1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/cred.h> 34 #include <sys/policy.h> 35 #include <sys/user.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/proc.h> 44 #include <sys/cmn_err.h> 45 #include <sys/acct.h> 46 #include <sys/tuneable.h> 47 #include <sys/class.h> 48 #include <sys/kmem.h> 49 #include <sys/session.h> 50 #include <sys/ucontext.h> 51 #include <sys/stack.h> 52 #include <sys/procfs.h> 53 #include <sys/prsystm.h> 54 #include <sys/vmsystm.h> 55 #include <sys/vtrace.h> 56 #include <sys/debug.h> 57 #include <sys/shm_impl.h> 58 #include <sys/door_data.h> 59 #include <vm/as.h> 60 #include <vm/rm.h> 61 #include <c2/audit.h> 62 #include <sys/var.h> 63 #include <sys/schedctl.h> 64 #include <sys/utrap.h> 65 #include <sys/task.h> 66 #include <sys/resource.h> 67 #include <sys/cyclic.h> 68 #include <sys/lgrp.h> 69 #include <sys/rctl.h> 70 #include <sys/contract_impl.h> 71 #include <sys/contract/process_impl.h> 72 #include <sys/list.h> 73 #include <sys/dtrace.h> 74 #include <sys/pool.h> 75 #include <sys/zone.h> 76 #include <sys/sdt.h> 77 #include <sys/class.h> 78 #include <sys/corectl.h> 79 #include <sys/brand.h> 80 #include <sys/fork.h> 81 82 static int64_t cfork(int, int, int); 83 static int getproc(proc_t **, pid_t, uint_t); 84 #define GETPROC_USER 0x0 85 #define GETPROC_KERNEL 0x1 86 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * The vfork() system call trap is no longer invoked by libc. 96 * It is retained only for the benefit of applications running 97 * within a solaris10 branded zone. It should be eliminated 98 * when we no longer support solaris10 branded zones. 99 */ 100 int64_t 101 vfork(void) 102 { 103 curthread->t_post_sys = 1; /* so vfwait() will be called */ 104 return (cfork(1, 1, 0)); 105 } 106 107 /* 108 * forksys system call - forkx, forkallx, vforkx. This is the 109 * interface invoked by libc for fork1(), forkall(), and vfork() 110 */ 111 int64_t 112 forksys(int subcode, int flags) 113 { 114 switch (subcode) { 115 case 0: 116 return (cfork(0, 1, flags)); /* forkx(flags) */ 117 case 1: 118 return (cfork(0, 0, flags)); /* forkallx(flags) */ 119 case 2: 120 curthread->t_post_sys = 1; /* so vfwait() will be called */ 121 return (cfork(1, 1, flags)); /* vforkx(flags) */ 122 default: 123 return ((int64_t)set_errno(EINVAL)); 124 } 125 } 126 127 /* ARGSUSED */ 128 static int64_t 129 cfork(int isvfork, int isfork1, int flags) 130 { 131 proc_t *p = ttoproc(curthread); 132 struct as *as; 133 proc_t *cp, **orphpp; 134 klwp_t *clone; 135 kthread_t *t; 136 task_t *tk; 137 rval_t r; 138 int error; 139 int i; 140 rctl_set_t *dup_set; 141 rctl_alloc_gp_t *dup_gp; 142 rctl_entity_p_t e; 143 lwpdir_t *ldp; 144 lwpent_t *lep; 145 lwpent_t *clep; 146 147 /* 148 * Allow only these two flags. 149 */ 150 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 151 error = EINVAL; 152 goto forkerr; 153 } 154 155 /* 156 * fork is not supported for the /proc agent lwp. 157 */ 158 if (curthread == p->p_agenttp) { 159 error = ENOTSUP; 160 goto forkerr; 161 } 162 163 if ((error = secpolicy_basic_fork(CRED())) != 0) 164 goto forkerr; 165 166 /* 167 * If the calling lwp is doing a fork1() then the 168 * other lwps in this process are not duplicated and 169 * don't need to be held where their kernel stacks can be 170 * cloned. If doing forkall(), the process is held with 171 * SHOLDFORK, so that the lwps are at a point where their 172 * stacks can be copied which is on entry or exit from 173 * the kernel. 174 */ 175 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 176 aston(curthread); 177 error = EINTR; 178 goto forkerr; 179 } 180 181 #if defined(__sparc) 182 /* 183 * Ensure that the user stack is fully constructed 184 * before creating the child process structure. 185 */ 186 (void) flush_user_windows_to_stack(NULL); 187 #endif 188 189 mutex_enter(&p->p_lock); 190 /* 191 * If this is vfork(), cancel any suspend request we might 192 * have gotten from some other thread via lwp_suspend(). 193 * Otherwise we could end up with a deadlock on return 194 * from the vfork() in both the parent and the child. 195 */ 196 if (isvfork) 197 curthread->t_proc_flag &= ~TP_HOLDLWP; 198 /* 199 * Prevent our resource set associations from being changed during fork. 200 */ 201 pool_barrier_enter(); 202 mutex_exit(&p->p_lock); 203 204 /* 205 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 206 */ 207 if (getproc(&cp, 0, GETPROC_USER) < 0) { 208 mutex_enter(&p->p_lock); 209 pool_barrier_exit(); 210 continuelwps(p); 211 mutex_exit(&p->p_lock); 212 error = EAGAIN; 213 goto forkerr; 214 } 215 216 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 217 218 /* 219 * Assign an address space to child 220 */ 221 if (isvfork) { 222 /* 223 * Clear any watched areas and remember the 224 * watched pages for restoring in vfwait(). 