1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/policy.h> 38 #include <sys/user.h> 39 #include <sys/systm.h> 40 #include <sys/cpuvar.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/errno.h> 45 #include <sys/time.h> 46 #include <sys/proc.h> 47 #include <sys/cmn_err.h> 48 #include <sys/acct.h> 49 #include <sys/tuneable.h> 50 #include <sys/class.h> 51 #include <sys/kmem.h> 52 #include <sys/session.h> 53 #include <sys/ucontext.h> 54 #include <sys/stack.h> 55 #include <sys/procfs.h> 56 #include <sys/prsystm.h> 57 #include <sys/vmsystm.h> 58 #include <sys/vtrace.h> 59 #include <sys/debug.h> 60 #include <sys/shm_impl.h> 61 #include <sys/door_data.h> 62 #include <vm/as.h> 63 #include <vm/rm.h> 64 #include <c2/audit.h> 65 #include <sys/var.h> 66 #include <sys/schedctl.h> 67 #include <sys/utrap.h> 68 #include <sys/task.h> 69 #include <sys/resource.h> 70 #include <sys/cyclic.h> 71 #include <sys/lgrp.h> 72 #include <sys/rctl.h> 73 #include <sys/contract_impl.h> 74 #include <sys/contract/process_impl.h> 75 #include <sys/list.h> 76 #include <sys/dtrace.h> 77 #include <sys/pool.h> 78 #include <sys/zone.h> 79 #include <sys/sdt.h> 80 #include <sys/class.h> 81 #include <sys/corectl.h> 82 #include <sys/brand.h> 83 #include <sys/fork.h> 84 85 static int64_t cfork(int, int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1, 0)); 111 } 112 113 /* 114 * fork system call, aka fork1. 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1, 0)); 120 } 121 122 /* 123 * The forkall(), vfork(), and fork1() system calls are no longer 124 * invoked by libc. They are retained only for the benefit of 125 * old statically-linked applications. They should be eliminated 126 * when we no longer care about such old and broken applications. 127 */ 128 129 /* 130 * forksys system call - forkx, forkallx, vforkx. 131 * This is the interface now invoked by libc. 132 */ 133 int64_t 134 forksys(int subcode, int flags) 135 { 136 switch (subcode) { 137 case 0: 138 return (cfork(0, 1, flags)); /* forkx(flags) */ 139 case 1: 140 return (cfork(0, 0, flags)); /* forkallx(flags) */ 141 case 2: 142 curthread->t_post_sys = 1; /* so vfwait() will be called */ 143 return (cfork(1, 1, flags)); /* vforkx(flags) */ 144 default: 145 return ((int64_t)set_errno(EINVAL)); 146 } 147 } 148 149 /* ARGSUSED */ 150 static int64_t 151 cfork(int isvfork, int isfork1, int flags) 152 { 153 proc_t *p = ttoproc(curthread); 154 struct as *as; 155 proc_t *cp, **orphpp; 156 klwp_t *clone; 157 kthread_t *t; 158 task_t *tk; 159 rval_t r; 160 int error; 161 int i; 162 rctl_set_t *dup_set; 163 rctl_alloc_gp_t *dup_gp; 164 rctl_entity_p_t e; 165 lwpdir_t *ldp; 166 lwpent_t *lep; 167 lwpent_t *clep; 168 169 /* 170 * Allow only these two flags. 171 */ 172 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 173 error = EINVAL; 174 goto forkerr; 175 } 176 177 /* 178 * fork is not supported for the /proc agent lwp. 179 */ 180 if (curthread == p->p_agenttp) { 181 error = ENOTSUP; 182 goto forkerr; 183 } 184 185 if ((error = secpolicy_basic_fork(CRED())) != 0) 186 goto forkerr; 187 188 /* 189 * If the calling lwp is doing a fork1() then the 190 * other lwps in this process are not duplicated and 191 * don't need to be held where their kernel stacks can be 192 * cloned. If doing forkall(), the process is held with 193 * SHOLDFORK, so that the lwps are at a point where their 194 * stacks can be copied which is on entry or exit from 195 * the kernel. 196 */ 197 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 198 aston(curthread); 199 error = EINTR; 200 goto forkerr; 201 } 202 203 #if defined(__sparc) 204 /* 205 * Ensure that the user stack is fully constructed 206 * before creating the child process structure. 207 */ 208 (void) flush_user_windows_to_stack(NULL); 209 #endif 210 211 mutex_enter(&p->p_lock); 212 /* 213 * If this is vfork(), cancel any suspend request we might 214 * have gotten from some other thread via lwp_suspend(). 215 * Otherwise we could end up with a deadlock on return 216 * from the vfork() in both the parent and the child. 217 */ 218 if (isvfork) 219 curthread->t_proc_flag &= ~TP_HOLDLWP; 220 /* 221 * Prevent our resource set associations from being changed during fork. 222 */ 223 pool_barrier_enter(); 224 mutex_exit(&p->p_lock); 225 226 /* 227 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 228 */ 229 if (getproc(&cp, 0) < 0) { 230 mutex_enter(&p->p_lock); 231 pool_barrier_exit(); 232 continuelwps(p); 233 mutex_exit(&p->p_lock); 234 error = EAGAIN; 235 goto forkerr; 236 } 237 238 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 239 240 /* 241 * Assign an address space to child 242 */ 243 if (isvfork) { 244 /* 245 * Clear any watched areas and remember the 246 * watched pages for restoring in vfwait(). 