1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Fault Management Architecture (FMA) Resource and Protocol Support 30 * 31 * The routines contained herein provide services to support kernel subsystems 32 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089). 33 * 34 * Name-Value Pair Lists 35 * 36 * The embodiment of an FMA protocol element (event, fmri or authority) is a 37 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and 38 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used 39 * to create an nvpair list using custom allocators. Callers may choose to 40 * allocate either from the kernel memory allocator, or from a preallocated 41 * buffer, useful in constrained contexts like high-level interrupt routines. 42 * 43 * Protocol Event and FMRI Construction 44 * 45 * Convenience routines are provided to construct nvlist events according to 46 * the FMA Event Protocol and Naming Schema specification for ereports and 47 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes. 48 * 49 * ENA Manipulation 50 * 51 * Routines to generate ENA formats 0, 1 and 2 are available as well as 52 * routines to increment formats 1 and 2. Individual fields within the 53 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(), 54 * fm_ena_format_get() and fm_ena_gen_get(). 55 */ 56 57 #include <sys/types.h> 58 #include <sys/time.h> 59 #include <sys/sysevent.h> 60 #include <sys/sysevent_impl.h> 61 #include <sys/nvpair.h> 62 #include <sys/cmn_err.h> 63 #include <sys/cpuvar.h> 64 #include <sys/sysmacros.h> 65 #include <sys/systm.h> 66 #include <sys/ddifm.h> 67 #include <sys/ddifm_impl.h> 68 #include <sys/spl.h> 69 #include <sys/dumphdr.h> 70 #include <sys/compress.h> 71 #include <sys/cpuvar.h> 72 #include <sys/console.h> 73 #include <sys/panic.h> 74 #include <sys/kobj.h> 75 #include <sys/sunddi.h> 76 #include <sys/systeminfo.h> 77 #include <sys/sysevent/eventdefs.h> 78 #include <sys/fm/util.h> 79 #include <sys/fm/protocol.h> 80 81 /* 82 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These 83 * values must be kept in sync with the FMA source code in usr/src/cmd/fm. 84 */ 85 static const char *fm_url = "http://www.sun.com/msg"; 86 static const char *fm_msgid = "SUNOS-8000-0G"; 87 static char *volatile fm_panicstr = NULL; 88 89 errorq_t *ereport_errorq; 90 void *ereport_dumpbuf; 91 size_t ereport_dumplen; 92 93 static uint_t ereport_chanlen = ERPT_EVCH_MAX; 94 static evchan_t *ereport_chan = NULL; 95 static ulong_t ereport_qlen = 0; 96 static size_t ereport_size = 0; 97 static int ereport_cols = 80; 98 99 /* 100 * Common fault management kstats to record ereport generation 101 * failures 102 */ 103 104 struct erpt_kstat { 105 kstat_named_t erpt_dropped; /* num erpts dropped on post */ 106 kstat_named_t erpt_set_failed; /* num erpt set failures */ 107 kstat_named_t fmri_set_failed; /* num fmri set failures */ 108 kstat_named_t payload_set_failed; /* num payload set failures */ 109 }; 110 111 static struct erpt_kstat erpt_kstat_data = { 112 { "erpt-dropped", KSTAT_DATA_UINT64 }, 113 { "erpt-set-failed", KSTAT_DATA_UINT64 }, 114 { "fmri-set-failed", KSTAT_DATA_UINT64 }, 115 { "payload-set-failed", KSTAT_DATA_UINT64 } 116 }; 117 118 /*ARGSUSED*/ 119 static void 120 fm_drain(void *private, void *data, errorq_elem_t *eep) 121 { 122 nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep); 123 124 if (!panicstr) 125 (void) fm_ereport_post(nvl, EVCH_TRYHARD); 126 else 127 fm_nvprint(nvl); 128 } 129 130 void 131 fm_init(void) 132 { 133 kstat_t *ksp; 134 135 (void) sysevent_evc_bind(FM_ERROR_CHAN, 136 &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND); 137 138 (void) sysevent_evc_control(ereport_chan, 139 EVCH_SET_CHAN_LEN, &ereport_chanlen); 140 141 if (ereport_qlen == 0) 142 ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4); 143 144 if (ereport_size == 0) 145 ereport_size = ERPT_DATA_SZ; 146 147 ereport_errorq = errorq_nvcreate("fm_ereport_queue", 148 (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size, 149 FM_ERR_PIL, ERRORQ_VITAL); 150 if (ereport_errorq == NULL) 151 panic("failed to create required ereport error queue"); 152 153 ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP); 154 ereport_dumplen = ereport_size; 155 156 /* Initialize ereport allocation and generation kstats */ 157 ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED, 158 sizeof (struct erpt_kstat) / sizeof (kstat_named_t), 159 KSTAT_FLAG_VIRTUAL); 160 161 if (ksp != NULL) { 162 ksp->ks_data = &erpt_kstat_data; 163 kstat_install(ksp); 164 } else { 165 cmn_err(CE_NOTE, "failed to create fm/misc kstat\n"); 166 167 } 168 } 169 170 /* 171 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of 172 * output so they aren't split across console lines, and return the end column. 