225 */ 226 as = p->p_as; 227 if (avl_numnodes(&as->a_wpage) != 0) { 228 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 229 as_clearwatch(as); 230 p->p_wpage = as->a_wpage; 231 avl_create(&as->a_wpage, wp_compare, 232 sizeof (struct watched_page), 233 offsetof(struct watched_page, wp_link)); 234 AS_LOCK_EXIT(as, &as->a_lock); 235 } 236 cp->p_as = as; 237 cp->p_flag |= SVFORK; 238 239 /* 240 * Use the parent's shm segment list information for 241 * the child as it uses its address space till it execs. 242 */ 243 cp->p_segacct = p->p_segacct; 244 } else { 245 /* 246 * We need to hold P_PR_LOCK until the address space has 247 * been duplicated and we've had a chance to remove from the 248 * child any DTrace probes that were in the parent. Holding 249 * P_PR_LOCK prevents any new probes from being added and any 250 * extant probes from being removed. 251 */ 252 mutex_enter(&p->p_lock); 253 sprlock_proc(p); 254 p->p_flag |= SFORKING; 255 mutex_exit(&p->p_lock); 256 257 error = as_dup(p->p_as, cp); 258 if (error != 0) { 259 mutex_enter(&p->p_lock); 260 sprunlock(p); 261 fork_fail(cp); 262 mutex_enter(&pidlock); 263 orphpp = &p->p_orphan; 264 while (*orphpp != cp) 265 orphpp = &(*orphpp)->p_nextorph; 266 *orphpp = cp->p_nextorph; 267 if (p->p_child == cp) 268 p->p_child = cp->p_sibling; 269 if (cp->p_sibling) 270 cp->p_sibling->p_psibling = cp->p_psibling; 271 if (cp->p_psibling) 272 cp->p_psibling->p_sibling = cp->p_sibling; 273 mutex_enter(&cp->p_lock); 274 tk = cp->p_task; 275 task_detach(cp); 276 ASSERT(cp->p_pool->pool_ref > 0); 277 atomic_add_32(&cp->p_pool->pool_ref, -1); 278 mutex_exit(&cp->p_lock); 279 pid_exit(cp, tk); 280 mutex_exit(&pidlock); 281 task_rele(tk); 282 283 mutex_enter(&p->p_lock); 284 p->p_flag &= ~SFORKING; 285 pool_barrier_exit(); 286 continuelwps(p); 287 mutex_exit(&p->p_lock); 288 /* 289 * Preserve ENOMEM error condition but 290 * map all others to EAGAIN. 291 */ 292 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 293 goto forkerr; 294 } 295 296 /* 297 * Remove all DTrace tracepoints from the child process. We 298 * need to do this _before_ duplicating USDT providers since 299 * any associated probes may be immediately enabled. 300 */ 301 if (p->p_dtrace_count > 0) 302 dtrace_fasttrap_fork(p, cp); 303 304 mutex_enter(&p->p_lock); 305 sprunlock(p); 306 307 /* Duplicate parent's shared memory */ 308 if (p->p_segacct) 309 shmfork(p, cp); 310 311 /* 312 * Duplicate any helper actions and providers. The SFORKING 313 * we set above informs the code to enable USDT probes that 314 * sprlock() may fail because the child is being forked. 315 */ 316 if (p->p_dtrace_helpers != NULL) { 317 ASSERT(dtrace_helpers_fork != NULL); 318 (*dtrace_helpers_fork)(p, cp); 319 } 320 321 mutex_enter(&p->p_lock); 322 p->p_flag &= ~SFORKING; 323 mutex_exit(&p->p_lock); 324 } 325 326 /* 327 * Duplicate parent's resource controls. 328 */ 329 dup_set = rctl_set_create(); 330 for (;;) { 331 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 332 mutex_enter(&p->p_rctls->rcs_lock); 333 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 334 break; 335 mutex_exit(&p->p_rctls->rcs_lock); 336 rctl_prealloc_destroy(dup_gp); 337 } 338 e.rcep_p.proc = cp; 339 e.rcep_t = RCENTITY_PROCESS; 340 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 341 RCD_DUP | RCD_CALLBACK); 342 mutex_exit(&p->p_rctls->rcs_lock); 343 344 rctl_prealloc_destroy(dup_gp); 345 346 /* 347 * Allocate the child's lwp directory and lwpid hash table. 348 */ 349 if (isfork1) 350 cp->p_lwpdir_sz = 2; 351 else 352 cp->p_lwpdir_sz = p->p_lwpdir_sz; 353 cp->p_lwpdir = cp->p_lwpfree = ldp = 354 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 355 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 356 ldp->ld_next = ldp + 1; 357 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 358 cp->p_tidhash = 359 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 360 361 /* 362 * Duplicate parent's lwps. 363 * Mutual exclusion is not needed because the process is 364 * in the hold state and only the current lwp is running. 365 */ 366 klgrpset_clear(cp->p_lgrpset); 367 if (isfork1) { 368 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 369 if (clone == NULL) 370 goto forklwperr; 371 /* 372 * Inherit only the lwp_wait()able flag, 373 * Daemon threads should not call fork1(), but oh well... 374 */ 375 lwptot(clone)->t_proc_flag |= 376 (curthread->t_proc_flag & TP_TWAIT); 377 } else { 378 /* this is forkall(), no one can be in lwp_wait() */ 379 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 380 /* for each entry in the parent's lwp directory... */ 381 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 382 klwp_t *clwp; 383 kthread_t *ct; 384 385 if ((lep = ldp->ld_entry) == NULL) 386 continue; 387 388 if ((t = lep->le_thread) != NULL) { 389 clwp = forklwp(ttolwp(t), cp, t->t_tid); 390 if (clwp == NULL) 391 goto forklwperr; 392 ct = lwptot(clwp); 393 /* 394 * Inherit lwp_wait()able and daemon flags. 