutex_enter(&p->p_lock); 566 p->p_flag |= SVFWAIT; 567 curthread->t_flag |= T_VFPARENT; 568 DTRACE_PROC1(create, proc_t *, cp); 569 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 570 mutex_exit(&p->p_lock); 571 /* 572 * Grab child's p_lock before dropping pidlock to ensure 573 * the process will not disappear before we set it running. 574 */ 575 mutex_enter(&cp->p_lock); 576 mutex_exit(&pidlock); 577 sigdefault(cp); 578 continuelwps(cp); 579 mutex_exit(&cp->p_lock); 580 } else { 581 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 582 DTRACE_PROC1(create, proc_t *, cp); 583 /* 584 * It is CL_FORKRET's job to drop pidlock. 585 * If we do it here, the process could be set running 586 * and disappear before CL_FORKRET() is called. 587 */ 588 CL_FORKRET(curthread, cp->p_tlist); 589 schedctl_set_cidpri(curthread); 590 ASSERT(MUTEX_NOT_HELD(&pidlock)); 591 } 592 593 return (r.r_vals); 594 595 forklwperr: 596 if (isvfork) { 597 if (avl_numnodes(&p->p_wpage) != 0) { 598 /* restore watchpoints to parent */ 599 as = p->p_as; 600 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 601 as->a_wpage = p->p_wpage; 602 avl_create(&p->p_wpage, wp_compare, 603 sizeof (struct watched_page), 604 offsetof(struct watched_page, wp_link)); 605 as_setwatch(as); 606 AS_LOCK_EXIT(as, &as->a_lock); 607 } 608 } else { 609 if (cp->p_segacct) 610 shmexit(cp); 611 as = cp->p_as; 612 cp->p_as = &kas; 613 as_free(as); 614 } 615 616 if (cp->p_lwpdir) { 617 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 618 if ((lep = ldp->ld_entry) != NULL) 619 kmem_free(lep, sizeof (*lep)); 620 kmem_free(cp->p_lwpdir, 621 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 622 } 623 cp->p_lwpdir = NULL; 624 cp->p_lwpfree = NULL; 625 cp->p_lwpdir_sz = 0; 626 627 if (cp->p_tidhash) 628 kmem_free(cp->p_tidhash, 629 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 630 cp->p_tidhash = NULL; 631 cp->p_tidhash_sz = 0; 632 633 forklwp_fail(cp); 634 fork_fail(cp); 635 rctl_set_free(cp->p_rctls); 636 mutex_enter(&pidlock); 637 638 /* 639 * Detach failed child from task. 640 */ 641 mutex_enter(&cp->p_lock); 642 tk = cp->p_task; 643 task_detach(cp); 644 ASSERT(cp->p_pool->pool_ref > 0); 645 atomic_add_32(&cp->p_pool->pool_ref, -1); 646 mutex_exit(&cp->p_lock); 647 648 orphpp = &p->p_orphan; 649 while (*orphpp != cp) 650 orphpp = &(*orphpp)->p_nextorph; 651 *orphpp = cp->p_nextorph; 652 if (p->p_child == cp) 653 p->p_child = cp->p_sibling; 654 if (cp->p_sibling) 655 cp->p_sibling->p_psibling = cp->p_psibling; 656 if (cp->p_psibling) 657 cp->p_psibling->p_sibling = cp->p_sibling; 658 pid_exit(cp); 659 mutex_exit(&pidlock); 660 661 task_rele(tk); 662 663 mutex_enter(&p->p_lock); 664 pool_barrier_exit(); 665 continuelwps(p); 666 mutex_exit(&p->p_lock); 667 error = EAGAIN; 668 forkerr: 669 return ((int64_t)set_errno(error)); 670 } 671 672 /* 673 * Free allocated resources from getproc() if a fork failed. 