173 */ 174 /*PRINTFLIKE4*/ 175 static int 176 fm_printf(int depth, int c, int cols, const char *format, ...) 177 { 178 va_list ap; 179 int width; 180 char c1; 181 182 va_start(ap, format); 183 width = vsnprintf(&c1, sizeof (c1), format, ap); 184 va_end(ap); 185 186 if (c + width >= cols) { 187 console_printf("\n\r"); 188 c = 0; 189 if (format[0] != ' ' && depth > 0) { 190 console_printf(" "); 191 c++; 192 } 193 } 194 195 va_start(ap, format); 196 console_vprintf(format, ap); 197 va_end(ap); 198 199 return ((c + width) % cols); 200 } 201 202 /* 203 * Recursively print a nvlist in the specified column width and return the 204 * column we end up in. This function is called recursively by fm_nvprint(), 205 * below. We generically format the entire nvpair using hexadecimal 206 * integers and strings, and elide any integer arrays. Arrays are basically 207 * used for cache dumps right now, so we suppress them so as not to overwhelm 208 * the amount of console output we produce at panic time. This can be further 209 * enhanced as FMA technology grows based upon the needs of consumers. All 210 * FMA telemetry is logged using the dump device transport, so the console 211 * output serves only as a fallback in case this procedure is unsuccessful. 212 */ 213 static int 214 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols) 215 { 216 nvpair_t *nvp; 217 218 for (nvp = nvlist_next_nvpair(nvl, NULL); 219 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) { 220 221 data_type_t type = nvpair_type(nvp); 222 const char *name = nvpair_name(nvp); 223 224 boolean_t b; 225 uint8_t i8; 226 uint16_t i16; 227 uint32_t i32; 228 uint64_t i64; 229 char *str; 230 nvlist_t *cnv; 231 232 if (strcmp(name, FM_CLASS) == 0) 233 continue; /* already printed by caller */ 234 235 c = fm_printf(d, c, cols, " %s=", name); 236 237 switch (type) { 238 case DATA_TYPE_BOOLEAN: 239 c = fm_printf(d + 1, c, cols, " 1"); 240 break; 241 242 case DATA_TYPE_BOOLEAN_VALUE: 243 (void) nvpair_value_boolean_value(nvp, &b); 244 c = fm_printf(d + 1, c, cols, b ? "1" : "0"); 245 break; 246 247 case DATA_TYPE_BYTE: 248 (void) nvpair_value_byte(nvp, &i8); 249 c = fm_printf(d + 1, c, cols, "%x", i8); 250 break; 251 252 case DATA_TYPE_INT8: 253 (void) nvpair_value_int8(nvp, (void *)&i8); 254 c = fm_printf(d + 1, c, cols, "%x", i8); 255 break; 256 257 case DATA_TYPE_UINT8: 258 (void) nvpair_value_uint8(nvp, &i8); 259 c = fm_printf(d + 1, c, cols, "%x", i8); 260 break; 261 262 case DATA_TYPE_INT16: 263 (void) nvpair_value_int16(nvp, (void *)&i16); 264 c = fm_printf(d + 1, c, cols, "%x", i16); 265 break; 266 267 case DATA_TYPE_UINT16: 268 (void) nvpair_value_uint16(nvp, &i16); 269 c = fm_printf(d + 1, c, cols, "%x", i16); 270 break; 271 272 case DATA_TYPE_INT32: 273 (void) nvpair_value_int32(nvp, (void *)&i32); 274 c = fm_printf(d + 1, c, cols, "%x", i32); 275 break; 276 277 case DATA_TYPE_UINT32: 278 (void) nvpair_value_uint32(nvp, &i32); 279 c = fm_printf(d + 1, c, cols, "%x", i32); 280 break; 281 282 case DATA_TYPE_INT64: 283 (void) nvpair_value_int64(nvp, (void *)&i64); 284 c = fm_printf(d + 1, c, cols, "%llx", 285 (u_longlong_t)i64); 286 break; 287 288 case DATA_TYPE_UINT64: 289 (void) nvpair_value_uint64(nvp, &i64); 290 c = fm_printf(d + 1, c, cols, "%llx", 291 (u_longlong_t)i64); 292 break; 293 294 case DATA_TYPE_HRTIME: 295 (void) nvpair_value_hrtime(nvp, (void *)&i64); 296 c = fm_printf(d + 1, c, cols, "%llx", 297 (u_longlong_t)i64); 298 break; 299 300 case DATA_TYPE_STRING: 301 (void) nvpair_value_string(nvp, &str); 302 c = fm_printf(d + 1, c, cols, "\"%s\"", 303 str ? str : "<NULL>"); 304 break; 305 306 case DATA_TYPE_NVLIST: 307 c = fm_printf(d + 1, c, cols, "["); 308 (void) nvpair_value_nvlist(nvp, &cnv); 309 c = fm_nvprintr(cnv, d + 1, c, cols); 