1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/conf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/file.h> 45 #include <sys/proc.h> 46 #include <sys/var.h> 47 #include <sys/cpuvar.h> 48 #include <sys/open.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/prsystm.h> 53 #include <sys/debug.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 #include <sys/fcntl.h> 57 #include <sys/poll.h> 58 #include <sys/rctl.h> 59 #include <sys/port_impl.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_add_32(&x, 1) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 static int vpsetattr(vnode_t *, vattr_t *, int); 82 83 static void port_close_fd(portfd_t *, int); 84 85 /* 86 * File descriptor allocation. 87 * 88 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 89 * The most common case is open(2), in which minfd = 0, but we must also 90 * support fcntl(fd, F_DUPFD, minfd). 91 * 92 * The algorithm is as follows: we keep all file descriptors in an infix 93 * binary tree in which each node records the number of descriptors 94 * allocated in its right subtree, including itself. Starting at minfd, 95 * we ascend the tree until we find a non-fully allocated right subtree. 96 * We then descend that subtree in a binary search for the smallest fd. 97 * Finally, we ascend the tree again to increment the allocation count 98 * of every subtree containing the newly-allocated fd. Freeing an fd 99 * requires only the last step: we ascend the tree to decrement allocation 100 * counts. Each of these three steps (ascent to find non-full subtree, 101 * descent to find lowest fd, ascent to update allocation counts) is 102 * O(log n), thus the algorithm as a whole is O(log n). 103 * 104 * We don't implement the fd tree using the customary left/right/parent 105 * pointers, but instead take advantage of the glorious mathematics of 106 * full infix binary trees. For reference, here's an illustration of the 107 * logical structure of such a tree, rooted at 4 (binary 100), covering 108 * the range 1-7 (binary 001-111). Our canonical trees do not include 109 * fd 0; we'll deal with that later. 110 * 111 * 100 112 * / \ 113 * / \ 114 * 010 110 115 * / \ / \ 116 * 001 011 101 111 117 * 118 * We make the following observations, all of which are easily proven by 119 * induction on the depth of the tree: 120 * 121 * (T1) The least-significant bit (LSB) of any node is equal to its level 122 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 123 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 124 * 125 * (T2) The child size (CSIZE) of node N -- that is, the total number of 126 * right-branch descendants in a child of node N, including itself -- is 127 * given by clearing all but the least significant bit of N. This 128 * follows immediately from (T1). Applying this rule to our example, we 129 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 130 * 131 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 132 * ancestor containing node N in its right child -- is given by clearing 133 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 134 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 135 * the fact that these are leftmost nodes. Note that this algorithm 136 * automatically skips generations as necessary. For example, the parent 137 * of node 101 is 110, which is a *right* ancestor (not what we want); 138 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 139 * of 101 gets us to 100 directly, skipping right past the uninteresting 140 * generation (110). 141 * 142 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 143 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 144 * 145 * LPARENT(N) = N - CSIZE(N) 146 * 147 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 148 * 149 * RPARENT(N) = N + CSIZE(N) 150 * 151 * (T5) For every interior node, the children differ from their parent by 152 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 153 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 154 * 155 * Next, we'll need a few two's-complement math tricks. Suppose a number, 156 * N, has the following form: 157 * 158 * N = xxxx10...0 159 * 160 * That is, the binary representation of N consists of some string of bits, 161 * then a 1, then all zeroes. This amounts to nothing more than saying that 162 * N has a least-significant bit, which is true for any N != 0. If we look 163 * at N and N - 1 together, we see that we can combine them in useful ways: 164 * 165 * N = xxxx10...0 166 * N - 1 = xxxx01...1 167 * ------------------------ 168 * N & (N - 1) = xxxx000000 169 * N | (N - 1) = xxxx111111 170 * N ^ (N - 1) = 111111 171 * 172 * In particular, this suggests several easy ways to clear all but the LSB, 173 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 174 * We'll opt for this formulation: 175 * 176 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 177 * 178 * Similarly, we have an easy way to determine LPARENT(N), which requires 179 * that we clear the LSB of N: 180 * 181 * (L1) LPARENT(N) = N & (N - 1) 182 * 183 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 184 * When combined with (T4), this yields an easy way to compute RPARENT(N): 185 * 186 * (R1) RPARENT(N) = (N | (N - 1)) + 1 187 * 188 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 189 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 190 * so there's no need to belabor the algebra; the revised relations become: 191 * 192 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 193 * 194 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 195 * 196 * (R1a) RPARENT(N) = N | (N + 1) 197 * 198 * This completes the mathematical framework. We now have all the tools 199 * we need to implement fd_find() and fd_reserve(). 