674 */ 675 static void 676 fork_fail(proc_t *cp) 677 { 678 uf_info_t *fip = P_FINFO(cp); 679 680 fcnt_add(fip, -1); 681 sigdelq(cp, NULL, 0); 682 683 mutex_enter(&pidlock); 684 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 685 mutex_exit(&pidlock); 686 687 /* 688 * single threaded, so no locking needed here 689 */ 690 crfree(cp->p_cred); 691 692 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 693 694 VN_RELE(PTOU(curproc)->u_cdir); 695 if (PTOU(curproc)->u_rdir) 696 VN_RELE(PTOU(curproc)->u_rdir); 697 if (cp->p_exec) 698 VN_RELE(cp->p_exec); 699 if (cp->p_execdir) 700 VN_RELE(cp->p_execdir); 701 if (PTOU(curproc)->u_cwd) 702 refstr_rele(PTOU(curproc)->u_cwd); 703 } 704 705 /* 706 * Clean up the lwps already created for this child process. 707 * The fork failed while duplicating all the lwps of the parent 708 * and those lwps already created must be freed. 709 * This process is invisible to the rest of the system, 710 * so we don't need to hold p->p_lock to protect the list. 711 */ 712 static void 713 forklwp_fail(proc_t *p) 714 { 715 kthread_t *t; 716 task_t *tk; 717 718 while ((t = p->p_tlist) != NULL) { 719 /* 720 * First remove the lwp from the process's p_tlist. 721 */ 722 if (t != t->t_forw) 723 p->p_tlist = t->t_forw; 724 else 725 p->p_tlist = NULL; 726 p->p_lwpcnt--; 727 t->t_forw->t_back = t->t_back; 728 t->t_back->t_forw = t->t_forw; 729 730 tk = p->p_task; 731 mutex_enter(&p->p_zone->zone_nlwps_lock); 732 tk->tk_nlwps--; 733 tk->tk_proj->kpj_nlwps--; 734 p->p_zone->zone_nlwps--; 735 mutex_exit(&p->p_zone->zone_nlwps_lock); 736 737 ASSERT(t->t_schedctl == NULL); 738 739 if (t->t_door != NULL) { 740 kmem_free(t->t_door, sizeof (door_data_t)); 741 t->t_door = NULL; 742 } 743 lwp_ctmpl_clear(ttolwp(t)); 744 745 /* 746 * Remove the thread from the all threads list. 747 * We need to hold pidlock for this. 748 */ 749 mutex_enter(&pidlock); 750 t->t_next->t_prev = t->t_prev; 751 t->t_prev->t_next = t->t_next; 752 CL_EXIT(t); /* tell the scheduler that we're exiting */ 753 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 754 mutex_exit(&pidlock); 755 756 /* 757 * Let the lgroup load averages know that this thread isn't 758 * going to show up (i.e. un-do what was done on behalf of 759 * this thread by the earlier lgrp_move_thread()). 760 */ 761 kpreempt_disable(); 762 lgrp_move_thread(t, NULL, 1); 763 kpreempt_enable(); 764 765 /* 766 * The thread was created TS_STOPPED. 767 * We change it to TS_FREE to avoid an 768 * ASSERT() panic in thread_free(). 769 */ 770 t->t_state = TS_FREE; 771 thread_rele(t); 772 thread_free(t); 773 } 774 } 775 776 extern struct as kas; 777 778 /* 779 * fork a kernel process. 780 */ 781 int 782 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 783 { 784 proc_t *p; 785 struct user *up; 786 klwp_t *lwp; 787 cont_process_t *ctp = NULL; 788 rctl_entity_p_t e; 789 790 ASSERT(!(cid == syscid && ct != NULL)); 791 if (cid == syscid) { 792 rctl_alloc_gp_t *init_gp; 793 rctl_set_t *init_set; 794 795 if (getproc(&p, 1) < 0) 796 return (EAGAIN); 797 798 /* 799 * Release the hold on the p_exec and p_execdir, these 800 * were acquired in getproc() 801 */ 802 if (p->p_execdir != NULL) 803 VN_RELE(p->p_execdir); 804 if (p->p_exec != NULL) 805 VN_RELE(p->p_exec); 806 p->p_flag |= SNOWAIT; 807 p->p_exec = NULL; 808 p->p_execdir = NULL; 809 810 init_set = rctl_set_create(); 811 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 812 813 /* 814 * kernel processes do not inherit /proc tracing flags. 