1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/conf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/file.h> 45 #include <sys/proc.h> 46 #include <sys/var.h> 47 #include <sys/cpuvar.h> 48 #include <sys/open.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/prsystm.h> 53 #include <sys/debug.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 #include <sys/fcntl.h> 57 #include <sys/poll.h> 58 #include <sys/rctl.h> 59 #include <sys/port_impl.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_add_32(&x, 1) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 static int vpsetattr(vnode_t *, vattr_t *, int); 82 83 static void port_close_fd(portfd_t *); 84 85 /* 86 * File descriptor allocation. 87 * 88 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 89 * The most common case is open(2), in which minfd = 0, but we must also 90 * support fcntl(fd, F_DUPFD, minfd). 91 * 92 * The algorithm is as follows: we keep all file descriptors in an infix 93 * binary tree in which each node records the number of descriptors 94 * allocated in its right subtree, including itself. Starting at minfd, 95 * we ascend the tree until we find a non-fully allocated right subtree. 96 * We then descend that subtree in a binary search for the smallest fd. 97 * Finally, we ascend the tree again to increment the allocation count 98 * of every subtree containing the newly-allocated fd. Freeing an fd 99 * requires only the last step: we ascend the tree to decrement allocation 100 * counts. Each of these three steps (ascent to find non-full subtree, 101 * descent to find lowest fd, ascent to update allocation counts) is 102 * O(log n), thus the algorithm as a whole is O(log n). 103 * 104 * We don't implement the fd tree using the customary left/right/parent 105 * pointers, but instead take advantage of the glorious mathematics of 106 * full infix binary trees. For reference, here's an illustration of the 107 * logical structure of such a tree, rooted at 4 (binary 100), covering 108 * the range 1-7 (binary 001-111). Our canonical trees do not include 109 * fd 0; we'll deal with that later. 110 * 111 * 100 112 * / \ 113 * / \ 114 * 010 110 115 * / \ / \ 116 * 001 011 101 111 117 * 118 * We make the following observations, all of which are easily proven by 119 * induction on the depth of the tree: 120 * 121 * (T1) The least-significant bit (LSB) of any node is equal to its level 122 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 123 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 124 * 125 * (T2) The child size (CSIZE) of node N -- that is, the total number of 126 * right-branch descendants in a child of node N, including itself -- is 127 * given by clearing all but the least significant bit of N. This 128 * follows immediately from (T1). Applying this rule to our example, we 129 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 130 * 131 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 132 * ancestor containing node N in its right child -- is given by clearing 133 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 134 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 135 * the fact that these are leftmost nodes. Note that this algorithm 136 * automatically skips generations as necessary. For example, the parent 137 * of node 101 is 110, which is a *right* ancestor (not what we want); 138 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 139 * of 101 gets us to 100 directly, skipping right past the uninteresting 140 * generation (110). 141 * 142 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 143 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 144 * 145 * LPARENT(N) = N - CSIZE(N) 146 * 147 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 148 * 149 * RPARENT(N) = N + CSIZE(N) 150 * 151 * (T5) For every interior node, the children differ from their parent by 152 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 153 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 154 * 155 * Next, we'll need a few two's-complement math tricks. Suppose a number, 156 * N, has the following form: 157 * 158 * N = xxxx10...0 159 * 160 * That is, the binary representation of N consists of some string of bits, 161 * then a 1, then all zeroes. This amounts to nothing more than saying that 162 * N has a least-significant bit, which is true for any N != 0. If we look 163 * at N and N - 1 together, we see that we can combine them in useful ways: 164 * 165 * N = xxxx10...0 166 * N - 1 = xxxx01...1 167 * ------------------------ 168 * N & (N - 1) = xxxx000000 169 * N | (N - 1) = xxxx111111 170 * N ^ (N - 1) = 111111 171 * 172 * In particular, this suggests several easy ways to clear all but the LSB, 173 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 174 * We'll opt for this formulation: 175 * 176 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 177 * 178 * Similarly, we have an easy way to determine LPARENT(N), which requires 179 * that we clear the LSB of N: 180 * 181 * (L1) LPARENT(N) = N & (N - 1) 182 * 183 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 184 * When combined with (T4), this yields an easy way to compute RPARENT(N): 185 * 186 * (R1) RPARENT(N) = (N | (N - 1)) + 1 187 * 188 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 189 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 190 * so there's no need to belabor the algebra; the revised relations become: 191 * 192 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 193 * 194 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 195 * 196 * (R1a) RPARENT(N) = N | (N + 1) 197 * 198 * This completes the mathematical framework. We now have all the tools 199 * we need to implement fd_find() and fd_reserve(). 