1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/sysmacros.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/policy.h> 40 #include <sys/user.h> 41 #include <sys/systm.h> 42 #include <sys/cpuvar.h> 43 #include <sys/vfs.h> 44 #include <sys/vnode.h> 45 #include <sys/file.h> 46 #include <sys/errno.h> 47 #include <sys/time.h> 48 #include <sys/proc.h> 49 #include <sys/cmn_err.h> 50 #include <sys/acct.h> 51 #include <sys/tuneable.h> 52 #include <sys/class.h> 53 #include <sys/kmem.h> 54 #include <sys/session.h> 55 #include <sys/ucontext.h> 56 #include <sys/stack.h> 57 #include <sys/procfs.h> 58 #include <sys/prsystm.h> 59 #include <sys/vmsystm.h> 60 #include <sys/vtrace.h> 61 #include <sys/debug.h> 62 #include <sys/shm_impl.h> 63 #include <sys/door_data.h> 64 #include <vm/as.h> 65 #include <vm/rm.h> 66 #include <c2/audit.h> 67 #include <sys/var.h> 68 #include <sys/schedctl.h> 69 #include <sys/utrap.h> 70 #include <sys/task.h> 71 #include <sys/resource.h> 72 #include <sys/cyclic.h> 73 #include <sys/lgrp.h> 74 #include <sys/rctl.h> 75 #include <sys/contract_impl.h> 76 #include <sys/contract/process_impl.h> 77 #include <sys/list.h> 78 #include <sys/dtrace.h> 79 #include <sys/pool.h> 80 #include <sys/zone.h> 81 #include <sys/sdt.h> 82 #include <sys/class.h> 83 #include <sys/corectl.h> 84 85 static int64_t cfork(int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1)); 111 } 112 113 /* 114 * fork1 system call 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1)); 120 } 121 122 /* ARGSUSED */ 123 static int64_t 124 cfork(int isvfork, int isfork1) 125 { 126 proc_t *p = ttoproc(curthread); 127 struct as *as; 128 proc_t *cp, **orphpp; 129 klwp_t *clone; 130 kthread_t *t; 131 task_t *tk; 132 rval_t r; 133 int error; 134 int i; 135 rctl_set_t *dup_set; 136 rctl_alloc_gp_t *dup_gp; 137 rctl_entity_p_t e; 138 lwpdir_t *ldp; 139 lwpent_t *lep; 140 lwpent_t *clep; 141 142 /* 143 * fork is not supported for the /proc agent lwp. 144 */ 145 if (curthread == p->p_agenttp) { 146 error = ENOTSUP; 147 goto forkerr; 148 } 149 150 if ((error = secpolicy_basic_fork(CRED())) != 0) 151 goto forkerr; 152 153 /* 154 * If the calling lwp is doing a fork1() then the 155 * other lwps in this process are not duplicated and 156 * don't need to be held where their kernel stacks can be 157 * cloned. If doing forkall(), the process is held with 158 * SHOLDFORK, so that the lwps are at a point where their 159 * stacks can be copied which is on entry or exit from 160 * the kernel. 161 */ 162 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 163 aston(curthread); 164 error = EINTR; 165 goto forkerr; 166 } 167 168 #if defined(__sparc) 169 /* 170 * Ensure that the user stack is fully constructed 171 * before creating the child process structure. 172 */ 173 (void) flush_user_windows_to_stack(NULL); 174 #endif 175 176 mutex_enter(&p->p_lock); 177 /* 178 * If this is vfork(), cancel any suspend request we might 179 * have gotten from some other thread via lwp_suspend(). 180 * Otherwise we could end up with a deadlock on return 181 * from the vfork() in both the parent and the child. 182 */ 183 if (isvfork) 184 curthread->t_proc_flag &= ~TP_HOLDLWP; 185 /* 186 * Prevent our resource set associations from being changed during fork. 187 */ 188 pool_barrier_enter(); 189 mutex_exit(&p->p_lock); 190 191 /* 192 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 193 */ 194 if (getproc(&cp, 0) < 0) { 195 mutex_enter(&p->p_lock); 196 pool_barrier_exit(); 197 continuelwps(p); 198 mutex_exit(&p->p_lock); 199 error = EAGAIN; 200 goto forkerr; 201 } 202 203 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 204 205 /* 206 * Assign an address space to child 207 */ 208 if (isvfork) { 209 /* 210 * Clear any watched areas and remember the 211 * watched pages for restoring in vfwait(). 212 */ 213 as = p->p_as; 214 if (avl_numnodes(&as->a_wpage) != 0) { 215 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 216 as_clearwatch(as); 217 p->p_wpage = as->a_wpage; 218 avl_create(&as->a_wpage, wp_compare, 219 sizeof (struct watched_page), 220 offsetof(struct watched_page, wp_link)); 221 AS_LOCK_EXIT(as, &as->a_lock); 222 } 223 cp->p_as = as; 224 cp->p_flag |= SVFORK; 225 } else { 226 /* 227 * We need to hold P_PR_LOCK until the address space has 228 * been duplicated and we've had a chance to remove from the 229 * child any DTrace probes that were in the parent. Holding 230 * P_PR_LOCK prevents any new probes from being added and any 231 * extant probes from being removed. 