xref: /titanic_41/usr/src/uts/common/os/fork.c (revision 09c4eb3fb188250e6f6548f044aa69d0b3c829d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/cred.h>
34 #include <sys/policy.h>
35 #include <sys/user.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/proc.h>
44 #include <sys/cmn_err.h>
45 #include <sys/acct.h>
46 #include <sys/tuneable.h>
47 #include <sys/class.h>
48 #include <sys/kmem.h>
49 #include <sys/session.h>
50 #include <sys/ucontext.h>
51 #include <sys/stack.h>
52 #include <sys/procfs.h>
53 #include <sys/prsystm.h>
54 #include <sys/vmsystm.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 #include <sys/shm_impl.h>
58 #include <sys/door_data.h>
59 #include <vm/as.h>
60 #include <vm/rm.h>
61 #include <c2/audit.h>
62 #include <sys/var.h>
63 #include <sys/schedctl.h>
64 #include <sys/utrap.h>
65 #include <sys/task.h>
66 #include <sys/resource.h>
67 #include <sys/cyclic.h>
68 #include <sys/lgrp.h>
69 #include <sys/rctl.h>
70 #include <sys/contract_impl.h>
71 #include <sys/contract/process_impl.h>
72 #include <sys/list.h>
73 #include <sys/dtrace.h>
74 #include <sys/pool.h>
75 #include <sys/zone.h>
76 #include <sys/sdt.h>
77 #include <sys/class.h>
78 #include <sys/corectl.h>
79 #include <sys/brand.h>
80 #include <sys/fork.h>
81 
82 static int64_t cfork(int, int, int);
83 static int getproc(proc_t **, pid_t, uint_t);
84 #define	GETPROC_USER	0x0
85 #define	GETPROC_KERNEL	0x1
86 
87 static void fork_fail(proc_t *);
88 static void forklwp_fail(proc_t *);
89 
90 int fork_fail_pending;
91 
92 extern struct kmem_cache *process_cache;
93 
94 /*
95  * The vfork() system call trap is no longer invoked by libc.
96  * It is retained only for the benefit of applications running
97  * within a solaris10 branded zone.  It should be eliminated
98  * when we no longer support solaris10 branded zones.
99  */
100 int64_t
101 vfork(void)
102 {
103 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
104 	return (cfork(1, 1, 0));
105 }
106 
107 /*
108  * forksys system call - forkx, forkallx, vforkx.  This is the
109  * interface invoked by libc for fork1(), forkall(), and vfork()
110  */
111 int64_t
112 forksys(int subcode, int flags)
113 {
114 	switch (subcode) {
115 	case 0:
116 		return (cfork(0, 1, flags));	/* forkx(flags) */
117 	case 1:
118 		return (cfork(0, 0, flags));	/* forkallx(flags) */
119 	case 2:
120 		curthread->t_post_sys = 1;	/* so vfwait() will be called */
121 		return (cfork(1, 1, flags));	/* vforkx(flags) */
122 	default:
123 		return ((int64_t)set_errno(EINVAL));
124 	}
125 }
126 
127 /* ARGSUSED */
128 static int64_t
129 cfork(int isvfork, int isfork1, int flags)
130 {
131 	proc_t *p = ttoproc(curthread);
132 	struct as *as;
133 	proc_t *cp, **orphpp;
134 	klwp_t *clone;
135 	kthread_t *t;
136 	task_t *tk;
137 	rval_t	r;
138 	int error;
139 	int i;
140 	rctl_set_t *dup_set;
141 	rctl_alloc_gp_t *dup_gp;
142 	rctl_entity_p_t e;
143 	lwpdir_t *ldp;
144 	lwpent_t *lep;
145 	lwpent_t *clep;
146 
147 	/*
148 	 * Allow only these two flags.
149 	 */
150 	if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) {
151 		error = EINVAL;
152 		goto forkerr;
153 	}
154 
155 	/*
156 	 * fork is not supported for the /proc agent lwp.
157 	 */
158 	if (curthread == p->p_agenttp) {
159 		error = ENOTSUP;
160 		goto forkerr;
161 	}
162 
163 	if ((error = secpolicy_basic_fork(CRED())) != 0)
164 		goto forkerr;
165 
166 	/*
167 	 * If the calling lwp is doing a fork1() then the
168 	 * other lwps in this process are not duplicated and
169 	 * don't need to be held where their kernel stacks can be
170 	 * cloned.  If doing forkall(), the process is held with
171 	 * SHOLDFORK, so that the lwps are at a point where their
172 	 * stacks can be copied which is on entry or exit from
173 	 * the kernel.
174 	 */
175 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
176 		aston(curthread);
177 		error = EINTR;
178 		goto forkerr;
179 	}
180 
181 #if defined(__sparc)
182 	/*
183 	 * Ensure that the user stack is fully constructed
184 	 * before creating the child process structure.
185 	 */
186 	(void) flush_user_windows_to_stack(NULL);
187 #endif
188 
189 	mutex_enter(&p->p_lock);
190 	/*
191 	 * If this is vfork(), cancel any suspend request we might
192 	 * have gotten from some other thread via lwp_suspend().
193 	 * Otherwise we could end up with a deadlock on return
194 	 * from the vfork() in both the parent and the child.
195 	 */
196 	if (isvfork)
197 		curthread->t_proc_flag &= ~TP_HOLDLWP;
198 	/*
199 	 * Prevent our resource set associations from being changed during fork.
200 	 */
201 	pool_barrier_enter();
202 	mutex_exit(&p->p_lock);
203 
204 	/*
205 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
206 	 */
207 	if (getproc(&cp, 0, GETPROC_USER) < 0) {
208 		mutex_enter(&p->p_lock);
209 		pool_barrier_exit();
210 		continuelwps(p);
211 		mutex_exit(&p->p_lock);
212 		error = EAGAIN;
213 		goto forkerr;
214 	}
215 
216 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
217 
218 	/*
219 	 * Assign an address space to child
220 	 */
221 	if (isvfork) {
222 		/*
223 		 * Clear any watched areas and remember the
224 		 * watched pages for restoring in vfwait().
