1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Fault Management Architecture (FMA) Resource and Protocol Support 31 * 32 * The routines contained herein provide services to support kernel subsystems 33 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089). 34 * 35 * Name-Value Pair Lists 36 * 37 * The embodiment of an FMA protocol element (event, fmri or authority) is a 38 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and 39 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used 40 * to create an nvpair list using custom allocators. Callers may choose to 41 * allocate either from the kernel memory allocator, or from a preallocated 42 * buffer, useful in constrained contexts like high-level interrupt routines. 43 * 44 * Protocol Event and FMRI Construction 45 * 46 * Convenience routines are provided to construct nvlist events according to 47 * the FMA Event Protocol and Naming Schema specification for ereports and 48 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes. 49 * 50 * ENA Manipulation 51 * 52 * Routines to generate ENA formats 0, 1 and 2 are available as well as 53 * routines to increment formats 1 and 2. Individual fields within the 54 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(), 55 * fm_ena_format_get() and fm_ena_gen_get(). 56 */ 57 58 #include <sys/types.h> 59 #include <sys/time.h> 60 #include <sys/sysevent.h> 61 #include <sys/sysevent_impl.h> 62 #include <sys/nvpair.h> 63 #include <sys/nvpair_impl.h> 64 #include <sys/cmn_err.h> 65 #include <sys/cpuvar.h> 66 #include <sys/sysmacros.h> 67 #include <sys/systm.h> 68 #include <sys/ddifm.h> 69 #include <sys/ddifm_impl.h> 70 #include <sys/spl.h> 71 #include <sys/dumphdr.h> 72 #include <sys/compress.h> 73 #include <sys/cpuvar.h> 74 #include <sys/console.h> 75 #include <sys/panic.h> 76 #include <sys/systeminfo.h> 77 #include <sys/sysevent/eventdefs.h> 78 #include <sys/fm/util.h> 79 #include <sys/fm/protocol.h> 80 81 /* 82 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These 83 * values must be kept in sync with the FMA source code in usr/src/cmd/fm. 84 */ 85 static const char *fm_url = "http://www.sun.com/msg"; 86 static const char *fm_msgid = "SUNOS-8000-0G"; 87 static char *volatile fm_panicstr = NULL; 88 89 errorq_t *ereport_errorq; 90 void *ereport_dumpbuf; 91 size_t ereport_dumplen; 92 93 static uint_t ereport_chanlen = ERPT_EVCH_MAX; 94 static evchan_t *ereport_chan = NULL; 95 static ulong_t ereport_qlen = 0; 96 static size_t ereport_size = 0; 97 static int ereport_cols = 80; 98 99 /* 100 * Common fault management kstats to record ereport generation 101 * failures 102 */ 103 104 struct erpt_kstat { 105 kstat_named_t erpt_dropped; /* num erpts dropped on post */ 106 kstat_named_t erpt_set_failed; /* num erpt set failures */ 107 kstat_named_t fmri_set_failed; /* num fmri set failures */ 108 kstat_named_t payload_set_failed; /* num payload set failures */ 109 }; 110 111 static struct erpt_kstat erpt_kstat_data = { 112 { "erpt-dropped", KSTAT_DATA_UINT64 }, 113 { "erpt-set-failed", KSTAT_DATA_UINT64 }, 114 { "fmri-set-failed", KSTAT_DATA_UINT64 }, 115 { "payload-set-failed", KSTAT_DATA_UINT64 } 116 }; 117 118 /*ARGSUSED*/ 119 static void 120 fm_drain(void *private, void *data, errorq_elem_t *eep) 121 { 122 nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep); 123 124 if (!panicstr) 125 (void) fm_ereport_post(nvl, EVCH_TRYHARD); 126 else 127 fm_nvprint(nvl); 128 } 129 130 void 131 fm_init(void) 132 { 133 kstat_t *ksp; 134 135 (void) sysevent_evc_bind(FM_ERROR_CHAN, 136 &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND); 137 138 (void) sysevent_evc_control(ereport_chan, 139 EVCH_SET_CHAN_LEN, &ereport_chanlen); 140 141 if (ereport_qlen == 0) 142 ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4); 143 144 if (ereport_size == 0) 145 ereport_size = ERPT_DATA_SZ; 146 147 ereport_errorq = errorq_nvcreate("fm_ereport_queue", 148 (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size, 149 FM_ERR_PIL, ERRORQ_VITAL); 150 if (ereport_errorq == NULL) 151 panic("failed to create required ereport error queue"); 152 153 ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP); 154 ereport_dumplen = ereport_size; 155 156 /* Initialize ereport allocation and generation kstats */ 157 ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED, 158 sizeof (struct erpt_kstat) / sizeof (kstat_named_t), 159 KSTAT_FLAG_VIRTUAL); 160 161 if (ksp != NULL) { 162 ksp->ks_data = &erpt_kstat_data; 163 kstat_install(ksp); 164 } else { 165 cmn_err(CE_NOTE, "failed to create fm/misc kstat\n"); 166 167 } 168 } 169 170 /* 171 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of 172 * output so they aren't split across console lines, and return the end column. 173 */ 174 /*PRINTFLIKE4*/ 175 static int 176 fm_printf(int depth, int c, int cols, const char *format, ...) 177 { 178 va_list ap; 179 int width; 180 char c1; 181 182 va_start(ap, format); 183 width = vsnprintf(&c1, sizeof (c1), format, ap); 184 va_end(ap); 185 186 if (c + width >= cols) { 187 console_printf("\n\r"); 188 c = 0; 189 if (format[0] != ' ' && depth > 0) { 190 console_printf(" "); 191 c++; 192 } 193 } 194 195 va_start(ap, format); 196 console_vprintf(format, ap); 197 va_end(ap); 198 199 return ((c + width) % cols); 200 } 201 202 /* 203 * Recursively print a nvlist in the specified column width and return the 204 * column we end up in. This function is called recursively by fm_nvprint(), 205 * below. We generically format the entire nvpair using hexadecimal 206 * integers and strings, and elide any integer arrays. Arrays are basically 207 * used for cache dumps right now, so we suppress them so as not to overwhelm 208 * the amount of console output we produce at panic time. This can be further 209 * enhanced as FMA technology grows based upon the needs of consumers. All 210 * FMA telemetry is logged using the dump device transport, so the console 211 * output serves only as a fallback in case this procedure is unsuccessful. 212 */ 213 static int 214 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols) 215 { 216 nvpair_t *nvp; 217 218 for (nvp = nvlist_next_nvpair(nvl, NULL); 219 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) { 220 221 data_type_t type = nvpair_type(nvp); 222 const char *name = nvpair_name(nvp); 223 224 boolean_t b; 225 uint8_t i8; 226 uint16_t i16; 227 uint32_t i32; 228 uint64_t i64; 229 char *str; 230 nvlist_t *cnv; 231 232 if (strcmp(name, FM_CLASS) == 0) 233 continue; /* already printed by caller */ 234 235 c = fm_printf(d, c, cols, " %s=", name); 236 237 switch (type) { 238 case DATA_TYPE_BOOLEAN: 239 c = fm_printf(d + 1, c, cols, " 1"); 240 break; 241 242 case DATA_TYPE_BOOLEAN_VALUE: 243 (void) nvpair_value_boolean_value(nvp, &b); 244 c = fm_printf(d + 1, c, cols, b ? "1" : "0"); 245 break; 246 247 case DATA_TYPE_BYTE: 248 (void) nvpair_value_byte(nvp, &i8); 249 c = fm_printf(d + 1, c, cols, "%x", i8); 250 break; 251 252 case DATA_TYPE_INT8: 253 (void) nvpair_value_int8(nvp, (void *)&i8); 254 c = fm_printf(d + 1, c, cols, "%x", i8); 255 break; 256 257 case DATA_TYPE_UINT8: 258 (void) nvpair_value_uint8(nvp, &i8); 259 c = fm_printf(d + 1, c, cols, "%x", i8); 260 break; 261 262 case DATA_TYPE_INT16: 263 (void) nvpair_value_int16(nvp, (void *)&i16); 264 c = fm_printf(d + 1, c, cols, "%x", i16); 265 break; 266 267 case DATA_TYPE_UINT16: 268 (void) nvpair_value_uint16(nvp, &i16); 269 c = fm_printf(d + 1, c, cols, "%x", i16); 270 break; 271 272 case DATA_TYPE_INT32: 273 (void) nvpair_value_int32(nvp, (void *)&i32); 274 c = fm_printf(d + 1, c, cols, "%x", i32); 275 break; 276 277 case DATA_TYPE_UINT32: 278 (void) nvpair_value_uint32(nvp, &i32); 279 c = fm_printf(d + 1, c, cols, "%x", i32); 280 break; 281 282 case DATA_TYPE_INT64: 283 (void) nvpair_value_int64(nvp, (void *)&i64); 284 c = fm_printf(d + 1, c, cols, "%llx", 