1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, int); 85 static void fork_fail(proc_t *); 86 static void forklwp_fail(proc_t *); 87 88 int fork_fail_pending; 89 90 extern struct kmem_cache *process_cache; 91 92 /* 93 * forkall system call. 94 */ 95 int64_t 96 forkall(void) 97 { 98 return (cfork(0, 0, 0)); 99 } 100 101 /* 102 * The parent is stopped until the child invokes relvm(). 103 */ 104 int64_t 105 vfork(void) 106 { 107 curthread->t_post_sys = 1; /* so vfwait() will be called */ 108 return (cfork(1, 1, 0)); 109 } 110 111 /* 112 * fork system call, aka fork1. 113 */ 114 int64_t 115 fork1(void) 116 { 117 return (cfork(0, 1, 0)); 118 } 119 120 /* 121 * The forkall(), vfork(), and fork1() system calls are no longer 122 * invoked by libc. They are retained only for the benefit of 123 * old statically-linked applications. They should be eliminated 124 * when we no longer care about such old and broken applications. 125 */ 126 127 /* 128 * forksys system call - forkx, forkallx, vforkx. 129 * This is the interface now invoked by libc. 130 */ 131 int64_t 132 forksys(int subcode, int flags) 133 { 134 switch (subcode) { 135 case 0: 136 return (cfork(0, 1, flags)); /* forkx(flags) */ 137 case 1: 138 return (cfork(0, 0, flags)); /* forkallx(flags) */ 139 case 2: 140 curthread->t_post_sys = 1; /* so vfwait() will be called */ 141 return (cfork(1, 1, flags)); /* vforkx(flags) */ 142 default: 143 return ((int64_t)set_errno(EINVAL)); 144 } 145 } 146 147 /* ARGSUSED */ 148 static int64_t 149 cfork(int isvfork, int isfork1, int flags) 150 { 151 proc_t *p = ttoproc(curthread); 152 struct as *as; 153 proc_t *cp, **orphpp; 154 klwp_t *clone; 155 kthread_t *t; 156 task_t *tk; 157 rval_t r; 158 int error; 159 int i; 160 rctl_set_t *dup_set; 161 rctl_alloc_gp_t *dup_gp; 162 rctl_entity_p_t e; 163 lwpdir_t *ldp; 164 lwpent_t *lep; 165 lwpent_t *clep; 166 167 /* 168 * Allow only these two flags. 169 */ 170 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 171 error = EINVAL; 172 goto forkerr; 173 } 174 175 /* 176 * fork is not supported for the /proc agent lwp. 177 */ 178 if (curthread == p->p_agenttp) { 179 error = ENOTSUP; 180 goto forkerr; 181 } 182 183 if ((error = secpolicy_basic_fork(CRED())) != 0) 184 goto forkerr; 185 186 /* 187 * If the calling lwp is doing a fork1() then the 188 * other lwps in this process are not duplicated and 189 * don't need to be held where their kernel stacks can be 190 * cloned. If doing forkall(), the process is held with 191 * SHOLDFORK, so that the lwps are at a point where their 192 * stacks can be copied which is on entry or exit from 193 * the kernel. 194 */ 195 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 196 aston(curthread); 197 error = EINTR; 198 goto forkerr; 199 } 200 201 #if defined(__sparc) 202 /* 203 * Ensure that the user stack is fully constructed 204 * before creating the child process structure. 205 */ 206 (void) flush_user_windows_to_stack(NULL); 207 #endif 208 209 mutex_enter(&p->p_lock); 210 /* 211 * If this is vfork(), cancel any suspend request we might 212 * have gotten from some other thread via lwp_suspend(). 213 * Otherwise we could end up with a deadlock on return 214 * from the vfork() in both the parent and the child. 215 */ 216 if (isvfork) 217 curthread->t_proc_flag &= ~TP_HOLDLWP; 218 /* 219 * Prevent our resource set associations from being changed during fork. 220 */ 221 pool_barrier_enter(); 222 mutex_exit(&p->p_lock); 223 224 /* 225 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 226 */ 227 if (getproc(&cp, 0) < 0) { 228 mutex_enter(&p->p_lock); 229 pool_barrier_exit(); 230 continuelwps(p); 231 mutex_exit(&p->p_lock); 232 error = EAGAIN; 233 goto forkerr; 234 } 235 236 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 237 238 /* 239 * Assign an address space to child 240 */ 241 if (isvfork) { 242 /* 243 * Clear any watched areas and remember the 244 * watched pages for restoring in vfwait(). 245 */ 246 as = p->p_as; 247 if (avl_numnodes(&as->a_wpage) != 0) { 248 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 249 as_clearwatch(as); 250 p->p_wpage = as->a_wpage; 251 avl_create(&as->a_wpage, wp_compare, 252 sizeof (struct watched_page), 253 offsetof(struct watched_page, wp_link)); 254 AS_LOCK_EXIT(as, &as->a_lock); 255 } 256 cp->p_as = as; 257 cp->p_flag |= SVFORK; 258 } else { 259 /* 260 * We need to hold P_PR_LOCK until the address space has 261 * been duplicated and we've had a chance to remove from the 262 * child any DTrace probes that were in the parent. Holding 263 * P_PR_LOCK prevents any new probes from being added and any 264 * extant probes from being removed. 