395 */ 396 ct->t_proc_flag |= 397 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 398 /* 399 * Keep track of the clone of curthread to 400 * post return values through lwp_setrval(). 401 * Mark other threads for special treatment 402 * by lwp_rtt() / post_syscall(). 403 */ 404 if (t == curthread) 405 clone = clwp; 406 else 407 ct->t_flag |= T_FORKALL; 408 } else { 409 /* 410 * Replicate zombie lwps in the child. 411 */ 412 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 413 clep->le_lwpid = lep->le_lwpid; 414 clep->le_start = lep->le_start; 415 lwp_hash_in(cp, clep, 416 cp->p_tidhash, cp->p_tidhash_sz, 0); 417 } 418 } 419 } 420 421 /* 422 * Put new process in the parent's process contract, or put it 423 * in a new one if there is an active process template. Send a 424 * fork event (if requested) to whatever contract the child is 425 * a member of. Fails if the parent has been SIGKILLed. 426 */ 427 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 428 goto forklwperr; 429 430 /* 431 * No fork failures occur beyond this point. 432 */ 433 434 cp->p_lwpid = p->p_lwpid; 435 if (!isfork1) { 436 cp->p_lwpdaemon = p->p_lwpdaemon; 437 cp->p_zombcnt = p->p_zombcnt; 438 /* 439 * If the parent's lwp ids have wrapped around, so have the 440 * child's. 441 */ 442 cp->p_flag |= p->p_flag & SLWPWRAP; 443 } 444 445 mutex_enter(&p->p_lock); 446 corectl_path_hold(cp->p_corefile = p->p_corefile); 447 corectl_content_hold(cp->p_content = p->p_content); 448 mutex_exit(&p->p_lock); 449 450 /* 451 * Duplicate process context ops, if any. 452 */ 453 if (p->p_pctx) 454 forkpctx(p, cp); 455 456 #ifdef __sparc 457 utrap_dup(p, cp); 458 #endif 459 /* 460 * If the child process has been marked to stop on exit 461 * from this fork, arrange for all other lwps to stop in 462 * sympathy with the active lwp. 463 */ 464 if (PTOU(cp)->u_systrap && 465 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 466 mutex_enter(&cp->p_lock); 467 t = cp->p_tlist; 468 do { 469 t->t_proc_flag |= TP_PRSTOP; 470 aston(t); /* so TP_PRSTOP will be seen */ 471 } while ((t = t->t_forw) != cp->p_tlist); 472 mutex_exit(&cp->p_lock); 473 } 474 /* 475 * If the parent process has been marked to stop on exit 476 * from this fork, and its asynchronous-stop flag has not 477 * been set, arrange for all other lwps to stop before 478 * they return back to user level. 479 */ 480 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 481 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 482 mutex_enter(&p->p_lock); 483 t = p->p_tlist; 484 do { 485 t->t_proc_flag |= TP_PRSTOP; 486 aston(t); /* so TP_PRSTOP will be seen */ 487 } while ((t = t->t_forw) != p->p_tlist); 488 mutex_exit(&p->p_lock); 489 } 490 491 if (PROC_IS_BRANDED(p)) 492 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 493 else 494 lwp_setrval(clone, p->p_pid, 1); 495 496 /* set return values for parent */ 497 r.r_val1 = (int)cp->p_pid; 498 r.r_val2 = 0; 499 500 /* 501 * pool_barrier_exit() can now be called because the child process has: 502 * - all identifying features cloned or set (p_pid, p_task, p_pool) 503 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 504 * - any other fields set which are used in resource set binding. 505 */ 506 mutex_enter(&p->p_lock); 507 pool_barrier_exit(); 508 mutex_exit(&p->p_lock); 509 510 mutex_enter(&pidlock); 511 mutex_enter(&cp->p_lock); 512 513 /* 514 * Set flags telling the child what (not) to do on exit. 515 */ 516 if (flags & FORK_NOSIGCHLD) 517 cp->p_pidflag |= CLDNOSIGCHLD; 518 if (flags & FORK_WAITPID) 519 cp->p_pidflag |= CLDWAITPID; 520 521 /* 522 * Now that there are lwps and threads attached, add the new 523 * process to the process group. 524 */ 525 pgjoin(cp, p->p_pgidp); 526 cp->p_stat = SRUN; 527 /* 528 * We are now done with all the lwps in the child process. 529 */ 530 t = cp->p_tlist; 531 do { 532 /* 533 * Set the lwp_suspend()ed lwps running. 534 * They will suspend properly at syscall exit. 535 */ 536 if (t->t_proc_flag & TP_HOLDLWP) 537 lwp_create_done(t); 538 else { 539 /* set TS_CREATE to allow continuelwps() to work */ 540 thread_lock(t); 541 ASSERT(t->t_state == TS_STOPPED && 542 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 543 t->t_schedflag |= TS_CREATE; 544 thread_unlock(t); 545 } 546 } while ((t = t->t_forw) != cp->p_tlist); 547 mutex_exit(&cp->p_lock); 548 549 if (isvfork) { 550 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 551 mutex_enter(&p->p_lock); 552 p->p_flag |= SVFWAIT; 553 curthread->t_flag |= T_VFPARENT; 554 DTRACE_PROC1(create, proc_t *, cp); 555 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 556 mutex_exit(&p->p_lock); 557 /* 558 * Grab child's p_lock before dropping pidlock to ensure 559 * the process will not disappear before we set it running. 