815 */ 816 sigemptyset(&p->p_sigmask); 817 premptyset(&p->p_fltmask); 818 up = PTOU(p); 819 up->u_systrap = 0; 820 premptyset(&(up->u_entrymask)); 821 premptyset(&(up->u_exitmask)); 822 mutex_enter(&p->p_lock); 823 e.rcep_p.proc = p; 824 e.rcep_t = RCENTITY_PROCESS; 825 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 826 init_gp); 827 mutex_exit(&p->p_lock); 828 829 rctl_prealloc_destroy(init_gp); 830 } else { 831 rctl_alloc_gp_t *init_gp, *default_gp; 832 rctl_set_t *init_set; 833 task_t *tk, *tk_old; 834 835 if (getproc(&p, 0) < 0) 836 return (EAGAIN); 837 /* 838 * init creates a new task, distinct from the task 839 * containing kernel "processes". 840 */ 841 tk = task_create(0, p->p_zone); 842 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 843 tk->tk_proj->kpj_ntasks++; 844 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 845 846 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 847 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 848 init_set = rctl_set_create(); 849 850 mutex_enter(&pidlock); 851 mutex_enter(&p->p_lock); 852 tk_old = p->p_task; /* switch to new task */ 853 854 task_detach(p); 855 task_begin(tk, p); 856 mutex_exit(&pidlock); 857 858 e.rcep_p.proc = p; 859 e.rcep_t = RCENTITY_PROCESS; 860 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 861 init_gp); 862 rctlproc_default_init(p, default_gp); 863 mutex_exit(&p->p_lock); 864 865 task_rele(tk_old); 866 rctl_prealloc_destroy(default_gp); 867 rctl_prealloc_destroy(init_gp); 868 } 869 870 p->p_as = &kas; 871 872 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 873 &curthread->t_hold, cid, 1)) == NULL) { 874 task_t *tk; 875 fork_fail(p); 876 mutex_enter(&pidlock); 877 mutex_enter(&p->p_lock); 878 tk = p->p_task; 879 task_detach(p); 880 ASSERT(p->p_pool->pool_ref > 0); 881 atomic_add_32(&p->p_pool->pool_ref, -1); 882 mutex_exit(&p->p_lock); 883 pid_exit(p); 884 mutex_exit(&pidlock); 885 task_rele(tk); 886 887 return (EAGAIN); 888 } 889 890 if (cid != syscid) { 891 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 892 B_FALSE); 893 ASSERT(ctp != NULL); 894 if (ct != NULL) 895 *ct = &ctp->conp_contract; 896 } 897 898 p->p_lwpid = 1; 899 mutex_enter(&pidlock); 900 pgjoin(p, curproc->p_pgidp); 901 p->p_stat = SRUN; 902 mutex_enter(&p->p_lock); 903 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 904 lwp_create_done(lwptot(lwp)); 905 mutex_exit(&p->p_lock); 906 mutex_exit(&pidlock); 907 return (0); 908 } 909 910 /* 911 * create a child proc struct. 912 */ 913 static int 914 getproc(proc_t **cpp, int kernel) 915 { 916 proc_t *pp, *cp; 917 pid_t newpid; 918 struct user *uarea; 919 extern uint_t nproc; 920 struct cred *cr; 921 uid_t ruid; 922 zoneid_t zoneid; 923 924 if (!page_mem_avail(tune.t_minarmem)) 925 return (-1); 926 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 927 return (-1); /* no point in starting new processes */ 928 929 pp = curproc; 930 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 931 bzero(cp, sizeof (proc_t)); 932 933 /* 934 * Make proc entry for child process 935 */ 936 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 937 