247 */ 248 as = p->p_as; 249 if (avl_numnodes(&as->a_wpage) != 0) { 250 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 251 as_clearwatch(as); 252 p->p_wpage = as->a_wpage; 253 avl_create(&as->a_wpage, wp_compare, 254 sizeof (struct watched_page), 255 offsetof(struct watched_page, wp_link)); 256 AS_LOCK_EXIT(as, &as->a_lock); 257 } 258 cp->p_as = as; 259 cp->p_flag |= SVFORK; 260 } else { 261 /* 262 * We need to hold P_PR_LOCK until the address space has 263 * been duplicated and we've had a chance to remove from the 264 * child any DTrace probes that were in the parent. Holding 265 * P_PR_LOCK prevents any new probes from being added and any 266 * extant probes from being removed. 267 */ 268 mutex_enter(&p->p_lock); 269 sprlock_proc(p); 270 p->p_flag |= SFORKING; 271 mutex_exit(&p->p_lock); 272 273 error = as_dup(p->p_as, &cp->p_as); 274 if (error != 0) { 275 mutex_enter(&p->p_lock); 276 sprunlock(p); 277 fork_fail(cp); 278 mutex_enter(&pidlock); 279 orphpp = &p->p_orphan; 280 while (*orphpp != cp) 281 orphpp = &(*orphpp)->p_nextorph; 282 *orphpp = cp->p_nextorph; 283 if (p->p_child == cp) 284 p->p_child = cp->p_sibling; 285 if (cp->p_sibling) 286 cp->p_sibling->p_psibling = cp->p_psibling; 287 if (cp->p_psibling) 288 cp->p_psibling->p_sibling = cp->p_sibling; 289 mutex_enter(&cp->p_lock); 290 tk = cp->p_task; 291 task_detach(cp); 292 ASSERT(cp->p_pool->pool_ref > 0); 293 atomic_add_32(&cp->p_pool->pool_ref, -1); 294 mutex_exit(&cp->p_lock); 295 pid_exit(cp); 296 mutex_exit(&pidlock); 297 task_rele(tk); 298 299 mutex_enter(&p->p_lock); 300 p->p_flag &= ~SFORKING; 301 pool_barrier_exit(); 302 continuelwps(p); 303 mutex_exit(&p->p_lock); 304 /* 305 * Preserve ENOMEM error condition but 306 * map all others to EAGAIN. 307 */ 308 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 309 goto forkerr; 310 } 311 312 /* Duplicate parent's shared memory */ 313 if (p->p_segacct) 314 shmfork(p, cp); 315 316 /* 317 * Remove all DTrace tracepoints from the child process. We 318 * need to do this _before_ duplicating USDT providers since 319 * any associated probes may be immediately enabled. 320 */ 321 if (p->p_dtrace_count > 0) 322 dtrace_fasttrap_fork(p, cp); 323 324 /* 325 * Duplicate any helper actions and providers. The SFORKING 326 * we set above informs the code to enable USDT probes that 327 * sprlock() may fail because the child is being forked. 328 */ 329 if (p->p_dtrace_helpers != NULL) { 330 mutex_enter(&p->p_lock); 331 sprunlock(p); 332 333 ASSERT(dtrace_helpers_fork != NULL); 334 (*dtrace_helpers_fork)(p, cp); 335 336 mutex_enter(&p->p_lock); 337 p->p_flag &= ~SFORKING; 338 mutex_exit(&p->p_lock); 339 } else { 340 mutex_enter(&p->p_lock); 341 p->p_flag &= ~SFORKING; 342 sprunlock(p); 343 } 344 } 345 346 /* 347 * Duplicate parent's resource controls. 348 */ 349 dup_set = rctl_set_create(); 350 for (;;) { 351 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 352 mutex_enter(&p->p_rctls->rcs_lock); 353 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 354 break; 355 mutex_exit(&p->p_rctls->rcs_lock); 356 rctl_prealloc_destroy(dup_gp); 357 } 358 e.rcep_p.proc = cp; 359 e.rcep_t = RCENTITY_PROCESS; 360 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 361 RCD_DUP | RCD_CALLBACK); 362 mutex_exit(&p->p_rctls->rcs_lock); 363 364 rctl_prealloc_destroy(dup_gp); 365 366 /* 367 * Allocate the child's lwp directory and lwpid hash table. 368 */ 369 if (isfork1) 370 cp->p_lwpdir_sz = 2; 371 else 372 cp->p_lwpdir_sz = p->p_lwpdir_sz; 373 cp->p_lwpdir = cp->p_lwpfree = ldp = 374 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 375 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 376 ldp->ld_next = ldp + 1; 377 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 378 cp->p_tidhash = 379 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 380 381 /* 382 * Duplicate parent's lwps. 383 * Mutual exclusion is not needed because the process is 384 * in the hold state and only the current lwp is running. 