560 */ 561 mutex_enter(&cp->p_lock); 562 mutex_exit(&pidlock); 563 sigdefault(cp); 564 continuelwps(cp); 565 mutex_exit(&cp->p_lock); 566 } else { 567 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 568 DTRACE_PROC1(create, proc_t *, cp); 569 /* 570 * It is CL_FORKRET's job to drop pidlock. 571 * If we do it here, the process could be set running 572 * and disappear before CL_FORKRET() is called. 573 */ 574 CL_FORKRET(curthread, cp->p_tlist); 575 schedctl_set_cidpri(curthread); 576 ASSERT(MUTEX_NOT_HELD(&pidlock)); 577 } 578 579 return (r.r_vals); 580 581 forklwperr: 582 if (isvfork) { 583 if (avl_numnodes(&p->p_wpage) != 0) { 584 /* restore watchpoints to parent */ 585 as = p->p_as; 586 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 587 as->a_wpage = p->p_wpage; 588 avl_create(&p->p_wpage, wp_compare, 589 sizeof (struct watched_page), 590 offsetof(struct watched_page, wp_link)); 591 as_setwatch(as); 592 AS_LOCK_EXIT(as, &as->a_lock); 593 } 594 } else { 595 if (cp->p_segacct) 596 shmexit(cp); 597 as = cp->p_as; 598 cp->p_as = &kas; 599 as_free(as); 600 } 601 602 if (cp->p_lwpdir) { 603 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 604 if ((lep = ldp->ld_entry) != NULL) 605 kmem_free(lep, sizeof (*lep)); 606 kmem_free(cp->p_lwpdir, 607 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 608 } 609 cp->p_lwpdir = NULL; 610 cp->p_lwpfree = NULL; 611 cp->p_lwpdir_sz = 0; 612 613 if (cp->p_tidhash) 614 kmem_free(cp->p_tidhash, 615 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 616 cp->p_tidhash = NULL; 617 cp->p_tidhash_sz = 0; 618 619 forklwp_fail(cp); 620 fork_fail(cp); 621 rctl_set_free(cp->p_rctls); 622 mutex_enter(&pidlock); 623 624 /* 625 * Detach failed child from task. 626 */ 627 mutex_enter(&cp->p_lock); 628 tk = cp->p_task; 629 task_detach(cp); 630 ASSERT(cp->p_pool->pool_ref > 0); 631 atomic_add_32(&cp->p_pool->pool_ref, -1); 632 mutex_exit(&cp->p_lock); 633 634 orphpp = &p->p_orphan; 635 while (*orphpp != cp) 636 orphpp = &(*orphpp)->p_nextorph; 637 *orphpp = cp->p_nextorph; 638 if (p->p_child == cp) 639 p->p_child = cp->p_sibling; 640 if (cp->p_sibling) 641 cp->p_sibling->p_psibling = cp->p_psibling; 642 if (cp->p_psibling) 643 cp->p_psibling->p_sibling = cp->p_sibling; 644 pid_exit(cp, tk); 645 mutex_exit(&pidlock); 646 647 task_rele(tk); 648 649 mutex_enter(&p->p_lock); 650 pool_barrier_exit(); 651 continuelwps(p); 652 mutex_exit(&p->p_lock); 653 error = EAGAIN; 654 forkerr: 655 return ((int64_t)set_errno(error)); 656 } 657 658 /* 659 * Free allocated resources from getproc() if a fork failed. 660 */ 661 static void 662 fork_fail(proc_t *cp) 663 { 664 uf_info_t *fip = P_FINFO(cp); 665 666 fcnt_add(fip, -1); 667 sigdelq(cp, NULL, 0); 668 669 mutex_enter(&pidlock); 670 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 671 mutex_exit(&pidlock); 672 673 /* 674 * single threaded, so no locking needed here 675 */ 676 crfree(cp->p_cred); 677 678 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 679 680 VN_RELE(PTOU(curproc)->u_cdir); 681 if (PTOU(curproc)->u_rdir) 682 VN_RELE(PTOU(curproc)->u_rdir); 683 if (cp->p_exec) 684 VN_RELE(cp->p_exec); 685 if (cp->p_execdir) 686 VN_RELE(cp->p_execdir); 687 if (PTOU(curproc)->u_cwd) 688 refstr_rele(PTOU(curproc)->u_cwd); 689 if (PROC_IS_BRANDED(cp)) { 690 brand_clearbrand(cp, B_TRUE); 691 } 692 } 693 694 /* 695 * Clean up the lwps already created for this child process. 696 * The fork failed while duplicating all the lwps of the parent 697 * and those lwps already created must be freed. 698 * This process is invisible to the rest of the system, 699 * so we don't need to hold p->p_lock to protect the list. 700 */ 701 static void 702 forklwp_fail(proc_t *p) 703 { 704 kthread_t *t; 705 task_t *tk; 706 int branded = 0; 707 708 if (PROC_IS_BRANDED(p)) 709 branded = 1; 710 711 while ((t = p->p_tlist) != NULL) { 712 /* 713 * First remove the lwp from the process's p_tlist. 714 */ 715 if (t != t->t_forw) 716 p->p_tlist = t->t_forw; 717 else 718 p->p_tlist = NULL; 719 p->p_lwpcnt--; 720 t->t_forw->t_back = t->t_back; 721 t->t_back->t_forw = t->t_forw; 722 723 tk = p->p_task; 724 mutex_enter(&p->p_zone->zone_nlwps_lock); 725 tk->tk_nlwps--; 726 tk->tk_proj->kpj_nlwps--; 727 p->p_zone->zone_nlwps--; 728 mutex_exit(&p->p_zone->zone_nlwps_lock); 729 730 ASSERT(t->t_schedctl == NULL); 731 732 if (branded) 733 BROP(p)->b_freelwp(ttolwp(t)); 734 735 if (t->t_door != NULL) { 736 kmem_free(t->t_door, sizeof (door_data_t)); 737 t->t_door = NULL; 738 } 739 lwp_ctmpl_clear(ttolwp(t)); 740 741 /* 742 * Remove the thread from the all threads list. 743 * We need to hold pidlock for this. 744 */ 745 mutex_enter(&pidlock); 746 t->t_next->t_prev = t->t_prev; 747 t->t_prev->t_next = t->t_next; 748 CL_EXIT(t); /* tell the scheduler that we're exiting */ 749 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 750 mutex_exit(&pidlock); 751 752 /* 753 * Let the lgroup load averages know that this thread isn't 754 * going to show up (i.e. un-do what was done on behalf of 755 * this thread by the earlier lgrp_move_thread()). 