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 938 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 939 #if defined(__x86) 940 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 941 #endif 942 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 943 cp->p_stat = SIDL; 944 cp->p_mstart = gethrtime(); 945 /* 946 * p_zone must be set before we call pid_allocate since the process 947 * will be visible after that and code such as prfind_zone will 948 * look at the p_zone field. 949 */ 950 cp->p_zone = pp->p_zone; 951 cp->p_t1_lgrpid = LGRP_NONE; 952 cp->p_tr_lgrpid = LGRP_NONE; 953 954 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 955 if (nproc == v.v_proc) { 956 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 957 cmn_err(CE_WARN, "out of processes"); 958 } 959 goto bad; 960 } 961 962 /* 963 * If not privileged make sure that this user hasn't exceeded 964 * v.v_maxup processes, and that users collectively haven't 965 * exceeded v.v_maxupttl processes. 966 */ 967 mutex_enter(&pidlock); 968 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 969 cr = CRED(); 970 ruid = crgetruid(cr); 971 zoneid = crgetzoneid(cr); 972 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 973 (nproc >= v.v_maxupttl || 974 upcount_get(ruid, zoneid) >= v.v_maxup) && 975 secpolicy_newproc(cr) != 0) { 976 mutex_exit(&pidlock); 977 zcmn_err(zoneid, CE_NOTE, 978 "out of per-user processes for uid %d", ruid); 979 goto bad; 980 } 981 982 /* 983 * Everything is cool, put the new proc on the active process list. 984 * It is already on the pid list and in /proc. 985 * Increment the per uid process count (upcount). 986 */ 987 nproc++; 988 upcount_inc(ruid, zoneid); 989 990 cp->p_next = practive; 991 practive->p_prev = cp; 992 practive = cp; 993 994 cp->p_ignore = pp->p_ignore; 995 cp->p_siginfo = pp->p_siginfo; 996 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 997 cp->p_sessp = pp->p_sessp; 998 sess_hold(pp); 999 cp->p_exec = pp->p_exec; 1000 cp->p_execdir = pp->p_execdir; 1001 cp->p_brand = pp->p_brand; 1002 if (PROC_IS_BRANDED(pp)) 1003 BROP(pp)->b_copy_procdata(cp, pp); 1004 1005 cp->p_bssbase = pp->p_bssbase; 1006 cp->p_brkbase = pp->p_brkbase; 1007 cp->p_brksize = pp->p_brksize; 1008 cp->p_brkpageszc = pp->p_brkpageszc; 1009 cp->p_stksize = pp->p_stksize; 1010 cp->p_stkpageszc = pp->p_stkpageszc; 1011 cp->p_stkprot = pp->p_stkprot; 1012 cp->p_datprot = pp->p_datprot; 1013 cp->p_usrstack = pp->p_usrstack; 1014 cp->p_model = pp->p_model; 1015 cp->p_ppid = pp->p_pid; 1016 cp->p_ancpid = pp->p_pid; 1017 cp->p_portcnt = pp->p_portcnt; 1018 1019 /* 1020 * Initialize watchpoint structures 1021 */ 1022 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1023 offsetof(struct watched_area, wa_link)); 1024 1025 /* 1026 * Initialize immediate resource control values. 1027 */ 1028 cp->p_stk_ctl = pp->p_stk_ctl; 1029 cp->p_fsz_ctl = pp->p_fsz_ctl; 1030 cp->p_vmem_ctl = pp->p_vmem_ctl; 1031 cp->p_fno_ctl = pp->p_fno_ctl; 1032 1033 /* 1034 * Link up to parent-child-sibling chain. No need to lock 1035 * in general since only a call to freeproc() (done by the 1036 * same parent as newproc()) diddles with the child chain. 