232 */ 233 mutex_enter(&p->p_lock); 234 sprlock_proc(p); 235 mutex_exit(&p->p_lock); 236 237 error = as_dup(p->p_as, &cp->p_as); 238 if (error != 0) { 239 fork_fail(cp); 240 mutex_enter(&pidlock); 241 orphpp = &p->p_orphan; 242 while (*orphpp != cp) 243 orphpp = &(*orphpp)->p_nextorph; 244 *orphpp = cp->p_nextorph; 245 ASSERT(p->p_child == cp); 246 p->p_child = cp->p_sibling; 247 if (p->p_child) { 248 p->p_child->p_psibling = NULL; 249 } 250 mutex_enter(&cp->p_lock); 251 tk = cp->p_task; 252 task_detach(cp); 253 ASSERT(cp->p_pool->pool_ref > 0); 254 atomic_add_32(&cp->p_pool->pool_ref, -1); 255 mutex_exit(&cp->p_lock); 256 pid_exit(cp); 257 mutex_exit(&pidlock); 258 task_rele(tk); 259 260 mutex_enter(&p->p_lock); 261 pool_barrier_exit(); 262 continuelwps(p); 263 sprunlock(p); 264 /* 265 * Preserve ENOMEM error condition but 266 * map all others to EAGAIN. 267 */ 268 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 269 goto forkerr; 270 } 271 /* Duplicate parent's shared memory */ 272 if (p->p_segacct) 273 shmfork(p, cp); 274 275 if (p->p_dtrace_helpers != NULL) { 276 ASSERT(dtrace_helpers_fork != NULL); 277 (*dtrace_helpers_fork)(p, cp); 278 } 279 280 /* 281 * Remove all DTrace tracepoints from the child process. 282 */ 283 mutex_enter(&p->p_lock); 284 if (p->p_dtrace_count > 0) 285 dtrace_fasttrap_fork(p, cp); 286 sprunlock(p); 287 } 288 289 /* 290 * Duplicate parent's resource controls. 291 */ 292 dup_set = rctl_set_create(); 293 for (;;) { 294 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 295 mutex_enter(&p->p_rctls->rcs_lock); 296 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 297 break; 298 mutex_exit(&p->p_rctls->rcs_lock); 299 rctl_prealloc_destroy(dup_gp); 300 } 301 e.rcep_p.proc = cp; 302 e.rcep_t = RCENTITY_PROCESS; 303 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 304 RCD_DUP | RCD_CALLBACK); 305 mutex_exit(&p->p_rctls->rcs_lock); 306 307 rctl_prealloc_destroy(dup_gp); 308 309 /* 310 * Allocate the child's lwp directory and lwpid hash table. 311 */ 312 if (isfork1) 313 cp->p_lwpdir_sz = 2; 314 else 315 cp->p_lwpdir_sz = p->p_lwpdir_sz; 316 cp->p_lwpdir = cp->p_lwpfree = ldp = 317 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 318 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 319 ldp->ld_next = ldp + 1; 320 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 321 cp->p_tidhash = 322 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 323 324 /* 325 * Duplicate parent's lwps. 326 * Mutual exclusion is not needed because the process is 327 * in the hold state and only the current lwp is running. 328 */ 329 klgrpset_clear(cp->p_lgrpset); 330 if (isfork1) { 331 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 332 if (clone == NULL) 333 goto forklwperr; 334 /* 335 * Inherit only the lwp_wait()able flag, 336 * Daemon threads should not call fork1(), but oh well... 337 */ 338 lwptot(clone)->t_proc_flag |= 339 (curthread->t_proc_flag & TP_TWAIT); 340 } else { 341 /* this is forkall(), no one can be in lwp_wait() */ 342 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 343 /* for each entry in the parent's lwp directory... */ 344 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 345 klwp_t *clwp; 346 kthread_t *ct; 347 348 if ((lep = ldp->ld_entry) == NULL) 349 continue; 350 351 if ((t = lep->le_thread) != NULL) { 352 clwp = forklwp(ttolwp(t), cp, t->t_tid); 353 if (clwp == NULL) 354 goto forklwperr; 355 ct = lwptot(clwp); 356 /* 357 * Inherit lwp_wait()able and daemon flags. 358 */ 359 ct->t_proc_flag |= 360 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 361 /* 362 * Keep track of the clone of curthread to 363 * post return values through lwp_setrval(). 364 * Mark other threads for special treatment 365 * by lwp_rtt() / post_syscall(). 