225 		 */
226 		as = p->p_as;
227 		if (avl_numnodes(&as->a_wpage) != 0) {
228 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
229 			as_clearwatch(as);
230 			p->p_wpage = as->a_wpage;
231 			avl_create(&as->a_wpage, wp_compare,
232 			    sizeof (struct watched_page),
233 			    offsetof(struct watched_page, wp_link));
234 			AS_LOCK_EXIT(as, &as->a_lock);
235 		}
236 		cp->p_as = as;
237 		cp->p_flag |= SVFORK;
238 
239 		/*
240 		 * Use the parent's shm segment list information for
241 		 * the child as it uses its address space till it execs.
242 		 */
243 		cp->p_segacct = p->p_segacct;
244 	} else {
245 		/*
246 		 * We need to hold P_PR_LOCK until the address space has
247 		 * been duplicated and we've had a chance to remove from the
248 		 * child any DTrace probes that were in the parent. Holding
249 		 * P_PR_LOCK prevents any new probes from being added and any
250 		 * extant probes from being removed.
251 		 */
252 		mutex_enter(&p->p_lock);
253 		sprlock_proc(p);
254 		p->p_flag |= SFORKING;
255 		mutex_exit(&p->p_lock);
256 
257 		error = as_dup(p->p_as, cp);
258 		if (error != 0) {
259 			mutex_enter(&p->p_lock);
260 			sprunlock(p);
261 			fork_fail(cp);
262 			mutex_enter(&pidlock);
263 			orphpp = &p->p_orphan;
264 			while (*orphpp != cp)
265 				orphpp = &(*orphpp)->p_nextorph;
266 			*orphpp = cp->p_nextorph;
267 			if (p->p_child == cp)
268 				p->p_child = cp->p_sibling;
269 			if (cp->p_sibling)
270 				cp->p_sibling->p_psibling = cp->p_psibling;
271 			if (cp->p_psibling)
272 				cp->p_psibling->p_sibling = cp->p_sibling;
273 			mutex_enter(&cp->p_lock);
274 			tk = cp->p_task;
275 			task_detach(cp);
276 			ASSERT(cp->p_pool->pool_ref > 0);
277 			atomic_add_32(&cp->p_pool->pool_ref, -1);
278 			mutex_exit(&cp->p_lock);
279 			pid_exit(cp, tk);
280 			mutex_exit(&pidlock);
281 			task_rele(tk);
282 
283 			mutex_enter(&p->p_lock);
284 			p->p_flag &= ~SFORKING;
285 			pool_barrier_exit();
286 			continuelwps(p);
287 			mutex_exit(&p->p_lock);
288 			/*
289 			 * Preserve ENOMEM error condition but
290 			 * map all others to EAGAIN.
291 			 */
292 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
293 			goto forkerr;
294 		}
295 
296 		/*
297 		 * Remove all DTrace tracepoints from the child process. We
298 		 * need to do this _before_ duplicating USDT providers since
299 		 * any associated probes may be immediately enabled.
300 		 */
301 		if (p->p_dtrace_count > 0)
302 			dtrace_fasttrap_fork(p, cp);
303 
304 		mutex_enter(&p->p_lock);
305 		sprunlock(p);
306 
307 		/* Duplicate parent's shared memory */
308 		if (p->p_segacct)
309 			shmfork(p, cp);
310 
311 		/*
312 		 * Duplicate any helper actions and providers. The SFORKING
313 		 * we set above informs the code to enable USDT probes that
314 		 * sprlock() may fail because the child is being forked.
315 		 */
316 		if (p->p_dtrace_helpers != NULL) {
317 			ASSERT(dtrace_helpers_fork != NULL);
318 			(*dtrace_helpers_fork)(p, cp);
319 		}
320 
321 		mutex_enter(&p->p_lock);
322 		p->p_flag &= ~SFORKING;
323 		mutex_exit(&p->p_lock);
324 	}
325 
326 	/*
327 	 * Duplicate parent's resource controls.
328 	 */
329 	dup_set = rctl_set_create();
330 	for (;;) {
331 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
332 		mutex_enter(&p->p_rctls->rcs_lock);
333 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
334 			break;
335 		mutex_exit(&p->p_rctls->rcs_lock);
336 		rctl_prealloc_destroy(dup_gp);
337 	}
338 	e.rcep_p.proc = cp;
339 	e.rcep_t = RCENTITY_PROCESS;
340 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
341 	    RCD_DUP | RCD_CALLBACK);
342 	mutex_exit(&p->p_rctls->rcs_lock);
343 
344 	rctl_prealloc_destroy(dup_gp);
345 
346 	/*
347 	 * Allocate the child's lwp directory and lwpid hash table.
348 	 */
349 	if (isfork1)
350 		cp->p_lwpdir_sz = 2;
351 	else
352 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
353 	cp->p_lwpdir = cp->p_lwpfree = ldp =
354 	    kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
355 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
356 		ldp->ld_next = ldp + 1;
357 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
358 	cp->p_tidhash =
359 	    kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP);
360 
361 	/*
362 	 * Duplicate parent's lwps.
363 	 * Mutual exclusion is not needed because the process is
364 	 * in the hold state and only the current lwp is running.
365 	 */
366 	klgrpset_clear(cp->p_lgrpset);
367 	if (isfork1) {
368 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
369 		if (clone == NULL)
370 			goto forklwperr;
371 		/*
372 		 * Inherit only the lwp_wait()able flag,
373 		 * Daemon threads should not call fork1(), but oh well...
374 		 */
375 		lwptot(clone)->t_proc_flag |=
376 		    (curthread->t_proc_flag & TP_TWAIT);
377 	} else {
378 		/* this is forkall(), no one can be in lwp_wait() */
379 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
380 		/* for each entry in the parent's lwp directory... */
381 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
382 			klwp_t *clwp;
383 			kthread_t *ct;
384 
385 			if ((lep = ldp->ld_entry) == NULL)
386 				continue;
387 
388 			if ((t = lep->le_thread) != NULL) {
389 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
390 				if (clwp == NULL)
391 					goto forklwperr;
392 				ct = lwptot(clwp);
393 				/*
394 				 * Inherit lwp_wait()able and daemon flags.
395 				 */
396 				ct->t_proc_flag |=
397 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
398 				/*
399 				 * Keep track of the clone of curthread to
400 				 * post return values through lwp_setrval().
401 				 * Mark other threads for special treatment
402 				 * by lwp_rtt() / post_syscall().