310 c = fm_printf(d + 1, c, cols, " ]"); 311 break; 312 313 case DATA_TYPE_BOOLEAN_ARRAY: 314 case DATA_TYPE_BYTE_ARRAY: 315 case DATA_TYPE_INT8_ARRAY: 316 case DATA_TYPE_UINT8_ARRAY: 317 case DATA_TYPE_INT16_ARRAY: 318 case DATA_TYPE_UINT16_ARRAY: 319 case DATA_TYPE_INT32_ARRAY: 320 case DATA_TYPE_UINT32_ARRAY: 321 case DATA_TYPE_INT64_ARRAY: 322 case DATA_TYPE_UINT64_ARRAY: 323 case DATA_TYPE_STRING_ARRAY: 324 case DATA_TYPE_NVLIST_ARRAY: 325 c = fm_printf(d + 1, c, cols, "[...]"); 326 break; 327 case DATA_TYPE_UNKNOWN: 328 c = fm_printf(d + 1, c, cols, "<unknown>"); 329 break; 330 } 331 } 332 333 return (c); 334 } 335 336 void 337 fm_nvprint(nvlist_t *nvl) 338 { 339 char *class; 340 int c = 0; 341 342 console_printf("\r"); 343 344 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0) 345 c = fm_printf(0, c, ereport_cols, "%s", class); 346 347 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0) 348 console_printf("\n"); 349 350 console_printf("\n"); 351 } 352 353 /* 354 * Wrapper for panic() that first produces an FMA-style message for admins. 355 * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this 356 * is the one exception to that rule and the only error that gets messaged. 357 * This function is intended for use by subsystems that have detected a fatal 358 * error and enqueued appropriate ereports and wish to then force a panic. 359 */ 360 /*PRINTFLIKE1*/ 361 void 362 fm_panic(const char *format, ...) 363 { 364 va_list ap; 365 366 (void) casptr((void *)&fm_panicstr, NULL, (void *)format); 367 va_start(ap, format); 368 vpanic(format, ap); 369 va_end(ap); 370 } 371 372 /* 373 * Print any appropriate FMA banner message before the panic message. This 374 * function is called by panicsys() and prints the message for fm_panic(). 375 * We print the message here so that it comes after the system is quiesced. 376 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix). 377 * The rest of the message is for the console only and not needed in the log, 378 * so it is printed using console_printf(). We break it up into multiple 379 * chunks so as to avoid overflowing any small legacy prom_printf() buffers. 380 */ 381 void 382 fm_banner(void) 383 { 384 timespec_t tod; 385 hrtime_t now; 386 387 if (!fm_panicstr) 388 return; /* panic was not initiated by fm_panic(); do nothing */ 389 390 if (panicstr) { 391 tod = panic_hrestime; 392 now = panic_hrtime; 393 } else { 394 gethrestime(&tod); 395 now = gethrtime_waitfree(); 396 } 397 398 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, " 399 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid); 400 401 console_printf( 402 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n" 403 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n", 404 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now); 405 406 console_printf( 407 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n" 408 "SOURCE: %s, REV: %s %s\n", 409 platform, utsname.nodename, utsname.sysname, 410 utsname.release, utsname.version); 411 412 console_printf( 413 "DESC: Errors have been detected that require a reboot to ensure system\n" 414 "integrity. See %s/%s for more information.\n", 415 fm_url, fm_msgid); 416 417 console_printf( 418 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n" 419 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n" 420 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n"); 421 422 console_printf("\n"); 423 } 424 425 /* 426 * Utility function to write all of the pending ereports to the dump device. 427 * This function is called at either normal reboot or panic time, and simply 428 * iterates over the in-transit messages in the ereport sysevent channel. 