200 * 201 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 202 * It does not actually allocate the descriptor; that's done by fd_reserve(). 203 * fd_find() proceeds in two steps: 204 * 205 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 206 * We start at the right subtree rooted at minfd. If this subtree is 207 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 208 * step 1 is done. Otherwise, we know that all fds in this subtree 209 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 210 * this process until we either find a candidate subtree or exceed 211 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 212 * 213 * (2) Find the smallest fd in the subtree discovered by step 1. 214 * Starting at the root of this subtree, we descend to find the 215 * smallest available fd. Since the left children have the smaller 216 * fds, we will descend rightward only when the left child is full. 217 * 218 * We begin by comparing the number of allocated fds in the root 219 * to the number of allocated fds in its right child; if they differ 220 * by exactly CSIZE(child), we know the left subtree is full, so we 221 * descend right; that is, the right child becomes the search root. 222 * Otherwise we leave the root alone and start following the right 223 * child's left children. As fortune would have it, this is very 224 * simple computationally: by (T5), the right child of fd is just 225 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 226 * we find that the right child's left child is fd + size - (size / 2) = 227 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 228 * fd + (size / 4), and so on. In general, fd's right child's 229 * leftmost nth descendant is fd + (size >> n). Thus, to follow 230 * the right child's left descendants, we just halve the size in 231 * each iteration of the search. 232 * 233 * When we descend leftward, we must keep track of the number of fds 234 * that were allocated in all the right subtrees we rejected, so we 235 * know how many of the root fd's allocations are in the remaining 236 * (as yet unexplored) leftmost part of its right subtree. When we 237 * encounter a fully-allocated left child -- that is, when we find 238 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 239 * (as described earlier), resetting ralloc to zero. 240 * 241 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 242 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 243 * the leftmost ancestors (see (T3)) and updates the allocation counts. 244 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 245 * 246 * flist_minsize() finds the minimal tree that still covers all 247 * used fds; as long as the allocation count of a root node is zero, we 248 * don't need that node or its right subtree. 249 * 250 * flist_nalloc() counts the number of allocated fds in the tree, by starting 251 * at the top of the tree and summing the right-subtree allocation counts as 252 * it descends leftwards. 253 * 254 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 255 * 2^n - 1. This ensures that the fd trees are always full, which saves 256 * quite a bit of boundary checking. 257 */ 258 static int 259 fd_find(uf_info_t *fip, int minfd) 260 { 261 int size, ralloc, fd; 262 263 ASSERT(MUTEX_HELD(&fip->fi_lock)); 264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 265 266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 267 size = fd ^ (fd | (fd + 1)); 268 if (fip->fi_list[fd].uf_alloc == size) 269 continue; 270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 271 ralloc += fip->fi_list[fd + size].uf_alloc; 272 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 273 fd += size; 274 ralloc = 0; 275 } 276 } 277 return (fd); 278 } 279 return (-1); 280 } 281 282 static void 283 fd_reserve(uf_info_t *fip, int fd, int incr) 284 { 285 int pfd; 286 uf_entry_t *ufp = &fip->fi_list[fd]; 287 288 ASSERT((uint_t)fd < fip->fi_nfiles); 289 ASSERT((ufp->uf_busy == 0 && incr == 1) || 290 (ufp->uf_busy == 1 && incr == -1)); 291 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 292 ASSERT(MUTEX_HELD(&fip->fi_lock)); 293 294 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 295 fip->fi_list[pfd].uf_alloc += incr; 296 297 ufp->uf_busy += incr; 298 } 299 300 static int 301 flist_minsize(uf_info_t *fip) 302 { 303 int fd; 304 305 /* 306 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 307 * by flist_fork(), which relies on other mechanisms for mutual 308 * exclusion. 309 */ 310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 311 312 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 313 if (fip->fi_list[fd >> 1].uf_alloc != 0) 314 break; 315 316 return (fd); 317 } 318 319 static int 320 flist_nalloc(uf_info_t *fip) 321 { 322 int fd; 323 int nalloc = 0; 324 325 ASSERT(MUTEX_HELD(&fip->fi_lock)); 326 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 327 328 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 329 nalloc += fip->fi_list[fd >> 1].uf_alloc; 330 331 return (nalloc); 332 } 333 334 /* 335 * Increase size of the fi_list array to accommodate at least maxfd. 336 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 337 */ 338 static void 339 flist_grow(int maxfd) 340 { 341 uf_info_t *fip = P_FINFO(curproc); 342 int newcnt, oldcnt; 343 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 344 uf_rlist_t *urp; 345 346 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 347 continue; 348 349 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 350 351 mutex_enter(&fip->fi_lock); 352 oldcnt = fip->fi_nfiles; 353 if (newcnt <= oldcnt) { 354 mutex_exit(&fip->fi_lock); 355 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 356 return; 357 } 358 ASSERT((newcnt & (newcnt + 1)) == 0); 359 oldlist = fip->fi_list; 360 oldend = oldlist + oldcnt; 361 newend = newlist + oldcnt; /* no need to lock beyond old end */ 362 363 /* 364 * fi_list and fi_nfiles cannot change while any uf_lock is held, 365 * so we must grab all the old locks *and* the new locks up to oldcnt. 