403 				 */
404 				if (t == curthread)
405 					clone = clwp;
406 				else
407 					ct->t_flag |= T_FORKALL;
408 			} else {
409 				/*
410 				 * Replicate zombie lwps in the child.
411 				 */
412 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
413 				clep->le_lwpid = lep->le_lwpid;
414 				clep->le_start = lep->le_start;
415 				lwp_hash_in(cp, clep,
416 				    cp->p_tidhash, cp->p_tidhash_sz, 0);
417 			}
418 		}
419 	}
420 
421 	/*
422 	 * Put new process in the parent's process contract, or put it
423 	 * in a new one if there is an active process template.  Send a
424 	 * fork event (if requested) to whatever contract the child is
425 	 * a member of.  Fails if the parent has been SIGKILLed.
426 	 */
427 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
428 		goto forklwperr;
429 
430 	/*
431 	 * No fork failures occur beyond this point.
432 	 */
433 
434 	cp->p_lwpid = p->p_lwpid;
435 	if (!isfork1) {
436 		cp->p_lwpdaemon = p->p_lwpdaemon;
437 		cp->p_zombcnt = p->p_zombcnt;
438 		/*
439 		 * If the parent's lwp ids have wrapped around, so have the
440 		 * child's.
441 		 */
442 		cp->p_flag |= p->p_flag & SLWPWRAP;
443 	}
444 
445 	mutex_enter(&p->p_lock);
446 	corectl_path_hold(cp->p_corefile = p->p_corefile);
447 	corectl_content_hold(cp->p_content = p->p_content);
448 	mutex_exit(&p->p_lock);
449 
450 	/*
451 	 * Duplicate process context ops, if any.
452 	 */
453 	if (p->p_pctx)
454 		forkpctx(p, cp);
455 
456 #ifdef __sparc
457 	utrap_dup(p, cp);
458 #endif
459 	/*
460 	 * If the child process has been marked to stop on exit
461 	 * from this fork, arrange for all other lwps to stop in
462 	 * sympathy with the active lwp.
463 	 */
464 	if (PTOU(cp)->u_systrap &&
465 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
466 		mutex_enter(&cp->p_lock);
467 		t = cp->p_tlist;
468 		do {
469 			t->t_proc_flag |= TP_PRSTOP;
470 			aston(t);	/* so TP_PRSTOP will be seen */
471 		} while ((t = t->t_forw) != cp->p_tlist);
472 		mutex_exit(&cp->p_lock);
473 	}
474 	/*
475 	 * If the parent process has been marked to stop on exit
476 	 * from this fork, and its asynchronous-stop flag has not
477 	 * been set, arrange for all other lwps to stop before
478 	 * they return back to user level.
479 	 */
480 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
481 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
482 		mutex_enter(&p->p_lock);
483 		t = p->p_tlist;
484 		do {
485 			t->t_proc_flag |= TP_PRSTOP;
486 			aston(t);	/* so TP_PRSTOP will be seen */
487 		} while ((t = t->t_forw) != p->p_tlist);
488 		mutex_exit(&p->p_lock);
489 	}
490 
491 	if (PROC_IS_BRANDED(p))
492 		BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
493 	else
494 		lwp_setrval(clone, p->p_pid, 1);
495 
496 	/* set return values for parent */
497 	r.r_val1 = (int)cp->p_pid;
498 	r.r_val2 = 0;
499 
500 	/*
501 	 * pool_barrier_exit() can now be called because the child process has:
502 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
503 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
504 	 * - any other fields set which are used in resource set binding.
505 	 */
506 	mutex_enter(&p->p_lock);
507 	pool_barrier_exit();
508 	mutex_exit(&p->p_lock);
509 
510 	mutex_enter(&pidlock);
511 	mutex_enter(&cp->p_lock);
512 
513 	/*
514 	 * Set flags telling the child what (not) to do on exit.
515 	 */
516 	if (flags & FORK_NOSIGCHLD)
517 		cp->p_pidflag |= CLDNOSIGCHLD;
518 	if (flags & FORK_WAITPID)
519 		cp->p_pidflag |= CLDWAITPID;
520 
521 	/*
522 	 * Now that there are lwps and threads attached, add the new
523 	 * process to the process group.
524 	 */
525 	pgjoin(cp, p->p_pgidp);
526 	cp->p_stat = SRUN;
527 	/*
528 	 * We are now done with all the lwps in the child process.
529 	 */
530 	t = cp->p_tlist;
531 	do {
532 		/*
533 		 * Set the lwp_suspend()ed lwps running.
534 		 * They will suspend properly at syscall exit.
535 		 */
536 		if (t->t_proc_flag & TP_HOLDLWP)
537 			lwp_create_done(t);
538 		else {
539 			/* set TS_CREATE to allow continuelwps() to work */
540 			thread_lock(t);
541 			ASSERT(t->t_state == TS_STOPPED &&
542 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
543 			t->t_schedflag |= TS_CREATE;
544 			thread_unlock(t);
545 		}
546 	} while ((t = t->t_forw) != cp->p_tlist);
547 	mutex_exit(&cp->p_lock);
548 
549 	if (isvfork) {
550 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
551 		mutex_enter(&p->p_lock);
552 		p->p_flag |= SVFWAIT;
553 		curthread->t_flag |= T_VFPARENT;
554 		DTRACE_PROC1(create, proc_t *, cp);
555 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
556 		mutex_exit(&p->p_lock);
557 		/*
558 		 * Grab child's p_lock before dropping pidlock to ensure
559 		 * the process will not disappear before we set it running.
560 		 */
561 		mutex_enter(&cp->p_lock);
562 		mutex_exit(&pidlock);
563 		sigdefault(cp);
564 		continuelwps(cp);
565 		mutex_exit(&cp->p_lock);
566 	} else {
567 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
568 		DTRACE_PROC1(create, proc_t *, cp);
569 		/*
570 		 * It is CL_FORKRET's job to drop pidlock.
571 		 * If we do it here, the process could be set running
572 		 * and disappear before CL_FORKRET() is called.