285 (u_longlong_t)i64); 286 break; 287 288 case DATA_TYPE_UINT64: 289 (void) nvpair_value_uint64(nvp, &i64); 290 c = fm_printf(d + 1, c, cols, "%llx", 291 (u_longlong_t)i64); 292 break; 293 294 case DATA_TYPE_HRTIME: 295 (void) nvpair_value_hrtime(nvp, (void *)&i64); 296 c = fm_printf(d + 1, c, cols, "%llx", 297 (u_longlong_t)i64); 298 break; 299 300 case DATA_TYPE_STRING: 301 (void) nvpair_value_string(nvp, &str); 302 c = fm_printf(d + 1, c, cols, "\"%s\"", 303 str ? str : "<NULL>"); 304 break; 305 306 case DATA_TYPE_NVLIST: 307 c = fm_printf(d + 1, c, cols, "["); 308 (void) nvpair_value_nvlist(nvp, &cnv); 309 c = fm_nvprintr(cnv, d + 1, c, cols); 310 c = fm_printf(d + 1, c, cols, " ]"); 311 break; 312 313 case DATA_TYPE_BOOLEAN_ARRAY: 314 case DATA_TYPE_BYTE_ARRAY: 315 case DATA_TYPE_INT8_ARRAY: 316 case DATA_TYPE_UINT8_ARRAY: 317 case DATA_TYPE_INT16_ARRAY: 318 case DATA_TYPE_UINT16_ARRAY: 319 case DATA_TYPE_INT32_ARRAY: 320 case DATA_TYPE_UINT32_ARRAY: 321 case DATA_TYPE_INT64_ARRAY: 322 case DATA_TYPE_UINT64_ARRAY: 323 case DATA_TYPE_STRING_ARRAY: 324 case DATA_TYPE_NVLIST_ARRAY: 325 c = fm_printf(d + 1, c, cols, "[...]"); 326 break; 327 case DATA_TYPE_UNKNOWN: 328 c = fm_printf(d + 1, c, cols, "<unknown>"); 329 break; 330 } 331 } 332 333 return (c); 334 } 335 336 void 337 fm_nvprint(nvlist_t *nvl) 338 { 339 char *class; 340 int c = 0; 341 342 console_printf("\r"); 343 344 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0) 345 c = fm_printf(0, c, ereport_cols, "%s", class); 346 347 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0) 348 console_printf("\n"); 349 350 console_printf("\n"); 351 } 352 353 /* 354 * Wrapper for panic() that first produces an FMA-style message for admins. 355 * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this 356 * is the one exception to that rule and the only error that gets messaged. 357 * This function is intended for use by subsystems that have detected a fatal 358 * error and enqueued appropriate ereports and wish to then force a panic. 359 */ 360 /*PRINTFLIKE1*/ 361 void 362 fm_panic(const char *format, ...) 363 { 364 va_list ap; 365 366 (void) casptr((void *)&fm_panicstr, NULL, (void *)format); 367 va_start(ap, format); 368 vpanic(format, ap); 369 va_end(ap); 370 } 371 372 /* 373 * Print any appropriate FMA banner message before the panic message. This 374 * function is called by panicsys() and prints the message for fm_panic(). 375 * We print the message here so that it comes after the system is quiesced. 376 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix). 377 * The rest of the message is for the console only and not needed in the log, 378 * so it is printed using console_printf(). We break it up into multiple 379 * chunks so as to avoid overflowing any small legacy prom_printf() buffers. 380 */ 381 void 382 fm_banner(void) 383 { 384 timespec_t tod; 385 hrtime_t now; 386 387 if (!fm_panicstr) 388 return; /* panic was not initiated by fm_panic(); do nothing */ 389 390 if (panicstr) { 391 tod = panic_hrestime; 392 now = panic_hrtime; 393 } else { 394 gethrestime(&tod); 395 now = gethrtime_waitfree(); 396 } 397 398 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, " 399 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid); 400 401 console_printf( 402 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n" 403 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n", 404 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now); 405 406 console_printf( 407 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n" 408 "SOURCE: %s, REV: %s %s\n", 409 platform, utsname.nodename, utsname.sysname, 410 utsname.release, utsname.version); 411 412 console_printf( 413 "DESC: Errors have been detected that require a reboot to ensure system\n" 414 "integrity. See %s/%s for more information.