756 */ 757 kpreempt_disable(); 758 lgrp_move_thread(t, NULL, 1); 759 kpreempt_enable(); 760 761 /* 762 * The thread was created TS_STOPPED. 763 * We change it to TS_FREE to avoid an 764 * ASSERT() panic in thread_free(). 765 */ 766 t->t_state = TS_FREE; 767 thread_rele(t); 768 thread_free(t); 769 } 770 } 771 772 extern struct as kas; 773 774 /* 775 * fork a kernel process. 776 */ 777 int 778 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 779 pid_t pid) 780 { 781 proc_t *p; 782 struct user *up; 783 kthread_t *t; 784 cont_process_t *ctp = NULL; 785 rctl_entity_p_t e; 786 787 ASSERT(cid != sysdccid); 788 ASSERT(cid != syscid || ct == NULL); 789 if (CLASS_KERNEL(cid)) { 790 rctl_alloc_gp_t *init_gp; 791 rctl_set_t *init_set; 792 793 ASSERT(pid != 1); 794 795 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 796 return (EAGAIN); 797 798 /* 799 * Release the hold on the p_exec and p_execdir, these 800 * were acquired in getproc() 801 */ 802 if (p->p_execdir != NULL) 803 VN_RELE(p->p_execdir); 804 if (p->p_exec != NULL) 805 VN_RELE(p->p_exec); 806 p->p_flag |= SNOWAIT; 807 p->p_exec = NULL; 808 p->p_execdir = NULL; 809 810 init_set = rctl_set_create(); 811 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 812 813 /* 814 * kernel processes do not inherit /proc tracing flags. 815 */ 816 sigemptyset(&p->p_sigmask); 817 premptyset(&p->p_fltmask); 818 up = PTOU(p); 819 up->u_systrap = 0; 820 premptyset(&(up->u_entrymask)); 821 premptyset(&(up->u_exitmask)); 822 mutex_enter(&p->p_lock); 823 e.rcep_p.proc = p; 824 e.rcep_t = RCENTITY_PROCESS; 825 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 826 init_gp); 827 mutex_exit(&p->p_lock); 828 829 rctl_prealloc_destroy(init_gp); 830 831 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 832 } else { 833 rctl_alloc_gp_t *init_gp, *default_gp; 834 rctl_set_t *init_set; 835 task_t *tk, *tk_old; 836 klwp_t *lwp; 837 838 if (getproc(&p, pid, GETPROC_USER) < 0) 839 return (EAGAIN); 840 /* 841 * init creates a new task, distinct from the task 842 * containing kernel "processes". 843 */ 844 tk = task_create(0, p->p_zone); 845 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 846 tk->tk_proj->kpj_ntasks++; 847 tk->tk_nprocs++; 848 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 849 850 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 851 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 852 init_set = rctl_set_create(); 853 854 mutex_enter(&pidlock); 855 mutex_enter(&p->p_lock); 856 tk_old = p->p_task; /* switch to new task */ 857 858 task_detach(p); 859 task_begin(tk, p); 860 mutex_exit(&pidlock); 861 862 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock); 863 tk_old->tk_nprocs--; 864 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock); 865 866 e.rcep_p.proc = p; 867 e.rcep_t = RCENTITY_PROCESS; 868 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 869 init_gp); 870 rctlproc_default_init(p, default_gp); 871 mutex_exit(&p->p_lock); 872 873 task_rele(tk_old); 874 rctl_prealloc_destroy(default_gp); 875 rctl_prealloc_destroy(init_gp); 876 877 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 878 &curthread->t_hold, cid, 1)) == NULL) { 879 task_t *tk; 880 fork_fail(p); 881 mutex_enter(&pidlock); 882 mutex_enter(&p->p_lock); 883 tk = p->p_task; 884 task_detach(p); 885 ASSERT(p->p_pool->pool_ref > 0); 886 atomic_add_32(&p->p_pool->pool_ref, -1); 887 mutex_exit(&p->p_lock); 888 pid_exit(p, tk); 889 mutex_exit(&pidlock); 890 task_rele(tk); 891 892 return (EAGAIN); 893 } 894 t = lwptot(lwp); 895 896 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 897 B_FALSE); 898 ASSERT(ctp != NULL); 899 if (ct != NULL) 900 *ct = &ctp->conp_contract; 901 } 902 903 ASSERT3U(t->t_tid, ==, 1); 904 p->p_lwpid = 1; 905 mutex_enter(&pidlock); 906 pgjoin(p, p->p_parent->p_pgidp); 907 p->p_stat = SRUN; 908 mutex_enter(&p->p_lock); 909 t->t_proc_flag &= ~TP_HOLDLWP; 910 lwp_create_done(t); 911 mutex_exit(&p->p_lock); 912 mutex_exit(&pidlock); 913 return (0); 914 } 915 916 /* 917 * create a child proc struct. 918 */ 919 static int 920 getproc(proc_t **cpp, pid_t pid, uint_t flags) 921 { 922 proc_t *pp, *cp; 923 pid_t newpid; 924 struct user *uarea; 925 extern uint_t nproc; 926 struct cred *cr; 927 uid_t ruid; 928 zoneid_t zoneid; 929 task_t *task; 930 kproject_t *proj; 931 zone_t *zone; 932 int rctlfail = 0; 933 934 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 935 return (-1); /* no point in starting new processes */ 936 937 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 938 task = pp->p_task; 939 proj = task->tk_proj; 940 zone = pp->p_zone; 941 942 mutex_enter(&pp->p_lock); 943 mutex_enter(&zone->zone_nlwps_lock); 944 if (proj != proj0p) { 945 if (task->tk_nprocs >= task->tk_nprocs_ctl) 946 if (rctl_test(rc_task_nprocs, task->tk_rctls, 947 