366 * (Locks beyond the end of oldcnt aren't visible until we store 367 * the new fi_nfiles, which is the last thing we do before dropping 368 * all the locks, so there's no need to acquire these locks). 369 * Holding the new locks is necessary because when fi_list changes 370 * to point to the new list, fi_nfiles won't have been stored yet. 371 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 372 * could see the new fi_list, grab the new uf_lock, and then see 373 * fi_nfiles change while the lock is held -- in violation of 374 * UF_ENTER() semantics. 375 */ 376 for (src = oldlist; src < oldend; src++) 377 mutex_enter(&src->uf_lock); 378 379 for (dst = newlist; dst < newend; dst++) 380 mutex_enter(&dst->uf_lock); 381 382 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 383 dst->uf_file = src->uf_file; 384 dst->uf_fpollinfo = src->uf_fpollinfo; 385 dst->uf_refcnt = src->uf_refcnt; 386 dst->uf_alloc = src->uf_alloc; 387 dst->uf_flag = src->uf_flag; 388 dst->uf_busy = src->uf_busy; 389 dst->uf_portfd = src->uf_portfd; 390 } 391 392 /* 393 * As soon as we store the new flist, future locking operations 394 * will use it. Therefore, we must ensure that all the state 395 * we've just established reaches global visibility before the 396 * new flist does. 397 */ 398 membar_producer(); 399 fip->fi_list = newlist; 400 401 /* 402 * Routines like getf() make an optimistic check on the validity 403 * of the supplied file descriptor: if it's less than the current 404 * value of fi_nfiles -- examined without any locks -- then it's 405 * safe to attempt a UF_ENTER() on that fd (which is a valid 406 * assumption because fi_nfiles only increases). Therefore, it 407 * is critical that the new value of fi_nfiles not reach global 408 * visibility until after the new fi_list: if it happened the 409 * other way around, getf() could see the new fi_nfiles and attempt 410 * a UF_ENTER() on the old fi_list, which would write beyond its 411 * end if the fd exceeded the old fi_nfiles. 412 */ 413 membar_producer(); 414 fip->fi_nfiles = newcnt; 415 416 /* 417 * The new state is consistent now, so we can drop all the locks. 418 */ 419 for (dst = newlist; dst < newend; dst++) 420 mutex_exit(&dst->uf_lock); 421 422 for (src = oldlist; src < oldend; src++) { 423 /* 424 * If any threads are blocked on the old cvs, wake them. 425 * This will force them to wake up, discover that fi_list 426 * has changed, and go back to sleep on the new cvs. 427 */ 428 cv_broadcast(&src->uf_wanted_cv); 429 cv_broadcast(&src->uf_closing_cv); 430 mutex_exit(&src->uf_lock); 431 } 432 433 mutex_exit(&fip->fi_lock); 434 435 /* 436 * Retire the old flist. We can't actually kmem_free() it now 437 * because someone may still have a pointer to it. Instead, 438 * we link it onto a list of retired flists. The new flist 439 * is at least double the size of the previous flist, so the 440 * total size of all retired flists will be less than the size 441 * of the current one (to prove, consider the sum of a geometric 442 * series in powers of 2). exit() frees the retired flists. 443 */ 444 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 445 urp->ur_list = oldlist; 446 urp->ur_nfiles = oldcnt; 447 448 mutex_enter(&fip->fi_lock); 449 urp->ur_next = fip->fi_rlist; 450 fip->fi_rlist = urp; 451 mutex_exit(&fip->fi_lock); 452 } 453 454 /* 455 * Utility functions for keeping track of the active file descriptors. 456 */ 457 void 458 clear_stale_fd() /* called from post_syscall() */ 459 { 460 afd_t *afd = &curthread->t_activefd; 461 int i; 462 463 /* uninitialized is ok here, a_nfd is then zero */ 464 for (i = 0; i < afd->a_nfd; i++) { 465 /* assert that this should not be necessary */ 466 ASSERT(afd->a_fd[i] == -1); 467 afd->a_fd[i] = -1; 468 } 469 afd->a_stale = 0; 470 } 471 472 void 473 free_afd(afd_t *afd) /* called below and from thread_free() */ 474 { 475 int i; 476 477 /* free the buffer if it was kmem_alloc()ed */ 478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 479 COUNT(afd_free); 480 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 481 } 482 483 /* (re)initialize the structure */ 484 afd->a_fd = &afd->a_buf[0]; 485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 486 afd->a_stale = 0; 487 for (i = 0; i < afd->a_nfd; i++) 488 afd->a_fd[i] = -1; 489 } 490 491 static void 492 set_active_fd(int fd) 493 { 494 afd_t *afd = &curthread->t_activefd; 495 int i; 496 int *old_fd; 497 int old_nfd; 498 499 if (afd->a_nfd == 0) /* first time initialization */ 500 free_afd(afd); 501 502 /* insert fd into vacant slot, if any */ 503 for (i = 0; i < afd->a_nfd; i++) { 504 if (afd->a_fd[i] == -1) { 505 afd->a_fd[i] = fd; 506 return; 507 } 508 } 509 510 /* 511 * Reallocate the a_fd[] array to add one more slot. 512 */ 513 old_fd = afd->a_fd; 514 old_nfd = afd->a_nfd; 515 afd->a_nfd = old_nfd + 1; 516 MAXFD(afd->a_nfd); 517 COUNT(afd_alloc); 518 afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 519 for (i = 0; i < old_nfd; i++) 520 afd->a_fd[i] = old_fd[i]; 521 afd->a_fd[i] = fd; 522 523 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 524 COUNT(afd_free); 525 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 526 } 527 } 528 529 void 530 clear_active_fd(int fd) /* called below and from aio.c */ 531 { 532 afd_t *afd = &curthread->t_activefd; 533 int i; 534 535 for (i = 0; i < afd->a_nfd; i++) { 536 if (afd->a_fd[i] == fd) { 537 afd->a_fd[i] = -1; 538 break; 539 } 540 } 541 ASSERT(i < afd->a_nfd); /* not found is not ok */ 542 } 543 544 /* 545 * Does this thread have this fd active? 