265 */ 266 mutex_enter(&p->p_lock); 267 sprlock_proc(p); 268 p->p_flag |= SFORKING; 269 mutex_exit(&p->p_lock); 270 271 error = as_dup(p->p_as, cp); 272 if (error != 0) { 273 mutex_enter(&p->p_lock); 274 sprunlock(p); 275 fork_fail(cp); 276 mutex_enter(&pidlock); 277 orphpp = &p->p_orphan; 278 while (*orphpp != cp) 279 orphpp = &(*orphpp)->p_nextorph; 280 *orphpp = cp->p_nextorph; 281 if (p->p_child == cp) 282 p->p_child = cp->p_sibling; 283 if (cp->p_sibling) 284 cp->p_sibling->p_psibling = cp->p_psibling; 285 if (cp->p_psibling) 286 cp->p_psibling->p_sibling = cp->p_sibling; 287 mutex_enter(&cp->p_lock); 288 tk = cp->p_task; 289 task_detach(cp); 290 ASSERT(cp->p_pool->pool_ref > 0); 291 atomic_add_32(&cp->p_pool->pool_ref, -1); 292 mutex_exit(&cp->p_lock); 293 pid_exit(cp); 294 mutex_exit(&pidlock); 295 task_rele(tk); 296 297 mutex_enter(&p->p_lock); 298 p->p_flag &= ~SFORKING; 299 pool_barrier_exit(); 300 continuelwps(p); 301 mutex_exit(&p->p_lock); 302 /* 303 * Preserve ENOMEM error condition but 304 * map all others to EAGAIN. 305 */ 306 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 307 goto forkerr; 308 } 309 310 /* Duplicate parent's shared memory */ 311 if (p->p_segacct) 312 shmfork(p, cp); 313 314 /* 315 * Remove all DTrace tracepoints from the child process. We 316 * need to do this _before_ duplicating USDT providers since 317 * any associated probes may be immediately enabled. 318 */ 319 if (p->p_dtrace_count > 0) 320 dtrace_fasttrap_fork(p, cp); 321 322 /* 323 * Duplicate any helper actions and providers. The SFORKING 324 * we set above informs the code to enable USDT probes that 325 * sprlock() may fail because the child is being forked. 326 */ 327 if (p->p_dtrace_helpers != NULL) { 328 mutex_enter(&p->p_lock); 329 sprunlock(p); 330 331 ASSERT(dtrace_helpers_fork != NULL); 332 (*dtrace_helpers_fork)(p, cp); 333 334 mutex_enter(&p->p_lock); 335 p->p_flag &= ~SFORKING; 336 mutex_exit(&p->p_lock); 337 } else { 338 mutex_enter(&p->p_lock); 339 p->p_flag &= ~SFORKING; 340 sprunlock(p); 341 } 342 } 343 344 /* 345 * Duplicate parent's resource controls. 346 */ 347 dup_set = rctl_set_create(); 348 for (;;) { 349 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 350 mutex_enter(&p->p_rctls->rcs_lock); 351 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 352 break; 353 mutex_exit(&p->p_rctls->rcs_lock); 354 rctl_prealloc_destroy(dup_gp); 355 } 356 e.rcep_p.proc = cp; 357 e.rcep_t = RCENTITY_PROCESS; 358 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 359 RCD_DUP | RCD_CALLBACK); 360 mutex_exit(&p->p_rctls->rcs_lock); 361 362 rctl_prealloc_destroy(dup_gp); 363 364 /* 365 * Allocate the child's lwp directory and lwpid hash table. 366 */ 367 if (isfork1) 368 cp->p_lwpdir_sz = 2; 369 else 370 cp->p_lwpdir_sz = p->p_lwpdir_sz; 371 cp->p_lwpdir = cp->p_lwpfree = ldp = 372 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 373 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 374 ldp->ld_next = ldp + 1; 375 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 376 cp->p_tidhash = 377 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 378 379 /* 380 * Duplicate parent's lwps. 381 * Mutual exclusion is not needed because the process is 382 * in the hold state and only the current lwp is running. 383 */ 384 klgrpset_clear(cp->p_lgrpset); 385 if (isfork1) { 386 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 387 if (clone == NULL) 388 goto forklwperr; 389 /* 390 * Inherit only the lwp_wait()able flag, 391 * Daemon threads should not call fork1(), but oh well... 392 */ 393 lwptot(clone)->t_proc_flag |= 394 (curthread->t_proc_flag & TP_TWAIT); 395 } else { 396 /* this is forkall(), no one can be in lwp_wait() */ 397 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 398 /* for each entry in the parent's lwp directory... */ 399 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 400 klwp_t *clwp; 401 kthread_t *ct; 402 403 if ((lep = ldp->ld_entry) == NULL) 404 continue; 405 406 if ((t = lep->le_thread) != NULL) { 407 clwp = forklwp(ttolwp(t), cp, t->t_tid); 408 if (clwp == NULL) 409 goto forklwperr; 410 ct = lwptot(clwp); 411 /* 412 * Inherit lwp_wait()able and daemon flags. 