200 * 201 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 202 * It does not actually allocate the descriptor; that's done by fd_reserve(). 203 * fd_find() proceeds in two steps: 204 * 205 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 206 * We start at the right subtree rooted at minfd. If this subtree is 207 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 208 * step 1 is done. Otherwise, we know that all fds in this subtree 209 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 210 * this process until we either find a candidate subtree or exceed 211 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 212 * 213 * (2) Find the smallest fd in the subtree discovered by step 1. 214 * Starting at the root of this subtree, we descend to find the 215 * smallest available fd. Since the left children have the smaller 216 * fds, we will descend rightward only when the left child is full. 217 * 218 * We begin by comparing the number of allocated fds in the root 219 * to the number of allocated fds in its right child; if they differ 220 * by exactly CSIZE(child), we know the left subtree is full, so we 221 * descend right; that is, the right child becomes the search root. 222 * Otherwise we leave the root alone and start following the right 223 * child's left children. As fortune would have it, this is very 224 * simple computationally: by (T5), the right child of fd is just 225 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 226 * we find that the right child's left child is fd + size - (size / 2) = 227 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 228 * fd + (size / 4), and so on. In general, fd's right child's 229 * leftmost nth descendant is fd + (size >> n). Thus, to follow 230 * the right child's left descendants, we just halve the size in 231 * each iteration of the search. 232 * 233 * When we descend leftward, we must keep track of the number of fds 234 * that were allocated in all the right subtrees we rejected, so we 235 * know how many of the root fd's allocations are in the remaining 236 * (as yet unexplored) leftmost part of its right subtree. When we 237 * encounter a fully-allocated left child -- that is, when we find 238 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 239 * (as described earlier), resetting ralloc to zero. 240 * 241 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 242 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 243 * the leftmost ancestors (see (T3)) and updates the allocation counts. 244 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 245 * 246 * flist_minsize() finds the minimal tree that still covers all 247 * used fds; as long as the allocation count of a root node is zero, we 248 * don't need that node or its right subtree. 249 * 250 * flist_nalloc() counts the number of allocated fds in the tree, by starting 251 * at the top of the tree and summing the right-subtree allocation counts as 252 * it descends leftwards. 253 * 254 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 255 * 2^n - 1. This ensures that the fd trees are always full, which saves 256 * quite a bit of boundary checking. 257 */ 258 static int 259 fd_find(uf_info_t *fip, int minfd) 260 { 261 int size, ralloc, fd; 262 263 ASSERT(MUTEX_HELD(&fip->fi_lock)); 264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 265 266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 267 size = fd ^ (fd | (fd + 1)); 268 if (fip->fi_list[fd].uf_alloc == size) 269 continue; 270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 271 ralloc += fip->fi_list[fd + size].uf_alloc; 272 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 273 fd += size; 274 ralloc = 0; 275 } 276 } 277 return (fd); 278 } 279 return (-1); 280 } 281 282 static void 283 fd_reserve(uf_info_t *fip, int fd, int incr) 284 { 285 int pfd; 286 uf_entry_t *ufp = &fip->fi_list[fd]; 287 288 ASSERT((uint_t)fd < fip->fi_nfiles); 289 ASSERT((ufp->uf_busy == 0 && incr == 1) || 290 (ufp->uf_busy == 1 && incr == -1)); 291 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 292 ASSERT(MUTEX_HELD(&fip->fi_lock)); 293 294 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 295 fip->fi_list[pfd].uf_alloc += incr; 296 297 ufp->uf_busy += incr; 298 } 299 300 static int 301 flist_minsize(uf_info_t *fip) 302 { 303 int fd; 304 305 /* 306 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 307 * by flist_fork(), which relies on other mechanisms for mutual 308 * exclusion. 309 */ 310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 311 312 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 313 if (fip->fi_list[fd >> 1].uf_alloc != 0) 314 break; 315 316 return (fd); 317 } 318 319 static int 320 flist_nalloc(uf_info_t *fip) 321 { 322 int fd; 323 int nalloc = 0; 324 325 ASSERT(MUTEX_HELD(&fip->fi_lock)); 326 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 327 328 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 329 nalloc += fip->fi_list[fd >> 1].uf_alloc; 330 331 return (nalloc); 332 } 333 334 /* 335 * Increase size of the fi_list array to accommodate at least maxfd. 