573 		 */
574 		CL_FORKRET(curthread, cp->p_tlist);
575 		schedctl_set_cidpri(curthread);
576 		ASSERT(MUTEX_NOT_HELD(&pidlock));
577 	}
578 
579 	return (r.r_vals);
580 
581 forklwperr:
582 	if (isvfork) {
583 		if (avl_numnodes(&p->p_wpage) != 0) {
584 			/* restore watchpoints to parent */
585 			as = p->p_as;
586 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
587 			as->a_wpage = p->p_wpage;
588 			avl_create(&p->p_wpage, wp_compare,
589 			    sizeof (struct watched_page),
590 			    offsetof(struct watched_page, wp_link));
591 			as_setwatch(as);
592 			AS_LOCK_EXIT(as, &as->a_lock);
593 		}
594 	} else {
595 		if (cp->p_segacct)
596 			shmexit(cp);
597 		as = cp->p_as;
598 		cp->p_as = &kas;
599 		as_free(as);
600 	}
601 
602 	if (cp->p_lwpdir) {
603 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
604 			if ((lep = ldp->ld_entry) != NULL)
605 				kmem_free(lep, sizeof (*lep));
606 		kmem_free(cp->p_lwpdir,
607 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
608 	}
609 	cp->p_lwpdir = NULL;
610 	cp->p_lwpfree = NULL;
611 	cp->p_lwpdir_sz = 0;
612 
613 	if (cp->p_tidhash)
614 		kmem_free(cp->p_tidhash,
615 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
616 	cp->p_tidhash = NULL;
617 	cp->p_tidhash_sz = 0;
618 
619 	forklwp_fail(cp);
620 	fork_fail(cp);
621 	rctl_set_free(cp->p_rctls);
622 	mutex_enter(&pidlock);
623 
624 	/*
625 	 * Detach failed child from task.
626 	 */
627 	mutex_enter(&cp->p_lock);
628 	tk = cp->p_task;
629 	task_detach(cp);
630 	ASSERT(cp->p_pool->pool_ref > 0);
631 	atomic_add_32(&cp->p_pool->pool_ref, -1);
632 	mutex_exit(&cp->p_lock);
633 
634 	orphpp = &p->p_orphan;
635 	while (*orphpp != cp)
636 		orphpp = &(*orphpp)->p_nextorph;
637 	*orphpp = cp->p_nextorph;
638 	if (p->p_child == cp)
639 		p->p_child = cp->p_sibling;
640 	if (cp->p_sibling)
641 		cp->p_sibling->p_psibling = cp->p_psibling;
642 	if (cp->p_psibling)
643 		cp->p_psibling->p_sibling = cp->p_sibling;
644 	pid_exit(cp, tk);
645 	mutex_exit(&pidlock);
646 
647 	task_rele(tk);
648 
649 	mutex_enter(&p->p_lock);
650 	pool_barrier_exit();
651 	continuelwps(p);
652 	mutex_exit(&p->p_lock);
653 	error = EAGAIN;
654 forkerr:
655 	return ((int64_t)set_errno(error));
656 }
657 
658 /*
659  * Free allocated resources from getproc() if a fork failed.
660  */
661 static void
662 fork_fail(proc_t *cp)
663 {
664 	uf_info_t *fip = P_FINFO(cp);
665 
666 	fcnt_add(fip, -1);
667 	sigdelq(cp, NULL, 0);
668 
669 	mutex_enter(&pidlock);
670 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
671 	mutex_exit(&pidlock);
672 
673 	/*
674 	 * single threaded, so no locking needed here
675 	 */
676 	crfree(cp->p_cred);
677 
678 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
679 
680 	VN_RELE(PTOU(curproc)->u_cdir);
681 	if (PTOU(curproc)->u_rdir)
682 		VN_RELE(PTOU(curproc)->u_rdir);
683 	if (cp->p_exec)
684 		VN_RELE(cp->p_exec);
685 	if (cp->p_execdir)
686 		VN_RELE(cp->p_execdir);
687 	if (PTOU(curproc)->u_cwd)
688 		refstr_rele(PTOU(curproc)->u_cwd);
689 }
690 
691 /*
692  * Clean up the lwps already created for this child process.
693  * The fork failed while duplicating all the lwps of the parent
694  * and those lwps already created must be freed.
695  * This process is invisible to the rest of the system,
696  * so we don't need to hold p->p_lock to protect the list.
697  */
698 static void
699 forklwp_fail(proc_t *p)
700 {
701 	kthread_t *t;
702 	task_t *tk;
703 
704 	while ((t = p->p_tlist) != NULL) {
705 		/*
706 		 * First remove the lwp from the process's p_tlist.
707 		 */
708 		if (t != t->t_forw)
709 			p->p_tlist = t->t_forw;
710 		else
711 			p->p_tlist = NULL;
712 		p->p_lwpcnt--;
713 		t->t_forw->t_back = t->t_back;
714 		t->t_back->t_forw = t->t_forw;
715 
716 		tk = p->p_task;
717 		mutex_enter(&p->p_zone->zone_nlwps_lock);
718 		tk->tk_nlwps--;
719 		tk->tk_proj->kpj_nlwps--;
720 		p->p_zone->zone_nlwps--;
721 		mutex_exit(&p->p_zone->zone_nlwps_lock);
722 
723 		ASSERT(t->t_schedctl == NULL);
724 
725 		if (t->t_door != NULL) {
726 			kmem_free(t->t_door, sizeof (door_data_t));
727 			t->t_door = NULL;
728 		}
729 		lwp_ctmpl_clear(ttolwp(t));
730 
731 		/*
732 		 * Remove the thread from the all threads list.
733 		 * We need to hold pidlock for this.
734 		 */
735 		mutex_enter(&pidlock);
736 		t->t_next->t_prev = t->t_prev;
737 		t->t_prev->t_next = t->t_next;
738 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
739 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
740 		mutex_exit(&pidlock);
741 
742 		/*
743 		 * Let the lgroup load averages know that this thread isn't
744 		 * going to show up (i.e. un-do what was done on behalf of
745 		 * this thread by the earlier lgrp_move_thread()).
746 		 */
747 		kpreempt_disable();
748 		lgrp_move_thread(t, NULL, 1);
749 		kpreempt_enable();
750 
751 		/*
752 		 * The thread was created TS_STOPPED.
753 		 * We change it to TS_FREE to avoid an
754 		 * ASSERT() panic in thread_free().
755 		 */
756 		t->t_state = TS_FREE;
757 		thread_rele(t);
758 		thread_free(t);
759 	}
760 }
761 
762 extern struct as kas;
763 
764 /*
765  * fork a kernel process.