546 */ 547 static int 548 is_active_fd(kthread_t *t, int fd) 549 { 550 afd_t *afd = &t->t_activefd; 551 int i; 552 553 /* uninitialized is ok here, a_nfd is then zero */ 554 for (i = 0; i < afd->a_nfd; i++) { 555 if (afd->a_fd[i] == fd) 556 return (1); 557 } 558 return (0); 559 } 560 561 /* 562 * Convert a user supplied file descriptor into a pointer to a file 563 * structure. Only task is to check range of the descriptor (soft 564 * resource limit was enforced at open time and shouldn't be checked 565 * here). 566 */ 567 file_t * 568 getf(int fd) 569 { 570 uf_info_t *fip = P_FINFO(curproc); 571 uf_entry_t *ufp; 572 file_t *fp; 573 574 if ((uint_t)fd >= fip->fi_nfiles) 575 return (NULL); 576 577 UF_ENTER(ufp, fip, fd); 578 if ((fp = ufp->uf_file) == NULL) { 579 UF_EXIT(ufp); 580 return (NULL); 581 } 582 ufp->uf_refcnt++; 583 584 #ifdef C2_AUDIT 585 /* 586 * archive per file audit data 587 */ 588 if (audit_active) 589 (void) audit_getf(fd); 590 #endif 591 UF_EXIT(ufp); 592 593 set_active_fd(fd); /* record the active file descriptor */ 594 595 return (fp); 596 } 597 598 /* 599 * Close whatever file currently occupies the file descriptor slot 600 * and install the new file, usually NULL, in the file descriptor slot. 601 * The close must complete before we release the file descriptor slot. 602 * We return the error number from closef(). 603 */ 604 int 605 closeandsetf(int fd, file_t *newfp) 606 { 607 proc_t *p = curproc; 608 uf_info_t *fip = P_FINFO(p); 609 uf_entry_t *ufp; 610 file_t *fp; 611 fpollinfo_t *fpip; 612 portfd_t *pfd; 613 int error; 614 615 if ((uint_t)fd >= fip->fi_nfiles) { 616 if (newfp == NULL) 617 return (EBADF); 618 flist_grow(fd); 619 } 620 621 if (newfp != NULL) { 622 /* 623 * If ufp is reserved but has no file pointer, it's in the 624 * transition between ufalloc() and setf(). We must wait 625 * for this transition to complete before assigning the 626 * new non-NULL file pointer. 627 */ 628 mutex_enter(&fip->fi_lock); 629 UF_ENTER(ufp, fip, fd); 630 while (ufp->uf_busy && ufp->uf_file == NULL) { 631 mutex_exit(&fip->fi_lock); 632 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 633 UF_EXIT(ufp); 634 mutex_enter(&fip->fi_lock); 635 UF_ENTER(ufp, fip, fd); 636 } 637 if ((fp = ufp->uf_file) == NULL) { 638 ASSERT(ufp->uf_fpollinfo == NULL); 639 ASSERT(ufp->uf_flag == 0); 640 fd_reserve(fip, fd, 1); 641 ufp->uf_file = newfp; 642 UF_EXIT(ufp); 643 mutex_exit(&fip->fi_lock); 644 return (0); 645 } 646 mutex_exit(&fip->fi_lock); 647 } else { 648 UF_ENTER(ufp, fip, fd); 649 if ((fp = ufp->uf_file) == NULL) { 650 UF_EXIT(ufp); 651 return (EBADF); 652 } 653 } 654 655 #ifdef C2_AUDIT 656 /* 657 * archive per file audit data 658 */ 659 if (audit_active) 660 (void) audit_getf(fd); 661 #endif 662 ASSERT(ufp->uf_busy); 663 ufp->uf_file = NULL; 664 ufp->uf_flag = 0; 665 666 /* 667 * If the file descriptor reference count is non-zero, then 668 * some other lwp in the process is performing system call 669 * activity on the file. To avoid blocking here for a long 670 * time (the other lwp might be in a long term sleep in its 671 * system call), we stop all other lwps in the process and 672 * scan them to find the ones with this fd as one of their 673 * active fds and set their a_stale flag so they will emerge 674 * from their system calls immediately. post_syscall() will 675 * test the a_stale flag and set errno to EBADF. 676 */ 677 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 678 if (ufp->uf_refcnt > 0) { 679 UF_EXIT(ufp); 680 COUNT(afd_wait); 681 682 /* 683 * Make all other lwps hold in place, as if doing fork1(). 684 * holdlwps(SHOLDFORK1) fails only if another lwp wants to 685 * perform a forkall() or the process is exiting. In either 686 * case, all other lwps are either returning from their 687 * system calls (because of SHOLDFORK) or calling lwp_exit() 688 * (because of SEXITLWPS) so we don't need to scan them. 689 */ 690 if (holdlwps(SHOLDFORK1)) { 691 kthread_t *t; 692 693 mutex_enter(&p->p_lock); 694 for (t = curthread->t_forw; t != curthread; 695 t = t->t_forw) { 696 if (is_active_fd(t, fd)) { 697 t->t_activefd.a_stale = 1; 698 t->t_post_sys = 1; 699 } 700 } 701 continuelwps(p); 702 mutex_exit(&p->p_lock); 703 } 704 UF_ENTER(ufp, fip, fd); 705 ASSERT(ufp->uf_file == NULL); 706 } 707 708 /* 709 * Wait for other lwps to stop using this file descriptor. 710 */ 711 while (ufp->uf_refcnt > 0) { 712 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 713 /* 714 * cv_wait_stop() drops ufp->uf_lock, so the file list 715 * can change. Drop the lock on our (possibly) stale 716 * ufp and let UF_ENTER() find and lock the current ufp. 717 */ 718 UF_EXIT(ufp); 719 UF_ENTER(ufp, fip, fd); 720 } 721 722 #ifdef DEBUG 723 /* 724 * catch a watchfd on device's pollhead list but not on fpollinfo list 725 */ 726 if (ufp->uf_fpollinfo != NULL) 727 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 728 #endif /* DEBUG */ 729 730 /* 731 * We may need to cleanup some cached poll states in t_pollstate 732 * before the fd can be reused. It is important that we don't 733 * access a stale thread structure. We will do the cleanup in two 734 * phases to avoid deadlock and holding uf_lock for too long. 735 * In phase 1, hold the uf_lock and call pollblockexit() to set 736 * state in t_pollstate struct so that a thread does not exit on 737 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 738 */ 739 pfd = ufp->uf_portfd; 740 ufp->uf_portfd = NULL; 741 fpip = ufp->uf_fpollinfo; 742 ufp->uf_fpollinfo = NULL; 743 if (fpip != NULL) 744 pollblockexit(fpip); 745 UF_EXIT(ufp); 746 if (fpip != NULL) 747 pollcacheclean(fpip, fd); 748 if (pfd) 749 port_close_fd(pfd); 750 751 /* 752 * Keep the file descriptor entry reserved across the closef(). 