385 */ 386 klgrpset_clear(cp->p_lgrpset); 387 if (isfork1) { 388 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 389 if (clone == NULL) 390 goto forklwperr; 391 /* 392 * Inherit only the lwp_wait()able flag, 393 * Daemon threads should not call fork1(), but oh well... 394 */ 395 lwptot(clone)->t_proc_flag |= 396 (curthread->t_proc_flag & TP_TWAIT); 397 } else { 398 /* this is forkall(), no one can be in lwp_wait() */ 399 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 400 /* for each entry in the parent's lwp directory... */ 401 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 402 klwp_t *clwp; 403 kthread_t *ct; 404 405 if ((lep = ldp->ld_entry) == NULL) 406 continue; 407 408 if ((t = lep->le_thread) != NULL) { 409 clwp = forklwp(ttolwp(t), cp, t->t_tid); 410 if (clwp == NULL) 411 goto forklwperr; 412 ct = lwptot(clwp); 413 /* 414 * Inherit lwp_wait()able and daemon flags. 415 */ 416 ct->t_proc_flag |= 417 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 418 /* 419 * Keep track of the clone of curthread to 420 * post return values through lwp_setrval(). 421 * Mark other threads for special treatment 422 * by lwp_rtt() / post_syscall(). 423 */ 424 if (t == curthread) 425 clone = clwp; 426 else 427 ct->t_flag |= T_FORKALL; 428 } else { 429 /* 430 * Replicate zombie lwps in the child. 431 */ 432 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 433 clep->le_lwpid = lep->le_lwpid; 434 clep->le_start = lep->le_start; 435 lwp_hash_in(cp, clep); 436 } 437 } 438 } 439 440 /* 441 * Put new process in the parent's process contract, or put it 442 * in a new one if there is an active process template. Send a 443 * fork event (if requested) to whatever contract the child is 444 * a member of. Fails if the parent has been SIGKILLed. 445 */ 446 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 447 goto forklwperr; 448 449 /* 450 * No fork failures occur beyond this point. 451 */ 452 453 cp->p_lwpid = p->p_lwpid; 454 if (!isfork1) { 455 cp->p_lwpdaemon = p->p_lwpdaemon; 456 cp->p_zombcnt = p->p_zombcnt; 457 /* 458 * If the parent's lwp ids have wrapped around, so have the 459 * child's. 460 */ 461 cp->p_flag |= p->p_flag & SLWPWRAP; 462 } 463 464 mutex_enter(&p->p_lock); 465 corectl_path_hold(cp->p_corefile = p->p_corefile); 466 corectl_content_hold(cp->p_content = p->p_content); 467 mutex_exit(&p->p_lock); 468 469 /* 470 * Duplicate process context ops, if any. 471 */ 472 if (p->p_pctx) 473 forkpctx(p, cp); 474 475 #ifdef __sparc 476 utrap_dup(p, cp); 477 #endif 478 /* 479 * If the child process has been marked to stop on exit 480 * from this fork, arrange for all other lwps to stop in 481 * sympathy with the active lwp. 482 */ 483 if (PTOU(cp)->u_systrap && 484 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 485 mutex_enter(&cp->p_lock); 486 t = cp->p_tlist; 487 do { 488 t->t_proc_flag |= TP_PRSTOP; 489 aston(t); /* so TP_PRSTOP will be seen */ 490 } while ((t = t->t_forw) != cp->p_tlist); 491 mutex_exit(&cp->p_lock); 492 } 493 /* 494 * If the parent process has been marked to stop on exit 495 * from this fork, and its asynchronous-stop flag has not 496 * been set, arrange for all other lwps to stop before 497 * they return back to user level. 498 */ 499 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 500 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 501 mutex_enter(&p->p_lock); 502 t = p->p_tlist; 503 do { 504 t->t_proc_flag |= TP_PRSTOP; 505 aston(t); /* so TP_PRSTOP will be seen */ 506 } while ((t = t->t_forw) != p->p_tlist); 507 mutex_exit(&p->p_lock); 508 } 509 510 if (PROC_IS_BRANDED(p)) 511 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 512 else 513 lwp_setrval(clone, p->p_pid, 1); 514 515 /* set return values for parent */ 516 r.r_val1 = (int)cp->p_pid; 517 r.r_val2 = 0; 518 519 /* 520 * pool_barrier_exit() can now be called because the child process has: 521 * - all identifying features cloned or set (p_pid, p_task, p_pool) 522 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 523 * - any other fields set which are used in resource set binding. 524 */ 525 mutex_enter(&p->p_lock); 526 pool_barrier_exit(); 527 mutex_exit(&p->p_lock); 528 529 mutex_enter(&pidlock); 530 mutex_enter(&cp->p_lock); 531 532 /* 533 * Set flags telling the child what (not) to do on exit. 534 */ 535 if (flags & FORK_NOSIGCHLD) 536 cp->p_pidflag |= CLDNOSIGCHLD; 537 if (flags & FORK_WAITPID) 538 cp->p_pidflag |= CLDWAITPID; 539 540 /* 541 * Now that there are lwps and threads attached, add the new 542 * process to the process group. 543 */ 544 pgjoin(cp, p->p_pgidp); 545 cp->p_stat = SRUN; 546 /* 547 * We are now done with all the lwps in the child process. 548 */ 549 t = cp->p_tlist; 550 do { 551 /* 552 * Set the lwp_suspend()ed lwps running. 