336 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 337 */ 338 static void 339 flist_grow(int maxfd) 340 { 341 uf_info_t *fip = P_FINFO(curproc); 342 int newcnt, oldcnt; 343 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 344 uf_rlist_t *urp; 345 346 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 347 continue; 348 349 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 350 351 mutex_enter(&fip->fi_lock); 352 oldcnt = fip->fi_nfiles; 353 if (newcnt <= oldcnt) { 354 mutex_exit(&fip->fi_lock); 355 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 356 return; 357 } 358 ASSERT((newcnt & (newcnt + 1)) == 0); 359 oldlist = fip->fi_list; 360 oldend = oldlist + oldcnt; 361 newend = newlist + oldcnt; /* no need to lock beyond old end */ 362 363 /* 364 * fi_list and fi_nfiles cannot change while any uf_lock is held, 365 * so we must grab all the old locks *and* the new locks up to oldcnt. 366 * (Locks beyond the end of oldcnt aren't visible until we store 367 * the new fi_nfiles, which is the last thing we do before dropping 368 * all the locks, so there's no need to acquire these locks). 369 * Holding the new locks is necessary because when fi_list changes 370 * to point to the new list, fi_nfiles won't have been stored yet. 371 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 372 * could see the new fi_list, grab the new uf_lock, and then see 373 * fi_nfiles change while the lock is held -- in violation of 374 * UF_ENTER() semantics. 375 */ 376 for (src = oldlist; src < oldend; src++) 377 mutex_enter(&src->uf_lock); 378 379 for (dst = newlist; dst < newend; dst++) 380 mutex_enter(&dst->uf_lock); 381 382 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 383 dst->uf_file = src->uf_file; 384 dst->uf_fpollinfo = src->uf_fpollinfo; 385 dst->uf_refcnt = src->uf_refcnt; 386 dst->uf_alloc = src->uf_alloc; 387 dst->uf_flag = src->uf_flag; 388 dst->uf_busy = src->uf_busy; 389 dst->uf_portfd = src->uf_portfd; 390 } 391 392 /* 393 * As soon as we store the new flist, future locking operations 394 * will use it. Therefore, we must ensure that all the state 395 * we've just established reaches global visibility before the 396 * new flist does. 397 */ 398 membar_producer(); 399 fip->fi_list = newlist; 400 401 /* 402 * Routines like getf() make an optimistic check on the validity 403 * of the supplied file descriptor: if it's less than the current 404 * value of fi_nfiles -- examined without any locks -- then it's 405 * safe to attempt a UF_ENTER() on that fd (which is a valid 406 * assumption because fi_nfiles only increases). Therefore, it 407 * is critical that the new value of fi_nfiles not reach global 408 * visibility until after the new fi_list: if it happened the 409 * other way around, getf() could see the new fi_nfiles and attempt 410 * a UF_ENTER() on the old fi_list, which would write beyond its 411 * end if the fd exceeded the old fi_nfiles. 412 */ 413 membar_producer(); 414 fip->fi_nfiles = newcnt; 415 416 /* 417 * The new state is consistent now, so we can drop all the locks. 418 */ 419 for (dst = newlist; dst < newend; dst++) 420 mutex_exit(&dst->uf_lock); 421 422 for (src = oldlist; src < oldend; src++) { 423 /* 424 * If any threads are blocked on the old cvs, wake them. 425 * This will force them to wake up, discover that fi_list 426 * has changed, and go back to sleep on the new cvs. 427 */ 428 cv_broadcast(&src->uf_wanted_cv); 429 cv_broadcast(&src->uf_closing_cv); 430 mutex_exit(&src->uf_lock); 431 } 432 433 mutex_exit(&fip->fi_lock); 434 435 /* 436 * Retire the old flist. We can't actually kmem_free() it now 437 * because someone may still have a pointer to it. Instead, 438 * we link it onto a list of retired flists. The new flist 439 * is at least double the size of the previous flist, so the 440 * total size of all retired flists will be less than the size 441 * of the current one (to prove, consider the sum of a geometric 442 * series in powers of 2). exit() frees the retired flists. 443 */ 444 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 445 urp->ur_list = oldlist; 446 urp->ur_nfiles = oldcnt; 447 448 mutex_enter(&fip->fi_lock); 449 urp->ur_next = fip->fi_rlist; 450 fip->fi_rlist = urp; 451 mutex_exit(&fip->fi_lock); 452 } 453 454 /* 455 * Utility functions for keeping track of the active file descriptors. 456 */ 457 void 458 clear_stale_fd() /* called from post_syscall() */ 459 { 460 afd_t *afd = &curthread->t_activefd; 461 int i; 462 463 /* uninitialized is ok here, a_nfd is then zero */ 464 for (i = 0; i < afd->a_nfd; i++) { 465 /* assert that this should not be necessary */ 466 ASSERT(afd->a_fd[i] == -1); 467 afd->a_fd[i] = -1; 468 } 469 afd->a_stale = 0; 470 } 471 472 void 473 free_afd(afd_t *afd) /* called below and from thread_free() */ 474 { 475 int i; 476 477 /* free the buffer if it was kmem_alloc()ed */ 478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 479 COUNT(afd_free); 480 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 481 } 482 483 /* (re)initialize the structure */ 484 afd->a_fd = &afd->a_buf[0]; 485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 486 afd->a_stale = 0; 487 for (i = 0; i < afd->a_nfd; i++) 488 afd->a_fd[i] = -1; 489 } 490 491 static void 492 set_active_fd(int fd) 493 { 494 afd_t *afd = &curthread->t_activefd; 495 int i; 496 int *old_fd; 497 int old_nfd; 498 499 if (afd->a_nfd == 0) /* first time initialization */ 500 free_afd(afd); 501 502 /* insert fd into vacant slot, if any */ 503 for (i = 0; i < afd->a_nfd; i++) { 504 if (afd->a_fd[i] == -1) { 505 afd->a_fd[i] = fd; 506 return; 507 } 508 } 509 510 /* 511 * Reallocate the a_fd[] array to add one more slot. 512 */ 513 old_fd = afd->a_fd; 514 old_nfd = afd->a_nfd; 515 afd->a_nfd = old_nfd + 1; 516 MAXFD(afd->a_nfd); 517 COUNT(afd_alloc); 518 afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 519 for (i = 0; i < old_nfd; i++) 520 afd->a_fd[i] = old_fd[i]; 521 afd->a_fd[i] = fd; 522 523 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 524 COUNT(afd_free); 525 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 526 } 527 } 528 529 void 530 clear_active_fd(int fd) /* called below and from aio.c */ 531 { 532 afd_t *afd = &curthread->t_activefd; 533 int i; 534 535 for (i = 0; i < afd->a_nfd; i++) { 536 if (afd->a_fd[i] == fd) { 537 afd->a_fd[i] = -1; 538 break; 539 } 540 } 541 ASSERT(i < afd->a_nfd); /* not found is not ok */ 542 } 543 544 /* 545 * Does this thread have this fd active? 546 */ 547 static int 548 is_active_fd(kthread_t *t, int fd) 549 { 550 afd_t *afd = &t->t_activefd; 551 int i; 552 553 /* uninitialized is ok here, a_nfd is then zero */ 554 for (i = 0; i < afd->a_nfd; i++) { 555 if (afd->a_fd[i] == fd) 556 return (1); 557 } 558 return (0); 559 } 560 561 /* 562 * Convert a user supplied file descriptor into a pointer to a file 563 * structure. Only task is to check range of the descriptor (soft 564 * resource limit was enforced at open time and shouldn't be checked 565 * here). 566 */ 567 file_t * 568 getf(int fd) 569 { 570 uf_info_t *fip = P_FINFO(curproc); 571 uf_entry_t *ufp; 572 file_t *fp; 573 574 if ((uint_t)fd >= fip->fi_nfiles) 575 return (NULL); 576 577 UF_ENTER(ufp, fip, fd); 578 if ((fp = ufp->uf_file) == NULL) { 579 UF_EXIT(ufp); 580 return (NULL); 581 } 582 ufp->uf_refcnt++; 583 584 #ifdef C2_AUDIT 585 /* 586 * archive per file audit data 587 */ 588 if (audit_active) 589 (void) audit_getf(fd); 590 #endif 591 UF_EXIT(ufp); 592 593 set_active_fd(fd); /* record the active file descriptor */ 594 595 return (fp); 596 } 597 598 /* 599 * Close whatever file currently occupies the file descriptor slot 600 * and install the new file, usually NULL, in the file descriptor slot. 601 * The close must complete before we release the file descriptor slot. 602 * We return the error number from closef(). 603 */ 604 int 605 closeandsetf(int fd, file_t *newfp) 606 { 607 proc_t *p = curproc; 608 uf_info_t *fip = P_FINFO(p); 609 uf_entry_t *ufp; 610 file_t *fp; 611 fpollinfo_t *fpip; 612 portfd_t *pfd; 613 int error; 614 615 if ((uint_t)fd >= fip->fi_nfiles) { 616 if (newfp == NULL) 617 return (EBADF); 618 flist_grow(fd); 619 } 620 621 if (newfp != NULL) { 622 /* 623 * If ufp is reserved but has no file pointer, it's in the 624 * transition between ufalloc() and setf(). We must wait 625 * for this transition to complete before assigning the 626 * new non-NULL file pointer. 627 */ 628 mutex_enter(&fip->fi_lock); 629 UF_ENTER(ufp, fip, fd); 630 while (ufp->uf_busy && ufp->uf_file == NULL) { 631 mutex_exit(&fip->fi_lock); 632 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 633 UF_EXIT(ufp); 634 mutex_enter(&fip->fi_lock); 635 UF_ENTER(ufp, fip, fd); 636 } 637 if ((fp = ufp->uf_file) == NULL) { 638 ASSERT(ufp->uf_fpollinfo == NULL); 639 ASSERT(ufp->uf_flag == 0); 640 fd_reserve(fip, fd, 1); 641 ufp->uf_file = newfp; 642 UF_EXIT(ufp); 643 mutex_exit(&fip->fi_lock); 644 return (0); 645 } 646 mutex_exit(&fip->fi_lock); 647 } else { 648 UF_ENTER(ufp, fip, fd); 649 if ((fp = ufp->uf_file) == NULL) { 650 UF_EXIT(ufp); 651 return (EBADF); 652 } 653 } 654 655 #ifdef C2_AUDIT 656 /* 657 * archive per file audit data 658 */ 659 if (audit_active) 660 (void) audit_getf(fd); 661 #endif 662 ASSERT(ufp->uf_busy); 663 ufp->uf_file = NULL; 664 ufp->uf_flag = 0; 665 666 /* 667 * If the file descriptor reference count is non-zero, then 668 * some other lwp in the process is performing system call 669 * activity on the file. To avoid blocking here for a long 670 * time (the other lwp might be in a long term sleep in its 671 * system call), we stop all other lwps in the process and 672 * scan them to find the ones with this fd as one of their 673 * active fds and set their a_stale flag so they will emerge 674 * from their system calls immediately. post_syscall() will 675 * test the a_stale flag and set errno to EBADF. 676 */ 677 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 678 if (ufp->uf_refcnt > 0) { 679 UF_EXIT(ufp); 680 COUNT(afd_wait); 681 682 /* 683 * Make all other lwps hold in place, as if doing fork1(). 684 * holdlwps(SHOLDFORK1) fails only if another lwp wants to 685 * perform a forkall() or the process is exiting. In either 686 * case, all other lwps are either returning from their 687 * system calls (because of SHOLDFORK) or calling lwp_exit() 688 * (because of SEXITLWPS) so we don't need to scan them. 689 */ 690 if (holdlwps(SHOLDFORK1)) { 691 kthread_t *t; 692 693 mutex_enter(&p->p_lock); 694 for (t = curthread->t_forw; t != curthread; 695 t = t->t_forw) { 696 if (is_active_fd(t, fd)) { 697 t->t_activefd.a_stale = 1; 698 t->t_post_sys = 1; 699 } 700 } 701 continuelwps(p); 702 mutex_exit(&p->p_lock); 703 } 704 UF_ENTER(ufp, fip, fd); 705 ASSERT(ufp->uf_file == NULL); 706 } 707 708 /* 709 * Wait for other lwps to stop using this file descriptor. 