pp, 1, 0) & RCT_DENY) 948 rctlfail = 1; 949 950 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl) 951 if (rctl_test(rc_project_nprocs, proj->kpj_rctls, 952 pp, 1, 0) & RCT_DENY) 953 rctlfail = 1; 954 955 if (zone->zone_nprocs >= zone->zone_nprocs_ctl) 956 if (rctl_test(rc_zone_nprocs, zone->zone_rctls, 957 pp, 1, 0) & RCT_DENY) 958 rctlfail = 1; 959 960 if (rctlfail) { 961 mutex_exit(&zone->zone_nlwps_lock); 962 mutex_exit(&pp->p_lock); 963 goto punish; 964 } 965 } 966 task->tk_nprocs++; 967 proj->kpj_nprocs++; 968 zone->zone_nprocs++; 969 mutex_exit(&zone->zone_nlwps_lock); 970 mutex_exit(&pp->p_lock); 971 972 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 973 bzero(cp, sizeof (proc_t)); 974 975 /* 976 * Make proc entry for child process 977 */ 978 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 979 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 980 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 981 #if defined(__x86) 982 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 983 #endif 984 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 985 cp->p_stat = SIDL; 986 cp->p_mstart = gethrtime(); 987 cp->p_as = &kas; 988 /* 989 * p_zone must be set before we call pid_allocate since the process 990 * will be visible after that and code such as prfind_zone will 991 * look at the p_zone field. 992 */ 993 cp->p_zone = pp->p_zone; 994 cp->p_t1_lgrpid = LGRP_NONE; 995 cp->p_tr_lgrpid = LGRP_NONE; 996 997 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 998 if (nproc == v.v_proc) { 999 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 1000 cmn_err(CE_WARN, "out of processes"); 1001 } 1002 goto bad; 1003 } 1004 1005 mutex_enter(&pp->p_lock); 1006 cp->p_exec = pp->p_exec; 1007 cp->p_execdir = pp->p_execdir; 1008 mutex_exit(&pp->p_lock); 1009 1010 if (cp->p_exec) { 1011 VN_HOLD(cp->p_exec); 1012 /* 1013 * Each VOP_OPEN() must be paired with a corresponding 1014 * VOP_CLOSE(). In this case, the executable will be 1015 * closed for the child in either proc_exit() or gexec(). 1016 */ 1017 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) { 1018 VN_RELE(cp->p_exec); 1019 cp->p_exec = NULLVP; 1020 cp->p_execdir = NULLVP; 1021 goto bad; 1022 } 1023 } 1024 if (cp->p_execdir) 1025 VN_HOLD(cp->p_execdir); 1026 1027 /* 1028 * If not privileged make sure that this user hasn't exceeded 1029 * v.v_maxup processes, and that users collectively haven't 1030 * exceeded v.v_maxupttl processes. 1031 */ 1032 mutex_enter(&pidlock); 1033 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 1034 cr = CRED(); 1035 ruid = crgetruid(cr); 1036 zoneid = crgetzoneid(cr); 1037 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 1038 (nproc >= v.v_maxupttl || 1039 upcount_get(ruid, zoneid) >= v.v_maxup) && 1040 secpolicy_newproc(cr) != 0) { 1041 mutex_exit(&pidlock); 1042 zcmn_err(zoneid, CE_NOTE, 1043 "out of per-user processes for uid %d", ruid); 1044 goto bad; 1045 } 1046 1047 /* 1048 * Everything is cool, put the new proc on the active process list. 1049 * It is already on the pid list and in /proc. 1050 * Increment the per uid process count (upcount). 1051 */ 1052 nproc++; 1053 upcount_inc(ruid, zoneid); 1054 1055 cp->p_next = practive; 1056 practive->p_prev = cp; 1057 practive = cp; 1058 1059 cp->p_ignore = pp->p_ignore; 1060 cp->p_siginfo = pp->p_siginfo; 1061 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1062 cp->p_sessp = pp->p_sessp; 1063 sess_hold(pp); 1064 cp->p_brand = pp->p_brand; 1065 if (PROC_IS_BRANDED(pp)) 1066 BROP(pp)->b_copy_procdata(cp, pp); 1067 cp->p_bssbase = pp->p_bssbase; 1068 cp->p_brkbase = pp->p_brkbase; 1069 cp->p_brksize = pp->p_brksize; 1070 cp->p_brkpageszc = pp->p_brkpageszc; 1071 cp->p_stksize = pp->p_stksize; 1072 cp->p_stkpageszc = pp->p_stkpageszc; 1073 cp->p_stkprot = pp->p_stkprot; 1074 cp->p_datprot = pp->p_datprot; 1075 cp->p_usrstack = pp->p_usrstack; 1076 cp->p_model = pp->p_model; 1077 cp->p_ppid = pp->p_pid; 1078 cp->p_ancpid = pp->p_pid; 1079 cp->p_portcnt = pp->p_portcnt; 1080 1081 /* 1082 * Initialize watchpoint structures 1083 */ 1084 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1085 offsetof(struct watched_area, wa_link)); 1086 1087 /* 1088 * Initialize immediate resource control values. 1089 */ 1090 cp->p_stk_ctl = pp->p_stk_ctl; 1091 cp->p_fsz_ctl = pp->p_fsz_ctl; 1092 cp->p_vmem_ctl = pp->p_vmem_ctl; 1093 cp->p_fno_ctl = pp->p_fno_ctl; 1094 1095 /* 1096 * Link up to parent-child-sibling chain. No need to lock 1097 * in general since only a call to freeproc() (done by the 1098 * same parent as newproc()) diddles with the child chain. 1099 */ 1100 cp->p_sibling = pp->p_child; 1101 if (pp->p_child) 1102 pp->p_child->p_psibling = cp; 1103 1104 cp->p_parent = pp; 1105 pp->p_child = cp; 1106 1107 cp->p_child_ns = NULL; 1108 cp->p_sibling_ns = NULL; 1109 1110 cp->p_nextorph = pp->p_orphan; 1111 cp->p_nextofkin = pp; 1112 pp->p_orphan = cp; 1113 1114 /* 1115 * Inherit profiling state; do not inherit REALPROF profiling state. 