\n", 415 fm_url, fm_msgid); 416 417 console_printf( 418 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n" 419 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n" 420 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n"); 421 422 console_printf("\n"); 423 } 424 425 /* 426 * Utility function to write all of the pending ereports to the dump device. 427 * This function is called at either normal reboot or panic time, and simply 428 * iterates over the in-transit messages in the ereport sysevent channel. 429 */ 430 void 431 fm_ereport_dump(void) 432 { 433 evchanq_t *chq; 434 sysevent_t *sep; 435 erpt_dump_t ed; 436 437 timespec_t tod; 438 hrtime_t now; 439 char *buf; 440 size_t len; 441 442 if (panicstr) { 443 tod = panic_hrestime; 444 now = panic_hrtime; 445 } else { 446 if (ereport_errorq != NULL) 447 errorq_drain(ereport_errorq); 448 gethrestime(&tod); 449 now = gethrtime_waitfree(); 450 } 451 452 /* 453 * In the panic case, sysevent_evc_walk_init() will return NULL. 454 */ 455 if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL && 456 !panicstr) 457 return; /* event channel isn't initialized yet */ 458 459 while ((sep = sysevent_evc_walk_step(chq)) != NULL) { 460 if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL) 461 break; 462 463 ed.ed_magic = ERPT_MAGIC; 464 ed.ed_chksum = checksum32(buf, len); 465 ed.ed_size = (uint32_t)len; 466 ed.ed_pad = 0; 467 ed.ed_hrt_nsec = SE_TIME(sep); 468 ed.ed_hrt_base = now; 469 ed.ed_tod_base.sec = tod.tv_sec; 470 ed.ed_tod_base.nsec = tod.tv_nsec; 471 472 dumpvp_write(&ed, sizeof (ed)); 473 dumpvp_write(buf, len); 474 } 475 476 sysevent_evc_walk_fini(chq); 477 } 478 479 /* 480 * Post an error report (ereport) to the sysevent error channel. The error 481 * channel must be established with a prior call to sysevent_evc_create() 482 * before publication may occur. 483 */ 484 void 485 fm_ereport_post(nvlist_t *ereport, int evc_flag) 486 { 487 size_t nvl_size = 0; 488 evchan_t *error_chan; 489 490 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE); 491 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) { 492 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 493 return; 494 } 495 496 if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan, 497 EVCH_CREAT|EVCH_HOLD_PEND) != 0) { 498 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 499 return; 500 } 501 502 if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR, 503 SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) { 504 atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1); 505 sysevent_evc_unbind(error_chan); 506 return; 507 } 508 sysevent_evc_unbind(error_chan); 509 } 510 511 /* 512 * Wrapppers for FM nvlist allocators 513 */ 514 /* ARGSUSED */ 515 static void * 516 i_fm_alloc(nv_alloc_t *nva, size_t size) 517 { 518 return (kmem_zalloc(size, KM_SLEEP)); 519 } 520 521 /* ARGSUSED */ 522 static void 523 i_fm_free(nv_alloc_t *nva, void *buf, size_t size) 524 { 525 kmem_free(buf, size); 526 } 527 528 const nv_alloc_ops_t fm_mem_alloc_ops = { 529 NULL, 530 NULL, 531 i_fm_alloc, 532 i_fm_free, 533 NULL 534 }; 535 536 /* 537 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer 538 * to the newly allocated nv_alloc_t structure is returned upon success or NULL 539 * is returned to indicate that the nv_alloc structure could not be created. 540 */ 541 nv_alloc_t * 542 fm_nva_xcreate(char *buf, size_t bufsz) 543 { 544 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 545 546 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) { 547 kmem_free(nvhdl, sizeof (nv_alloc_t)); 548 return (NULL); 549 } 550 551 return (nvhdl); 552 } 553 554 /* 555 * Destroy a previously allocated nv_alloc structure. The fixed buffer 556 * associated with nva must be freed by the caller. 