710 */ 711 while (ufp->uf_refcnt > 0) { 712 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 713 /* 714 * cv_wait_stop() drops ufp->uf_lock, so the file list 715 * can change. Drop the lock on our (possibly) stale 716 * ufp and let UF_ENTER() find and lock the current ufp. 717 */ 718 UF_EXIT(ufp); 719 UF_ENTER(ufp, fip, fd); 720 } 721 722 #ifdef DEBUG 723 /* 724 * catch a watchfd on device's pollhead list but not on fpollinfo list 725 */ 726 if (ufp->uf_fpollinfo != NULL) 727 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 728 #endif /* DEBUG */ 729 730 /* 731 * We may need to cleanup some cached poll states in t_pollstate 732 * before the fd can be reused. It is important that we don't 733 * access a stale thread structure. We will do the cleanup in two 734 * phases to avoid deadlock and holding uf_lock for too long. 735 * In phase 1, hold the uf_lock and call pollblockexit() to set 736 * state in t_pollstate struct so that a thread does not exit on 737 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 738 */ 739 pfd = ufp->uf_portfd; 740 ufp->uf_portfd = NULL; 741 fpip = ufp->uf_fpollinfo; 742 ufp->uf_fpollinfo = NULL; 743 if (fpip != NULL) 744 pollblockexit(fpip); 745 UF_EXIT(ufp); 746 if (fpip != NULL) 747 pollcacheclean(fpip, fd); 748 if (pfd) 749 port_close_fd(pfd, fd); 750 751 /* 752 * Keep the file descriptor entry reserved across the closef(). 753 */ 754 error = closef(fp); 755 756 setf(fd, newfp); 757 758 return (error); 759 } 760 761 /* 762 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 763 */ 764 void 765 releasef(int fd) 766 { 767 uf_info_t *fip = P_FINFO(curproc); 768 uf_entry_t *ufp; 769 770 clear_active_fd(fd); /* clear the active file descriptor */ 771 772 UF_ENTER(ufp, fip, fd); 773 ASSERT(ufp->uf_refcnt > 0); 774 if (--ufp->uf_refcnt == 0) 775 cv_broadcast(&ufp->uf_closing_cv); 776 UF_EXIT(ufp); 777 } 778 779 /* 780 * Identical to releasef() but can be called from another process. 781 */ 782 void 783 areleasef(int fd, uf_info_t *fip) 784 { 785 uf_entry_t *ufp; 786 787 UF_ENTER(ufp, fip, fd); 788 ASSERT(ufp->uf_refcnt > 0); 789 if (--ufp->uf_refcnt == 0) 790 cv_broadcast(&ufp->uf_closing_cv); 791 UF_EXIT(ufp); 792 } 793 794 /* 795 * Duplicate all file descriptors across a fork. 796 */ 797 void 798 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 799 { 800 int fd, nfiles; 801 uf_entry_t *pufp, *cufp; 802 803 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 804 cfip->fi_rlist = NULL; 805 806 /* 807 * We don't need to hold fi_lock because all other lwp's in the 808 * parent have been held. 809 */ 810 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 811 812 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 813 814 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 815 fd++, pufp++, cufp++) { 816 cufp->uf_file = pufp->uf_file; 817 cufp->uf_alloc = pufp->uf_alloc; 818 cufp->uf_flag = pufp->uf_flag; 819 cufp->uf_busy = pufp->uf_busy; 820 if (pufp->uf_file == NULL) { 821 ASSERT(pufp->uf_flag == 0); 822 if (pufp->uf_busy) { 823 /* 824 * Grab locks to appease ASSERTs in fd_reserve 825 */ 826 mutex_enter(&cfip->fi_lock); 827 mutex_enter(&cufp->uf_lock); 828 fd_reserve(cfip, fd, -1); 829 mutex_exit(&cufp->uf_lock); 830 mutex_exit(&cfip->fi_lock); 831 } 832 } 833 } 834 } 835 836 /* 837 * Close all open file descriptors for the current process. 838 * This is only called from exit(), which is single-threaded, 839 * so we don't need any locking. 840 */ 841 void 842 closeall(uf_info_t *fip) 843 { 844 int fd; 845 file_t *fp; 846 uf_entry_t *ufp; 847 848 ufp = fip->fi_list; 849 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 850 if ((fp = ufp->uf_file) != NULL) { 851 ufp->uf_file = NULL; 852 if (ufp->uf_portfd != NULL) { 853 /* remove event port association */ 854 port_close_fd(ufp->uf_portfd, fd); 855 ufp->uf_portfd = NULL; 856 } 857 ASSERT(ufp->uf_fpollinfo == NULL); 858 (void) closef(fp); 859 } 860 } 861 862 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 863 fip->fi_list = NULL; 864 fip->fi_nfiles = 0; 865 while (fip->fi_rlist != NULL) { 866 uf_rlist_t *urp = fip->fi_rlist; 867 fip->fi_rlist = urp->ur_next; 868 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 869 kmem_free(urp, sizeof (uf_rlist_t)); 870 } 871 } 872 873 /* 874 * Internal form of close. Decrement reference count on file 875 * structure. Decrement reference count on the vnode following 876 * removal of the referencing file structure. 877 */ 878 int 879 closef(file_t *fp) 880 { 881 vnode_t *vp; 882 int error; 883 int count; 884 int flag; 885 offset_t offset; 886 887 #ifdef C2_AUDIT 888 /* 889 * audit close of file (may be exit) 890 */ 891 if (audit_active) 892 audit_closef(fp); 893 #endif 894 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 895 896 mutex_enter(&fp->f_tlock); 897 898 ASSERT(fp->f_count > 0); 899 900 count = fp->f_count--; 901 flag = fp->f_flag; 902 offset = fp->f_offset; 903 904 vp = fp->f_vnode; 905 906 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred); 907 908 if (count > 1) { 909 mutex_exit(&fp->f_tlock); 910 return (error); 911 } 912 ASSERT(fp->f_count == 0); 913 mutex_exit(&fp->f_tlock); 914 915 VN_RELE(vp); 916 #ifdef C2_AUDIT 917 /* 918 * deallocate resources to audit_data 919 */ 920 if (audit_active) 921 audit_unfalloc(fp); 922 #endif 923 crfree(fp->f_cred); 924 kmem_cache_free(file_cache, fp); 925 return (error); 926 } 927 928 /* 929 * This is a combination of ufalloc() and setf(). 