366 */ 367 if (t == curthread) 368 clone = clwp; 369 else 370 ct->t_flag |= T_FORKALL; 371 } else { 372 /* 373 * Replicate zombie lwps in the child. 374 */ 375 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 376 clep->le_lwpid = lep->le_lwpid; 377 clep->le_start = lep->le_start; 378 lwp_hash_in(cp, clep); 379 } 380 } 381 } 382 383 /* 384 * Put new process in the parent's process contract, or put it 385 * in a new one if there is an active process template. Send a 386 * fork event (if requested) to whatever contract the child is 387 * a member of. Fails if the parent has been SIGKILLed. 388 */ 389 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 390 goto forklwperr; 391 392 /* 393 * No fork failures occur beyond this point. 394 */ 395 396 cp->p_lwpid = p->p_lwpid; 397 if (!isfork1) { 398 cp->p_lwpdaemon = p->p_lwpdaemon; 399 cp->p_zombcnt = p->p_zombcnt; 400 /* 401 * If the parent's lwp ids have wrapped around, so have the 402 * child's. 403 */ 404 cp->p_flag |= p->p_flag & SLWPWRAP; 405 } 406 407 corectl_path_hold(cp->p_corefile = p->p_corefile); 408 corectl_content_hold(cp->p_content = p->p_content); 409 410 /* 411 * Duplicate process context ops, if any. 412 */ 413 if (p->p_pctx) 414 forkpctx(p, cp); 415 416 #ifdef __sparc 417 utrap_dup(p, cp); 418 #endif 419 /* 420 * If the child process has been marked to stop on exit 421 * from this fork, arrange for all other lwps to stop in 422 * sympathy with the active lwp. 423 */ 424 if (PTOU(cp)->u_systrap && 425 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 426 mutex_enter(&cp->p_lock); 427 t = cp->p_tlist; 428 do { 429 t->t_proc_flag |= TP_PRSTOP; 430 aston(t); /* so TP_PRSTOP will be seen */ 431 } while ((t = t->t_forw) != cp->p_tlist); 432 mutex_exit(&cp->p_lock); 433 } 434 /* 435 * If the parent process has been marked to stop on exit 436 * from this fork, and its asynchronous-stop flag has not 437 * been set, arrange for all other lwps to stop before 438 * they return back to user level. 439 */ 440 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 441 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 442 mutex_enter(&p->p_lock); 443 t = p->p_tlist; 444 do { 445 t->t_proc_flag |= TP_PRSTOP; 446 aston(t); /* so TP_PRSTOP will be seen */ 447 } while ((t = t->t_forw) != p->p_tlist); 448 mutex_exit(&p->p_lock); 449 } 450 451 /* set return values for child */ 452 lwp_setrval(clone, p->p_pid, 1); 453 454 /* set return values for parent */ 455 r.r_val1 = (int)cp->p_pid; 456 r.r_val2 = 0; 457 458 /* 459 * pool_barrier_exit() can now be called because the child process has: 460 * - all identifying features cloned or set (p_pid, p_task, p_pool) 461 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 462 * - any other fields set which are used in resource set binding. 463 */ 464 mutex_enter(&p->p_lock); 465 pool_barrier_exit(); 466 mutex_exit(&p->p_lock); 467 468 mutex_enter(&pidlock); 469 mutex_enter(&cp->p_lock); 470 471 /* 472 * Now that there are lwps and threads attached, add the new 473 * process to the process group. 474 */ 475 pgjoin(cp, p->p_pgidp); 476 cp->p_stat = SRUN; 477 /* 478 * We are now done with all the lwps in the child process. 479 */ 480 t = cp->p_tlist; 481 do { 482 /* 483 * Set the lwp_suspend()ed lwps running. 484 * They will suspend properly at syscall exit. 485 */ 486 if (t->t_proc_flag & TP_HOLDLWP) 487 lwp_create_done(t); 488 else { 489 /* set TS_CREATE to allow continuelwps() to work */ 490 thread_lock(t); 491 ASSERT(t->t_state == TS_STOPPED && 492 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 493 t->t_schedflag |= TS_CREATE; 494 thread_unlock(t); 495 } 496 } while ((t = t->t_forw) != cp->p_tlist); 497 mutex_exit(&cp->p_lock); 498 499 if (isvfork) { 500 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 501 mutex_enter(&p->p_lock); 502 p->p_flag |= SVFWAIT; 503 DTRACE_PROC1(create, proc_t *, cp); 504 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 505 mutex_exit(&p->p_lock); 506 /* 507 * Grab child's p_lock before dropping pidlock to ensure 508 * the process will not disappear before we set it running. 