413 */ 414 ct->t_proc_flag |= 415 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 416 /* 417 * Keep track of the clone of curthread to 418 * post return values through lwp_setrval(). 419 * Mark other threads for special treatment 420 * by lwp_rtt() / post_syscall(). 421 */ 422 if (t == curthread) 423 clone = clwp; 424 else 425 ct->t_flag |= T_FORKALL; 426 } else { 427 /* 428 * Replicate zombie lwps in the child. 429 */ 430 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 431 clep->le_lwpid = lep->le_lwpid; 432 clep->le_start = lep->le_start; 433 lwp_hash_in(cp, clep, 434 cp->p_tidhash, cp->p_tidhash_sz, 0); 435 } 436 } 437 } 438 439 /* 440 * Put new process in the parent's process contract, or put it 441 * in a new one if there is an active process template. Send a 442 * fork event (if requested) to whatever contract the child is 443 * a member of. Fails if the parent has been SIGKILLed. 444 */ 445 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 446 goto forklwperr; 447 448 /* 449 * No fork failures occur beyond this point. 450 */ 451 452 cp->p_lwpid = p->p_lwpid; 453 if (!isfork1) { 454 cp->p_lwpdaemon = p->p_lwpdaemon; 455 cp->p_zombcnt = p->p_zombcnt; 456 /* 457 * If the parent's lwp ids have wrapped around, so have the 458 * child's. 459 */ 460 cp->p_flag |= p->p_flag & SLWPWRAP; 461 } 462 463 mutex_enter(&p->p_lock); 464 corectl_path_hold(cp->p_corefile = p->p_corefile); 465 corectl_content_hold(cp->p_content = p->p_content); 466 mutex_exit(&p->p_lock); 467 468 /* 469 * Duplicate process context ops, if any. 470 */ 471 if (p->p_pctx) 472 forkpctx(p, cp); 473 474 #ifdef __sparc 475 utrap_dup(p, cp); 476 #endif 477 /* 478 * If the child process has been marked to stop on exit 479 * from this fork, arrange for all other lwps to stop in 480 * sympathy with the active lwp. 481 */ 482 if (PTOU(cp)->u_systrap && 483 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 484 mutex_enter(&cp->p_lock); 485 t = cp->p_tlist; 486 do { 487 t->t_proc_flag |= TP_PRSTOP; 488 aston(t); /* so TP_PRSTOP will be seen */ 489 } while ((t = t->t_forw) != cp->p_tlist); 490 mutex_exit(&cp->p_lock); 491 } 492 /* 493 * If the parent process has been marked to stop on exit 494 * from this fork, and its asynchronous-stop flag has not 495 * been set, arrange for all other lwps to stop before 496 * they return back to user level. 497 */ 498 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 499 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 500 mutex_enter(&p->p_lock); 501 t = p->p_tlist; 502 do { 503 t->t_proc_flag |= TP_PRSTOP; 504 aston(t); /* so TP_PRSTOP will be seen */ 505 } while ((t = t->t_forw) != p->p_tlist); 506 mutex_exit(&p->p_lock); 507 } 508 509 if (PROC_IS_BRANDED(p)) 510 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 511 else 512 lwp_setrval(clone, p->p_pid, 1); 513 514 /* set return values for parent */ 515 r.r_val1 = (int)cp->p_pid; 516 r.r_val2 = 0; 517 518 /* 519 * pool_barrier_exit() can now be called because the child process has: 520 * - all identifying features cloned or set (p_pid, p_task, p_pool) 521 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 522 * - any other fields set which are used in resource set binding. 523 */ 524 mutex_enter(&p->p_lock); 525 pool_barrier_exit(); 526 mutex_exit(&p->p_lock); 527 528 mutex_enter(&pidlock); 529 mutex_enter(&cp->p_lock); 530 531 /* 532 * Set flags telling the child what (not) to do on exit. 533 */ 534 if (flags & FORK_NOSIGCHLD) 535 cp->p_pidflag |= CLDNOSIGCHLD; 536 if (flags & FORK_WAITPID) 537 cp->p_pidflag |= CLDWAITPID; 538 539 /* 540 * Now that there are lwps and threads attached, add the new 541 * process to the process group. 542 */ 543 pgjoin(cp, p->p_pgidp); 544 cp->p_stat = SRUN; 545 /* 546 * We are now done with all the lwps in the child process. 547 */ 548 t = cp->p_tlist; 549 do { 550 /* 551 * Set the lwp_suspend()ed lwps running. 552 * They will suspend properly at syscall exit. 553 */ 554 if (t->t_proc_flag & TP_HOLDLWP) 555 lwp_create_done(t); 556 else { 557 /* set TS_CREATE to allow continuelwps() to work */ 558 thread_lock(t); 559 ASSERT(t->t_state == TS_STOPPED && 560 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 561 t->t_schedflag |= TS_CREATE; 562 thread_unlock(t); 563 } 564 } while ((t = t->t_forw) != cp->p_tlist); 565 mutex_exit(&cp->p_lock); 566 567 if (isvfork) { 568 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 569 mutex_enter(&p->p_lock); 570 p->p_flag |= SVFWAIT; 571 curthread->t_flag |= T_VFPARENT; 572 DTRACE_PROC1(create, proc_t *, cp); 573 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 574 mutex_exit(&p->p_lock); 575 /* 576 * Grab child's p_lock before dropping pidlock to ensure 577 * the process will not disappear before we set it running. 