753 */ 754 error = closef(fp); 755 756 setf(fd, newfp); 757 758 return (error); 759 } 760 761 /* 762 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 763 */ 764 void 765 releasef(int fd) 766 { 767 uf_info_t *fip = P_FINFO(curproc); 768 uf_entry_t *ufp; 769 770 clear_active_fd(fd); /* clear the active file descriptor */ 771 772 UF_ENTER(ufp, fip, fd); 773 ASSERT(ufp->uf_refcnt > 0); 774 if (--ufp->uf_refcnt == 0) 775 cv_broadcast(&ufp->uf_closing_cv); 776 UF_EXIT(ufp); 777 } 778 779 /* 780 * Identical to releasef() but can be called from another process. 781 */ 782 void 783 areleasef(int fd, uf_info_t *fip) 784 { 785 uf_entry_t *ufp; 786 787 UF_ENTER(ufp, fip, fd); 788 ASSERT(ufp->uf_refcnt > 0); 789 if (--ufp->uf_refcnt == 0) 790 cv_broadcast(&ufp->uf_closing_cv); 791 UF_EXIT(ufp); 792 } 793 794 /* 795 * Duplicate all file descriptors across a fork. 796 */ 797 void 798 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 799 { 800 int fd, nfiles; 801 uf_entry_t *pufp, *cufp; 802 803 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 804 cfip->fi_rlist = NULL; 805 806 /* 807 * We don't need to hold fi_lock because all other lwp's in the 808 * parent have been held. 809 */ 810 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 811 812 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 813 814 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 815 fd++, pufp++, cufp++) { 816 cufp->uf_file = pufp->uf_file; 817 cufp->uf_alloc = pufp->uf_alloc; 818 cufp->uf_flag = pufp->uf_flag; 819 cufp->uf_busy = pufp->uf_busy; 820 if (pufp->uf_file == NULL) { 821 ASSERT(pufp->uf_flag == 0); 822 if (pufp->uf_busy) { 823 /* 824 * Grab locks to appease ASSERTs in fd_reserve 825 */ 826 mutex_enter(&cfip->fi_lock); 827 mutex_enter(&cufp->uf_lock); 828 fd_reserve(cfip, fd, -1); 829 mutex_exit(&cufp->uf_lock); 830 mutex_exit(&cfip->fi_lock); 831 } 832 } 833 } 834 } 835 836 /* 837 * Close all open file descriptors for the current process. 838 * This is only called from exit(), which is single-threaded, 839 * so we don't need any locking. 840 */ 841 void 842 closeall(uf_info_t *fip) 843 { 844 int fd; 845 file_t *fp; 846 uf_entry_t *ufp; 847 848 ufp = fip->fi_list; 849 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 850 if ((fp = ufp->uf_file) != NULL) { 851 ufp->uf_file = NULL; 852 if (ufp->uf_portfd != NULL) { 853 portfd_t *pfd; 854 /* remove event port association */ 855 pfd = ufp->uf_portfd; 856 ufp->uf_portfd = NULL; 857 port_close_fd(pfd); 858 } 859 ASSERT(ufp->uf_fpollinfo == NULL); 860 (void) closef(fp); 861 } 862 } 863 864 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 865 fip->fi_list = NULL; 866 fip->fi_nfiles = 0; 867 while (fip->fi_rlist != NULL) { 868 uf_rlist_t *urp = fip->fi_rlist; 869 fip->fi_rlist = urp->ur_next; 870 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 871 kmem_free(urp, sizeof (uf_rlist_t)); 872 } 873 } 874 875 /* 876 * Internal form of close. Decrement reference count on file 877 * structure. Decrement reference count on the vnode following 878 * removal of the referencing file structure. 879 */ 880 int 881 closef(file_t *fp) 882 { 883 vnode_t *vp; 884 int error; 885 int count; 886 int flag; 887 offset_t offset; 888 889 #ifdef C2_AUDIT 890 /* 891 * audit close of file (may be exit) 892 */ 893 if (audit_active) 894 audit_closef(fp); 895 #endif 896 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 897 898 mutex_enter(&fp->f_tlock); 899 900 ASSERT(fp->f_count > 0); 901 902 count = fp->f_count--; 903 flag = fp->f_flag; 904 offset = fp->f_offset; 905 906 vp = fp->f_vnode; 907 908 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred); 909 910 if (count > 1) { 911 mutex_exit(&fp->f_tlock); 912 return (error); 913 } 914 ASSERT(fp->f_count == 0); 915 mutex_exit(&fp->f_tlock); 916 917 VN_RELE(vp); 918 #ifdef C2_AUDIT 919 /* 920 * deallocate resources to audit_data 921 */ 922 if (audit_active) 923 audit_unfalloc(fp); 924 #endif 925 crfree(fp->f_cred); 926 kmem_cache_free(file_cache, fp); 927 return (error); 928 } 929 930 /* 931 * This is a combination of ufalloc() and setf(). 932 */ 933 int 934 ufalloc_file(int start, file_t *fp) 935 { 936 proc_t *p = curproc; 937 uf_info_t *fip = P_FINFO(p); 938 int filelimit; 939 uf_entry_t *ufp; 940 int nfiles; 941 int fd; 942 943 /* 944 * Assertion is to convince the correctness of the following 945 * assignment for filelimit after casting to int. 946 */ 947 ASSERT(p->p_fno_ctl <= INT_MAX); 948 filelimit = (int)p->p_fno_ctl; 949 950 for (;;) { 951 mutex_enter(&fip->fi_lock); 952 fd = fd_find(fip, start); 953 if ((uint_t)fd < filelimit) 954 break; 955 if (fd >= filelimit) { 956 mutex_exit(&fip->fi_lock); 957 mutex_enter(&p->p_lock); 958 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 959 p->p_rctls, p, RCA_SAFE); 960 mutex_exit(&p->p_lock); 961 return (-1); 962 } 963 /* fd_find() returned -1 */ 964 nfiles = fip->fi_nfiles; 965 mutex_exit(&fip->fi_lock); 966 flist_grow(MAX(start, nfiles)); 967 } 968 969 UF_ENTER(ufp, fip, fd); 970 fd_reserve(fip, fd, 1); 971 ASSERT(ufp->uf_file == NULL); 972 ufp->uf_file = fp; 973 UF_EXIT(ufp); 974 mutex_exit(&fip->fi_lock); 975 return (fd); 976 } 977 978 /* 979 * Allocate a user file descriptor greater than or equal to "start". 980 */ 981 int 982 ufalloc(int start) 983 { 984 return (ufalloc_file(start, NULL)); 985 } 986 987 /* 988 * Check that a future allocation of count fds on proc p has a good 989 * chance of succeeding. If not, do rctl processing as if we'd failed 990 * the allocation. 