553 * They will suspend properly at syscall exit. 554 */ 555 if (t->t_proc_flag & TP_HOLDLWP) 556 lwp_create_done(t); 557 else { 558 /* set TS_CREATE to allow continuelwps() to work */ 559 thread_lock(t); 560 ASSERT(t->t_state == TS_STOPPED && 561 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 562 t->t_schedflag |= TS_CREATE; 563 thread_unlock(t); 564 } 565 } while ((t = t->t_forw) != cp->p_tlist); 566 mutex_exit(&cp->p_lock); 567 568 if (isvfork) { 569 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 570 mutex_enter(&p->p_lock); 571 p->p_flag |= SVFWAIT; 572 curthread->t_flag |= T_VFPARENT; 573 DTRACE_PROC1(create, proc_t *, cp); 574 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 575 mutex_exit(&p->p_lock); 576 /* 577 * Grab child's p_lock before dropping pidlock to ensure 578 * the process will not disappear before we set it running. 579 */ 580 mutex_enter(&cp->p_lock); 581 mutex_exit(&pidlock); 582 sigdefault(cp); 583 continuelwps(cp); 584 mutex_exit(&cp->p_lock); 585 } else { 586 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 587 DTRACE_PROC1(create, proc_t *, cp); 588 /* 589 * It is CL_FORKRET's job to drop pidlock. 590 * If we do it here, the process could be set running 591 * and disappear before CL_FORKRET() is called. 592 */ 593 CL_FORKRET(curthread, cp->p_tlist); 594 schedctl_set_cidpri(curthread); 595 ASSERT(MUTEX_NOT_HELD(&pidlock)); 596 } 597 598 return (r.r_vals); 599 600 forklwperr: 601 if (isvfork) { 602 if (avl_numnodes(&p->p_wpage) != 0) { 603 /* restore watchpoints to parent */ 604 as = p->p_as; 605 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 606 as->a_wpage = p->p_wpage; 607 avl_create(&p->p_wpage, wp_compare, 608 sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 as_setwatch(as); 611 AS_LOCK_EXIT(as, &as->a_lock); 612 } 613 } else { 614 if (cp->p_segacct) 615 shmexit(cp); 616 as = cp->p_as; 617 cp->p_as = &kas; 618 as_free(as); 619 } 620 621 if (cp->p_lwpdir) { 622 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 623 if ((lep = ldp->ld_entry) != NULL) 624 kmem_free(lep, sizeof (*lep)); 625 kmem_free(cp->p_lwpdir, 626 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 627 } 628 cp->p_lwpdir = NULL; 629 cp->p_lwpfree = NULL; 630 cp->p_lwpdir_sz = 0; 631 632 if (cp->p_tidhash) 633 kmem_free(cp->p_tidhash, 634 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 635 cp->p_tidhash = NULL; 636 cp->p_tidhash_sz = 0; 637 638 forklwp_fail(cp); 639 fork_fail(cp); 640 rctl_set_free(cp->p_rctls); 641 mutex_enter(&pidlock); 642 643 /* 644 * Detach failed child from task. 645 */ 646 mutex_enter(&cp->p_lock); 647 tk = cp->p_task; 648 task_detach(cp); 649 ASSERT(cp->p_pool->pool_ref > 0); 650 atomic_add_32(&cp->p_pool->pool_ref, -1); 651 mutex_exit(&cp->p_lock); 652 653 orphpp = &p->p_orphan; 654 while (*orphpp != cp) 655 orphpp = &(*orphpp)->p_nextorph; 656 *orphpp = cp->p_nextorph; 657 if (p->p_child == cp) 658 p->p_child = cp->p_sibling; 659 if (cp->p_sibling) 660 cp->p_sibling->p_psibling = cp->p_psibling; 661 if (cp->p_psibling) 662 cp->p_psibling->p_sibling = cp->p_sibling; 663 pid_exit(cp); 664 mutex_exit(&pidlock); 665 666 task_rele(tk); 667 668 mutex_enter(&p->p_lock); 669 pool_barrier_exit(); 670 continuelwps(p); 671 mutex_exit(&p->p_lock); 672 error = EAGAIN; 673 forkerr: 674 return ((int64_t)set_errno(error)); 675 } 676 677 /* 678 * Free allocated resources from getproc() if a fork failed. 679 */ 680 static void 681 fork_fail(proc_t *cp) 682 { 683 uf_info_t *fip = P_FINFO(cp); 684 685 fcnt_add(fip, -1); 686 sigdelq(cp, NULL, 0); 687 688 mutex_enter(&pidlock); 689 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 690 mutex_exit(&pidlock); 691 692 /* 693 * single threaded, so no locking needed here 694 */ 695 crfree(cp->p_cred); 696 697 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 698 699 VN_RELE(PTOU(curproc)->u_cdir); 700 if (PTOU(curproc)->u_rdir) 701 VN_RELE(PTOU(curproc)->u_rdir); 702 if (cp->p_exec) 703 VN_RELE(cp->p_exec); 704 if (cp->p_execdir) 705 VN_RELE(cp->p_execdir); 706 if (PTOU(curproc)->u_cwd) 707 refstr_rele(PTOU(curproc)->u_cwd); 708 } 709 710 /* 711 * Clean up the lwps already created for this child process. 712 * The fork failed while duplicating all the lwps of the parent 713 * and those lwps already created must be freed. 714 * This process is invisible to the rest of the system, 715 * so we don't need to hold p->p_lock to protect the list. 716 */ 717 static void 718 forklwp_fail(proc_t *p) 719 { 720 kthread_t *t; 721 task_t *tk; 722 723 while ((t = p->p_tlist) != NULL) { 724 /* 725 * First remove the lwp from the process's p_tlist. 