578 */ 579 mutex_enter(&cp->p_lock); 580 mutex_exit(&pidlock); 581 sigdefault(cp); 582 continuelwps(cp); 583 mutex_exit(&cp->p_lock); 584 } else { 585 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 586 DTRACE_PROC1(create, proc_t *, cp); 587 /* 588 * It is CL_FORKRET's job to drop pidlock. 589 * If we do it here, the process could be set running 590 * and disappear before CL_FORKRET() is called. 591 */ 592 CL_FORKRET(curthread, cp->p_tlist); 593 schedctl_set_cidpri(curthread); 594 ASSERT(MUTEX_NOT_HELD(&pidlock)); 595 } 596 597 return (r.r_vals); 598 599 forklwperr: 600 if (isvfork) { 601 if (avl_numnodes(&p->p_wpage) != 0) { 602 /* restore watchpoints to parent */ 603 as = p->p_as; 604 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 605 as->a_wpage = p->p_wpage; 606 avl_create(&p->p_wpage, wp_compare, 607 sizeof (struct watched_page), 608 offsetof(struct watched_page, wp_link)); 609 as_setwatch(as); 610 AS_LOCK_EXIT(as, &as->a_lock); 611 } 612 } else { 613 if (cp->p_segacct) 614 shmexit(cp); 615 as = cp->p_as; 616 cp->p_as = &kas; 617 as_free(as); 618 } 619 620 if (cp->p_lwpdir) { 621 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 622 if ((lep = ldp->ld_entry) != NULL) 623 kmem_free(lep, sizeof (*lep)); 624 kmem_free(cp->p_lwpdir, 625 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 626 } 627 cp->p_lwpdir = NULL; 628 cp->p_lwpfree = NULL; 629 cp->p_lwpdir_sz = 0; 630 631 if (cp->p_tidhash) 632 kmem_free(cp->p_tidhash, 633 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 634 cp->p_tidhash = NULL; 635 cp->p_tidhash_sz = 0; 636 637 forklwp_fail(cp); 638 fork_fail(cp); 639 rctl_set_free(cp->p_rctls); 640 mutex_enter(&pidlock); 641 642 /* 643 * Detach failed child from task. 644 */ 645 mutex_enter(&cp->p_lock); 646 tk = cp->p_task; 647 task_detach(cp); 648 ASSERT(cp->p_pool->pool_ref > 0); 649 atomic_add_32(&cp->p_pool->pool_ref, -1); 650 mutex_exit(&cp->p_lock); 651 652 orphpp = &p->p_orphan; 653 while (*orphpp != cp) 654 orphpp = &(*orphpp)->p_nextorph; 655 *orphpp = cp->p_nextorph; 656 if (p->p_child == cp) 657 p->p_child = cp->p_sibling; 658 if (cp->p_sibling) 659 cp->p_sibling->p_psibling = cp->p_psibling; 660 if (cp->p_psibling) 661 cp->p_psibling->p_sibling = cp->p_sibling; 662 pid_exit(cp); 663 mutex_exit(&pidlock); 664 665 task_rele(tk); 666 667 mutex_enter(&p->p_lock); 668 pool_barrier_exit(); 669 continuelwps(p); 670 mutex_exit(&p->p_lock); 671 error = EAGAIN; 672 forkerr: 673 return ((int64_t)set_errno(error)); 674 } 675 676 /* 677 * Free allocated resources from getproc() if a fork failed. 678 */ 679 static void 680 fork_fail(proc_t *cp) 681 { 682 uf_info_t *fip = P_FINFO(cp); 683 684 fcnt_add(fip, -1); 685 sigdelq(cp, NULL, 0); 686 687 mutex_enter(&pidlock); 688 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 689 mutex_exit(&pidlock); 690 691 /* 692 * single threaded, so no locking needed here 693 */ 694 crfree(cp->p_cred); 695 696 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 697 698 VN_RELE(PTOU(curproc)->u_cdir); 699 if (PTOU(curproc)->u_rdir) 700 VN_RELE(PTOU(curproc)->u_rdir); 701 if (cp->p_exec) 702 VN_RELE(cp->p_exec); 703 if (cp->p_execdir) 704 VN_RELE(cp->p_execdir); 705 if (PTOU(curproc)->u_cwd) 706 refstr_rele(PTOU(curproc)->u_cwd); 707 } 708 709 /* 710 * Clean up the lwps already created for this child process. 711 * The fork failed while duplicating all the lwps of the parent 712 * and those lwps already created must be freed. 713 * This process is invisible to the rest of the system, 714 * so we don't need to hold p->p_lock to protect the list. 715 */ 716 static void 717 forklwp_fail(proc_t *p) 718 { 719 kthread_t *t; 720 task_t *tk; 721 722 while ((t = p->p_tlist) != NULL) { 723 /* 724 * First remove the lwp from the process's p_tlist. 