1037 */ 1038 cp->p_sibling = pp->p_child; 1039 if (pp->p_child) 1040 pp->p_child->p_psibling = cp; 1041 1042 cp->p_parent = pp; 1043 pp->p_child = cp; 1044 1045 cp->p_child_ns = NULL; 1046 cp->p_sibling_ns = NULL; 1047 1048 cp->p_nextorph = pp->p_orphan; 1049 cp->p_nextofkin = pp; 1050 pp->p_orphan = cp; 1051 1052 /* 1053 * Inherit profiling state; do not inherit REALPROF profiling state. 1054 */ 1055 cp->p_prof = pp->p_prof; 1056 cp->p_rprof_cyclic = CYCLIC_NONE; 1057 1058 /* 1059 * Inherit pool pointer from the parent. Kernel processes are 1060 * always bound to the default pool. 1061 */ 1062 mutex_enter(&pp->p_lock); 1063 if (kernel) { 1064 cp->p_pool = pool_default; 1065 cp->p_flag |= SSYS; 1066 } else { 1067 cp->p_pool = pp->p_pool; 1068 } 1069 atomic_add_32(&cp->p_pool->pool_ref, 1); 1070 mutex_exit(&pp->p_lock); 1071 1072 /* 1073 * Add the child process to the current task. Kernel processes 1074 * are always attached to task0. 1075 */ 1076 mutex_enter(&cp->p_lock); 1077 if (kernel) 1078 task_attach(task0p, cp); 1079 else 1080 task_attach(pp->p_task, cp); 1081 mutex_exit(&cp->p_lock); 1082 mutex_exit(&pidlock); 1083 1084 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1085 offsetof(contract_t, ct_ctlist)); 1086 1087 /* 1088 * Duplicate any audit information kept in the process table 1089 */ 1090 if (audit_active) /* copy audit data to cp */ 1091 audit_newproc(cp); 1092 1093 crhold(cp->p_cred = cr); 1094 1095 /* 1096 * Bump up the counts on the file structures pointed at by the 1097 * parent's file table since the child will point at them too. 1098 */ 1099 fcnt_add(P_FINFO(pp), 1); 1100 1101 VN_HOLD(PTOU(pp)->u_cdir); 1102 if (PTOU(pp)->u_rdir) 1103 VN_HOLD(PTOU(pp)->u_rdir); 1104 if (PTOU(pp)->u_cwd) 1105 refstr_hold(PTOU(pp)->u_cwd); 1106 1107 /* 1108 * copy the parent's uarea. 1109 */ 1110 uarea = PTOU(cp); 1111 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1112 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1113 1114 gethrestime(&uarea->u_start); 1115 uarea->u_ticks = lbolt; 1116 uarea->u_mem = rm_asrss(pp->p_as); 1117 uarea->u_acflag = AFORK; 1118 1119 /* 1120 * If inherit-on-fork, copy /proc tracing flags to child. 1121 */ 1122 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1123 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1124 cp->p_sigmask = pp->p_sigmask; 1125 cp->p_fltmask = pp->p_fltmask; 1126 } else { 1127 sigemptyset(&cp->p_sigmask); 1128 premptyset(&cp->p_fltmask); 1129 uarea->u_systrap = 0; 1130 premptyset(&uarea->u_entrymask); 1131 premptyset(&uarea->u_exitmask); 1132 } 1133 /* 1134 * If microstate accounting is being inherited, mark child 1135 */ 1136 if ((pp->p_flag & SMSFORK) != 0) 1137 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1138 1139 /* 1140 * Inherit fixalignment flag from the parent 1141 */ 1142 cp->p_fixalignment = pp->p_fixalignment; 1143 1144 if (cp->p_exec) 1145 VN_HOLD(cp->p_exec); 1146 if (cp->p_execdir) 1147 VN_HOLD(cp->p_execdir); 1148 *cpp = cp; 1149 return (0); 1150 1151 bad: 1152 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1153 1154 mutex_destroy(&cp->p_crlock); 1155 mutex_destroy(&cp->p_pflock); 1156 #if defined(__x86) 1157 mutex_destroy(&cp->p_ldtlock); 