726 */ 727 if (t != t->t_forw) 728 p->p_tlist = t->t_forw; 729 else 730 p->p_tlist = NULL; 731 p->p_lwpcnt--; 732 t->t_forw->t_back = t->t_back; 733 t->t_back->t_forw = t->t_forw; 734 735 tk = p->p_task; 736 mutex_enter(&p->p_zone->zone_nlwps_lock); 737 tk->tk_nlwps--; 738 tk->tk_proj->kpj_nlwps--; 739 p->p_zone->zone_nlwps--; 740 mutex_exit(&p->p_zone->zone_nlwps_lock); 741 742 ASSERT(t->t_schedctl == NULL); 743 744 if (t->t_door != NULL) { 745 kmem_free(t->t_door, sizeof (door_data_t)); 746 t->t_door = NULL; 747 } 748 lwp_ctmpl_clear(ttolwp(t)); 749 750 /* 751 * Remove the thread from the all threads list. 752 * We need to hold pidlock for this. 753 */ 754 mutex_enter(&pidlock); 755 t->t_next->t_prev = t->t_prev; 756 t->t_prev->t_next = t->t_next; 757 CL_EXIT(t); /* tell the scheduler that we're exiting */ 758 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 759 mutex_exit(&pidlock); 760 761 /* 762 * Let the lgroup load averages know that this thread isn't 763 * going to show up (i.e. un-do what was done on behalf of 764 * this thread by the earlier lgrp_move_thread()). 765 */ 766 kpreempt_disable(); 767 lgrp_move_thread(t, NULL, 1); 768 kpreempt_enable(); 769 770 /* 771 * The thread was created TS_STOPPED. 772 * We change it to TS_FREE to avoid an 773 * ASSERT() panic in thread_free(). 774 */ 775 t->t_state = TS_FREE; 776 thread_rele(t); 777 thread_free(t); 778 } 779 } 780 781 extern struct as kas; 782 783 /* 784 * fork a kernel process. 785 */ 786 int 787 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 788 { 789 proc_t *p; 790 struct user *up; 791 klwp_t *lwp; 792 cont_process_t *ctp = NULL; 793 rctl_entity_p_t e; 794 795 ASSERT(!(cid == syscid && ct != NULL)); 796 if (cid == syscid) { 797 rctl_alloc_gp_t *init_gp; 798 rctl_set_t *init_set; 799 800 if (getproc(&p, 1) < 0) 801 return (EAGAIN); 802 803 p->p_flag |= SNOWAIT; 804 p->p_exec = NULL; 805 p->p_execdir = NULL; 806 807 init_set = rctl_set_create(); 808 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 809 810 /* 811 * kernel processes do not inherit /proc tracing flags. 812 */ 813 sigemptyset(&p->p_sigmask); 814 premptyset(&p->p_fltmask); 815 up = PTOU(p); 816 up->u_systrap = 0; 817 premptyset(&(up->u_entrymask)); 818 premptyset(&(up->u_exitmask)); 819 mutex_enter(&p->p_lock); 820 e.rcep_p.proc = p; 821 e.rcep_t = RCENTITY_PROCESS; 822 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 823 init_gp); 824 mutex_exit(&p->p_lock); 825 826 rctl_prealloc_destroy(init_gp); 827 } else { 828 rctl_alloc_gp_t *init_gp, *default_gp; 829 rctl_set_t *init_set; 830 task_t *tk, *tk_old; 831 832 if (getproc(&p, 0) < 0) 833 return (EAGAIN); 834 /* 835 * init creates a new task, distinct from the task 836 * containing kernel "processes". 837 */ 838 tk = task_create(0, p->p_zone); 839 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 840 tk->tk_proj->kpj_ntasks++; 841 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 842 843 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 844 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 845 init_set = rctl_set_create(); 846 847 mutex_enter(&pidlock); 848 mutex_enter(&p->p_lock); 849 tk_old = p->p_task; /* switch to new task */ 850 851 task_detach(p); 852 task_begin(tk, p); 853 mutex_exit(&pidlock); 854 855 e.rcep_p.proc = p; 856 e.rcep_t = RCENTITY_PROCESS; 857 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 858 init_gp); 859 rctlproc_default_init(p, default_gp); 860 mutex_exit(&p->p_lock); 861 862 task_rele(tk_old); 863 rctl_prealloc_destroy(default_gp); 864 rctl_prealloc_destroy(init_gp); 865 } 866 867 p->p_as = &kas; 868 869 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 870 &curthread->t_hold, cid, 1)) == NULL) { 871 task_t *tk; 872 fork_fail(p); 873 mutex_enter(&pidlock); 874 mutex_enter(&p->p_lock); 875 tk = p->p_task; 876 task_detach(p); 877 ASSERT(p->p_pool->pool_ref > 0); 878 atomic_add_32(&p->p_pool->pool_ref, -1); 879 mutex_exit(&p->p_lock); 880 pid_exit(p); 881 mutex_exit(&pidlock); 882 task_rele(tk); 883 884 return (EAGAIN); 885 } 886 887 if (cid != syscid) { 888 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 889 B_FALSE); 890 ASSERT(ctp != NULL); 891 if (ct != NULL) 892 *ct = &ctp->conp_contract; 893 } 894 895 p->p_lwpid = 1; 896 mutex_enter(&pidlock); 897 pgjoin(p, curproc->p_pgidp); 898 p->p_stat = SRUN; 899 mutex_enter(&p->p_lock); 900 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 901 lwp_create_done(lwptot(lwp)); 902 mutex_exit(&p->p_lock); 903 mutex_exit(&pidlock); 904 return (0); 905 } 906 907 /* 908 * create a child proc struct. 