725 */ 726 if (t != t->t_forw) 727 p->p_tlist = t->t_forw; 728 else 729 p->p_tlist = NULL; 730 p->p_lwpcnt--; 731 t->t_forw->t_back = t->t_back; 732 t->t_back->t_forw = t->t_forw; 733 734 tk = p->p_task; 735 mutex_enter(&p->p_zone->zone_nlwps_lock); 736 tk->tk_nlwps--; 737 tk->tk_proj->kpj_nlwps--; 738 p->p_zone->zone_nlwps--; 739 mutex_exit(&p->p_zone->zone_nlwps_lock); 740 741 ASSERT(t->t_schedctl == NULL); 742 743 if (t->t_door != NULL) { 744 kmem_free(t->t_door, sizeof (door_data_t)); 745 t->t_door = NULL; 746 } 747 lwp_ctmpl_clear(ttolwp(t)); 748 749 /* 750 * Remove the thread from the all threads list. 751 * We need to hold pidlock for this. 752 */ 753 mutex_enter(&pidlock); 754 t->t_next->t_prev = t->t_prev; 755 t->t_prev->t_next = t->t_next; 756 CL_EXIT(t); /* tell the scheduler that we're exiting */ 757 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 758 mutex_exit(&pidlock); 759 760 /* 761 * Let the lgroup load averages know that this thread isn't 762 * going to show up (i.e. un-do what was done on behalf of 763 * this thread by the earlier lgrp_move_thread()). 764 */ 765 kpreempt_disable(); 766 lgrp_move_thread(t, NULL, 1); 767 kpreempt_enable(); 768 769 /* 770 * The thread was created TS_STOPPED. 771 * We change it to TS_FREE to avoid an 772 * ASSERT() panic in thread_free(). 773 */ 774 t->t_state = TS_FREE; 775 thread_rele(t); 776 thread_free(t); 777 } 778 } 779 780 extern struct as kas; 781 782 /* 783 * fork a kernel process. 784 */ 785 int 786 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 787 { 788 proc_t *p; 789 struct user *up; 790 klwp_t *lwp; 791 cont_process_t *ctp = NULL; 792 rctl_entity_p_t e; 793 794 ASSERT(!(cid == syscid && ct != NULL)); 795 if (cid == syscid) { 796 rctl_alloc_gp_t *init_gp; 797 rctl_set_t *init_set; 798 799 if (getproc(&p, 1) < 0) 800 return (EAGAIN); 801 802 /* 803 * Release the hold on the p_exec and p_execdir, these 804 * were acquired in getproc() 805 */ 806 if (p->p_execdir != NULL) 807 VN_RELE(p->p_execdir); 808 if (p->p_exec != NULL) 809 VN_RELE(p->p_exec); 810 p->p_flag |= SNOWAIT; 811 p->p_exec = NULL; 812 p->p_execdir = NULL; 813 814 init_set = rctl_set_create(); 815 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 816 817 /* 818 * kernel processes do not inherit /proc tracing flags. 819 */ 820 sigemptyset(&p->p_sigmask); 821 premptyset(&p->p_fltmask); 822 up = PTOU(p); 823 up->u_systrap = 0; 824 premptyset(&(up->u_entrymask)); 825 premptyset(&(up->u_exitmask)); 826 mutex_enter(&p->p_lock); 827 e.rcep_p.proc = p; 828 e.rcep_t = RCENTITY_PROCESS; 829 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 830 init_gp); 831 mutex_exit(&p->p_lock); 832 833 rctl_prealloc_destroy(init_gp); 834 } else { 835 rctl_alloc_gp_t *init_gp, *default_gp; 836 rctl_set_t *init_set; 837 task_t *tk, *tk_old; 838 839 if (getproc(&p, 0) < 0) 840 return (EAGAIN); 841 /* 842 * init creates a new task, distinct from the task 843 * containing kernel "processes". 844 */ 845 tk = task_create(0, p->p_zone); 846 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 847 tk->tk_proj->kpj_ntasks++; 848 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 849 850 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 851 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 852 init_set = rctl_set_create(); 853 854 mutex_enter(&pidlock); 855 mutex_enter(&p->p_lock); 856 tk_old = p->p_task; /* switch to new task */ 857 858 task_detach(p); 859 task_begin(tk, p); 860 mutex_exit(&pidlock); 861 862 e.rcep_p.proc = p; 863 e.rcep_t = RCENTITY_PROCESS; 864 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 865 init_gp); 866 rctlproc_default_init(p, default_gp); 867 mutex_exit(&p->p_lock); 868 869 task_rele(tk_old); 870 rctl_prealloc_destroy(default_gp); 871 rctl_prealloc_destroy(init_gp); 872 } 873 874 p->p_as = &kas; 875 876 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 877 &curthread->t_hold, cid, 1)) == NULL) { 878 task_t *tk; 879 fork_fail(p); 880 mutex_enter(&pidlock); 881 mutex_enter(&p->p_lock); 882 tk = p->p_task; 883 task_detach(p); 884 ASSERT(p->p_pool->pool_ref > 0); 885 atomic_add_32(&p->p_pool->pool_ref, -1); 886 mutex_exit(&p->p_lock); 887 pid_exit(p); 888 mutex_exit(&pidlock); 889 task_rele(tk); 890 891 return (EAGAIN); 892 } 893 894 if (cid != syscid) { 895 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 896 B_FALSE); 897 ASSERT(ctp != NULL); 898 if (ct != NULL) 899 *ct = &ctp->conp_contract; 900 } 901 902 p->p_lwpid = 1; 903 mutex_enter(&pidlock); 904 pgjoin(p, curproc->p_pgidp); 905 p->p_stat = SRUN; 906 mutex_enter(&p->p_lock); 907 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 908 lwp_create_done(lwptot(lwp)); 909 mutex_exit(&p->p_lock); 910 mutex_exit(&pidlock); 911 return (0); 912 } 913 914 /* 915 * create a child proc struct. 