766  */
767 int
768 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct,
769     pid_t pid)
770 {
771 	proc_t *p;
772 	struct user *up;
773 	kthread_t *t;
774 	cont_process_t *ctp = NULL;
775 	rctl_entity_p_t e;
776 
777 	ASSERT(cid != sysdccid);
778 	ASSERT(cid != syscid || ct == NULL);
779 	if (CLASS_KERNEL(cid)) {
780 		rctl_alloc_gp_t *init_gp;
781 		rctl_set_t *init_set;
782 
783 		ASSERT(pid != 1);
784 
785 		if (getproc(&p, pid, GETPROC_KERNEL) < 0)
786 			return (EAGAIN);
787 
788 		/*
789 		 * Release the hold on the p_exec and p_execdir, these
790 		 * were acquired in getproc()
791 		 */
792 		if (p->p_execdir != NULL)
793 			VN_RELE(p->p_execdir);
794 		if (p->p_exec != NULL)
795 			VN_RELE(p->p_exec);
796 		p->p_flag |= SNOWAIT;
797 		p->p_exec = NULL;
798 		p->p_execdir = NULL;
799 
800 		init_set = rctl_set_create();
801 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
802 
803 		/*
804 		 * kernel processes do not inherit /proc tracing flags.
805 		 */
806 		sigemptyset(&p->p_sigmask);
807 		premptyset(&p->p_fltmask);
808 		up = PTOU(p);
809 		up->u_systrap = 0;
810 		premptyset(&(up->u_entrymask));
811 		premptyset(&(up->u_exitmask));
812 		mutex_enter(&p->p_lock);
813 		e.rcep_p.proc = p;
814 		e.rcep_t = RCENTITY_PROCESS;
815 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
816 		    init_gp);
817 		mutex_exit(&p->p_lock);
818 
819 		rctl_prealloc_destroy(init_gp);
820 
821 		t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri);
822 	} else {
823 		rctl_alloc_gp_t *init_gp, *default_gp;
824 		rctl_set_t *init_set;
825 		task_t *tk, *tk_old;
826 		klwp_t *lwp;
827 
828 		if (getproc(&p, pid, GETPROC_USER) < 0)
829 			return (EAGAIN);
830 		/*
831 		 * init creates a new task, distinct from the task
832 		 * containing kernel "processes".
833 		 */
834 		tk = task_create(0, p->p_zone);
835 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
836 		tk->tk_proj->kpj_ntasks++;
837 		tk->tk_nprocs++;
838 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
839 
840 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
841 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
842 		init_set = rctl_set_create();
843 
844 		mutex_enter(&pidlock);
845 		mutex_enter(&p->p_lock);
846 		tk_old = p->p_task;	/* switch to new task */
847 
848 		task_detach(p);
849 		task_begin(tk, p);
850 		mutex_exit(&pidlock);
851 
852 		mutex_enter(&tk_old->tk_zone->zone_nlwps_lock);
853 		tk_old->tk_nprocs--;
854 		mutex_exit(&tk_old->tk_zone->zone_nlwps_lock);
855 
856 		e.rcep_p.proc = p;
857 		e.rcep_t = RCENTITY_PROCESS;
858 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
859 		    init_gp);
860 		rctlproc_default_init(p, default_gp);
861 		mutex_exit(&p->p_lock);
862 
863 		task_rele(tk_old);
864 		rctl_prealloc_destroy(default_gp);
865 		rctl_prealloc_destroy(init_gp);
866 
867 		if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
868 		    &curthread->t_hold, cid, 1)) == NULL) {
869 			task_t *tk;
870 			fork_fail(p);
871 			mutex_enter(&pidlock);
872 			mutex_enter(&p->p_lock);
873 			tk = p->p_task;
874 			task_detach(p);
875 			ASSERT(p->p_pool->pool_ref > 0);
876 			atomic_add_32(&p->p_pool->pool_ref, -1);
877 			mutex_exit(&p->p_lock);
878 			pid_exit(p, tk);
879 			mutex_exit(&pidlock);
880 			task_rele(tk);
881 
882 			return (EAGAIN);
883 		}
884 		t = lwptot(lwp);
885 
886 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
887 		    B_FALSE);
888 		ASSERT(ctp != NULL);
889 		if (ct != NULL)
890 			*ct = &ctp->conp_contract;
891 	}
892 
893 	ASSERT3U(t->t_tid, ==, 1);
894 	p->p_lwpid = 1;
895 	mutex_enter(&pidlock);
896 	pgjoin(p, p->p_parent->p_pgidp);
897 	p->p_stat = SRUN;
898 	mutex_enter(&p->p_lock);
899 	t->t_proc_flag &= ~TP_HOLDLWP;
900 	lwp_create_done(t);
901 	mutex_exit(&p->p_lock);
902 	mutex_exit(&pidlock);
903 	return (0);
904 }
905 
906 /*
907  * create a child proc struct.
908  */
909 static int
910 getproc(proc_t **cpp, pid_t pid, uint_t flags)
911 {
912 	proc_t		*pp, *cp;
913 	pid_t		newpid;
914 	struct user	*uarea;
915 	extern uint_t	nproc;
916 	struct cred	*cr;
917 	uid_t		ruid;
918 	zoneid_t	zoneid;
919 	task_t		*task;
920 	kproject_t	*proj;
921 	zone_t		*zone;
922 	int		rctlfail = 0;
923 
924 	if (!page_mem_avail(tune.t_minarmem))
925 		return (-1);
926 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
927 		return (-1);	/* no point in starting new processes */
928 
929 	pp = (flags & GETPROC_KERNEL) ? &p0 : curproc;
930 	task = pp->p_task;
931 	proj = task->tk_proj;
932 	zone = pp->p_zone;
933 
934 	mutex_enter(&pp->p_lock);
935 	mutex_enter(&zone->zone_nlwps_lock);
936 	if (proj != proj0p) {
937 		if (task->tk_nprocs >= task->tk_nprocs_ctl)
938 			if (rctl_test(rc_task_nprocs, task->tk_rctls,
939 			    pp, 1, 0) & RCT_DENY)
940 				rctlfail = 1;
941 
942 		if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl)
943 			if (rctl_test(rc_project_nprocs, proj->kpj_rctls,
944 			    pp, 1, 0) & RCT_DENY)
945 				rctlfail = 1;
946 
947 		if (zone->zone_nprocs >= zone->zone_nprocs_ctl)
948 			if (rctl_test(rc_zone_nprocs, zone->zone_rctls,
949 			    pp, 1, 0) & RCT_DENY)
950 				rctlfail = 1;
951 
952 		if (rctlfail) {
953 			mutex_exit(&zone->zone_nlwps_lock);
954 			mutex_exit(&pp->p_lock);
955 			goto punish;
956 		}
957 	}
958 	task->tk_nprocs++;
959 	proj->kpj_nprocs++;
960 	zone->zone_nprocs++;
961 	mutex_exit(&zone->zone_nlwps_lock);
962 	mutex_exit(&pp->p_lock);
963 
964 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
965 	bzero(cp, sizeof (proc_t));
966 
967 	/*
968 	 * Make proc entry for child process
969 	 */
970 	mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
971 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
972 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
973 #if defined(__x86)
974 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
975 #endif
976 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
977 	cp->p_stat = SIDL;
978 	cp->p_mstart = gethrtime();
979 	cp->p_as = &kas;
980 	/*
981 	 * p_zone must be set before we call pid_allocate since the process
982 	 * will be visible after that and code such as prfind_zone will
983 	 * look at the p_zone field.