1158 #endif 1159 if (newpid != -1) { 1160 proc_entry_free(cp->p_pidp); 1161 (void) pid_rele(cp->p_pidp); 1162 } 1163 kmem_cache_free(process_cache, cp); 1164 1165 /* 1166 * We most likely got into this situation because some process is 1167 * forking out of control. As punishment, put it to sleep for a 1168 * bit so it can't eat the machine alive. Sleep interval is chosen 1169 * to allow no more than one fork failure per cpu per clock tick 1170 * on average (yes, I just made this up). This has two desirable 1171 * properties: (1) it sets a constant limit on the fork failure 1172 * rate, and (2) the busier the system is, the harsher the penalty 1173 * for abusing it becomes. 1174 */ 1175 INCR_COUNT(&fork_fail_pending, &pidlock); 1176 delay(fork_fail_pending / ncpus + 1); 1177 DECR_COUNT(&fork_fail_pending, &pidlock); 1178 1179 return (-1); /* out of memory or proc slots */ 1180 } 1181 1182 /* 1183 * Release virtual memory. 1184 * In the case of vfork(), the child was given exclusive access to its 1185 * parent's address space. The parent is waiting in vfwait() for the 1186 * child to release its exclusive claim via relvm(). 1187 */ 1188 void 1189 relvm() 1190 { 1191 proc_t *p = curproc; 1192 1193 ASSERT((unsigned)p->p_lwpcnt <= 1); 1194 1195 prrelvm(); /* inform /proc */ 1196 1197 if (p->p_flag & SVFORK) { 1198 proc_t *pp = p->p_parent; 1199 /* 1200 * The child process is either exec'ing or exit'ing. 1201 * The child is now separated from the parent's address 1202 * space. The parent process is made dispatchable. 1203 * 1204 * This is a delicate locking maneuver, involving 1205 * both the parent's p_lock and the child's p_lock. 1206 * As soon as the SVFORK flag is turned off, the 1207 * parent is free to run, but it must not run until 1208 * we wake it up using its p_cv because it might 1209 * exit and we would be referencing invalid memory. 1210 * Therefore, we hold the parent with its p_lock 1211 * while protecting our p_flags with our own p_lock. 1212 */ 1213 try_again: 1214 mutex_enter(&p->p_lock); /* grab child's lock first */ 1215 prbarrier(p); /* make sure /proc is blocked out */ 1216 mutex_enter(&pp->p_lock); 1217 1218 /* 1219 * Check if parent is locked by /proc. 1220 */ 1221 if (pp->p_proc_flag & P_PR_LOCK) { 1222 /* 1223 * Delay until /proc is done with the parent. 1224 * We must drop our (the child's) p->p_lock, wait 1225 * via prbarrier() on the parent, then start over. 1226 */ 1227 mutex_exit(&p->p_lock); 1228 prbarrier(pp); 1229 mutex_exit(&pp->p_lock); 1230 goto try_again; 1231 } 1232 p->p_flag &= ~SVFORK; 1233 kpreempt_disable(); 1234 p->p_as = &kas; 1235 1236 /* 1237 * notify hat of change in thread's address space 1238 */ 1239 hat_thread_exit(curthread); 1240 kpreempt_enable(); 1241 1242 /* 1243 * child sizes are copied back to parent because 1244 * child may have grown. 1245 */ 1246 pp->p_brkbase = p->p_brkbase; 1247 pp->p_brksize = p->p_brksize; 1248 pp->p_stksize = p->p_stksize; 1249 /* 1250 * The parent is no longer waiting for the vfork()d child. 