930 */ 931 int 932 ufalloc_file(int start, file_t *fp) 933 { 934 proc_t *p = curproc; 935 uf_info_t *fip = P_FINFO(p); 936 int filelimit; 937 uf_entry_t *ufp; 938 int nfiles; 939 int fd; 940 941 /* 942 * Assertion is to convince the correctness of the following 943 * assignment for filelimit after casting to int. 944 */ 945 ASSERT(p->p_fno_ctl <= INT_MAX); 946 filelimit = (int)p->p_fno_ctl; 947 948 for (;;) { 949 mutex_enter(&fip->fi_lock); 950 fd = fd_find(fip, start); 951 if ((uint_t)fd < filelimit) 952 break; 953 if (fd >= filelimit) { 954 mutex_exit(&fip->fi_lock); 955 mutex_enter(&p->p_lock); 956 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 957 p->p_rctls, p, RCA_SAFE); 958 mutex_exit(&p->p_lock); 959 return (-1); 960 } 961 /* fd_find() returned -1 */ 962 nfiles = fip->fi_nfiles; 963 mutex_exit(&fip->fi_lock); 964 flist_grow(MAX(start, nfiles)); 965 } 966 967 UF_ENTER(ufp, fip, fd); 968 fd_reserve(fip, fd, 1); 969 ASSERT(ufp->uf_file == NULL); 970 ufp->uf_file = fp; 971 UF_EXIT(ufp); 972 mutex_exit(&fip->fi_lock); 973 return (fd); 974 } 975 976 /* 977 * Allocate a user file descriptor greater than or equal to "start". 978 */ 979 int 980 ufalloc(int start) 981 { 982 return (ufalloc_file(start, NULL)); 983 } 984 985 /* 986 * Check that a future allocation of count fds on proc p has a good 987 * chance of succeeding. If not, do rctl processing as if we'd failed 988 * the allocation. 989 * 990 * Our caller must guarantee that p cannot disappear underneath us. 991 */ 992 int 993 ufcanalloc(proc_t *p, uint_t count) 994 { 995 uf_info_t *fip = P_FINFO(p); 996 int filelimit; 997 int current; 998 999 if (count == 0) 1000 return (1); 1001 1002 ASSERT(p->p_fno_ctl <= INT_MAX); 1003 filelimit = (int)p->p_fno_ctl; 1004 1005 mutex_enter(&fip->fi_lock); 1006 current = flist_nalloc(fip); /* # of in-use descriptors */ 1007 mutex_exit(&fip->fi_lock); 1008 1009 /* 1010 * If count is a positive integer, the worst that can happen is 1011 * an overflow to a negative value, which is caught by the >= 0 check. 1012 */ 1013 current += count; 1014 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1015 return (1); 1016 1017 mutex_enter(&p->p_lock); 1018 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1019 p->p_rctls, p, RCA_SAFE); 1020 mutex_exit(&p->p_lock); 1021 return (0); 1022 } 1023 1024 /* 1025 * Allocate a user file descriptor and a file structure. 1026 * Initialize the descriptor to point at the file structure. 1027 * If fdp is NULL, the user file descriptor will not be allocated. 1028 */ 1029 int 1030 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1031 { 1032 file_t *fp; 1033 int fd; 1034 1035 if (fdp) { 1036 if ((fd = ufalloc(0)) == -1) 1037 return (EMFILE); 1038 } 1039 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1040 /* 1041 * Note: falloc returns the fp locked 1042 */ 1043 mutex_enter(&fp->f_tlock); 1044 fp->f_count = 1; 1045 fp->f_flag = (ushort_t)flag; 1046 fp->f_vnode = vp; 1047 fp->f_offset = 0; 1048 fp->f_audit_data = 0; 1049 crhold(fp->f_cred = CRED()); 1050 #ifdef C2_AUDIT 1051 /* 1052 * allocate resources to audit_data 1053 */ 1054 if (audit_active) 1055 audit_falloc(fp); 1056 #endif 1057 *fpp = fp; 1058 if (fdp) 1059 *fdp = fd; 1060 return (0); 1061 } 1062 1063 /*ARGSUSED*/ 1064 static int 1065 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1066 { 1067 file_t *fp = buf; 1068 1069 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1070 return (0); 1071 } 1072 1073 /*ARGSUSED*/ 1074 static void 1075 file_cache_destructor(void *buf, void *cdrarg) 1076 { 1077 file_t *fp = buf; 1078 1079 mutex_destroy(&fp->f_tlock); 1080 } 1081 1082 void 1083 finit() 1084 { 1085 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1086 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1087 } 1088 1089 void 1090 unfalloc(file_t *fp) 1091 { 1092 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1093 if (--fp->f_count <= 0) { 1094 #ifdef C2_AUDIT 1095 /* 1096 * deallocate resources to audit_data 1097 */ 1098 if (audit_active) 1099 audit_unfalloc(fp); 1100 #endif 1101 crfree(fp->f_cred); 1102 mutex_exit(&fp->f_tlock); 1103 kmem_cache_free(file_cache, fp); 1104 } else 1105 mutex_exit(&fp->f_tlock); 1106 } 1107 1108 /* 1109 * Given a file descriptor, set the user's 1110 * file pointer to the given parameter. 1111 */ 1112 void 1113 setf(int fd, file_t *fp) 1114 { 1115 uf_info_t *fip = P_FINFO(curproc); 1116 uf_entry_t *ufp; 1117 1118 #ifdef C2_AUDIT 1119 if (audit_active) 1120 audit_setf(fp, fd); 1121 #endif /* C2_AUDIT */ 1122 1123 if (fp == NULL) { 1124 mutex_enter(&fip->fi_lock); 1125 UF_ENTER(ufp, fip, fd); 1126 fd_reserve(fip, fd, -1); 1127 mutex_exit(&fip->fi_lock); 1128 } else { 1129 UF_ENTER(ufp, fip, fd); 1130 ASSERT(ufp->uf_busy); 1131 } 1132 ASSERT(ufp->uf_fpollinfo == NULL); 1133 ASSERT(ufp->uf_flag == 0); 1134 ufp->uf_file = fp; 1135 cv_broadcast(&ufp->uf_wanted_cv); 1136 UF_EXIT(ufp); 1137 } 1138 1139 /* 1140 * Given a file descriptor, return the file table flags, plus, 1141 * if this is a socket in asynchronous mode, the FASYNC flag. 1142 * getf() may or may not have been called before calling f_getfl(). 