991 * 992 * Our caller must guarantee that p cannot disappear underneath us. 993 */ 994 int 995 ufcanalloc(proc_t *p, uint_t count) 996 { 997 uf_info_t *fip = P_FINFO(p); 998 int filelimit; 999 int current; 1000 1001 if (count == 0) 1002 return (1); 1003 1004 ASSERT(p->p_fno_ctl <= INT_MAX); 1005 filelimit = (int)p->p_fno_ctl; 1006 1007 mutex_enter(&fip->fi_lock); 1008 current = flist_nalloc(fip); /* # of in-use descriptors */ 1009 mutex_exit(&fip->fi_lock); 1010 1011 /* 1012 * If count is a positive integer, the worst that can happen is 1013 * an overflow to a negative value, which is caught by the >= 0 check. 1014 */ 1015 current += count; 1016 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1017 return (1); 1018 1019 mutex_enter(&p->p_lock); 1020 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1021 p->p_rctls, p, RCA_SAFE); 1022 mutex_exit(&p->p_lock); 1023 return (0); 1024 } 1025 1026 /* 1027 * Allocate a user file descriptor and a file structure. 1028 * Initialize the descriptor to point at the file structure. 1029 * If fdp is NULL, the user file descriptor will not be allocated. 1030 */ 1031 int 1032 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1033 { 1034 file_t *fp; 1035 int fd; 1036 1037 if (fdp) { 1038 if ((fd = ufalloc(0)) == -1) 1039 return (EMFILE); 1040 } 1041 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1042 /* 1043 * Note: falloc returns the fp locked 1044 */ 1045 mutex_enter(&fp->f_tlock); 1046 fp->f_count = 1; 1047 fp->f_flag = (ushort_t)flag; 1048 fp->f_vnode = vp; 1049 fp->f_offset = 0; 1050 fp->f_audit_data = 0; 1051 crhold(fp->f_cred = CRED()); 1052 #ifdef C2_AUDIT 1053 /* 1054 * allocate resources to audit_data 1055 */ 1056 if (audit_active) 1057 audit_falloc(fp); 1058 #endif 1059 *fpp = fp; 1060 if (fdp) 1061 *fdp = fd; 1062 return (0); 1063 } 1064 1065 /*ARGSUSED*/ 1066 static int 1067 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1068 { 1069 file_t *fp = buf; 1070 1071 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1072 return (0); 1073 } 1074 1075 /*ARGSUSED*/ 1076 static void 1077 file_cache_destructor(void *buf, void *cdrarg) 1078 { 1079 file_t *fp = buf; 1080 1081 mutex_destroy(&fp->f_tlock); 1082 } 1083 1084 void 1085 finit() 1086 { 1087 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1088 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1089 } 1090 1091 void 1092 unfalloc(file_t *fp) 1093 { 1094 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1095 if (--fp->f_count <= 0) { 1096 #ifdef C2_AUDIT 1097 /* 1098 * deallocate resources to audit_data 1099 */ 1100 if (audit_active) 1101 audit_unfalloc(fp); 1102 #endif 1103 crfree(fp->f_cred); 1104 mutex_exit(&fp->f_tlock); 1105 kmem_cache_free(file_cache, fp); 1106 } else 1107 mutex_exit(&fp->f_tlock); 1108 } 1109 1110 /* 1111 * Given a file descriptor, set the user's 1112 * file pointer to the given parameter. 1113 */ 1114 void 1115 setf(int fd, file_t *fp) 1116 { 1117 uf_info_t *fip = P_FINFO(curproc); 1118 uf_entry_t *ufp; 1119 1120 #ifdef C2_AUDIT 1121 if (audit_active) 1122 audit_setf(fp, fd); 1123 #endif /* C2_AUDIT */ 1124 1125 if (fp == NULL) { 1126 mutex_enter(&fip->fi_lock); 1127 UF_ENTER(ufp, fip, fd); 1128 fd_reserve(fip, fd, -1); 1129 mutex_exit(&fip->fi_lock); 1130 } else { 1131 UF_ENTER(ufp, fip, fd); 1132 ASSERT(ufp->uf_busy); 1133 } 1134 ASSERT(ufp->uf_fpollinfo == NULL); 1135 ASSERT(ufp->uf_flag == 0); 1136 ufp->uf_file = fp; 1137 cv_broadcast(&ufp->uf_wanted_cv); 1138 UF_EXIT(ufp); 1139 } 1140 1141 /* 1142 * Given a file descriptor, return the file table flags, plus, 1143 * if this is a socket in asynchronous mode, the FASYNC flag. 1144 * getf() may or may not have been called before calling f_getfl(). 1145 */ 1146 int 1147 f_getfl(int fd, int *flagp) 1148 { 1149 uf_info_t *fip = P_FINFO(curproc); 1150 uf_entry_t *ufp; 1151 file_t *fp; 1152 int error; 1153 1154 if ((uint_t)fd >= fip->fi_nfiles) 1155 error = EBADF; 1156 else { 1157 UF_ENTER(ufp, fip, fd); 1158 if ((fp = ufp->uf_file) == NULL) 1159 error = EBADF; 1160 else { 1161 vnode_t *vp = fp->f_vnode; 1162 int flag = fp->f_flag; 1163 1164 /* 1165 * BSD fcntl() FASYNC compatibility. 1166 * 1167 * SCTP doesn't have an associated stream and thus 1168 * doesn't store flags on it. 1169 */ 1170 if ((vp->v_type == VSOCK) && (vp->v_stream != NULL)) 1171 flag |= sock_getfasync(vp); 1172 *flagp = flag; 1173 error = 0; 1174 } 1175 UF_EXIT(ufp); 1176 } 1177 1178 return (error); 1179 } 1180 1181 /* 1182 * Given a file descriptor, return the user's file flags. 1183 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1184 * getf() may or may not have been called before calling f_getfd_error(). 1185 */ 1186 int 1187 f_getfd_error(int fd, int *flagp) 1188 { 1189 uf_info_t *fip = P_FINFO(curproc); 1190 uf_entry_t *ufp; 1191 file_t *fp; 1192 int flag; 1193 int error; 1194 1195 if ((uint_t)fd >= fip->fi_nfiles) 1196 error = EBADF; 1197 else { 1198 UF_ENTER(ufp, fip, fd); 1199 if ((fp = ufp->uf_file) == NULL) 1200 error = EBADF; 1201 else { 1202 flag = ufp->uf_flag; 1203 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1204 flag |= FD_CLOEXEC; 1205 *flagp = flag; 1206 error = 0; 1207 } 1208 UF_EXIT(ufp); 1209 } 1210 1211 return (error); 1212 } 1213 1214 /* 1215 * getf() must have been called before calling f_getfd(). 1216 */ 1217 char 1218 f_getfd(int fd) 1219 { 1220 int flag = 0; 1221 (void) f_getfd_error(fd, &flag); 1222 return ((char)flag); 1223 } 1224 1225 /* 1226 * Given a file descriptor and file flags, set the user's file flags. 1227 * At present, the only valid flag is FD_CLOEXEC. 1228 * getf() may or may not have been called before calling f_setfd_error(). 