557 */ 558 void 559 fm_nva_xdestroy(nv_alloc_t *nva) 560 { 561 nv_alloc_fini(nva); 562 kmem_free(nva, sizeof (nv_alloc_t)); 563 } 564 565 /* 566 * Create a new nv list. A pointer to a new nv list structure is returned 567 * upon success or NULL is returned to indicate that the structure could 568 * not be created. The newly created nv list is created and managed by the 569 * operations installed in nva. If nva is NULL, the default FMA nva 570 * operations are installed and used. 571 * 572 * When called from the kernel and nva == NULL, this function must be called 573 * from passive kernel context with no locks held that can prevent a 574 * sleeping memory allocation from occurring. Otherwise, this function may 575 * be called from other kernel contexts as long a valid nva created via 576 * fm_nva_create() is supplied. 577 */ 578 nvlist_t * 579 fm_nvlist_create(nv_alloc_t *nva) 580 { 581 int hdl_alloced = 0; 582 nvlist_t *nvl; 583 nv_alloc_t *nvhdl; 584 585 if (nva == NULL) { 586 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 587 588 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) { 589 kmem_free(nvhdl, sizeof (nv_alloc_t)); 590 return (NULL); 591 } 592 hdl_alloced = 1; 593 } else { 594 nvhdl = nva; 595 } 596 597 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) { 598 if (hdl_alloced) { 599 kmem_free(nvhdl, sizeof (nv_alloc_t)); 600 nv_alloc_fini(nvhdl); 601 } 602 return (NULL); 603 } 604 605 return (nvl); 606 } 607 608 /* 609 * Destroy a previously allocated nvlist structure. flag indicates whether 610 * or not the associated nva structure should be freed (FM_NVA_FREE) or 611 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows 612 * it to be re-used for future nvlist creation operations. 613 */ 614 void 615 fm_nvlist_destroy(nvlist_t *nvl, int flag) 616 { 617 nv_alloc_t *nvhdl; 618 619 nvhdl = ((nvpriv_t *)(uintptr_t)nvl->nvl_priv)->nvp_nva; 620 621 nvlist_free(nvl); 622 623 if (nvhdl != NULL) { 624 if (flag == FM_NVA_FREE) 625 fm_nva_xdestroy(nvhdl); 626 } 627 } 628 629 int 630 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap) 631 { 632 int nelem, ret = 0; 633 data_type_t type; 634 635 while (ret == 0 && name != NULL) { 636 type = va_arg(ap, data_type_t); 637 switch (type) { 638 case DATA_TYPE_BYTE: 639 ret = nvlist_add_byte(payload, name, 640 va_arg(ap, uint_t)); 641 break; 642 case DATA_TYPE_BYTE_ARRAY: 643 nelem = va_arg(ap, int); 644 ret = nvlist_add_byte_array(payload, name, 645 va_arg(ap, uchar_t *), nelem); 646 break; 647 case DATA_TYPE_BOOLEAN_VALUE: 648 ret = nvlist_add_boolean_value(payload, name, 649 va_arg(ap, boolean_t)); 650 break; 651 case DATA_TYPE_BOOLEAN_ARRAY: 652 nelem = va_arg(ap, int); 653 ret = nvlist_add_boolean_array(payload, name, 654 va_arg(ap, boolean_t *), nelem); 655 break; 656 case DATA_TYPE_INT8: 657 ret = nvlist_add_int8(payload, name, 658 va_arg(ap, int)); 659 break; 660 case DATA_TYPE_INT8_ARRAY: 661 nelem = va_arg(ap, int); 662 ret = nvlist_add_int8_array(payload, name, 663 va_arg(ap, int8_t *), nelem); 664 break; 665 case DATA_TYPE_UINT8: 666 ret = nvlist_add_uint8(payload, name, 667 va_arg(ap, uint_t)); 668 break; 669 case DATA_TYPE_UINT8_ARRAY: 670 nelem = va_arg(ap, int); 671 ret = nvlist_add_uint8_array(payload, name, 672 va_arg(ap, uint8_t *), nelem); 673 break; 674 case DATA_TYPE_INT16: 675 ret = nvlist_add_int16(payload, name, 676 va_arg(ap, int)); 677 break; 678 case DATA_TYPE_INT16_ARRAY: 679 nelem = va_arg(ap, int); 680 ret = nvlist_add_int16_array(payload, name, 681 va_arg(ap, int16_t *), nelem); 682 break; 683 case DATA_TYPE_UINT16: 684 ret = nvlist_add_uint16(payload, name, 685 va_arg(ap, uint_t)); 686 break; 687 case DATA_TYPE_UINT16_ARRAY: 688 nelem = va_arg(ap, int); 689 ret = nvlist_add_uint16_array(payload, name, 690 va_arg(ap, uint16_t *), nelem); 691 break; 692 case DATA_TYPE_INT32: 693 ret = nvlist_add_int32(payload, name, 694 va_arg(ap, int32_t)); 695 break; 696 case DATA_TYPE_INT32_ARRAY: 697 nelem = va_arg(ap, int); 698 ret = nvlist_add_int32_array(payload, name, 699 va_arg(ap, int32_t *), nelem); 700 break; 701 case DATA_TYPE_UINT32: 702 ret = nvlist_add_uint32(payload, name, 703 va_arg(ap, uint32_t)); 704 break; 705 case