429 */ 430 void 431 fm_ereport_dump(void) 432 { 433 evchanq_t *chq; 434 sysevent_t *sep; 435 erpt_dump_t ed; 436 437 timespec_t tod; 438 hrtime_t now; 439 char *buf; 440 size_t len; 441 442 if (panicstr) { 443 tod = panic_hrestime; 444 now = panic_hrtime; 445 } else { 446 if (ereport_errorq != NULL) 447 errorq_drain(ereport_errorq); 448 gethrestime(&tod); 449 now = gethrtime_waitfree(); 450 } 451 452 /* 453 * In the panic case, sysevent_evc_walk_init() will return NULL. 454 */ 455 if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL && 456 !panicstr) 457 return; /* event channel isn't initialized yet */ 458 459 while ((sep = sysevent_evc_walk_step(chq)) != NULL) { 460 if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL) 461 break; 462 463 ed.ed_magic = ERPT_MAGIC; 464 ed.ed_chksum = checksum32(buf, len); 465 ed.ed_size = (uint32_t)len; 466 ed.ed_pad = 0; 467 ed.ed_hrt_nsec = SE_TIME(sep); 468 ed.ed_hrt_base = now; 469 ed.ed_tod_base.sec = tod.tv_sec; 470 ed.ed_tod_base.nsec = tod.tv_nsec; 471 472 dumpvp_write(&ed, sizeof (ed)); 473 dumpvp_write(buf, len); 474 } 475 476 sysevent_evc_walk_fini(chq); 477 } 478 479 /* 480 * Post an error report (ereport) to the sysevent error channel. The error 481 * channel must be established with a prior call to sysevent_evc_create() 482 * before publication may occur. 483 */ 484 void 485 fm_ereport_post(nvlist_t *ereport, int evc_flag) 486 { 487 size_t nvl_size = 0; 488 evchan_t *error_chan; 489 490 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE); 491 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) { 492 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 493 return; 494 } 495 496 if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan, 497 EVCH_CREAT|EVCH_HOLD_PEND) != 0) { 498 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 499 return; 500 } 501 502 if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR, 503 SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) { 504 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 505 sysevent_evc_unbind(error_chan); 506 return; 507 } 508 sysevent_evc_unbind(error_chan); 509 } 510 511 /* 512 * Wrapppers for FM nvlist allocators 513 */ 514 /* ARGSUSED */ 515 static void * 516 i_fm_alloc(nv_alloc_t *nva, size_t size) 517 { 518 return (kmem_zalloc(size, KM_SLEEP)); 519 } 520 521 /* ARGSUSED */ 522 static void 523 i_fm_free(nv_alloc_t *nva, void *buf, size_t size) 524 { 525 kmem_free(buf, size); 526 } 527 528 const nv_alloc_ops_t fm_mem_alloc_ops = { 529 NULL, 530 NULL, 531 i_fm_alloc, 532 i_fm_free, 533 NULL 534 }; 535 536 /* 537 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer 538 * to the newly allocated nv_alloc_t structure is returned upon success or NULL 539 * is returned to indicate that the nv_alloc structure could not be created. 540 */ 541 nv_alloc_t * 542 fm_nva_xcreate(char *buf, size_t bufsz) 543 { 544 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 545 546 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) { 547 kmem_free(nvhdl, sizeof (nv_alloc_t)); 548 return (NULL); 549 } 550 551 return (nvhdl); 552 } 553 554 /* 555 * Destroy a previously allocated nv_alloc structure. The fixed buffer 556 * associated with nva must be freed by the caller. 557 */ 558 void 559 fm_nva_xdestroy(nv_alloc_t *nva) 560 { 561 nv_alloc_fini(nva); 562 kmem_free(nva, sizeof (nv_alloc_t)); 563 } 564 565 /* 566 * Create a new nv list. A pointer to a new nv list structure is returned 567 * upon success or NULL is returned to indicate that the structure could 568 * not be created. The newly created nv list is created and managed by the 569 * operations installed in nva. If nva is NULL, the default FMA nva 570 * operations are installed and used. 571 * 572 * When called from the kernel and nva == NULL, this function must be called 573 * from passive kernel context with no locks held that can prevent a 574 * sleeping memory allocation from occurring. Otherwise, this function may 575 * be called from other kernel contexts as long a valid nva created via 576 * fm_nva_create() is supplied. 577 */ 578 nvlist_t * 579 fm_nvlist_create(nv_alloc_t *nva) 580 { 581 int hdl_alloced = 0; 582 nvlist_t *nvl; 583 nv_alloc_t *nvhdl; 584 585 if (nva == NULL) { 586 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 587 588 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) { 589 kmem_free(nvhdl, sizeof (nv_alloc_t)); 590 return (NULL); 591 } 592 hdl_alloced = 1; 593 } else { 594 nvhdl = nva; 595 } 596 597 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) { 598 if (hdl_alloced) { 599 kmem_free(nvhdl, sizeof (nv_alloc_t)); 600 nv_alloc_fini(nvhdl); 601 } 602 return (NULL); 603 } 604 605 return (nvl); 606 } 607 608 /* 609 * Destroy a previously allocated nvlist structure. flag indicates whether 610 * or not the associated nva structure should be freed (FM_NVA_FREE) or 611 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows 612 * it to be re-used for future nvlist creation operations. 