1143 */ 1144 int 1145 f_getfl(int fd, int *flagp) 1146 { 1147 uf_info_t *fip = P_FINFO(curproc); 1148 uf_entry_t *ufp; 1149 file_t *fp; 1150 int error; 1151 1152 if ((uint_t)fd >= fip->fi_nfiles) 1153 error = EBADF; 1154 else { 1155 UF_ENTER(ufp, fip, fd); 1156 if ((fp = ufp->uf_file) == NULL) 1157 error = EBADF; 1158 else { 1159 vnode_t *vp = fp->f_vnode; 1160 int flag = fp->f_flag; 1161 1162 /* 1163 * BSD fcntl() FASYNC compatibility. 1164 * 1165 * SCTP doesn't have an associated stream and thus 1166 * doesn't store flags on it. 1167 */ 1168 if ((vp->v_type == VSOCK) && (vp->v_stream != NULL)) 1169 flag |= sock_getfasync(vp); 1170 *flagp = flag; 1171 error = 0; 1172 } 1173 UF_EXIT(ufp); 1174 } 1175 1176 return (error); 1177 } 1178 1179 /* 1180 * Given a file descriptor, return the user's file flags. 1181 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1182 * getf() may or may not have been called before calling f_getfd_error(). 1183 */ 1184 int 1185 f_getfd_error(int fd, int *flagp) 1186 { 1187 uf_info_t *fip = P_FINFO(curproc); 1188 uf_entry_t *ufp; 1189 file_t *fp; 1190 int flag; 1191 int error; 1192 1193 if ((uint_t)fd >= fip->fi_nfiles) 1194 error = EBADF; 1195 else { 1196 UF_ENTER(ufp, fip, fd); 1197 if ((fp = ufp->uf_file) == NULL) 1198 error = EBADF; 1199 else { 1200 flag = ufp->uf_flag; 1201 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1202 flag |= FD_CLOEXEC; 1203 *flagp = flag; 1204 error = 0; 1205 } 1206 UF_EXIT(ufp); 1207 } 1208 1209 return (error); 1210 } 1211 1212 /* 1213 * getf() must have been called before calling f_getfd(). 1214 */ 1215 char 1216 f_getfd(int fd) 1217 { 1218 int flag = 0; 1219 (void) f_getfd_error(fd, &flag); 1220 return ((char)flag); 1221 } 1222 1223 /* 1224 * Given a file descriptor and file flags, set the user's file flags. 1225 * At present, the only valid flag is FD_CLOEXEC. 1226 * getf() may or may not have been called before calling f_setfd_error(). 1227 */ 1228 int 1229 f_setfd_error(int fd, int flags) 1230 { 1231 uf_info_t *fip = P_FINFO(curproc); 1232 uf_entry_t *ufp; 1233 int error; 1234 1235 if ((uint_t)fd >= fip->fi_nfiles) 1236 error = EBADF; 1237 else { 1238 UF_ENTER(ufp, fip, fd); 1239 if (ufp->uf_file == NULL) 1240 error = EBADF; 1241 else { 1242 ufp->uf_flag = flags & FD_CLOEXEC; 1243 error = 0; 1244 } 1245 UF_EXIT(ufp); 1246 } 1247 return (error); 1248 } 1249 1250 void 1251 f_setfd(int fd, char flags) 1252 { 1253 (void) f_setfd_error(fd, flags); 1254 } 1255 1256 /* 1257 * Allocate a file descriptor and assign it to the vnode "*vpp", 1258 * performing the usual open protocol upon it and returning the 1259 * file descriptor allocated. It is the responsibility of the 1260 * caller to dispose of "*vpp" if any error occurs. 1261 */ 1262 int 1263 fassign(vnode_t **vpp, int mode, int *fdp) 1264 { 1265 file_t *fp; 1266 int error; 1267 int fd; 1268 1269 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1270 return (error); 1271 if (error = VOP_OPEN(vpp, mode, fp->f_cred)) { 1272 setf(fd, NULL); 1273 unfalloc(fp); 1274 return (error); 1275 } 1276 fp->f_vnode = *vpp; 1277 mutex_exit(&fp->f_tlock); 1278 /* 1279 * Fill in the slot falloc reserved. 1280 */ 1281 setf(fd, fp); 1282 *fdp = fd; 1283 return (0); 1284 } 1285 1286 /* 1287 * When a process forks it must increment the f_count of all file pointers 1288 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1289 * Since we are called when there is only 1 active lwp we don't need to 1290 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1291 * fcnt_add(fip, -1) to restore the counts. 1292 */ 1293 void 1294 fcnt_add(uf_info_t *fip, int incr) 1295 { 1296 int i; 1297 uf_entry_t *ufp; 1298 file_t *fp; 1299 1300 ufp = fip->fi_list; 1301 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1302 if ((fp = ufp->uf_file) != NULL) { 1303 mutex_enter(&fp->f_tlock); 1304 ASSERT((incr == 1 && fp->f_count >= 1) || 1305 (incr == -1 && fp->f_count >= 2)); 1306 fp->f_count += incr; 1307 mutex_exit(&fp->f_tlock); 1308 } 1309 } 1310 } 1311 1312 /* 1313 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1314 * set and also to close all self-open for write /proc file descriptors. 1315 */ 1316 void 1317 close_exec(uf_info_t *fip) 1318 { 1319 int fd; 1320 file_t *fp; 1321 fpollinfo_t *fpip; 1322 uf_entry_t *ufp; 1323 portfd_t *pfd; 1324 1325 ufp = fip->fi_list; 1326 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1327 if ((fp = ufp->uf_file) != NULL && 1328 ((ufp->uf_flag & FD_CLOEXEC) || 1329 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1330 fpip = ufp->uf_fpollinfo; 1331 mutex_enter(&fip->fi_lock); 1332 mutex_enter(&ufp->uf_lock); 1333 fd_reserve(fip, fd, -1); 1334 mutex_exit(&fip->fi_lock); 1335 ufp->uf_file = NULL; 1336 ufp->uf_fpollinfo = NULL; 1337 ufp->uf_flag = 0; 1338 /* 1339 * We may need to cleanup some cached poll states 1340 * in t_pollstate before the fd can be reused. It 1341 * is important that we don't access a stale thread 1342 * structure. We will do the cleanup in two 1343 * phases to avoid deadlock and holding uf_lock for 1344 * too long. In phase 1, hold the uf_lock and call 1345 * pollblockexit() to set state in t_pollstate struct 1346 * so that a thread does not exit on us. In phase 2, 1347 * we drop the uf_lock and call pollcacheclean(). 