DATA_TYPE_UINT32_ARRAY: 706 nelem = va_arg(ap, int); 707 ret = nvlist_add_uint32_array(payload, name, 708 va_arg(ap, uint32_t *), nelem); 709 break; 710 case DATA_TYPE_INT64: 711 ret = nvlist_add_int64(payload, name, 712 va_arg(ap, int64_t)); 713 break; 714 case DATA_TYPE_INT64_ARRAY: 715 nelem = va_arg(ap, int); 716 ret = nvlist_add_int64_array(payload, name, 717 va_arg(ap, int64_t *), nelem); 718 break; 719 case DATA_TYPE_UINT64: 720 ret = nvlist_add_uint64(payload, name, 721 va_arg(ap, uint64_t)); 722 break; 723 case DATA_TYPE_UINT64_ARRAY: 724 nelem = va_arg(ap, int); 725 ret = nvlist_add_uint64_array(payload, name, 726 va_arg(ap, uint64_t *), nelem); 727 break; 728 case DATA_TYPE_STRING: 729 ret = nvlist_add_string(payload, name, 730 va_arg(ap, char *)); 731 break; 732 case DATA_TYPE_STRING_ARRAY: 733 nelem = va_arg(ap, int); 734 ret = nvlist_add_string_array(payload, name, 735 va_arg(ap, char **), nelem); 736 break; 737 case DATA_TYPE_NVLIST: 738 ret = nvlist_add_nvlist(payload, name, 739 va_arg(ap, nvlist_t *)); 740 break; 741 case DATA_TYPE_NVLIST_ARRAY: 742 nelem = va_arg(ap, int); 743 ret = nvlist_add_nvlist_array(payload, name, 744 va_arg(ap, nvlist_t **), nelem); 745 break; 746 default: 747 ret = EINVAL; 748 } 749 750 name = va_arg(ap, char *); 751 } 752 return (ret); 753 } 754 755 void 756 fm_payload_set(nvlist_t *payload, ...) 757 { 758 int ret; 759 const char *name; 760 va_list ap; 761 762 va_start(ap, payload); 763 name = va_arg(ap, char *); 764 ret = i_fm_payload_set(payload, name, ap); 765 va_end(ap); 766 767 if (ret) 768 atomic_add_64( 769 &erpt_kstat_data.payload_set_failed.value.ui64, 1); 770 } 771 772 /* 773 * Set-up and validate the members of an ereport event according to: 774 * 775 * Member name Type Value 776 * ==================================================== 777 * class string ereport 778 * version uint8_t 0 779 * ena uint64_t <ena> 780 * detector nvlist_t <detector> 781 * ereport-payload nvlist_t <var args> 782 * 783 */ 784 void 785 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class, 786 uint64_t ena, const nvlist_t *detector, ...) 787 { 788 char ereport_class[FM_MAX_CLASS]; 789 const char *name; 790 va_list ap; 791 int ret; 792 793 if (version != FM_EREPORT_VERS0) { 794 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 795 return; 796 } 797 798 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s", 799 FM_EREPORT_CLASS, erpt_class); 800 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) { 801 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 802 return; 803 } 804 805 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) { 806 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 807 } 808 809 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR, 810 (nvlist_t *)detector) != 0) { 811 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 812 } 813 814 va_start(ap, detector); 815 name = va_arg(ap, const char *); 816 ret = i_fm_payload_set(ereport, name, ap); 817 va_end(ap); 818 819 if (ret) 820 atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1); 821 } 822 823 static int 824 i_fm_fmri_hc_set_v0(nvlist_t *hc, uint32_t size, va_list ap) 825 { 826 int i, ret; 827 const char *name, *id; 828 nvlist_t **hc_nvl; 829 830 if (size <= 0) 831 return (0); 832 833 hc_nvl = kmem_zalloc(size * sizeof (nvlist_t *), KM_SLEEP); 834 835 for (i = 0; i < size; ++i) { 836 name = va_arg(ap, const char *); 837 if (name == NULL) { 838 ret = EINVAL; 839 goto fail; 840 } 841 id = va_arg(ap, const char *); 842 if ((hc_nvl[i] = fm_nvlist_create( 843 ((nvpriv_t *)(uintptr_t)hc->nvl_priv)->nvp_nva)) == NULL) { 844 ret = ENOMEM; 845 goto fail; 846 } 847 if ((ret = nvlist_add_string(hc_nvl[i], FM_FMRI_HC_NAME, 848 name)) != 0) 849 goto fail; 850 if ((ret = nvlist_add_string(hc_nvl[i], FM_FMRI_HC_ID, 851 id)) != 0) 852 goto fail; 853 } 854 855 if ((ret = nvlist_add_nvlist_array(hc, FM_FMRI_HC_LIST, hc_nvl, 856 size)) != 0) 857 