509 */ 510 mutex_enter(&cp->p_lock); 511 mutex_exit(&pidlock); 512 sigdefault(cp); 513 continuelwps(cp); 514 mutex_exit(&cp->p_lock); 515 } else { 516 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 517 DTRACE_PROC1(create, proc_t *, cp); 518 /* 519 * It is CL_FORKRET's job to drop pidlock. 520 * If we do it here, the process could be set running 521 * and disappear before CL_FORKRET() is called. 522 */ 523 CL_FORKRET(curthread, cp->p_tlist); 524 ASSERT(MUTEX_NOT_HELD(&pidlock)); 525 } 526 527 return (r.r_vals); 528 529 forklwperr: 530 if (isvfork) { 531 if (avl_numnodes(&p->p_wpage) != 0) { 532 /* restore watchpoints to parent */ 533 as = p->p_as; 534 AS_LOCK_ENTER(as, &as->a_lock, 535 RW_WRITER); 536 as->a_wpage = p->p_wpage; 537 avl_create(&p->p_wpage, wp_compare, 538 sizeof (struct watched_page), 539 offsetof(struct watched_page, wp_link)); 540 as_setwatch(as); 541 AS_LOCK_EXIT(as, &as->a_lock); 542 } 543 } else { 544 if (cp->p_segacct) 545 shmexit(cp); 546 as = cp->p_as; 547 cp->p_as = &kas; 548 as_free(as); 549 } 550 551 if (cp->p_lwpdir) { 552 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 553 if ((lep = ldp->ld_entry) != NULL) 554 kmem_free(lep, sizeof (*lep)); 555 kmem_free(cp->p_lwpdir, 556 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 557 } 558 cp->p_lwpdir = NULL; 559 cp->p_lwpfree = NULL; 560 cp->p_lwpdir_sz = 0; 561 562 if (cp->p_tidhash) 563 kmem_free(cp->p_tidhash, 564 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 565 cp->p_tidhash = NULL; 566 cp->p_tidhash_sz = 0; 567 568 forklwp_fail(cp); 569 fork_fail(cp); 570 rctl_set_free(cp->p_rctls); 571 mutex_enter(&pidlock); 572 573 /* 574 * Detach failed child from task. 575 */ 576 mutex_enter(&cp->p_lock); 577 tk = cp->p_task; 578 task_detach(cp); 579 ASSERT(cp->p_pool->pool_ref > 0); 580 atomic_add_32(&cp->p_pool->pool_ref, -1); 581 mutex_exit(&cp->p_lock); 582 583 orphpp = &p->p_orphan; 584 while (*orphpp != cp) 585 orphpp = &(*orphpp)->p_nextorph; 586 *orphpp = cp->p_nextorph; 587 ASSERT(p->p_child == cp); 588 p->p_child = cp->p_sibling; 589 if (p->p_child) { 590 p->p_child->p_psibling = NULL; 591 } 592 pid_exit(cp); 593 mutex_exit(&pidlock); 594 595 task_rele(tk); 596 597 mutex_enter(&p->p_lock); 598 pool_barrier_exit(); 599 continuelwps(p); 600 mutex_exit(&p->p_lock); 601 error = EAGAIN; 602 forkerr: 603 return ((int64_t)set_errno(error)); 604 } 605 606 /* 607 * Free allocated resources from getproc() if a fork failed. 608 */ 609 static void 610 fork_fail(proc_t *cp) 611 { 612 uf_info_t *fip = P_FINFO(cp); 613 614 fcnt_add(fip, -1); 615 sigdelq(cp, NULL, 0); 616 617 mutex_enter(&pidlock); 618 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 619 mutex_exit(&pidlock); 620 621 /* 622 * single threaded, so no locking needed here 623 */ 624 crfree(cp->p_cred); 625 626 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 627 628 VN_RELE(u.u_cdir); 629 if (u.u_rdir) 630 VN_RELE(u.u_rdir); 631 if (cp->p_exec) 632 VN_RELE(cp->p_exec); 633 if (cp->p_execdir) 634 VN_RELE(cp->p_execdir); 635 if (u.u_cwd) 636 refstr_rele(u.u_cwd); 637 } 638 639 /* 640 * Clean up the lwps already created for this child process. 641 * The fork failed while duplicating all the lwps of the parent 642 * and those lwps already created must be freed. 643 * This process is invisible to the rest of the system, 644 * so we don't need to hold p->p_lock to protect the list. 645 */ 646 static void 647 forklwp_fail(proc_t *p) 648 { 649 kthread_t *t; 650 task_t *tk; 651 652 while ((t = p->p_tlist) != NULL) { 653 /* 654 * First remove the lwp from the process's p_tlist. 655 */ 656 if (t != t->t_forw) 657 p->p_tlist = t->t_forw; 658 else 659 p->p_tlist = NULL; 660 p->p_lwpcnt--; 661 t->t_forw->t_back = t->t_back; 662 t->t_back->t_forw = t->t_forw; 663 664 tk = p->p_task; 665 mutex_enter(&p->p_zone->zone_nlwps_lock); 666 tk->tk_nlwps--; 667 tk->tk_proj->kpj_nlwps--; 668 p->p_zone->zone_nlwps--; 669 mutex_exit(&p->p_zone->zone_nlwps_lock); 670 671 ASSERT(t->t_schedctl == NULL); 672 673 if (t->t_door != NULL) { 674 kmem_free(t->t_door, sizeof (door_data_t)); 675 t->t_door = NULL; 676 } 677 lwp_ctmpl_clear(ttolwp(t)); 678 679 /* 680 * Remove the thread from the all threads list. 681 * We need to hold pidlock for this. 682 */ 683 mutex_enter(&pidlock); 684 t->t_next->t_prev = t->t_prev; 685 t->t_prev->t_next = t->t_next; 686 CL_EXIT(t); /* tell the scheduler that we're exiting */ 687 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 688 mutex_exit(&pidlock); 689 690 /* 691 * Let the lgroup load averages know that this thread isn't 692 * going to show up (i.e. un-do what was done on behalf of 693 * this thread by the earlier lgrp_move_thread()). 