916 */ 917 static int 918 getproc(proc_t **cpp, int kernel) 919 { 920 proc_t *pp, *cp; 921 pid_t newpid; 922 struct user *uarea; 923 extern uint_t nproc; 924 struct cred *cr; 925 uid_t ruid; 926 zoneid_t zoneid; 927 928 if (!page_mem_avail(tune.t_minarmem)) 929 return (-1); 930 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 931 return (-1); /* no point in starting new processes */ 932 933 pp = curproc; 934 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 935 bzero(cp, sizeof (proc_t)); 936 937 /* 938 * Make proc entry for child process 939 */ 940 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 941 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 942 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 943 #if defined(__x86) 944 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 945 #endif 946 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 947 cp->p_stat = SIDL; 948 cp->p_mstart = gethrtime(); 949 /* 950 * p_zone must be set before we call pid_allocate since the process 951 * will be visible after that and code such as prfind_zone will 952 * look at the p_zone field. 953 */ 954 cp->p_zone = pp->p_zone; 955 cp->p_t1_lgrpid = LGRP_NONE; 956 cp->p_tr_lgrpid = LGRP_NONE; 957 958 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 959 if (nproc == v.v_proc) { 960 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 961 cmn_err(CE_WARN, "out of processes"); 962 } 963 goto bad; 964 } 965 966 /* 967 * If not privileged make sure that this user hasn't exceeded 968 * v.v_maxup processes, and that users collectively haven't 969 * exceeded v.v_maxupttl processes. 970 */ 971 mutex_enter(&pidlock); 972 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 973 cr = CRED(); 974 ruid = crgetruid(cr); 975 zoneid = crgetzoneid(cr); 976 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 977 (nproc >= v.v_maxupttl || 978 upcount_get(ruid, zoneid) >= v.v_maxup) && 979 secpolicy_newproc(cr) != 0) { 980 mutex_exit(&pidlock); 981 zcmn_err(zoneid, CE_NOTE, 982 "out of per-user processes for uid %d", ruid); 983 goto bad; 984 } 985 986 /* 987 * Everything is cool, put the new proc on the active process list. 988 * It is already on the pid list and in /proc. 989 * Increment the per uid process count (upcount). 990 */ 991 nproc++; 992 upcount_inc(ruid, zoneid); 993 994 cp->p_next = practive; 995 practive->p_prev = cp; 996 practive = cp; 997 998 cp->p_ignore = pp->p_ignore; 999 cp->p_siginfo = pp->p_siginfo; 1000 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1001 cp->p_sessp = pp->p_sessp; 1002 sess_hold(pp); 1003 cp->p_exec = pp->p_exec; 1004 cp->p_execdir = pp->p_execdir; 1005 cp->p_brand = pp->p_brand; 1006 if (PROC_IS_BRANDED(pp)) 1007 BROP(pp)->b_copy_procdata(cp, pp); 1008 1009 cp->p_bssbase = pp->p_bssbase; 1010 cp->p_brkbase = pp->p_brkbase; 1011 cp->p_brksize = pp->p_brksize; 1012 cp->p_brkpageszc = pp->p_brkpageszc; 1013 cp->p_stksize = pp->p_stksize; 1014 cp->p_stkpageszc = pp->p_stkpageszc; 1015 cp->p_stkprot = pp->p_stkprot; 1016 cp->p_datprot = pp->p_datprot; 1017 cp->p_usrstack = pp->p_usrstack; 1018 cp->p_model = pp->p_model; 1019 cp->p_ppid = pp->p_pid; 1020 cp->p_ancpid = pp->p_pid; 1021 cp->p_portcnt = pp->p_portcnt; 1022 1023 /* 1024 * Initialize watchpoint structures 1025 */ 1026 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1027 offsetof(struct watched_area, wa_link)); 1028 1029 /* 1030 * Initialize immediate resource control values. 1031 */ 1032 cp->p_stk_ctl = pp->p_stk_ctl; 1033 cp->p_fsz_ctl = pp->p_fsz_ctl; 1034 cp->p_vmem_ctl = pp->p_vmem_ctl; 1035 cp->p_fno_ctl = pp->p_fno_ctl; 1036 1037 /* 1038 * Link up to parent-child-sibling chain. No need to lock 1039 * in general since only a call to freeproc() (done by the 1040 * same parent as newproc()) diddles with the child chain. 1041 */ 1042 cp->p_sibling = pp->p_child; 1043 if (pp->p_child) 1044 pp->p_child->p_psibling = cp; 1045 1046 cp->p_parent = pp; 1047 pp->p_child = cp; 1048 1049 cp->p_child_ns = NULL; 1050 cp->p_sibling_ns = NULL; 1051 1052 cp->p_nextorph = pp->p_orphan; 1053 cp->p_nextofkin = pp; 1054 pp->p_orphan = cp; 1055 1056 /* 1057 * Inherit profiling state; do not inherit REALPROF profiling state. 1058 */ 1059 cp->p_prof = pp->p_prof; 1060 cp->p_rprof_cyclic = CYCLIC_NONE; 1061 1062 /* 1063 * Inherit pool pointer from the parent. Kernel processes are 1064 * always bound to the default pool. 1065 */ 1066 mutex_enter(&pp->p_lock); 1067 if (kernel) { 1068 cp->p_pool = pool_default; 1069 cp->p_flag |= SSYS; 1070 } else { 1071 cp->p_pool = pp->p_pool; 1072 } 1073 atomic_add_32(&cp->p_pool->pool_ref, 1); 1074 mutex_exit(&pp->p_lock); 1075 1076 /* 1077 * Add the child process to the current task. Kernel processes 1078 * are always attached to task0. 