goto fail; 858 859 kmem_free(hc_nvl, size * sizeof (nvlist_t *)); 860 return (0); 861 862 fail: 863 for (i = 0; i < size; ++i) { 864 if (hc_nvl[i] != NULL) 865 fm_nvlist_destroy(hc_nvl[i], FM_NVA_RETAIN); 866 } 867 868 kmem_free(hc_nvl, size * sizeof (nvlist_t *)); 869 return (ret); 870 } 871 872 /* 873 * Set-up and validate the members of an dev fmri according to: 874 * 875 * Member name Type Value 876 * ==================================================== 877 * version uint8_t 0 878 * auth nvlist_t <auth> 879 * devpath string <devpath> 880 * devid string <devid> 881 * 882 * Note that auth and devid are optional members. 883 */ 884 void 885 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth, 886 const char *devpath, const char *devid) 887 { 888 if (version != DEV_SCHEME_VERSION0) { 889 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 890 return; 891 } 892 893 if (nvlist_add_uint8(fmri_dev, FM_VERSION, version) != 0) { 894 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 895 return; 896 } 897 898 if (nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, 899 FM_FMRI_SCHEME_DEV) != 0) { 900 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 901 return; 902 } 903 904 if (auth != NULL) { 905 if (nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY, 906 (nvlist_t *)auth) != 0) { 907 atomic_add_64( 908 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 909 } 910 } 911 912 if (nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath) != 0) { 913 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 914 } 915 916 if (devid != NULL) 917 if (nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid) != 0) 918 atomic_add_64( 919 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 920 } 921 922 /* 923 * Set-up and validate the members of an cpu fmri according to: 924 * 925 * Member name Type Value 926 * ==================================================== 927 * version uint8_t 0 928 * auth nvlist_t <auth> 929 * cpuid uint32_t <cpu_id> 930 * cpumask uint8_t <cpu_mask> 931 * serial uint64_t <serial_id> 932 * 933 * Note that auth is an optional member. 934 * 935 */ 936 void 937 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth, 938 uint32_t cpu_id, uint8_t cpu_mask, uint64_t serial_id) 939 { 940 if (version != CPU_SCHEME_VERSION0) { 941 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 942 return; 943 } 944 945 if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) { 946 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 947 return; 948 } 949 950 if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME, 951 FM_FMRI_SCHEME_CPU) != 0) { 952 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 953 return; 954 } 955 956 if (auth != NULL) 957 if (nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY, 958 (nvlist_t *)auth) != 0) { 959 atomic_add_64( 960 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 961 } 962 963 if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0) { 964 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 965 } 966 967 if (nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK, cpu_mask) != 0) { 968 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 969 } 970 971 if (nvlist_add_uint64(fmri_cpu, FM_FMRI_CPU_SERIAL_ID, serial_id) 972 != 0) 973 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 974 } 975 976 /* 977 * Set-up and validate the members of a mem according to: 978 * 979 * Member name Type Value 980 * ==================================================== 981 * version uint8_t 0 982 * auth nvlist_t <auth> [optional] 983 * unum string <unum> 984 * serial string <serial> [optional*] 985 * offset uint64_t <offset> [optional] 986 * 987 * * serial is required if offset is present 988 */ 989 void 990 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth, 991 const char *unum, const char *serial, uint64_t offset) 992 { 993 if (version != MEM_SCHEME_VERSION0) { 994 