694 */ 695 kpreempt_disable(); 696 lgrp_move_thread(t, NULL, 1); 697 kpreempt_enable(); 698 699 /* 700 * The thread was created TS_STOPPED. 701 * We change it to TS_FREE to avoid an 702 * ASSERT() panic in thread_free(). 703 */ 704 t->t_state = TS_FREE; 705 thread_rele(t); 706 thread_free(t); 707 } 708 } 709 710 extern struct as kas; 711 712 /* 713 * fork a kernel process. 714 */ 715 int 716 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 717 { 718 proc_t *p; 719 struct user *up; 720 klwp_t *lwp; 721 cont_process_t *ctp = NULL; 722 rctl_entity_p_t e; 723 724 ASSERT(!(cid == syscid && ct != NULL)); 725 if (cid == syscid) { 726 rctl_alloc_gp_t *init_gp; 727 rctl_set_t *init_set; 728 729 if (getproc(&p, 1) < 0) 730 return (EAGAIN); 731 732 p->p_flag |= SNOWAIT; 733 p->p_exec = NULL; 734 p->p_execdir = NULL; 735 736 init_set = rctl_set_create(); 737 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 738 739 /* 740 * kernel processes do not inherit /proc tracing flags. 741 */ 742 sigemptyset(&p->p_sigmask); 743 premptyset(&p->p_fltmask); 744 up = PTOU(p); 745 up->u_systrap = 0; 746 premptyset(&(up->u_entrymask)); 747 premptyset(&(up->u_exitmask)); 748 mutex_enter(&p->p_lock); 749 e.rcep_p.proc = p; 750 e.rcep_t = RCENTITY_PROCESS; 751 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 752 init_gp); 753 mutex_exit(&p->p_lock); 754 755 rctl_prealloc_destroy(init_gp); 756 } else { 757 rctl_alloc_gp_t *init_gp, *default_gp; 758 rctl_set_t *init_set; 759 task_t *tk, *tk_old; 760 761 if (getproc(&p, 0) < 0) 762 return (EAGAIN); 763 /* 764 * init creates a new task, distinct from the task 765 * containing kernel "processes". 766 */ 767 tk = task_create(0, p->p_zone); 768 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 769 tk->tk_proj->kpj_ntasks++; 770 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 771 772 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 773 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 774 init_set = rctl_set_create(); 775 776 mutex_enter(&pidlock); 777 mutex_enter(&p->p_lock); 778 tk_old = p->p_task; /* switch to new task */ 779 780 task_detach(p); 781 task_begin(tk, p); 782 mutex_exit(&pidlock); 783 784 e.rcep_p.proc = p; 785 e.rcep_t = RCENTITY_PROCESS; 786 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 787 init_gp); 788 rctlproc_default_init(p, default_gp); 789 mutex_exit(&p->p_lock); 790 791 task_rele(tk_old); 792 rctl_prealloc_destroy(default_gp); 793 rctl_prealloc_destroy(init_gp); 794 } 795 796 p->p_as = &kas; 797 798 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 799 &curthread->t_hold, cid, 1)) == NULL) { 800 task_t *tk; 801 fork_fail(p); 802 mutex_enter(&pidlock); 803 mutex_enter(&p->p_lock); 804 tk = p->p_task; 805 task_detach(p); 806 ASSERT(p->p_pool->pool_ref > 0); 807 atomic_add_32(&p->p_pool->pool_ref, -1); 808 mutex_exit(&p->p_lock); 809 pid_exit(p); 810 mutex_exit(&pidlock); 811 task_rele(tk); 812 813 return (EAGAIN); 814 } 815 816 if (cid != syscid) { 817 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 818 B_FALSE); 819 ASSERT(ctp != NULL); 820 if (ct != NULL) 821 *ct = &ctp->conp_contract; 822 } 823 824 p->p_lwpid = 1; 825 mutex_enter(&pidlock); 826 pgjoin(p, curproc->p_pgidp); 827 p->p_stat = SRUN; 828 mutex_enter(&p->p_lock); 829 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 830 lwp_create_done(lwptot(lwp)); 831 mutex_exit(&p->p_lock); 832 mutex_exit(&pidlock); 833 return (0); 834 } 835 836 /* 837 * create a child proc struct. 