984 	 */
985 	cp->p_zone = pp->p_zone;
986 	cp->p_t1_lgrpid = LGRP_NONE;
987 	cp->p_tr_lgrpid = LGRP_NONE;
988 
989 	if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) {
990 		if (nproc == v.v_proc) {
991 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
992 			cmn_err(CE_WARN, "out of processes");
993 		}
994 		goto bad;
995 	}
996 
997 	mutex_enter(&pp->p_lock);
998 	cp->p_exec = pp->p_exec;
999 	cp->p_execdir = pp->p_execdir;
1000 	mutex_exit(&pp->p_lock);
1001 
1002 	if (cp->p_exec) {
1003 		VN_HOLD(cp->p_exec);
1004 		/*
1005 		 * Each VOP_OPEN() must be paired with a corresponding
1006 		 * VOP_CLOSE(). In this case, the executable will be
1007 		 * closed for the child in either proc_exit() or gexec().
1008 		 */
1009 		if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) {
1010 			VN_RELE(cp->p_exec);
1011 			cp->p_exec = NULLVP;
1012 			cp->p_execdir = NULLVP;
1013 			goto bad;
1014 		}
1015 	}
1016 	if (cp->p_execdir)
1017 		VN_HOLD(cp->p_execdir);
1018 
1019 	/*
1020 	 * If not privileged make sure that this user hasn't exceeded
1021 	 * v.v_maxup processes, and that users collectively haven't
1022 	 * exceeded v.v_maxupttl processes.
1023 	 */
1024 	mutex_enter(&pidlock);
1025 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
1026 	cr = CRED();
1027 	ruid = crgetruid(cr);
1028 	zoneid = crgetzoneid(cr);
1029 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
1030 	    (nproc >= v.v_maxupttl ||
1031 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
1032 	    secpolicy_newproc(cr) != 0) {
1033 		mutex_exit(&pidlock);
1034 		zcmn_err(zoneid, CE_NOTE,
1035 		    "out of per-user processes for uid %d", ruid);
1036 		goto bad;
1037 	}
1038 
1039 	/*
1040 	 * Everything is cool, put the new proc on the active process list.
1041 	 * It is already on the pid list and in /proc.
1042 	 * Increment the per uid process count (upcount).
1043 	 */
1044 	nproc++;
1045 	upcount_inc(ruid, zoneid);
1046 
1047 	cp->p_next = practive;
1048 	practive->p_prev = cp;
1049 	practive = cp;
1050 
1051 	cp->p_ignore = pp->p_ignore;
1052 	cp->p_siginfo = pp->p_siginfo;
1053 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
1054 	cp->p_sessp = pp->p_sessp;
1055 	sess_hold(pp);
1056 	cp->p_brand = pp->p_brand;
1057 	if (PROC_IS_BRANDED(pp))
1058 		BROP(pp)->b_copy_procdata(cp, pp);
1059 	cp->p_bssbase = pp->p_bssbase;
1060 	cp->p_brkbase = pp->p_brkbase;
1061 	cp->p_brksize = pp->p_brksize;
1062 	cp->p_brkpageszc = pp->p_brkpageszc;
1063 	cp->p_stksize = pp->p_stksize;
1064 	cp->p_stkpageszc = pp->p_stkpageszc;
1065 	cp->p_stkprot = pp->p_stkprot;
1066 	cp->p_datprot = pp->p_datprot;
1067 	cp->p_usrstack = pp->p_usrstack;
1068 	cp->p_model = pp->p_model;
1069 	cp->p_ppid = pp->p_pid;
1070 	cp->p_ancpid = pp->p_pid;
1071 	cp->p_portcnt = pp->p_portcnt;
1072 
1073 	/*
1074 	 * Initialize watchpoint structures
1075 	 */
1076 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
1077 	    offsetof(struct watched_area, wa_link));
1078 
1079 	/*
1080 	 * Initialize immediate resource control values.
1081 	 */
1082 	cp->p_stk_ctl = pp->p_stk_ctl;
1083 	cp->p_fsz_ctl = pp->p_fsz_ctl;
1084 	cp->p_vmem_ctl = pp->p_vmem_ctl;
1085 	cp->p_fno_ctl = pp->p_fno_ctl;
1086 
1087 	/*
1088 	 * Link up to parent-child-sibling chain.  No need to lock
1089 	 * in general since only a call to freeproc() (done by the
1090 	 * same parent as newproc()) diddles with the child chain.
1091 	 */
1092 	cp->p_sibling = pp->p_child;
1093 	if (pp->p_child)
1094 		pp->p_child->p_psibling = cp;
1095 
1096 	cp->p_parent = pp;
1097 	pp->p_child = cp;
1098 
1099 	cp->p_child_ns = NULL;
1100 	cp->p_sibling_ns = NULL;
1101 
1102 	cp->p_nextorph = pp->p_orphan;
1103 	cp->p_nextofkin = pp;
1104 	pp->p_orphan = cp;
1105 
1106 	/*
1107 	 * Inherit profiling state; do not inherit REALPROF profiling state.