613 */ 614 void 615 fm_nvlist_destroy(nvlist_t *nvl, int flag) 616 { 617 nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl); 618 619 nvlist_free(nvl); 620 621 if (nva != NULL) { 622 if (flag == FM_NVA_FREE) 623 fm_nva_xdestroy(nva); 624 } 625 } 626 627 int 628 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap) 629 { 630 int nelem, ret = 0; 631 data_type_t type; 632 633 while (ret == 0 && name != NULL) { 634 type = va_arg(ap, data_type_t); 635 switch (type) { 636 case DATA_TYPE_BYTE: 637 ret = nvlist_add_byte(payload, name, 638 va_arg(ap, uint_t)); 639 break; 640 case DATA_TYPE_BYTE_ARRAY: 641 nelem = va_arg(ap, int); 642 ret = nvlist_add_byte_array(payload, name, 643 va_arg(ap, uchar_t *), nelem); 644 break; 645 case DATA_TYPE_BOOLEAN_VALUE: 646 ret = nvlist_add_boolean_value(payload, name, 647 va_arg(ap, boolean_t)); 648 break; 649 case DATA_TYPE_BOOLEAN_ARRAY: 650 nelem = va_arg(ap, int); 651 ret = nvlist_add_boolean_array(payload, name, 652 va_arg(ap, boolean_t *), nelem); 653 break; 654 case DATA_TYPE_INT8: 655 ret = nvlist_add_int8(payload, name, 656 va_arg(ap, int)); 657 break; 658 case DATA_TYPE_INT8_ARRAY: 659 nelem = va_arg(ap, int); 660 ret = nvlist_add_int8_array(payload, name, 661 va_arg(ap, int8_t *), nelem); 662 break; 663 case DATA_TYPE_UINT8: 664 ret = nvlist_add_uint8(payload, name, 665 va_arg(ap, uint_t)); 666 break; 667 case DATA_TYPE_UINT8_ARRAY: 668 nelem = va_arg(ap, int); 669 ret = nvlist_add_uint8_array(payload, name, 670 va_arg(ap, uint8_t *), nelem); 671 break; 672 case DATA_TYPE_INT16: 673 ret = nvlist_add_int16(payload, name, 674 va_arg(ap, int)); 675 break; 676 case DATA_TYPE_INT16_ARRAY: 677 nelem = va_arg(ap, int); 678 ret = nvlist_add_int16_array(payload, name, 679 va_arg(ap, int16_t *), nelem); 680 break; 681 case DATA_TYPE_UINT16: 682 ret = nvlist_add_uint16(payload, name, 683 va_arg(ap, uint_t)); 684 break; 685 case DATA_TYPE_UINT16_ARRAY: 686 nelem = va_arg(ap, int); 687 ret = nvlist_add_uint16_array(payload, name, 688 va_arg(ap, uint16_t *), nelem); 689 break; 690 case DATA_TYPE_INT32: 691 ret = nvlist_add_int32(payload, name, 692 va_arg(ap, int32_t)); 693 break; 694 case DATA_TYPE_INT32_ARRAY: 695 nelem = va_arg(ap, int); 696 ret = nvlist_add_int32_array(payload, name, 697 va_arg(ap, int32_t *), nelem); 698 break; 699 case DATA_TYPE_UINT32: 700 ret = nvlist_add_uint32(payload, name, 701 va_arg(ap, uint32_t)); 702 break; 703 case DATA_TYPE_UINT32_ARRAY: 704 nelem = va_arg(ap, int); 705 ret = nvlist_add_uint32_array(payload, name, 706 va_arg(ap, uint32_t *), nelem); 707 break; 708 case DATA_TYPE_INT64: 709 ret = nvlist_add_int64(payload, name, 710 va_arg(ap, int64_t)); 711 break; 712 case DATA_TYPE_INT64_ARRAY: 713 nelem = va_arg(ap, int); 714 ret = nvlist_add_int64_array(payload, name, 715 va_arg(ap, int64_t *), nelem); 716 break; 717 case DATA_TYPE_UINT64: 718 ret = nvlist_add_uint64(payload, name, 719 va_arg(ap, uint64_t)); 720 break; 721 case DATA_TYPE_UINT64_ARRAY: 722 nelem = va_arg(ap, int); 723 ret = nvlist_add_uint64_array(payload, name, 724 va_arg(ap, uint64_t *), nelem); 725 break; 726 case DATA_TYPE_STRING: 727 ret = nvlist_add_string(payload, name, 728 va_arg(ap, char *)); 729 break; 730 case DATA_TYPE_STRING_ARRAY: 731 nelem = va_arg(ap, int); 732 ret = nvlist_add_string_array(payload, name, 733 va_arg(ap, char **), nelem); 734 break; 735 case DATA_TYPE_NVLIST: 736 ret = nvlist_add_nvlist(payload, name, 737 va_arg(ap, nvlist_t *)); 738 break; 739 case DATA_TYPE_NVLIST_ARRAY: 740 nelem = va_arg(ap, int); 741 ret = nvlist_add_nvlist_array(payload, name, 742 va_arg(ap, nvlist_t **), nelem); 743 break; 744 default: 745 ret = EINVAL; 746 } 747 748 name = va_arg(ap, char *); 749 } 750 return (ret); 751 } 752 753 void 754 fm_payload_set(nvlist_t *payload, ...) 