838 */ 839 static int 840 getproc(proc_t **cpp, int kernel) 841 { 842 proc_t *pp, *cp; 843 pid_t newpid; 844 struct user *uarea; 845 extern uint_t nproc; 846 struct cred *cr; 847 uid_t ruid; 848 zoneid_t zoneid; 849 850 if (!page_mem_avail(tune.t_minarmem)) 851 return (-1); 852 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 853 return (-1); /* no point in starting new processes */ 854 855 pp = curproc; 856 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 857 bzero(cp, sizeof (proc_t)); 858 859 /* 860 * Make proc entry for child process 861 */ 862 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 863 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 864 #if defined(__x86) 865 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 866 #endif 867 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 868 cp->p_stat = SIDL; 869 cp->p_mstart = gethrtime(); 870 871 if ((newpid = pid_assign(cp)) == -1) { 872 if (nproc == v.v_proc) { 873 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 874 cmn_err(CE_WARN, "out of processes"); 875 } 876 goto bad; 877 } 878 879 /* 880 * If not privileged make sure that this user hasn't exceeded 881 * v.v_maxup processes, and that users collectively haven't 882 * exceeded v.v_maxupttl processes. 883 */ 884 mutex_enter(&pidlock); 885 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 886 cr = CRED(); 887 ruid = crgetruid(cr); 888 zoneid = crgetzoneid(cr); 889 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 890 (nproc >= v.v_maxupttl || 891 upcount_get(ruid, zoneid) >= v.v_maxup) && 892 secpolicy_newproc(cr) != 0) { 893 mutex_exit(&pidlock); 894 zcmn_err(zoneid, CE_NOTE, 895 "out of per-user processes for uid %d", ruid); 896 goto bad; 897 } 898 899 /* 900 * Everything is cool, put the new proc on the active process list. 901 * It is already on the pid list and in /proc. 902 * Increment the per uid process count (upcount). 903 */ 904 nproc++; 905 upcount_inc(ruid, zoneid); 906 907 cp->p_next = practive; 908 practive->p_prev = cp; 909 practive = cp; 910 911 cp->p_ignore = pp->p_ignore; 912 cp->p_siginfo = pp->p_siginfo; 913 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 914 cp->p_sessp = pp->p_sessp; 915 SESS_HOLD(pp->p_sessp); 916 cp->p_exec = pp->p_exec; 917 cp->p_execdir = pp->p_execdir; 918 cp->p_zone = pp->p_zone; 919 920 cp->p_bssbase = pp->p_bssbase; 921 cp->p_brkbase = pp->p_brkbase; 922 cp->p_brksize = pp->p_brksize; 923 cp->p_brkpageszc = pp->p_brkpageszc; 924 cp->p_stksize = pp->p_stksize; 925 cp->p_stkpageszc = pp->p_stkpageszc; 926 cp->p_stkprot = pp->p_stkprot; 927 cp->p_datprot = pp->p_datprot; 928 cp->p_usrstack = pp->p_usrstack; 929 cp->p_model = pp->p_model; 930 cp->p_ppid = pp->p_pid; 931 cp->p_ancpid = pp->p_pid; 932 cp->p_portcnt = pp->p_portcnt; 933 934 /* 935 * Initialize watchpoint structures 936 */ 937 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 938 offsetof(struct watched_area, wa_link)); 939 940 /* 941 * Initialize immediate resource control values. 942 */ 943 cp->p_stk_ctl = pp->p_stk_ctl; 944 cp->p_fsz_ctl = pp->p_fsz_ctl; 945 cp->p_vmem_ctl = pp->p_vmem_ctl; 946 cp->p_fno_ctl = pp->p_fno_ctl; 947 948 /* 949 * Link up to parent-child-sibling chain. No need to lock 950 * in general since only a call to freeproc() (done by the 951 * same parent as newproc()) diddles with the child chain. 952 */ 953 cp->p_sibling = pp->p_child; 954 if (pp->p_child) 955 pp->p_child->p_psibling = cp; 956 957 cp->p_parent = pp; 958 pp->p_child = cp; 959 960 cp->p_child_ns = NULL; 961 cp->p_sibling_ns = NULL; 962 963 cp->p_nextorph = pp->p_orphan; 964 cp->p_nextofkin = pp; 965 pp->p_orphan = cp; 966 967 /* 968 * Inherit profiling state; do not inherit REALPROF profiling state. 969 */ 970 cp->p_prof = pp->p_prof; 971 cp->p_rprof_cyclic = CYCLIC_NONE; 972 973 /* 974 * Inherit pool pointer from the parent. Kernel processes are 975 * always bound to the default pool. 976 */ 977 mutex_enter(&pp->p_lock); 978 if (kernel) { 979 cp->p_pool = pool_default; 980 cp->p_flag |= SSYS; 981 } else { 982 cp->p_pool = pp->p_pool; 983 } 984 atomic_add_32(&cp->p_pool->pool_ref, 1); 985 mutex_exit(&pp->p_lock); 986 987 /* 988 * Add the child process to the current task. Kernel processes 989 * are always attached to task0. 