1108 	 */
1109 	cp->p_prof = pp->p_prof;
1110 	cp->p_rprof_cyclic = CYCLIC_NONE;
1111 
1112 	/*
1113 	 * Inherit pool pointer from the parent.  Kernel processes are
1114 	 * always bound to the default pool.
1115 	 */
1116 	mutex_enter(&pp->p_lock);
1117 	if (flags & GETPROC_KERNEL) {
1118 		cp->p_pool = pool_default;
1119 		cp->p_flag |= SSYS;
1120 	} else {
1121 		cp->p_pool = pp->p_pool;
1122 	}
1123 	atomic_add_32(&cp->p_pool->pool_ref, 1);
1124 	mutex_exit(&pp->p_lock);
1125 
1126 	/*
1127 	 * Add the child process to the current task.  Kernel processes
1128 	 * are always attached to task0.
1129 	 */
1130 	mutex_enter(&cp->p_lock);
1131 	if (flags & GETPROC_KERNEL)
1132 		task_attach(task0p, cp);
1133 	else
1134 		task_attach(pp->p_task, cp);
1135 	mutex_exit(&cp->p_lock);
1136 	mutex_exit(&pidlock);
1137 
1138 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1139 	    offsetof(contract_t, ct_ctlist));
1140 
1141 	/*
1142 	 * Duplicate any audit information kept in the process table
1143 	 */
1144 	if (audit_active)	/* copy audit data to cp */
1145 		audit_newproc(cp);
1146 
1147 	crhold(cp->p_cred = cr);
1148 
1149 	/*
1150 	 * Bump up the counts on the file structures pointed at by the
1151 	 * parent's file table since the child will point at them too.
1152 	 */
1153 	fcnt_add(P_FINFO(pp), 1);
1154 
1155 	if (PTOU(pp)->u_cdir) {
1156 		VN_HOLD(PTOU(pp)->u_cdir);
1157 	} else {
1158 		ASSERT(pp == &p0);
1159 		/*
1160 		 * We must be at or before vfs_mountroot(); it will take care of
1161 		 * assigning our current directory.
1162 		 */
1163 	}
1164 	if (PTOU(pp)->u_rdir)
1165 		VN_HOLD(PTOU(pp)->u_rdir);
1166 	if (PTOU(pp)->u_cwd)
1167 		refstr_hold(PTOU(pp)->u_cwd);
1168 
1169 	/*
1170 	 * copy the parent's uarea.
1171 	 */
1172 	uarea = PTOU(cp);
1173 	bcopy(PTOU(pp), uarea, sizeof (*uarea));
1174 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1175 
1176 	gethrestime(&uarea->u_start);
1177 	uarea->u_ticks = ddi_get_lbolt();
1178 	uarea->u_mem = rm_asrss(pp->p_as);
1179 	uarea->u_acflag = AFORK;
1180 
1181 	/*
1182 	 * If inherit-on-fork, copy /proc tracing flags to child.
1183 	 */
1184 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1185 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1186 		cp->p_sigmask = pp->p_sigmask;
1187 		cp->p_fltmask = pp->p_fltmask;
1188 	} else {
1189 		sigemptyset(&cp->p_sigmask);
1190 		premptyset(&cp->p_fltmask);
1191 		uarea->u_systrap = 0;
1192 		premptyset(&uarea->u_entrymask);
1193 		premptyset(&uarea->u_exitmask);
1194 	}
1195 	/*
1196 	 * If microstate accounting is being inherited, mark child
1197 	 */
1198 	if ((pp->p_flag & SMSFORK) != 0)
1199 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1200 
1201 	/*
1202 	 * Inherit fixalignment flag from the parent
1203 	 */
1204 	cp->p_fixalignment = pp->p_fixalignment;
1205 
1206 	*cpp = cp;
1207 	return (0);
1208 
1209 bad:
1210 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1211 
1212 	mutex_destroy(&cp->p_crlock);
1213 	mutex_destroy(&cp->p_pflock);
1214 #if defined(__x86)
1215 	mutex_destroy(&cp->p_ldtlock);
1216 #endif
1217 	if (newpid != -1) {
1218 		proc_entry_free(cp->p_pidp);
1219 		(void) pid_rele(cp->p_pidp);
1220 	}
1221 	kmem_cache_free(process_cache, cp);
1222 
1223 	mutex_enter(&zone->zone_nlwps_lock);
1224 	task->tk_nprocs--;
1225 	proj->kpj_nprocs--;
1226 	zone->zone_nprocs--;
1227 	mutex_exit(&zone->zone_nlwps_lock);
1228 
1229 punish:
1230 	/*
1231 	 * We most likely got into this situation because some process is
1232 	 * forking out of control.  As punishment, put it to sleep for a
1233 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1234 	 * to allow no more than one fork failure per cpu per clock tick
1235 	 * on average (yes, I just made this up).  This has two desirable
1236 	 * properties: (1) it sets a constant limit on the fork failure
1237 	 * rate, and (2) the busier the system is, the harsher the penalty
1238 	 * for abusing it becomes.
1239 	 */
1240 	INCR_COUNT(&fork_fail_pending, &pidlock);
1241 	delay(fork_fail_pending / ncpus + 1);
1242 	DECR_COUNT(&fork_fail_pending, &pidlock);
1243 
1244 	return (-1); /* out of memory or proc slots */
1245 }
1246 
1247 /*
1248  * Release virtual memory.
1249  * In the case of vfork(), the child was given exclusive access to its
1250  * parent's address space.  The parent is waiting in vfwait() for the
1251  * child to release its exclusive claim via relvm().
1252  */
1253 void
1254 relvm()
1255 {
1256 	proc_t *p = curproc;
1257 
1258 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1259 
1260 	prrelvm();	/* inform /proc */
1261 
1262 	if (p->p_flag & SVFORK) {
1263 		proc_t *pp = p->p_parent;
1264 		/*
1265 		 * The child process is either exec'ing or exit'ing.
1266 		 * The child is now separated from the parent's address
1267 		 * space.  The parent process is made dispatchable.
1268 		 *
1269 		 * This is a delicate locking maneuver, involving
1270 		 * both the parent's p_lock and the child's p_lock.