1079 */ 1080 mutex_enter(&cp->p_lock); 1081 if (kernel) 1082 task_attach(task0p, cp); 1083 else 1084 task_attach(pp->p_task, cp); 1085 mutex_exit(&cp->p_lock); 1086 mutex_exit(&pidlock); 1087 1088 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1089 offsetof(contract_t, ct_ctlist)); 1090 1091 /* 1092 * Duplicate any audit information kept in the process table 1093 */ 1094 if (audit_active) /* copy audit data to cp */ 1095 audit_newproc(cp); 1096 1097 crhold(cp->p_cred = cr); 1098 1099 /* 1100 * Bump up the counts on the file structures pointed at by the 1101 * parent's file table since the child will point at them too. 1102 */ 1103 fcnt_add(P_FINFO(pp), 1); 1104 1105 VN_HOLD(PTOU(pp)->u_cdir); 1106 if (PTOU(pp)->u_rdir) 1107 VN_HOLD(PTOU(pp)->u_rdir); 1108 if (PTOU(pp)->u_cwd) 1109 refstr_hold(PTOU(pp)->u_cwd); 1110 1111 /* 1112 * copy the parent's uarea. 1113 */ 1114 uarea = PTOU(cp); 1115 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1116 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1117 1118 gethrestime(&uarea->u_start); 1119 uarea->u_ticks = lbolt; 1120 uarea->u_mem = rm_asrss(pp->p_as); 1121 uarea->u_acflag = AFORK; 1122 1123 /* 1124 * If inherit-on-fork, copy /proc tracing flags to child. 1125 */ 1126 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1127 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1128 cp->p_sigmask = pp->p_sigmask; 1129 cp->p_fltmask = pp->p_fltmask; 1130 } else { 1131 sigemptyset(&cp->p_sigmask); 1132 premptyset(&cp->p_fltmask); 1133 uarea->u_systrap = 0; 1134 premptyset(&uarea->u_entrymask); 1135 premptyset(&uarea->u_exitmask); 1136 } 1137 /* 1138 * If microstate accounting is being inherited, mark child 1139 */ 1140 if ((pp->p_flag & SMSFORK) != 0) 1141 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1142 1143 /* 1144 * Inherit fixalignment flag from the parent 1145 */ 1146 cp->p_fixalignment = pp->p_fixalignment; 1147 1148 if (cp->p_exec) 1149 VN_HOLD(cp->p_exec); 1150 if (cp->p_execdir) 1151 VN_HOLD(cp->p_execdir); 1152 *cpp = cp; 1153 return (0); 1154 1155 bad: 1156 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1157 1158 mutex_destroy(&cp->p_crlock); 1159 mutex_destroy(&cp->p_pflock); 1160 #if defined(__x86) 1161 mutex_destroy(&cp->p_ldtlock); 1162 #endif 1163 if (newpid != -1) { 1164 proc_entry_free(cp->p_pidp); 1165 (void) pid_rele(cp->p_pidp); 1166 } 1167 kmem_cache_free(process_cache, cp); 1168 1169 /* 1170 * We most likely got into this situation because some process is 1171 * forking out of control. As punishment, put it to sleep for a 1172 * bit so it can't eat the machine alive. Sleep interval is chosen 1173 * to allow no more than one fork failure per cpu per clock tick 1174 * on average (yes, I just made this up). This has two desirable 1175 * properties: (1) it sets a constant limit on the fork failure 1176 * rate, and (2) the busier the system is, the harsher the penalty 1177 * for abusing it becomes. 1178 */ 1179 INCR_COUNT(&fork_fail_pending, &pidlock); 1180 delay(fork_fail_pending / ncpus + 1); 1181 DECR_COUNT(&fork_fail_pending, &pidlock); 1182 1183 return (-1); /* out of memory or proc slots */ 1184 } 1185 1186 /* 1187 * Release virtual memory. 1188 * In the case of vfork(), the child was given exclusive access to its 1189 * parent's address space. The parent is waiting in vfwait() for the 1190 * child to release its exclusive claim via relvm(). 1191 */ 1192 void 1193 relvm() 1194 { 1195 proc_t *p = curproc; 1196 1197 ASSERT((unsigned)p->p_lwpcnt <= 1); 1198 1199 prrelvm(); /* inform /proc */ 1200 1201 if (p->p_flag & SVFORK) { 1202 proc_t *pp = p->p_parent; 1203 /* 1204 * The child process is either exec'ing or exit'ing. 1205 * The child is now separated from the parent's address 1206 * space. The parent process is made dispatchable. 1207 * 1208 * This is a delicate locking maneuver, involving 1209 * both the parent's p_lock and the child's p_lock. 1210 * As soon as the SVFORK flag is turned off, the 1211 * parent is free to run, but it must not run until 1212 * we wake it up using its p_cv because it might 1213 * exit and we would be referencing invalid memory. 