909 */ 910 static int 911 getproc(proc_t **cpp, int kernel) 912 { 913 proc_t *pp, *cp; 914 pid_t newpid; 915 struct user *uarea; 916 extern uint_t nproc; 917 struct cred *cr; 918 uid_t ruid; 919 zoneid_t zoneid; 920 921 if (!page_mem_avail(tune.t_minarmem)) 922 return (-1); 923 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 924 return (-1); /* no point in starting new processes */ 925 926 pp = curproc; 927 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 928 bzero(cp, sizeof (proc_t)); 929 930 /* 931 * Make proc entry for child process 932 */ 933 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 934 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 935 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 936 #if defined(__x86) 937 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 938 #endif 939 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 940 cp->p_stat = SIDL; 941 cp->p_mstart = gethrtime(); 942 /* 943 * p_zone must be set before we call pid_allocate since the process 944 * will be visible after that and code such as prfind_zone will 945 * look at the p_zone field. 946 */ 947 cp->p_zone = pp->p_zone; 948 cp->p_t1_lgrpid = LGRP_NONE; 949 cp->p_tr_lgrpid = LGRP_NONE; 950 951 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 952 if (nproc == v.v_proc) { 953 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 954 cmn_err(CE_WARN, "out of processes"); 955 } 956 goto bad; 957 } 958 959 /* 960 * If not privileged make sure that this user hasn't exceeded 961 * v.v_maxup processes, and that users collectively haven't 962 * exceeded v.v_maxupttl processes. 963 */ 964 mutex_enter(&pidlock); 965 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 966 cr = CRED(); 967 ruid = crgetruid(cr); 968 zoneid = crgetzoneid(cr); 969 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 970 (nproc >= v.v_maxupttl || 971 upcount_get(ruid, zoneid) >= v.v_maxup) && 972 secpolicy_newproc(cr) != 0) { 973 mutex_exit(&pidlock); 974 zcmn_err(zoneid, CE_NOTE, 975 "out of per-user processes for uid %d", ruid); 976 goto bad; 977 } 978 979 /* 980 * Everything is cool, put the new proc on the active process list. 981 * It is already on the pid list and in /proc. 982 * Increment the per uid process count (upcount). 983 */ 984 nproc++; 985 upcount_inc(ruid, zoneid); 986 987 cp->p_next = practive; 988 practive->p_prev = cp; 989 practive = cp; 990 991 cp->p_ignore = pp->p_ignore; 992 cp->p_siginfo = pp->p_siginfo; 993 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 994 cp->p_sessp = pp->p_sessp; 995 sess_hold(pp); 996 cp->p_exec = pp->p_exec; 997 cp->p_execdir = pp->p_execdir; 998 cp->p_brand = pp->p_brand; 999 if (PROC_IS_BRANDED(pp)) 1000 BROP(pp)->b_copy_procdata(cp, pp); 1001 1002 cp->p_bssbase = pp->p_bssbase; 1003 cp->p_brkbase = pp->p_brkbase; 1004 cp->p_brksize = pp->p_brksize; 1005 cp->p_brkpageszc = pp->p_brkpageszc; 1006 cp->p_stksize = pp->p_stksize; 1007 cp->p_stkpageszc = pp->p_stkpageszc; 1008 cp->p_stkprot = pp->p_stkprot; 1009 cp->p_datprot = pp->p_datprot; 1010 cp->p_usrstack = pp->p_usrstack; 1011 cp->p_model = pp->p_model; 1012 cp->p_ppid = pp->p_pid; 1013 cp->p_ancpid = pp->p_pid; 1014 cp->p_portcnt = pp->p_portcnt; 1015 1016 /* 1017 * Initialize watchpoint structures 1018 */ 1019 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1020 offsetof(struct watched_area, wa_link)); 1021 1022 /* 1023 * Initialize immediate resource control values. 1024 */ 1025 cp->p_stk_ctl = pp->p_stk_ctl; 1026 cp->p_fsz_ctl = pp->p_fsz_ctl; 1027 cp->p_vmem_ctl = pp->p_vmem_ctl; 1028 cp->p_fno_ctl = pp->p_fno_ctl; 1029 1030 /* 1031 * Link up to parent-child-sibling chain. No need to lock 1032 * in general since only a call to freeproc() (done by the 1033 * same parent as newproc()) diddles with the child chain. 1034 */ 1035 cp->p_sibling = pp->p_child; 1036 if (pp->p_child) 1037 pp->p_child->p_psibling = cp; 1038 1039 cp->p_parent = pp; 1040 pp->p_child = cp; 1041 1042 cp->p_child_ns = NULL; 1043 cp->p_sibling_ns = NULL; 1044 1045 cp->p_nextorph = pp->p_orphan; 1046 cp->p_nextofkin = pp; 1047 pp->p_orphan = cp; 1048 1049 /* 1050 * Inherit profiling state; do not inherit REALPROF profiling state. 