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 995 return; 996 } 997 998 if (!serial && (offset != (uint64_t)-1)) { 999 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1000 return; 1001 } 1002 1003 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) { 1004 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1005 return; 1006 } 1007 1008 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) { 1009 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1010 return; 1011 } 1012 1013 if (auth != NULL) { 1014 if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY, 1015 (nvlist_t *)auth) != 0) { 1016 atomic_add_64( 1017 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1018 } 1019 } 1020 1021 if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) { 1022 atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1023 } 1024 1025 if (serial != NULL) { 1026 if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID, 1027 (char **)&serial, 1) != 0) { 1028 atomic_add_64( 1029 &erpt_kstat_data.fmri_set_failed.value.ui64, 1); 1030 } 1031 if (offset != (uint64_t)-1) { 1032 if (nvlist_add_uint64(fmri, FM_FMRI_MEM_OFFSET, 1033 offset) != 0) { 1034 atomic_add_64(&erpt_kstat_data. 1035 fmri_set_failed.value.ui64, 1); 1036 } 1037 } 1038 } 1039 } 1040 1041 uint64_t 1042 fm_ena_increment(uint64_t ena) 1043 { 1044 uint64_t new_ena; 1045 1046 switch (ENA_FORMAT(ena)) { 1047 case FM_ENA_FMT1: 1048 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT); 1049 break; 1050 case FM_ENA_FMT2: 1051 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT); 1052 break; 1053 default: 1054 new_ena = 0; 1055 } 1056 1057 return (new_ena); 1058 } 1059 1060 uint64_t 1061 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format) 1062 { 1063 uint64_t ena = 0; 1064 1065 switch (format) { 1066 case FM_ENA_FMT1: 1067 if (timestamp) { 1068 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1069 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1070 ENA_FMT1_CPUID_MASK) | 1071 ((timestamp << ENA_FMT1_TIME_SHFT) & 1072 ENA_FMT1_TIME_MASK)); 1073 } else { 1074 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1075 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1076 ENA_FMT1_CPUID_MASK) | 1077 ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) & 1078 ENA_FMT1_TIME_MASK)); 1079 } 1080 break; 1081 case FM_ENA_FMT2: 1082 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1083 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK)); 1084 break; 1085 default: 1086 break; 1087 } 1088 1089 return (ena); 1090 } 1091 1092 uint64_t 1093 fm_ena_generate(uint64_t timestamp, uchar_t format) 1094 { 1095 return (fm_ena_generate_cpu(timestamp, CPU->cpu_id, format)); 1096 } 1097 1098 uint64_t 1099 fm_ena_generation_get(uint64_t ena) 1100 { 1101 uint64_t gen; 1102 1103 switch (ENA_FORMAT(ena)) { 1104 case FM_ENA_FMT1: 1105 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT; 1106 break; 1107 case FM_ENA_FMT2: 1108 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT; 1109 break; 1110 default: 1111 gen = 0; 1112 break; 1113 } 1114 1115 return (gen); 1116 } 1117 1118 uchar_t 1119 fm_ena_format_get(uint64_t ena) 1120 { 1121 1122 return (ENA_FORMAT(ena)); 1123 } 1124 1125 uint64_t 1126 fm_ena_id_get(uint64_t ena) 1127 { 1128 uint64_t id; 1129 1130 switch (ENA_FORMAT(ena)) { 1131 case FM_ENA_FMT1: 1132 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT; 1133 break; 1134 case FM_ENA_FMT2: 1135 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT; 1136 break; 1137 default: 1138 id = 0; 1139 } 1140 1141 return (id); 1142 } 1143 1144 uint64_t 1145 fm_ena_time_get(uint64_t ena) 1146 { 1147 uint64_t time; 1148 1149 switch (ENA_FORMAT(ena)) { 1150 case FM_ENA_FMT1: 1151 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT; 1152 break; 1153 case FM_ENA_FMT2: 1154 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT; 1155 break; 1156 default: 1157 time = 0; 1158 } 1159 1160 return (time); 1161 } 1162