990 */ 991 mutex_enter(&cp->p_lock); 992 if (kernel) 993 task_attach(task0p, cp); 994 else 995 task_attach(pp->p_task, cp); 996 mutex_exit(&cp->p_lock); 997 mutex_exit(&pidlock); 998 999 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1000 offsetof(contract_t, ct_ctlist)); 1001 1002 /* 1003 * Duplicate any audit information kept in the process table 1004 */ 1005 #ifdef C2_AUDIT 1006 if (audit_active) /* copy audit data to cp */ 1007 audit_newproc(cp); 1008 #endif 1009 1010 crhold(cp->p_cred = cr); 1011 1012 /* 1013 * Bump up the counts on the file structures pointed at by the 1014 * parent's file table since the child will point at them too. 1015 */ 1016 fcnt_add(P_FINFO(pp), 1); 1017 1018 VN_HOLD(u.u_cdir); 1019 if (u.u_rdir) 1020 VN_HOLD(u.u_rdir); 1021 if (u.u_cwd) 1022 refstr_hold(u.u_cwd); 1023 1024 /* 1025 * copy the parent's uarea. 1026 */ 1027 uarea = PTOU(cp); 1028 bcopy(PTOU(pp), uarea, sizeof (user_t)); 1029 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1030 1031 gethrestime(&uarea->u_start); 1032 uarea->u_ticks = lbolt; 1033 uarea->u_mem = rm_asrss(pp->p_as); 1034 uarea->u_acflag = AFORK; 1035 1036 /* 1037 * If inherit-on-fork, copy /proc tracing flags to child. 1038 */ 1039 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1040 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1041 cp->p_sigmask = pp->p_sigmask; 1042 cp->p_fltmask = pp->p_fltmask; 1043 } else { 1044 sigemptyset(&cp->p_sigmask); 1045 premptyset(&cp->p_fltmask); 1046 uarea->u_systrap = 0; 1047 premptyset(&uarea->u_entrymask); 1048 premptyset(&uarea->u_exitmask); 1049 } 1050 /* 1051 * If microstate accounting is being inherited, mark child 1052 */ 1053 if ((pp->p_flag & SMSFORK) != 0) 1054 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1055 1056 /* 1057 * Inherit fixalignment flag from the parent 1058 */ 1059 cp->p_fixalignment = pp->p_fixalignment; 1060 1061 if (cp->p_exec) 1062 VN_HOLD(cp->p_exec); 1063 if (cp->p_execdir) 1064 VN_HOLD(cp->p_execdir); 1065 *cpp = cp; 1066 return (0); 1067 1068 bad: 1069 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1070 1071 mutex_destroy(&cp->p_crlock); 1072 mutex_destroy(&cp->p_pflock); 1073 #if defined(__x86) 1074 mutex_destroy(&cp->p_ldtlock); 1075 #endif 1076 if (newpid != -1) { 1077 proc_entry_free(cp->p_pidp); 1078 (void) pid_rele(cp->p_pidp); 1079 } 1080 kmem_cache_free(process_cache, cp); 1081 1082 /* 1083 * We most likely got into this situation because some process is 1084 * forking out of control. As punishment, put it to sleep for a 1085 * bit so it can't eat the machine alive. Sleep interval is chosen 1086 * to allow no more than one fork failure per cpu per clock tick 1087 * on average (yes, I just made this up). This has two desirable 1088 * properties: (1) it sets a constant limit on the fork failure 1089 * rate, and (2) the busier the system is, the harsher the penalty 1090 * for abusing it becomes. 1091 */ 1092 INCR_COUNT(&fork_fail_pending, &pidlock); 1093 delay(fork_fail_pending / ncpus + 1); 1094 DECR_COUNT(&fork_fail_pending, &pidlock); 1095 1096 return (-1); /* out of memory or proc slots */ 1097 } 1098 1099 /* 1100 * Release virtual memory. 1101 * In the case of vfork(), the child was given exclusive access to its 1102 * parent's address space. The parent is waiting in vfwait() for the 1103 * child to release its exclusive claim via relvm(). 1104 */ 1105 void 1106 relvm() 1107 { 1108 proc_t *p = curproc; 1109 1110 ASSERT((unsigned)p->p_lwpcnt <= 1); 1111 1112 prrelvm(); /* inform /proc */ 1113 1114 if (p->p_flag & SVFORK) { 1115 proc_t *pp = p->p_parent; 1116 /* 1117 * The child process is either exec'ing or exit'ing. 1118 * The child is now separated from the parent's address 1119 * space. The parent process is made dispatchable. 1120 * 1121 * This is a delicate locking maneuver, involving 1122 * both the parent's p_lock and the child's p_lock. 1123 * As soon as the SVFORK flag is turned off, the 1124 * parent is free to run, but it must not run until 1125 * we wake it up using its p_cv because it might 1126 * exit and we would be referencing invalid memory. 1127 * Therefore, we hold the parent with its p_lock 1128 * while protecting our p_flags with our own p_lock. 1129 */ 1130 try_again: 1131 mutex_enter(&p->p_lock); /* grab child's lock first */ 1132 prbarrier(p); /* make sure /proc is blocked out */ 1133 mutex_enter(&pp->p_lock); 1134 1135 /* 1136 * Check if parent is locked by /proc. 1137 */ 1138 if (pp->p_proc_flag & P_PR_LOCK) { 1139 /* 1140 * Delay until /proc is done with the parent. 