755 { 756 int ret; 757 const char *name; 758 va_list ap; 759 760 va_start(ap, payload); 761 name = va_arg(ap, char *); 762 ret = i_fm_payload_set(payload, name, ap); 763 va_end(ap); 764 765 if (ret) 766 atomic_add_64( 767 &erpt_kstat_data.payload_set_failed.value.ui64, 1); 768 } 769 770 /* 771 * Set-up and validate the members of an ereport event according to: 772 * 773 * Member name Type Value 774 * ==================================================== 775 * class string ereport 776 * version uint8_t 0 777 * ena uint64_t <ena> 778 * detector nvlist_t <detector> 779 * ereport-payload nvlist_t <var args> 780 * 781 */ 782 void 783 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class, 784 uint64_t ena, const nvlist_t *detector, ...) 785 { 786 char ereport_class[FM_MAX_CLASS]; 787 const char *name; 788 va_list ap; 789 int ret; 790 791 if (version != FM_EREPORT_VERS0) { 792 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 793 return; 794 } 795 796 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s", 797 FM_EREPORT_CLASS, erpt_class); 798 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) { 799 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 800 return; 801 } 802 803 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) { 804 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 805 } 806 807 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR, 808 (nvlist_t *)detector) != 0) { 809 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 810 } 811 812 va_start(ap, detector); 813 name = va_arg(ap, const char *); 814 ret = i_fm_payload_set(ereport, name, ap); 815 va_end(ap); 816 817 if (ret) 818 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 819 } 820 821 /* 822 * Set-up and validate the members of an hc fmri according to; 823 * 824 * Member name Type Value 825 * =================================================== 826 * version uint8_t 0 827 * auth nvlist_t <auth> 828 * hc-name string <name> 829 * hc-id string <id> 830 * 831 * Note that auth and hc-id are optional members. 832 */ 833 834 #define HC_MAXPAIRS 20 835 #define HC_MAXNAMELEN 50 836 837 static int 838 fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth) 839 { 840 if (version != FM_HC_SCHEME_VERSION) { 841 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 842 return (0); 843 } 844 845 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 || 846 nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) { 847 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 848 return (0); 849 } 850 851 if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY, 852 (nvlist_t *)auth) != 0) { 853 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 854 return (0); 855 } 856 857 return (1); 858 } 859 860 void 861 fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth, 862 nvlist_t *snvl, int npairs, ...) 863 { 864 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri); 865 nvlist_t *pairs[HC_MAXPAIRS]; 866 va_list ap; 867 int i; 868 869 if (!fm_fmri_hc_set_common(fmri, version, auth)) 870 return; 871 872 npairs = MIN(npairs, HC_MAXPAIRS); 873 874 va_start(ap, npairs); 875 for (i = 0; i < npairs; i++) { 876 const char *name = va_arg(ap, const char *); 877 uint32_t id = va_arg(ap, uint32_t); 878 char idstr[11]; 879 880 (void) snprintf(idstr, sizeof (idstr), "%u", id); 881 882 pairs[i] = fm_nvlist_create(nva); 883 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 || 884 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) { 885 atomic_add_64( 886 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 887 } 888 } 889 va_end(ap); 890 891 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0) 892 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 893 894 for (i = 0; i < npairs; i++) 895 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN); 896 897 if (snvl != NULL) { 898 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) { 899 atomic_add_64( 900 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 901 } 902 } 903 } 904 905 /* 906 * Set-up and validate the members of an dev fmri according to: 907 * 908 * Member name Type Value 909 * ==================================================== 910 * version uint8_t 0 911 * auth nvlist_t <auth> 912 * devpath string <devpath> 913 * devid string <devid> 914 * 915 * Note that auth and devid are optional members. 