1116 */ 1117 cp->p_prof = pp->p_prof; 1118 cp->p_rprof_cyclic = CYCLIC_NONE; 1119 1120 /* 1121 * Inherit pool pointer from the parent. Kernel processes are 1122 * always bound to the default pool. 1123 */ 1124 mutex_enter(&pp->p_lock); 1125 if (flags & GETPROC_KERNEL) { 1126 cp->p_pool = pool_default; 1127 cp->p_flag |= SSYS; 1128 } else { 1129 cp->p_pool = pp->p_pool; 1130 } 1131 atomic_add_32(&cp->p_pool->pool_ref, 1); 1132 mutex_exit(&pp->p_lock); 1133 1134 /* 1135 * Add the child process to the current task. Kernel processes 1136 * are always attached to task0. 1137 */ 1138 mutex_enter(&cp->p_lock); 1139 if (flags & GETPROC_KERNEL) 1140 task_attach(task0p, cp); 1141 else 1142 task_attach(pp->p_task, cp); 1143 mutex_exit(&cp->p_lock); 1144 mutex_exit(&pidlock); 1145 1146 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1147 offsetof(contract_t, ct_ctlist)); 1148 1149 /* 1150 * Duplicate any audit information kept in the process table 1151 */ 1152 if (audit_active) /* copy audit data to cp */ 1153 audit_newproc(cp); 1154 1155 crhold(cp->p_cred = cr); 1156 1157 /* 1158 * Bump up the counts on the file structures pointed at by the 1159 * parent's file table since the child will point at them too. 1160 */ 1161 fcnt_add(P_FINFO(pp), 1); 1162 1163 if (PTOU(pp)->u_cdir) { 1164 VN_HOLD(PTOU(pp)->u_cdir); 1165 } else { 1166 ASSERT(pp == &p0); 1167 /* 1168 * We must be at or before vfs_mountroot(); it will take care of 1169 * assigning our current directory. 1170 */ 1171 } 1172 if (PTOU(pp)->u_rdir) 1173 VN_HOLD(PTOU(pp)->u_rdir); 1174 if (PTOU(pp)->u_cwd) 1175 refstr_hold(PTOU(pp)->u_cwd); 1176 1177 /* 1178 * copy the parent's uarea. 1179 */ 1180 uarea = PTOU(cp); 1181 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1182 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1183 1184 gethrestime(&uarea->u_start); 1185 uarea->u_ticks = ddi_get_lbolt(); 1186 uarea->u_mem = rm_asrss(pp->p_as); 1187 uarea->u_acflag = AFORK; 1188 1189 /* 1190 * If inherit-on-fork, copy /proc tracing flags to child. 1191 */ 1192 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1193 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1194 cp->p_sigmask = pp->p_sigmask; 1195 cp->p_fltmask = pp->p_fltmask; 1196 } else { 1197 sigemptyset(&cp->p_sigmask); 1198 premptyset(&cp->p_fltmask); 1199 uarea->u_systrap = 0; 1200 premptyset(&uarea->u_entrymask); 1201 premptyset(&uarea->u_exitmask); 1202 } 1203 /* 1204 * If microstate accounting is being inherited, mark child 1205 */ 1206 if ((pp->p_flag & SMSFORK) != 0) 1207 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1208 1209 /* 1210 * Inherit fixalignment flag from the parent 1211 */ 1212 cp->p_fixalignment = pp->p_fixalignment; 1213 1214 *cpp = cp; 1215 return (0); 1216 1217 bad: 1218 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1219 1220 mutex_destroy(&cp->p_crlock); 1221 mutex_destroy(&cp->p_pflock); 1222 #if defined(__x86) 1223 mutex_destroy(&cp->p_ldtlock); 1224 #endif 1225 if (newpid != -1) { 1226 proc_entry_free(cp->p_pidp); 1227 (void) pid_rele(cp->p_pidp); 1228 } 1229 kmem_cache_free(process_cache, cp); 1230 1231 mutex_enter(&zone->zone_nlwps_lock); 1232 task->tk_nprocs--; 1233 proj->kpj_nprocs--; 1234 zone->zone_nprocs--; 1235 mutex_exit(&zone->zone_nlwps_lock); 1236 1237 punish: 1238 /* 1239 * We most likely got into this situation because some process is 1240 * forking out of control. As punishment, put it to sleep for a 1241 * bit so it can't eat the machine alive. Sleep interval is chosen 1242 * to allow no more than one fork failure per cpu per clock tick 1243 * on average (yes, I just made this up). This has two desirable 1244 * properties: (1) it sets a constant limit on the fork failure 1245 * rate, and (2) the busier the system is, the harsher the penalty 1246 * for abusing it becomes. 1247 */ 1248 INCR_COUNT(&fork_fail_pending, &pidlock); 1249 delay(fork_fail_pending / ncpus + 1); 1250 DECR_COUNT(&fork_fail_pending, &pidlock); 1251 1252 return (-1); /* out of memory or proc slots */ 1253 } 1254 1255 /* 1256 * Release virtual memory. 1257 * In the case of vfork(), the child was given exclusive access to its 1258 * parent's address space. The parent is waiting in vfwait() for the 1259 * child to release its exclusive claim via relvm(). 1260 */ 1261 void 1262 relvm() 1263 { 1264 proc_t *p = curproc; 1265 1266 ASSERT((unsigned)p->p_lwpcnt <= 1); 1267 1268 prrelvm(); /* inform /proc */ 1269 1270 if (p->p_flag & SVFORK) { 1271 proc_t *pp = p->p_parent; 1272 /* 1273 * The child process is either exec'ing or exit'ing. 1274 * The child is now separated from the parent's address 1275 * space. The parent process is made dispatchable. 