1214 * Therefore, we hold the parent with its p_lock 1215 * while protecting our p_flags with our own p_lock. 1216 */ 1217 try_again: 1218 mutex_enter(&p->p_lock); /* grab child's lock first */ 1219 prbarrier(p); /* make sure /proc is blocked out */ 1220 mutex_enter(&pp->p_lock); 1221 1222 /* 1223 * Check if parent is locked by /proc. 1224 */ 1225 if (pp->p_proc_flag & P_PR_LOCK) { 1226 /* 1227 * Delay until /proc is done with the parent. 1228 * We must drop our (the child's) p->p_lock, wait 1229 * via prbarrier() on the parent, then start over. 1230 */ 1231 mutex_exit(&p->p_lock); 1232 prbarrier(pp); 1233 mutex_exit(&pp->p_lock); 1234 goto try_again; 1235 } 1236 p->p_flag &= ~SVFORK; 1237 kpreempt_disable(); 1238 p->p_as = &kas; 1239 1240 /* 1241 * notify hat of change in thread's address space 1242 */ 1243 hat_thread_exit(curthread); 1244 kpreempt_enable(); 1245 1246 /* 1247 * child sizes are copied back to parent because 1248 * child may have grown. 1249 */ 1250 pp->p_brkbase = p->p_brkbase; 1251 pp->p_brksize = p->p_brksize; 1252 pp->p_stksize = p->p_stksize; 1253 /* 1254 * The parent is no longer waiting for the vfork()d child. 1255 * Restore the parent's watched pages, if any. This is 1256 * safe because we know the parent is not locked by /proc 1257 */ 1258 pp->p_flag &= ~SVFWAIT; 1259 if (avl_numnodes(&pp->p_wpage) != 0) { 1260 pp->p_as->a_wpage = pp->p_wpage; 1261 avl_create(&pp->p_wpage, wp_compare, 1262 sizeof (struct watched_page), 1263 offsetof(struct watched_page, wp_link)); 1264 } 1265 cv_signal(&pp->p_cv); 1266 mutex_exit(&pp->p_lock); 1267 mutex_exit(&p->p_lock); 1268 } else { 1269 if (p->p_as != &kas) { 1270 struct as *as; 1271 1272 if (p->p_segacct) 1273 shmexit(p); 1274 1275 /* 1276 * We grab p_lock for the benefit of /proc 1277 */ 1278 kpreempt_disable(); 1279 mutex_enter(&p->p_lock); 1280 prbarrier(p); /* make sure /proc is blocked out */ 1281 as = p->p_as; 1282 p->p_as = &kas; 1283 mutex_exit(&p->p_lock); 1284 1285 /* 1286 * notify hat of change in thread's address space 1287 */ 1288 hat_thread_exit(curthread); 1289 kpreempt_enable(); 1290 1291 as_free(as); 1292 p->p_tr_lgrpid = LGRP_NONE; 1293 } 1294 } 1295 } 1296 1297 /* 1298 * Wait for child to exec or exit. 1299 * Called by parent of vfork'ed process. 1300 * See important comments in relvm(), above. 1301 */ 1302 void 1303 vfwait(pid_t pid) 1304 { 1305 int signalled = 0; 1306 proc_t *pp = ttoproc(curthread); 1307 proc_t *cp; 1308 1309 /* 1310 * Wait for child to exec or exit. 1311 */ 1312 for (;;) { 1313 mutex_enter(&pidlock); 1314 cp = prfind(pid); 1315 if (cp == NULL || cp->p_parent != pp) { 1316 /* 1317 * Child has exit()ed. 1318 */ 1319 mutex_exit(&pidlock); 1320 break; 1321 } 1322 /* 1323 * Grab the child's p_lock before releasing pidlock. 1324 * Otherwise, the child could exit and we would be 1325 * referencing invalid memory. 1326 */ 1327 mutex_enter(&cp->p_lock); 1328 mutex_exit(&pidlock); 1329 if (!(cp->p_flag & SVFORK)) { 1330 /* 1331 * Child has exec()ed or is exit()ing. 1332 */ 1333 mutex_exit(&cp->p_lock); 1334 break; 1335 } 1336 mutex_enter(&pp->p_lock); 1337 mutex_exit(&cp->p_lock); 1338 /* 1339 * We might be waked up spuriously from the cv_wait(). 1340 * We have to do the whole operation over again to be 1341 * sure the child's SVFORK flag really is turned off. 1342 * We cannot make reference to the child because it can 1343 * exit before we return and we would be referencing 1344 * invalid memory. 1345 * 1346 * Because this is potentially a very long-term wait, 1347 * we call cv_wait_sig() (for its jobcontrol and /proc 1348 * side-effects) unless there is a current signal, in 1349 * which case we use cv_wait() because we cannot return 1350 * from this function until the child has released the 1351 * address space. Calling cv_wait_sig() with a current 1352 * signal would lead to an indefinite loop here because 1353 * cv_wait_sig() returns immediately in this case. 1354 */ 1355 if (signalled) 1356 cv_wait(&pp->p_cv, &pp->p_lock); 1357 else 1358 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1359 mutex_exit(&pp->p_lock); 1360 } 1361 1362 /* restore watchpoints to parent */ 1363 if (pr_watch_active(pp)) { 1364 struct as *as = pp->p_as; 1365 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1366 as_setwatch(as); 1367 AS_LOCK_EXIT(as, &as->a_lock); 1368 } 1369 1370 mutex_enter(&pp->p_lock); 1371 prbarrier(pp); /* barrier against /proc locking */ 1372 continuelwps(pp); 1373 mutex_exit(&pp->p_lock); 1374 } 1375