916 */ 917 void 918 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth, 919 const char *devpath, const char *devid) 920 { 921 if (version != DEV_SCHEME_VERSION0) { 922 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 923 return; 924 } 925 926 if (nvlist_add_uint8(fmri_dev, FM_VERSION, version) != 0) { 927 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 928 return; 929 } 930 931 if (nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, 932 FM_FMRI_SCHEME_DEV) != 0) { 933 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 934 return; 935 } 936 937 if (auth != NULL) { 938 if (nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY, 939 (nvlist_t *)auth) != 0) { 940 atomic_add_64( 941 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 942 } 943 } 944 945 if (nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath) != 0) { 946 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 947 } 948 949 if (devid != NULL) 950 if (nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid) != 0) 951 atomic_add_64( 952 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 953 } 954 955 /* 956 * Set-up and validate the members of an cpu fmri according to: 957 * 958 * Member name Type Value 959 * ==================================================== 960 * version uint8_t 0 961 * auth nvlist_t <auth> 962 * cpuid uint32_t <cpu_id> 963 * cpumask uint8_t <cpu_mask> 964 * serial uint64_t <serial_id> 965 * 966 * Note that auth, cpumask, serial are optional members. 967 * 968 */ 969 void 970 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth, 971 uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp) 972 { 973 uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64; 974 975 if (version < CPU_SCHEME_VERSION1) { 976 atomic_add_64(failedp, 1); 977 return; 978 } 979 980 if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) { 981 atomic_add_64(failedp, 1); 982 return; 983 } 984 985 if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME, 986 FM_FMRI_SCHEME_CPU) != 0) { 987 atomic_add_64(failedp, 1); 988 return; 989 } 990 991 if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY, 992 (nvlist_t *)auth) != 0) 993 atomic_add_64(failedp, 1); 994 995 if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0) 996 atomic_add_64(failedp, 1); 997 998 if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK, 999 *cpu_maskp) != 0) 1000 atomic_add_64(failedp, 1); 1001 1002 if (serial_idp == NULL || nvlist_add_string(fmri_cpu, 1003 FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0) 1004 atomic_add_64(failedp, 1); 1005 } 1006 1007 /* 1008 * Set-up and validate the members of a mem according to: 1009 * 1010 * Member name Type Value 1011 * ==================================================== 1012 * version uint8_t 0 1013 * auth nvlist_t <auth> [optional] 1014 * unum string <unum> 1015 * serial string <serial> [optional*] 1016 * offset uint64_t <offset> [optional] 1017 * 1018 * * serial is required if offset is present 1019 */ 1020 void 1021 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth, 1022 const char *unum, const char *serial, uint64_t offset) 1023 { 1024 if (version != MEM_SCHEME_VERSION0) { 1025 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1026 return; 1027 } 1028 1029 if (!serial && (offset != (uint64_t)-1)) { 1030 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1031 return; 1032 } 1033 1034 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) { 1035 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1036 return; 1037 } 1038 1039 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) { 1040 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1041 return; 1042 } 1043 1044 if (auth != NULL) { 1045 if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY, 1046 (nvlist_t *)auth) != 0) { 1047 atomic_add_64( 1048 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1049 } 1050 } 1051 1052 if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) { 1053 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1054 } 1055 1056 if (serial != NULL) { 1057 if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID, 1058 (char **)&serial, 1) != 0) { 1059 atomic_add_64( 1060 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1061 } 1062 if (offset != (uint64_t)-1) { 1063 if (nvlist_add_uint64(fmri, FM_FMRI_MEM_OFFSET, 1064 offset) != 0) { 1065 atomic_add_64(&erpt_kstat_data. 1066 fmri_set_failed.value.ui64, 1); 1067 } 1068 } 1069 } 1070 } 1071 1072 void 1073 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid, 1074 uint64_t vdev_guid) 1075 { 1076 if (version != ZFS_SCHEME_VERSION0) { 1077 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1078 return; 1079 } 1080 1081 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) { 1082 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1083 return; 1084 } 1085 1086 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) { 1087 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1088 return; 1089 } 1090 1091 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) { 1092 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1093 } 1094 1095 if (vdev_guid != 0) { 1096 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) { 1097 atomic_add_64( 1098 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1099 } 1100 } 1101 } 1102 1103 uint64_t 1104 fm_ena_increment(uint64_t ena) 1105 { 1106 uint64_t new_ena; 1107 1108 switch (ENA_FORMAT(ena)) { 1109 case FM_ENA_FMT1: 1110 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT); 1111 break; 1112 case FM_ENA_FMT2: 1113 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT); 1114 break; 1115 default: 1116 new_ena = 0; 1117 } 1118 1119 return (new_ena); 1120 } 1121 1122 uint64_t 1123 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format) 1124 { 1125 uint64_t ena = 0; 1126 1127 switch (format) { 1128 case FM_ENA_FMT1: 1129 if (timestamp) { 1130 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1131 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1132 ENA_FMT1_CPUID_MASK) | 1133 ((timestamp << ENA_FMT1_TIME_SHFT) & 1134 ENA_FMT1_TIME_MASK)); 1135 } else { 1136 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1137 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1138 ENA_FMT1_CPUID_MASK) | 1139 ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) & 1140 ENA_FMT1_TIME_MASK)); 1141 } 1142 break; 1143 case FM_ENA_FMT2: 1144 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1145 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK)); 1146 break; 1147 default: 1148 break; 1149 } 1150 1151 return (ena); 1152 } 1153 1154 uint64_t 1155 fm_ena_generate(uint64_t timestamp, uchar_t format) 1156 { 1157 return (fm_ena_generate_cpu(timestamp, CPU->cpu_id, format)); 1158 } 1159 1160 uint64_t 1161 fm_ena_generation_get(uint64_t ena) 1162 { 1163 uint64_t gen; 1164 1165 switch (ENA_FORMAT(ena)) { 1166 case FM_ENA_FMT1: 1167 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT; 1168 break; 1169 case FM_ENA_FMT2: 1170 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT; 1171 break; 1172 default: 1173 gen = 0; 1174 break; 1175 } 1176 1177 return (gen); 1178 } 1179 1180 uchar_t 1181 fm_ena_format_get(uint64_t ena) 1182 { 1183 1184 return (ENA_FORMAT(ena)); 1185 } 1186 1187 uint64_t 1188 fm_ena_id_get(uint64_t ena) 1189 { 1190 uint64_t id; 1191 1192 switch (ENA_FORMAT(ena)) { 1193 case FM_ENA_FMT1: 1194 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT; 1195 break; 1196 case FM_ENA_FMT2: 1197 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT; 1198 break; 1199 default: 1200 id = 0; 1201 } 1202 1203 return (id); 1204 } 1205 1206 uint64_t 1207 fm_ena_time_get(uint64_t ena) 1208 { 1209 uint64_t time; 1210 1211 switch (ENA_FORMAT(ena)) { 1212 case FM_ENA_FMT1: 1213 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT; 1214 break; 1215 case FM_ENA_FMT2: 1216 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT; 1217 break; 1218 default: 1219 time = 0; 1220 } 1221 1222 return (time); 1223 } 1224 1225 /* 1226 * Convert a getpcstack() trace to symbolic name+offset, and add the resulting 1227 * string array to a Fault Management ereport as FM_EREPORT_PAYLOAD_NAME_STACK. 1228 */ 1229 void 1230 fm_payload_stack_add(nvlist_t *payload, const pc_t *stack, int depth) 1231 { 1232 int i; 1233 char *sym; 1234 ulong_t off; 1235 char *stkpp[FM_STK_DEPTH]; 1236 char buf[FM_STK_DEPTH * FM_SYM_SZ]; 1237 char *stkp = buf; 1238 1239 for (i = 0; i < depth && i != FM_STK_DEPTH; i++, stkp += FM_SYM_SZ) { 1240 if ((sym = kobj_getsymname(stack[i], &off)) != NULL) 1241 (void) snprintf(stkp, FM_SYM_SZ, "%s+%lx", sym, off); 1242 else 1243 (void) snprintf(stkp, FM_SYM_SZ, "%lx", (long)stack[i]); 1244 stkpp[i] = stkp; 1245 } 1246 1247 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_STACK, 1248 DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL); 1249 } 1250