1229 */ 1230 int 1231 f_setfd_error(int fd, int flags) 1232 { 1233 uf_info_t *fip = P_FINFO(curproc); 1234 uf_entry_t *ufp; 1235 int error; 1236 1237 if ((uint_t)fd >= fip->fi_nfiles) 1238 error = EBADF; 1239 else { 1240 UF_ENTER(ufp, fip, fd); 1241 if (ufp->uf_file == NULL) 1242 error = EBADF; 1243 else { 1244 ufp->uf_flag = flags & FD_CLOEXEC; 1245 error = 0; 1246 } 1247 UF_EXIT(ufp); 1248 } 1249 return (error); 1250 } 1251 1252 void 1253 f_setfd(int fd, char flags) 1254 { 1255 (void) f_setfd_error(fd, flags); 1256 } 1257 1258 /* 1259 * Allocate a file descriptor and assign it to the vnode "*vpp", 1260 * performing the usual open protocol upon it and returning the 1261 * file descriptor allocated. It is the responsibility of the 1262 * caller to dispose of "*vpp" if any error occurs. 1263 */ 1264 int 1265 fassign(vnode_t **vpp, int mode, int *fdp) 1266 { 1267 file_t *fp; 1268 int error; 1269 int fd; 1270 1271 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1272 return (error); 1273 if (error = VOP_OPEN(vpp, mode, fp->f_cred)) { 1274 setf(fd, NULL); 1275 unfalloc(fp); 1276 return (error); 1277 } 1278 fp->f_vnode = *vpp; 1279 mutex_exit(&fp->f_tlock); 1280 /* 1281 * Fill in the slot falloc reserved. 1282 */ 1283 setf(fd, fp); 1284 *fdp = fd; 1285 return (0); 1286 } 1287 1288 /* 1289 * When a process forks it must increment the f_count of all file pointers 1290 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1291 * Since we are called when there is only 1 active lwp we don't need to 1292 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1293 * fcnt_add(fip, -1) to restore the counts. 1294 */ 1295 void 1296 fcnt_add(uf_info_t *fip, int incr) 1297 { 1298 int i; 1299 uf_entry_t *ufp; 1300 file_t *fp; 1301 1302 ufp = fip->fi_list; 1303 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1304 if ((fp = ufp->uf_file) != NULL) { 1305 mutex_enter(&fp->f_tlock); 1306 ASSERT((incr == 1 && fp->f_count >= 1) || 1307 (incr == -1 && fp->f_count >= 2)); 1308 fp->f_count += incr; 1309 mutex_exit(&fp->f_tlock); 1310 } 1311 } 1312 } 1313 1314 /* 1315 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1316 * set and also to close all self-open for write /proc file descriptors. 1317 */ 1318 void 1319 close_exec(uf_info_t *fip) 1320 { 1321 int fd; 1322 file_t *fp; 1323 fpollinfo_t *fpip; 1324 uf_entry_t *ufp; 1325 portfd_t *pfd; 1326 1327 ufp = fip->fi_list; 1328 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1329 if ((fp = ufp->uf_file) != NULL && 1330 ((ufp->uf_flag & FD_CLOEXEC) || 1331 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1332 fpip = ufp->uf_fpollinfo; 1333 mutex_enter(&fip->fi_lock); 1334 mutex_enter(&ufp->uf_lock); 1335 fd_reserve(fip, fd, -1); 1336 mutex_exit(&fip->fi_lock); 1337 ufp->uf_file = NULL; 1338 ufp->uf_fpollinfo = NULL; 1339 ufp->uf_flag = 0; 1340 /* 1341 * We may need to cleanup some cached poll states 1342 * in t_pollstate before the fd can be reused. It 1343 * is important that we don't access a stale thread 1344 * structure. We will do the cleanup in two 1345 * phases to avoid deadlock and holding uf_lock for 1346 * too long. In phase 1, hold the uf_lock and call 1347 * pollblockexit() to set state in t_pollstate struct 1348 * so that a thread does not exit on us. In phase 2, 1349 * we drop the uf_lock and call pollcacheclean(). 1350 */ 1351 pfd = ufp->uf_portfd; 1352 ufp->uf_portfd = NULL; 1353 if (fpip != NULL) 1354 pollblockexit(fpip); 1355 mutex_exit(&ufp->uf_lock); 1356 if (fpip != NULL) 1357 pollcacheclean(fpip, fd); 1358 if (pfd) 1359 port_close_fd(pfd); 1360 (void) closef(fp); 1361 } 1362 } 1363 } 1364 1365 /* 1366 * Common routine for modifying attributes of named files. 1367 */ 1368 int 1369 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1370 { 1371 vnode_t *vp; 1372 int error = 0; 1373 1374 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1375 return (set_errno(error)); 1376 if (error = vpsetattr(vp, vap, flags)) 1377 (void) set_errno(error); 1378 VN_RELE(vp); 1379 return (error); 1380 } 1381 1382 /* 1383 * Common routine for modifying attributes of files referenced 1384 * by descriptor. 1385 */ 1386 int 1387 fdsetattr(int fd, vattr_t *vap) 1388 { 1389 file_t *fp; 1390 vnode_t *vp; 1391 int error = 0; 1392 1393 if ((fp = getf(fd)) != NULL) { 1394 vp = fp->f_vnode; 1395 if (error = vpsetattr(vp, vap, 0)) { 1396 (void) set_errno(error); 1397 } 1398 releasef(fd); 1399 } else 1400 error = set_errno(EBADF); 1401 return (error); 1402 } 1403 1404 /* 1405 * Common routine to set the attributes for the given vnode. 1406 * If the vnode is a file and the filesize is being manipulated, 1407 * this makes sure that there are no conflicting non-blocking 1408 * mandatory locks in that region. 1409 */ 1410 static int 1411 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1412 { 1413 int error = 0; 1414 int in_crit = 0; 1415 u_offset_t begin; 1416 vattr_t vattr; 1417 ssize_t length; 1418 1419 if (vn_is_readonly(vp)) { 1420 error = EROFS; 1421 } 1422 if (!error && (vap->va_mask & AT_SIZE) && 1423 nbl_need_check(vp)) { 1424 nbl_start_crit(vp, RW_READER); 1425 in_crit = 1; 1426 vattr.va_mask = AT_SIZE; 1427 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1428 begin = vap->va_size > vattr.va_size ? 1429 vattr.va_size : vap->va_size; 1430 length = vattr.va_size > vap->va_size ? 1431 vattr.va_size - vap->va_size : 1432 vap->va_size - vattr.va_size; 1433 1434 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0)) { 1435 error = EACCES; 1436 } 1437 } 1438 } 1439 if (!error) 1440 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1441 1442 if (in_crit) 1443 nbl_end_crit(vp); 1444 1445 return (error); 1446 } 1447 1448 /* 1449 * Return true if the given vnode is referenced by any 1450 * entry in the current process's file descriptor table. 