1271 		 * As soon as the SVFORK flag is turned off, the
1272 		 * parent is free to run, but it must not run until
1273 		 * we wake it up using its p_cv because it might
1274 		 * exit and we would be referencing invalid memory.
1275 		 * Therefore, we hold the parent with its p_lock
1276 		 * while protecting our p_flags with our own p_lock.
1277 		 */
1278 try_again:
1279 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1280 		prbarrier(p);		/* make sure /proc is blocked out */
1281 		mutex_enter(&pp->p_lock);
1282 
1283 		/*
1284 		 * Check if parent is locked by /proc.
1285 		 */
1286 		if (pp->p_proc_flag & P_PR_LOCK) {
1287 			/*
1288 			 * Delay until /proc is done with the parent.
1289 			 * We must drop our (the child's) p->p_lock, wait
1290 			 * via prbarrier() on the parent, then start over.
1291 			 */
1292 			mutex_exit(&p->p_lock);
1293 			prbarrier(pp);
1294 			mutex_exit(&pp->p_lock);
1295 			goto try_again;
1296 		}
1297 		p->p_flag &= ~SVFORK;
1298 		kpreempt_disable();
1299 		p->p_as = &kas;
1300 
1301 		/*
1302 		 * notify hat of change in thread's address space
1303 		 */
1304 		hat_thread_exit(curthread);
1305 		kpreempt_enable();
1306 
1307 		/*
1308 		 * child sizes are copied back to parent because
1309 		 * child may have grown.
1310 		 */
1311 		pp->p_brkbase = p->p_brkbase;
1312 		pp->p_brksize = p->p_brksize;
1313 		pp->p_stksize = p->p_stksize;
1314 
1315 		/*
1316 		 * Copy back the shm accounting information
1317 		 * to the parent process.
1318 		 */
1319 		pp->p_segacct = p->p_segacct;
1320 		p->p_segacct = NULL;
1321 
1322 		/*
1323 		 * The parent is no longer waiting for the vfork()d child.
1324 		 * Restore the parent's watched pages, if any.  This is
1325 		 * safe because we know the parent is not locked by /proc
1326 		 */
1327 		pp->p_flag &= ~SVFWAIT;
1328 		if (avl_numnodes(&pp->p_wpage) != 0) {
1329 			pp->p_as->a_wpage = pp->p_wpage;
1330 			avl_create(&pp->p_wpage, wp_compare,
1331 			    sizeof (struct watched_page),
1332 			    offsetof(struct watched_page, wp_link));
1333 		}
1334 		cv_signal(&pp->p_cv);
1335 		mutex_exit(&pp->p_lock);
1336 		mutex_exit(&p->p_lock);
1337 	} else {
1338 		if (p->p_as != &kas) {
1339 			struct as *as;
1340 
1341 			if (p->p_segacct)
1342 				shmexit(p);
1343 
1344 			/*
1345 			 * We grab p_lock for the benefit of /proc
1346 			 */
1347 			kpreempt_disable();
1348 			mutex_enter(&p->p_lock);
1349 			prbarrier(p);	/* make sure /proc is blocked out */
1350 			as = p->p_as;
1351 			p->p_as = &kas;
1352 			mutex_exit(&p->p_lock);
1353 
1354 			/*
1355 			 * notify hat of change in thread's address space
1356 			 */
1357 			hat_thread_exit(curthread);
1358 			kpreempt_enable();
1359 
1360 			as_free(as);
1361 			p->p_tr_lgrpid = LGRP_NONE;
1362 		}
1363 	}
1364 }
1365 
1366 /*
1367  * Wait for child to exec or exit.
1368  * Called by parent of vfork'ed process.
1369  * See important comments in relvm(), above.
1370  */
1371 void
1372 vfwait(pid_t pid)
1373 {
1374 	int signalled = 0;
1375 	proc_t *pp = ttoproc(curthread);
1376 	proc_t *cp;
1377 
1378 	/*
1379 	 * Wait for child to exec or exit.
1380 	 */
1381 	for (;;) {
1382 		mutex_enter(&pidlock);
1383 		cp = prfind(pid);
1384 		if (cp == NULL || cp->p_parent != pp) {
1385 			/*
1386 			 * Child has exit()ed.
1387 			 */
1388 			mutex_exit(&pidlock);
1389 			break;
1390 		}
1391 		/*
1392 		 * Grab the child's p_lock before releasing pidlock.
1393 		 * Otherwise, the child could exit and we would be
1394 		 * referencing invalid memory.
1395 		 */
1396 		mutex_enter(&cp->p_lock);
1397 		mutex_exit(&pidlock);
1398 		if (!(cp->p_flag & SVFORK)) {
1399 			/*
1400 			 * Child has exec()ed or is exit()ing.
1401 			 */
1402 			mutex_exit(&cp->p_lock);
1403 			break;
1404 		}
1405 		mutex_enter(&pp->p_lock);
1406 		mutex_exit(&cp->p_lock);
1407 		/*
1408 		 * We might be waked up spuriously from the cv_wait().
1409 		 * We have to do the whole operation over again to be
1410 		 * sure the child's SVFORK flag really is turned off.
1411 		 * We cannot make reference to the child because it can
1412 		 * exit before we return and we would be referencing
1413 		 * invalid memory.
1414 		 *
1415 		 * Because this is potentially a very long-term wait,
1416 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1417 		 * side-effects) unless there is a current signal, in
1418 		 * which case we use cv_wait() because we cannot return
1419 		 * from this function until the child has released the
1420 		 * address space.  Calling cv_wait_sig() with a current
1421 		 * signal would lead to an indefinite loop here because
1422 		 * cv_wait_sig() returns immediately in this case.
1423 		 */
1424 		if (signalled)
1425 			cv_wait(&pp->p_cv, &pp->p_lock);
1426 		else
1427 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1428 		mutex_exit(&pp->p_lock);
1429 	}
1430 
1431 	/* restore watchpoints to parent */
1432 	if (pr_watch_active(pp)) {
1433 		struct as *as = pp->p_as;
1434 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1435 		as_setwatch(as);
1436 		AS_LOCK_EXIT(as, &as->a_lock);
1437 	}
1438 
1439 	mutex_enter(&pp->p_lock);
1440 	prbarrier(pp);	/* barrier against /proc locking */
1441 	continuelwps(pp);
1442 	mutex_exit(&pp->p_lock);
1443 }
1444