1276 * 1277 * This is a delicate locking maneuver, involving 1278 * both the parent's p_lock and the child's p_lock. 1279 * As soon as the SVFORK flag is turned off, the 1280 * parent is free to run, but it must not run until 1281 * we wake it up using its p_cv because it might 1282 * exit and we would be referencing invalid memory. 1283 * Therefore, we hold the parent with its p_lock 1284 * while protecting our p_flags with our own p_lock. 1285 */ 1286 try_again: 1287 mutex_enter(&p->p_lock); /* grab child's lock first */ 1288 prbarrier(p); /* make sure /proc is blocked out */ 1289 mutex_enter(&pp->p_lock); 1290 1291 /* 1292 * Check if parent is locked by /proc. 1293 */ 1294 if (pp->p_proc_flag & P_PR_LOCK) { 1295 /* 1296 * Delay until /proc is done with the parent. 1297 * We must drop our (the child's) p->p_lock, wait 1298 * via prbarrier() on the parent, then start over. 1299 */ 1300 mutex_exit(&p->p_lock); 1301 prbarrier(pp); 1302 mutex_exit(&pp->p_lock); 1303 goto try_again; 1304 } 1305 p->p_flag &= ~SVFORK; 1306 kpreempt_disable(); 1307 p->p_as = &kas; 1308 1309 /* 1310 * notify hat of change in thread's address space 1311 */ 1312 hat_thread_exit(curthread); 1313 kpreempt_enable(); 1314 1315 /* 1316 * child sizes are copied back to parent because 1317 * child may have grown. 1318 */ 1319 pp->p_brkbase = p->p_brkbase; 1320 pp->p_brksize = p->p_brksize; 1321 pp->p_stksize = p->p_stksize; 1322 1323 /* 1324 * Copy back the shm accounting information 1325 * to the parent process. 1326 */ 1327 pp->p_segacct = p->p_segacct; 1328 p->p_segacct = NULL; 1329 1330 /* 1331 * The parent is no longer waiting for the vfork()d child. 1332 * Restore the parent's watched pages, if any. This is 1333 * safe because we know the parent is not locked by /proc 1334 */ 1335 pp->p_flag &= ~SVFWAIT; 1336 if (avl_numnodes(&pp->p_wpage) != 0) { 1337 pp->p_as->a_wpage = pp->p_wpage; 1338 avl_create(&pp->p_wpage, wp_compare, 1339 sizeof (struct watched_page), 1340 offsetof(struct watched_page, wp_link)); 1341 } 1342 cv_signal(&pp->p_cv); 1343 mutex_exit(&pp->p_lock); 1344 mutex_exit(&p->p_lock); 1345 } else { 1346 if (p->p_as != &kas) { 1347 struct as *as; 1348 1349 if (p->p_segacct) 1350 shmexit(p); 1351 1352 /* 1353 * We grab p_lock for the benefit of /proc 1354 */ 1355 kpreempt_disable(); 1356 mutex_enter(&p->p_lock); 1357 prbarrier(p); /* make sure /proc is blocked out */ 1358 as = p->p_as; 1359 p->p_as = &kas; 1360 mutex_exit(&p->p_lock); 1361 1362 /* 1363 * notify hat of change in thread's address space 1364 */ 1365 hat_thread_exit(curthread); 1366 kpreempt_enable(); 1367 1368 as_free(as); 1369 p->p_tr_lgrpid = LGRP_NONE; 1370 } 1371 } 1372 } 1373 1374 /* 1375 * Wait for child to exec or exit. 1376 * Called by parent of vfork'ed process. 1377 * See important comments in relvm(), above. 1378 */ 1379 void 1380 vfwait(pid_t pid) 1381 { 1382 int signalled = 0; 1383 proc_t *pp = ttoproc(curthread); 1384 proc_t *cp; 1385 1386 /* 1387 * Wait for child to exec or exit. 1388 */ 1389 for (;;) { 1390 mutex_enter(&pidlock); 1391 cp = prfind(pid); 1392 if (cp == NULL || cp->p_parent != pp) { 1393 /* 1394 * Child has exit()ed. 1395 */ 1396 mutex_exit(&pidlock); 1397 break; 1398 } 1399 /* 1400 * Grab the child's p_lock before releasing pidlock. 1401 * Otherwise, the child could exit and we would be 1402 * referencing invalid memory. 1403 */ 1404 mutex_enter(&cp->p_lock); 1405 mutex_exit(&pidlock); 1406 if (!(cp->p_flag & SVFORK)) { 1407 /* 1408 * Child has exec()ed or is exit()ing. 1409 */ 1410 mutex_exit(&cp->p_lock); 1411 break; 1412 } 1413 mutex_enter(&pp->p_lock); 1414 mutex_exit(&cp->p_lock); 1415 /* 1416 * We might be waked up spuriously from the cv_wait(). 1417 * We have to do the whole operation over again to be 1418 * sure the child's SVFORK flag really is turned off. 1419 * We cannot make reference to the child because it can 1420 * exit before we return and we would be referencing 1421 * invalid memory. 1422 * 1423 * Because this is potentially a very long-term wait, 1424 * we call cv_wait_sig() (for its jobcontrol and /proc 1425 * side-effects) unless there is a current signal, in 1426 * which case we use cv_wait() because we cannot return 1427 * from this function until the child has released the 1428 * address space. Calling cv_wait_sig() with a current 1429 * signal would lead to an indefinite loop here because 1430 * cv_wait_sig() returns immediately in this case. 1431 */ 1432 if (signalled) 1433 cv_wait(&pp->p_cv, &pp->p_lock); 1434 else 1435 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1436 mutex_exit(&pp->p_lock); 1437 } 1438 1439 /* restore watchpoints to parent */ 1440 if (pr_watch_active(pp)) { 1441 struct as *as = pp->p_as; 1442 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1443 as_setwatch(as); 1444 AS_LOCK_EXIT(as, &as->a_lock); 1445 } 1446 1447 mutex_enter(&pp->p_lock); 1448 prbarrier(pp); /* barrier against /proc locking */ 1449 continuelwps(pp); 1450 mutex_exit(&pp->p_lock); 1451 } 1452