1141 * We must drop our (the child's) p->p_lock, wait 1142 * via prbarrier() on the parent, then start over. 1143 */ 1144 mutex_exit(&p->p_lock); 1145 prbarrier(pp); 1146 mutex_exit(&pp->p_lock); 1147 goto try_again; 1148 } 1149 p->p_flag &= ~SVFORK; 1150 kpreempt_disable(); 1151 p->p_as = &kas; 1152 1153 /* 1154 * notify hat of change in thread's address space 1155 */ 1156 hat_thread_exit(curthread); 1157 kpreempt_enable(); 1158 1159 /* 1160 * child sizes are copied back to parent because 1161 * child may have grown. 1162 */ 1163 pp->p_brkbase = p->p_brkbase; 1164 pp->p_brksize = p->p_brksize; 1165 pp->p_stksize = p->p_stksize; 1166 /* 1167 * The parent is no longer waiting for the vfork()d child. 1168 * Restore the parent's watched pages, if any. This is 1169 * safe because we know the parent is not locked by /proc 1170 */ 1171 pp->p_flag &= ~SVFWAIT; 1172 if (avl_numnodes(&pp->p_wpage) != 0) { 1173 pp->p_as->a_wpage = pp->p_wpage; 1174 avl_create(&pp->p_wpage, wp_compare, 1175 sizeof (struct watched_page), 1176 offsetof(struct watched_page, wp_link)); 1177 } 1178 cv_signal(&pp->p_cv); 1179 mutex_exit(&pp->p_lock); 1180 mutex_exit(&p->p_lock); 1181 } else { 1182 if (p->p_as != &kas) { 1183 struct as *as; 1184 1185 if (p->p_segacct) 1186 shmexit(p); 1187 /* 1188 * We grab p_lock for the benefit of /proc 1189 */ 1190 kpreempt_disable(); 1191 mutex_enter(&p->p_lock); 1192 prbarrier(p); /* make sure /proc is blocked out */ 1193 as = p->p_as; 1194 p->p_as = &kas; 1195 mutex_exit(&p->p_lock); 1196 1197 /* 1198 * notify hat of change in thread's address space 1199 */ 1200 hat_thread_exit(curthread); 1201 kpreempt_enable(); 1202 1203 as_free(as); 1204 } 1205 } 1206 } 1207 1208 /* 1209 * Wait for child to exec or exit. 1210 * Called by parent of vfork'ed process. 1211 * See important comments in relvm(), above. 1212 */ 1213 void 1214 vfwait(pid_t pid) 1215 { 1216 int signalled = 0; 1217 proc_t *pp = ttoproc(curthread); 1218 proc_t *cp; 1219 1220 /* 1221 * Wait for child to exec or exit. 1222 */ 1223 for (;;) { 1224 mutex_enter(&pidlock); 1225 cp = prfind(pid); 1226 if (cp == NULL || cp->p_parent != pp) { 1227 /* 1228 * Child has exit()ed. 1229 */ 1230 mutex_exit(&pidlock); 1231 break; 1232 } 1233 /* 1234 * Grab the child's p_lock before releasing pidlock. 1235 * Otherwise, the child could exit and we would be 1236 * referencing invalid memory. 1237 */ 1238 mutex_enter(&cp->p_lock); 1239 mutex_exit(&pidlock); 1240 if (!(cp->p_flag & SVFORK)) { 1241 /* 1242 * Child has exec()ed or is exit()ing. 1243 */ 1244 mutex_exit(&cp->p_lock); 1245 break; 1246 } 1247 mutex_enter(&pp->p_lock); 1248 mutex_exit(&cp->p_lock); 1249 /* 1250 * We might be waked up spuriously from the cv_wait(). 1251 * We have to do the whole operation over again to be 1252 * sure the child's SVFORK flag really is turned off. 1253 * We cannot make reference to the child because it can 1254 * exit before we return and we would be referencing 1255 * invalid memory. 1256 * 1257 * Because this is potentially a very long-term wait, 1258 * we call cv_wait_sig() (for its jobcontrol and /proc 1259 * side-effects) unless there is a current signal, in 1260 * which case we use cv_wait() because we cannot return 1261 * from this function until the child has released the 1262 * address space. Calling cv_wait_sig() with a current 1263 * signal would lead to an indefinite loop here because 1264 * cv_wait_sig() returns immediately in this case. 1265 */ 1266 if (signalled) 1267 cv_wait(&pp->p_cv, &pp->p_lock); 1268 else 1269 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1270 mutex_exit(&pp->p_lock); 1271 } 1272 1273 /* restore watchpoints to parent */ 1274 if (pr_watch_active(pp)) { 1275 struct as *as = pp->p_as; 1276 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1277 as_setwatch(as); 1278 AS_LOCK_EXIT(as, &as->a_lock); 1279 } 1280 1281 mutex_enter(&pp->p_lock); 1282 prbarrier(pp); /* barrier against /proc locking */ 1283 continuelwps(pp); 1284 mutex_exit(&pp->p_lock); 1285 } 1286