1051 */ 1052 cp->p_prof = pp->p_prof; 1053 cp->p_rprof_cyclic = CYCLIC_NONE; 1054 1055 /* 1056 * Inherit pool pointer from the parent. Kernel processes are 1057 * always bound to the default pool. 1058 */ 1059 mutex_enter(&pp->p_lock); 1060 if (kernel) { 1061 cp->p_pool = pool_default; 1062 cp->p_flag |= SSYS; 1063 } else { 1064 cp->p_pool = pp->p_pool; 1065 } 1066 atomic_add_32(&cp->p_pool->pool_ref, 1); 1067 mutex_exit(&pp->p_lock); 1068 1069 /* 1070 * Add the child process to the current task. Kernel processes 1071 * are always attached to task0. 1072 */ 1073 mutex_enter(&cp->p_lock); 1074 if (kernel) 1075 task_attach(task0p, cp); 1076 else 1077 task_attach(pp->p_task, cp); 1078 mutex_exit(&cp->p_lock); 1079 mutex_exit(&pidlock); 1080 1081 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1082 offsetof(contract_t, ct_ctlist)); 1083 1084 /* 1085 * Duplicate any audit information kept in the process table 1086 */ 1087 if (audit_active) /* copy audit data to cp */ 1088 audit_newproc(cp); 1089 1090 crhold(cp->p_cred = cr); 1091 1092 /* 1093 * Bump up the counts on the file structures pointed at by the 1094 * parent's file table since the child will point at them too. 1095 */ 1096 fcnt_add(P_FINFO(pp), 1); 1097 1098 VN_HOLD(PTOU(pp)->u_cdir); 1099 if (PTOU(pp)->u_rdir) 1100 VN_HOLD(PTOU(pp)->u_rdir); 1101 if (PTOU(pp)->u_cwd) 1102 refstr_hold(PTOU(pp)->u_cwd); 1103 1104 /* 1105 * copy the parent's uarea. 1106 */ 1107 uarea = PTOU(cp); 1108 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1109 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1110 1111 gethrestime(&uarea->u_start); 1112 uarea->u_ticks = lbolt; 1113 uarea->u_mem = rm_asrss(pp->p_as); 1114 uarea->u_acflag = AFORK; 1115 1116 /* 1117 * If inherit-on-fork, copy /proc tracing flags to child. 1118 */ 1119 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1120 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1121 cp->p_sigmask = pp->p_sigmask; 1122 cp->p_fltmask = pp->p_fltmask; 1123 } else { 1124 sigemptyset(&cp->p_sigmask); 1125 premptyset(&cp->p_fltmask); 1126 uarea->u_systrap = 0; 1127 premptyset(&uarea->u_entrymask); 1128 premptyset(&uarea->u_exitmask); 1129 } 1130 /* 1131 * If microstate accounting is being inherited, mark child 1132 */ 1133 if ((pp->p_flag & SMSFORK) != 0) 1134 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1135 1136 /* 1137 * Inherit fixalignment flag from the parent 1138 */ 1139 cp->p_fixalignment = pp->p_fixalignment; 1140 1141 if (cp->p_exec) 1142 VN_HOLD(cp->p_exec); 1143 if (cp->p_execdir) 1144 VN_HOLD(cp->p_execdir); 1145 *cpp = cp; 1146 return (0); 1147 1148 bad: 1149 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1150 1151 mutex_destroy(&cp->p_crlock); 1152 mutex_destroy(&cp->p_pflock); 1153 #if defined(__x86) 1154 mutex_destroy(&cp->p_ldtlock); 1155 #endif 1156 if (newpid != -1) { 1157 proc_entry_free(cp->p_pidp); 1158 (void) pid_rele(cp->p_pidp); 1159 } 1160 kmem_cache_free(process_cache, cp); 1161 1162 /* 1163 * We most likely got into this situation because some process is 1164 * forking out of control. As punishment, put it to sleep for a 1165 * bit so it can't eat the machine alive. Sleep interval is chosen 1166 * to allow no more than one fork failure per cpu per clock tick 1167 * on average (yes, I just made this up). This has two desirable 1168 * properties: (1) it sets a constant limit on the fork failure 1169 * rate, and (2) the busier the system is, the harsher the penalty 1170 * for abusing it becomes. 1171 */ 1172 INCR_COUNT(&fork_fail_pending, &pidlock); 1173 delay(fork_fail_pending / ncpus + 1); 1174 DECR_COUNT(&fork_fail_pending, &pidlock); 1175 1176 return (-1); /* out of memory or proc slots */ 1177 } 1178 1179 /* 1180 * Release virtual memory. 1181 * In the case of vfork(), the child was given exclusive access to its 1182 * parent's address space. The parent is waiting in vfwait() for the 1183 * child to release its exclusive claim via relvm(). 1184 */ 1185 void 1186 relvm() 1187 { 1188 proc_t *p = curproc; 1189 1190 ASSERT((unsigned)p->p_lwpcnt <= 1); 1191 1192 prrelvm(); /* inform /proc */ 1193 1194 if (p->p_flag & SVFORK) { 1195 proc_t *pp = p->p_parent; 1196 /* 1197 * The child process is either exec'ing or exit'ing. 1198 * The child is now separated from the parent's address 1199 * space. The parent process is made dispatchable. 1200 * 1201 * This is a delicate locking maneuver, involving 1202 * both the parent's p_lock and the child's p_lock. 1203 * As soon as the SVFORK flag is turned off, the 1204 * parent is free to run, but it must not run until 1205 * we wake it up using its p_cv because it might 1206 * exit and we would be referencing invalid memory. 