1451 */ 1452 int 1453 fisopen(vnode_t *vp) 1454 { 1455 int fd; 1456 file_t *fp; 1457 vnode_t *ovp; 1458 uf_info_t *fip = P_FINFO(curproc); 1459 uf_entry_t *ufp; 1460 1461 mutex_enter(&fip->fi_lock); 1462 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1463 UF_ENTER(ufp, fip, fd); 1464 if ((fp = ufp->uf_file) != NULL && 1465 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1466 UF_EXIT(ufp); 1467 mutex_exit(&fip->fi_lock); 1468 return (1); 1469 } 1470 UF_EXIT(ufp); 1471 } 1472 mutex_exit(&fip->fi_lock); 1473 return (0); 1474 } 1475 1476 /* 1477 * Return zero if at least one file currently open (by curproc) shouldn't be 1478 * allowed to change zones. 1479 */ 1480 int 1481 files_can_change_zones(void) 1482 { 1483 int fd; 1484 file_t *fp; 1485 uf_info_t *fip = P_FINFO(curproc); 1486 uf_entry_t *ufp; 1487 1488 mutex_enter(&fip->fi_lock); 1489 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1490 UF_ENTER(ufp, fip, fd); 1491 if ((fp = ufp->uf_file) != NULL && 1492 !vn_can_change_zones(fp->f_vnode)) { 1493 UF_EXIT(ufp); 1494 mutex_exit(&fip->fi_lock); 1495 return (0); 1496 } 1497 UF_EXIT(ufp); 1498 } 1499 mutex_exit(&fip->fi_lock); 1500 return (1); 1501 } 1502 1503 #ifdef DEBUG 1504 1505 /* 1506 * The following functions are only used in ASSERT()s elsewhere. 1507 * They do not modify the state of the system. 1508 */ 1509 1510 /* 1511 * Return true (1) if the current thread is in the fpollinfo 1512 * list for this file descriptor, else false (0). 1513 */ 1514 static int 1515 curthread_in_plist(uf_entry_t *ufp) 1516 { 1517 fpollinfo_t *fpip; 1518 1519 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1520 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1521 if (fpip->fp_thread == curthread) 1522 return (1); 1523 return (0); 1524 } 1525 1526 /* 1527 * Sanity check to make sure that after lwp_exit(), 1528 * curthread does not appear on any fd's fpollinfo list. 1529 */ 1530 void 1531 checkfpollinfo(void) 1532 { 1533 int fd; 1534 uf_info_t *fip = P_FINFO(curproc); 1535 uf_entry_t *ufp; 1536 1537 mutex_enter(&fip->fi_lock); 1538 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1539 UF_ENTER(ufp, fip, fd); 1540 ASSERT(!curthread_in_plist(ufp)); 1541 UF_EXIT(ufp); 1542 } 1543 mutex_exit(&fip->fi_lock); 1544 } 1545 1546 /* 1547 * Return true (1) if the current thread is in the fpollinfo 1548 * list for this file descriptor, else false (0). 1549 * This is the same as curthread_in_plist(), 1550 * but is called w/o holding uf_lock. 1551 */ 1552 int 1553 infpollinfo(int fd) 1554 { 1555 uf_info_t *fip = P_FINFO(curproc); 1556 uf_entry_t *ufp; 1557 int rc; 1558 1559 UF_ENTER(ufp, fip, fd); 1560 rc = curthread_in_plist(ufp); 1561 UF_EXIT(ufp); 1562 return (rc); 1563 } 1564 1565 #endif /* DEBUG */ 1566 1567 /* 1568 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1569 * thread's poll cache. Each lwp polling this file descriptor should call 1570 * this routine once. 1571 */ 1572 void 1573 addfpollinfo(int fd) 1574 { 1575 struct uf_entry *ufp; 1576 fpollinfo_t *fpip; 1577 uf_info_t *fip = P_FINFO(curproc); 1578 1579 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1580 fpip->fp_thread = curthread; 1581 UF_ENTER(ufp, fip, fd); 1582 /* 1583 * Assert we are not already on the list, that is, that 1584 * this lwp did not call addfpollinfo twice for the same fd. 1585 */ 1586 ASSERT(!curthread_in_plist(ufp)); 1587 /* 1588 * addfpollinfo is always done inside the getf/releasef pair. 1589 */ 1590 ASSERT(ufp->uf_refcnt >= 1); 1591 fpip->fp_next = ufp->uf_fpollinfo; 1592 ufp->uf_fpollinfo = fpip; 1593 UF_EXIT(ufp); 1594 } 1595 1596 /* 1597 * delete curthread from fpollinfo list. 1598 */ 1599 /*ARGSUSED*/ 1600 void 1601 delfpollinfo(int fd) 1602 { 1603 struct uf_entry *ufp; 1604 struct fpollinfo *fpip; 1605 struct fpollinfo **fpipp; 1606 uf_info_t *fip = P_FINFO(curproc); 1607 1608 UF_ENTER(ufp, fip, fd); 1609 if (ufp->uf_fpollinfo == NULL) { 1610 UF_EXIT(ufp); 1611 return; 1612 } 1613 ASSERT(ufp->uf_busy); 1614 /* 1615 * Find and delete curthread from the list. 1616 */ 1617 fpipp = &ufp->uf_fpollinfo; 1618 while ((fpip = *fpipp)->fp_thread != curthread) 1619 fpipp = &fpip->fp_next; 1620 *fpipp = fpip->fp_next; 1621 kmem_free(fpip, sizeof (fpollinfo_t)); 1622 /* 1623 * Assert that we are not still on the list, that is, that 1624 * this lwp did not call addfpollinfo twice for the same fd. 1625 */ 1626 ASSERT(!curthread_in_plist(ufp)); 1627 UF_EXIT(ufp); 1628 } 1629 1630 /* 1631 * fd is associated with a port. pfd is a pointer to the fd entry in the 1632 * cache of the port. 1633 */ 1634 1635 void 1636 addfd_port(int fd, portfd_t *pfd) 1637 { 1638 struct uf_entry *ufp; 1639 uf_info_t *fip = P_FINFO(curproc); 1640 1641 UF_ENTER(ufp, fip, fd); 1642 /* 1643 * addfd_port is always done inside the getf/releasef pair. 1644 */ 1645 ASSERT(ufp->uf_refcnt >= 1); 1646 if (ufp->uf_portfd == NULL) { 1647 /* first entry */ 1648 ufp->uf_portfd = pfd; 1649 pfd->pfd_next = NULL; 1650 } else { 1651 pfd->pfd_next = ufp->uf_portfd; 1652 ufp->uf_portfd = pfd; 1653 pfd->pfd_next->pfd_prev = pfd; 1654 } 1655 UF_EXIT(ufp); 1656 } 1657 1658 void 1659 delfd_port(int fd, portfd_t *pfd) 1660 { 1661 struct uf_entry *ufp; 1662 uf_info_t *fip = P_FINFO(curproc); 1663 1664 UF_ENTER(ufp, fip, fd); 1665 /* 1666 * delfd_port is always done inside the getf/releasef pair. 1667 */ 1668 ASSERT(ufp->uf_refcnt >= 1); 1669 if (ufp->uf_portfd == pfd) { 1670 /* remove first entry */ 1671 ufp->uf_portfd = pfd->pfd_next; 1672 } else { 1673 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1674 if (pfd->pfd_next != NULL) 1675 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1676 } 1677 UF_EXIT(ufp); 1678 } 1679 1680 static void 1681 port_close_fd(portfd_t *pfd) 1682 { 1683 portfd_t *pfdn; 1684 1685 /* 1686 * At this point, no other thread should access 1687 * the portfd_t list for this fd. The uf_file, uf_portfd 1688 * pointers in the uf_entry_t struct for this fd would 1689 * be set to NULL. 1690 */ 1691 for (; pfd != NULL; pfd = pfdn) { 1692 pfdn = pfd->pfd_next; 1693 port_close_pfd(pfd); 1694 } 1695 } 1696