1251 * Restore the parent's watched pages, if any. This is 1252 * safe because we know the parent is not locked by /proc 1253 */ 1254 pp->p_flag &= ~SVFWAIT; 1255 if (avl_numnodes(&pp->p_wpage) != 0) { 1256 pp->p_as->a_wpage = pp->p_wpage; 1257 avl_create(&pp->p_wpage, wp_compare, 1258 sizeof (struct watched_page), 1259 offsetof(struct watched_page, wp_link)); 1260 } 1261 cv_signal(&pp->p_cv); 1262 mutex_exit(&pp->p_lock); 1263 mutex_exit(&p->p_lock); 1264 } else { 1265 if (p->p_as != &kas) { 1266 struct as *as; 1267 1268 if (p->p_segacct) 1269 shmexit(p); 1270 1271 /* 1272 * We grab p_lock for the benefit of /proc 1273 */ 1274 kpreempt_disable(); 1275 mutex_enter(&p->p_lock); 1276 prbarrier(p); /* make sure /proc is blocked out */ 1277 as = p->p_as; 1278 p->p_as = &kas; 1279 mutex_exit(&p->p_lock); 1280 1281 /* 1282 * notify hat of change in thread's address space 1283 */ 1284 hat_thread_exit(curthread); 1285 kpreempt_enable(); 1286 1287 as_free(as); 1288 p->p_tr_lgrpid = LGRP_NONE; 1289 } 1290 } 1291 } 1292 1293 /* 1294 * Wait for child to exec or exit. 1295 * Called by parent of vfork'ed process. 1296 * See important comments in relvm(), above. 1297 */ 1298 void 1299 vfwait(pid_t pid) 1300 { 1301 int signalled = 0; 1302 proc_t *pp = ttoproc(curthread); 1303 proc_t *cp; 1304 1305 /* 1306 * Wait for child to exec or exit. 1307 */ 1308 for (;;) { 1309 mutex_enter(&pidlock); 1310 cp = prfind(pid); 1311 if (cp == NULL || cp->p_parent != pp) { 1312 /* 1313 * Child has exit()ed. 1314 */ 1315 mutex_exit(&pidlock); 1316 break; 1317 } 1318 /* 1319 * Grab the child's p_lock before releasing pidlock. 1320 * Otherwise, the child could exit and we would be 1321 * referencing invalid memory. 1322 */ 1323 mutex_enter(&cp->p_lock); 1324 mutex_exit(&pidlock); 1325 if (!(cp->p_flag & SVFORK)) { 1326 /* 1327 * Child has exec()ed or is exit()ing. 1328 */ 1329 mutex_exit(&cp->p_lock); 1330 break; 1331 } 1332 mutex_enter(&pp->p_lock); 1333 mutex_exit(&cp->p_lock); 1334 /* 1335 * We might be waked up spuriously from the cv_wait(). 1336 * We have to do the whole operation over again to be 1337 * sure the child's SVFORK flag really is turned off. 1338 * We cannot make reference to the child because it can 1339 * exit before we return and we would be referencing 1340 * invalid memory. 1341 * 1342 * Because this is potentially a very long-term wait, 1343 * we call cv_wait_sig() (for its jobcontrol and /proc 1344 * side-effects) unless there is a current signal, in 1345 * which case we use cv_wait() because we cannot return 1346 * from this function until the child has released the 1347 * address space. Calling cv_wait_sig() with a current 1348 * signal would lead to an indefinite loop here because 1349 * cv_wait_sig() returns immediately in this case. 1350 */ 1351 if (signalled) 1352 cv_wait(&pp->p_cv, &pp->p_lock); 1353 else 1354 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1355 mutex_exit(&pp->p_lock); 1356 } 1357 1358 /* restore watchpoints to parent */ 1359 if (pr_watch_active(pp)) { 1360 struct as *as = pp->p_as; 1361 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1362 as_setwatch(as); 1363 AS_LOCK_EXIT(as, &as->a_lock); 1364 } 1365 1366 mutex_enter(&pp->p_lock); 1367 prbarrier(pp); /* barrier against /proc locking */ 1368 continuelwps(pp); 1369 mutex_exit(&pp->p_lock); 1370 } 1371