1207 * Therefore, we hold the parent with its p_lock 1208 * while protecting our p_flags with our own p_lock. 1209 */ 1210 try_again: 1211 mutex_enter(&p->p_lock); /* grab child's lock first */ 1212 prbarrier(p); /* make sure /proc is blocked out */ 1213 mutex_enter(&pp->p_lock); 1214 1215 /* 1216 * Check if parent is locked by /proc. 1217 */ 1218 if (pp->p_proc_flag & P_PR_LOCK) { 1219 /* 1220 * Delay until /proc is done with the parent. 1221 * We must drop our (the child's) p->p_lock, wait 1222 * via prbarrier() on the parent, then start over. 1223 */ 1224 mutex_exit(&p->p_lock); 1225 prbarrier(pp); 1226 mutex_exit(&pp->p_lock); 1227 goto try_again; 1228 } 1229 p->p_flag &= ~SVFORK; 1230 kpreempt_disable(); 1231 p->p_as = &kas; 1232 1233 /* 1234 * notify hat of change in thread's address space 1235 */ 1236 hat_thread_exit(curthread); 1237 kpreempt_enable(); 1238 1239 /* 1240 * child sizes are copied back to parent because 1241 * child may have grown. 1242 */ 1243 pp->p_brkbase = p->p_brkbase; 1244 pp->p_brksize = p->p_brksize; 1245 pp->p_stksize = p->p_stksize; 1246 /* 1247 * The parent is no longer waiting for the vfork()d child. 1248 * Restore the parent's watched pages, if any. This is 1249 * safe because we know the parent is not locked by /proc 1250 */ 1251 pp->p_flag &= ~SVFWAIT; 1252 if (avl_numnodes(&pp->p_wpage) != 0) { 1253 pp->p_as->a_wpage = pp->p_wpage; 1254 avl_create(&pp->p_wpage, wp_compare, 1255 sizeof (struct watched_page), 1256 offsetof(struct watched_page, wp_link)); 1257 } 1258 cv_signal(&pp->p_cv); 1259 mutex_exit(&pp->p_lock); 1260 mutex_exit(&p->p_lock); 1261 } else { 1262 if (p->p_as != &kas) { 1263 struct as *as; 1264 1265 if (p->p_segacct) 1266 shmexit(p); 1267 1268 /* 1269 * We grab p_lock for the benefit of /proc 1270 */ 1271 kpreempt_disable(); 1272 mutex_enter(&p->p_lock); 1273 prbarrier(p); /* make sure /proc is blocked out */ 1274 as = p->p_as; 1275 p->p_as = &kas; 1276 mutex_exit(&p->p_lock); 1277 1278 /* 1279 * notify hat of change in thread's address space 1280 */ 1281 hat_thread_exit(curthread); 1282 kpreempt_enable(); 1283 1284 as_free(as); 1285 p->p_tr_lgrpid = LGRP_NONE; 1286 } 1287 } 1288 } 1289 1290 /* 1291 * Wait for child to exec or exit. 1292 * Called by parent of vfork'ed process. 1293 * See important comments in relvm(), above. 1294 */ 1295 void 1296 vfwait(pid_t pid) 1297 { 1298 int signalled = 0; 1299 proc_t *pp = ttoproc(curthread); 1300 proc_t *cp; 1301 1302 /* 1303 * Wait for child to exec or exit. 1304 */ 1305 for (;;) { 1306 mutex_enter(&pidlock); 1307 cp = prfind(pid); 1308 if (cp == NULL || cp->p_parent != pp) { 1309 /* 1310 * Child has exit()ed. 1311 */ 1312 mutex_exit(&pidlock); 1313 break; 1314 } 1315 /* 1316 * Grab the child's p_lock before releasing pidlock. 1317 * Otherwise, the child could exit and we would be 1318 * referencing invalid memory. 1319 */ 1320 mutex_enter(&cp->p_lock); 1321 mutex_exit(&pidlock); 1322 if (!(cp->p_flag & SVFORK)) { 1323 /* 1324 * Child has exec()ed or is exit()ing. 1325 */ 1326 mutex_exit(&cp->p_lock); 1327 break; 1328 } 1329 mutex_enter(&pp->p_lock); 1330 mutex_exit(&cp->p_lock); 1331 /* 1332 * We might be waked up spuriously from the cv_wait(). 1333 * We have to do the whole operation over again to be 1334 * sure the child's SVFORK flag really is turned off. 1335 * We cannot make reference to the child because it can 1336 * exit before we return and we would be referencing 1337 * invalid memory. 1338 * 1339 * Because this is potentially a very long-term wait, 1340 * we call cv_wait_sig() (for its jobcontrol and /proc 1341 * side-effects) unless there is a current signal, in 1342 * which case we use cv_wait() because we cannot return 1343 * from this function until the child has released the 1344 * address space. Calling cv_wait_sig() with a current 1345 * signal would lead to an indefinite loop here because 1346 * cv_wait_sig() returns immediately in this case. 1347 */ 1348 if (signalled) 1349 cv_wait(&pp->p_cv, &pp->p_lock); 1350 else 1351 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1352 mutex_exit(&pp->p_lock); 1353 } 1354 1355 /* restore watchpoints to parent */ 1356 if (pr_watch_active(pp)) { 1357 struct as *as = pp->p_as; 1358 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1359 as_setwatch(as); 1360 AS_LOCK_EXIT(as, &as->a_lock); 1361 } 1362 1363 mutex_enter(&pp->p_lock); 1364 prbarrier(pp); /* barrier against /proc locking */ 1365 continuelwps(pp); 1366 mutex_exit(&pp->p_lock); 1367 } 1368