1348 */ 1349 pfd = ufp->uf_portfd; 1350 ufp->uf_portfd = NULL; 1351 if (fpip != NULL) 1352 pollblockexit(fpip); 1353 mutex_exit(&ufp->uf_lock); 1354 if (fpip != NULL) 1355 pollcacheclean(fpip, fd); 1356 if (pfd) 1357 port_close_fd(pfd, fd); 1358 (void) closef(fp); 1359 } 1360 } 1361 } 1362 1363 /* 1364 * Common routine for modifying attributes of named files. 1365 */ 1366 int 1367 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1368 { 1369 vnode_t *vp; 1370 int error = 0; 1371 1372 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1373 return (set_errno(error)); 1374 if (error = vpsetattr(vp, vap, flags)) 1375 (void) set_errno(error); 1376 VN_RELE(vp); 1377 return (error); 1378 } 1379 1380 /* 1381 * Common routine for modifying attributes of files referenced 1382 * by descriptor. 1383 */ 1384 int 1385 fdsetattr(int fd, vattr_t *vap) 1386 { 1387 file_t *fp; 1388 vnode_t *vp; 1389 int error = 0; 1390 1391 if ((fp = getf(fd)) != NULL) { 1392 vp = fp->f_vnode; 1393 if (error = vpsetattr(vp, vap, 0)) { 1394 (void) set_errno(error); 1395 } 1396 releasef(fd); 1397 } else 1398 error = set_errno(EBADF); 1399 return (error); 1400 } 1401 1402 /* 1403 * Common routine to set the attributes for the given vnode. 1404 * If the vnode is a file and the filesize is being manipulated, 1405 * this makes sure that there are no conflicting non-blocking 1406 * mandatory locks in that region. 1407 */ 1408 static int 1409 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1410 { 1411 int error = 0; 1412 int in_crit = 0; 1413 u_offset_t begin; 1414 vattr_t vattr; 1415 ssize_t length; 1416 1417 if (vn_is_readonly(vp)) { 1418 error = EROFS; 1419 } 1420 if (!error && (vap->va_mask & AT_SIZE) && 1421 nbl_need_check(vp)) { 1422 nbl_start_crit(vp, RW_READER); 1423 in_crit = 1; 1424 vattr.va_mask = AT_SIZE; 1425 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1426 begin = vap->va_size > vattr.va_size ? 1427 vattr.va_size : vap->va_size; 1428 length = vattr.va_size > vap->va_size ? 1429 vattr.va_size - vap->va_size : 1430 vap->va_size - vattr.va_size; 1431 1432 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0)) { 1433 error = EACCES; 1434 } 1435 } 1436 } 1437 if (!error) 1438 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1439 1440 if (in_crit) 1441 nbl_end_crit(vp); 1442 1443 return (error); 1444 } 1445 1446 /* 1447 * Return true if the given vnode is referenced by any 1448 * entry in the current process's file descriptor table. 1449 */ 1450 int 1451 fisopen(vnode_t *vp) 1452 { 1453 int fd; 1454 file_t *fp; 1455 vnode_t *ovp; 1456 uf_info_t *fip = P_FINFO(curproc); 1457 uf_entry_t *ufp; 1458 1459 mutex_enter(&fip->fi_lock); 1460 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1461 UF_ENTER(ufp, fip, fd); 1462 if ((fp = ufp->uf_file) != NULL && 1463 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1464 UF_EXIT(ufp); 1465 mutex_exit(&fip->fi_lock); 1466 return (1); 1467 } 1468 UF_EXIT(ufp); 1469 } 1470 mutex_exit(&fip->fi_lock); 1471 return (0); 1472 } 1473 1474 /* 1475 * Return zero if at least one file currently open (by curproc) shouldn't be 1476 * allowed to change zones. 1477 */ 1478 int 1479 files_can_change_zones(void) 1480 { 1481 int fd; 1482 file_t *fp; 1483 uf_info_t *fip = P_FINFO(curproc); 1484 uf_entry_t *ufp; 1485 1486 mutex_enter(&fip->fi_lock); 1487 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1488 UF_ENTER(ufp, fip, fd); 1489 if ((fp = ufp->uf_file) != NULL && 1490 !vn_can_change_zones(fp->f_vnode)) { 1491 UF_EXIT(ufp); 1492 mutex_exit(&fip->fi_lock); 1493 return (0); 1494 } 1495 UF_EXIT(ufp); 1496 } 1497 mutex_exit(&fip->fi_lock); 1498 return (1); 1499 } 1500 1501 #ifdef DEBUG 1502 1503 /* 1504 * The following functions are only used in ASSERT()s elsewhere. 1505 * They do not modify the state of the system. 1506 */ 1507 1508 /* 1509 * Return true (1) if the current thread is in the fpollinfo 1510 * list for this file descriptor, else false (0). 1511 */ 1512 static int 1513 curthread_in_plist(uf_entry_t *ufp) 1514 { 1515 fpollinfo_t *fpip; 1516 1517 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1518 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1519 if (fpip->fp_thread == curthread) 1520 return (1); 1521 return (0); 1522 } 1523 1524 /* 1525 * Sanity check to make sure that after lwp_exit(), 1526 * curthread does not appear on any fd's fpollinfo list. 1527 */ 1528 void 1529 checkfpollinfo(void) 1530 { 1531 int fd; 1532 uf_info_t *fip = P_FINFO(curproc); 1533 uf_entry_t *ufp; 1534 1535 mutex_enter(&fip->fi_lock); 1536 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1537 UF_ENTER(ufp, fip, fd); 1538 ASSERT(!curthread_in_plist(ufp)); 1539 UF_EXIT(ufp); 1540 } 1541 mutex_exit(&fip->fi_lock); 1542 } 1543 1544 /* 1545 * Return true (1) if the current thread is in the fpollinfo 1546 * list for this file descriptor, else false (0). 1547 * This is the same as curthread_in_plist(), 1548 * but is called w/o holding uf_lock. 1549 */ 1550 int 1551 infpollinfo(int fd) 1552 { 1553 uf_info_t *fip = P_FINFO(curproc); 1554 uf_entry_t *ufp; 1555 int rc; 1556 1557 UF_ENTER(ufp, fip, fd); 1558 rc = curthread_in_plist(ufp); 1559 UF_EXIT(ufp); 1560 return (rc); 1561 } 1562 1563 #endif /* DEBUG */ 1564 1565 /* 1566 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1567 * thread's poll cache. Each lwp polling this file descriptor should call 1568 * this routine once. 1569 */ 1570 void 1571 addfpollinfo(int fd) 1572 { 1573 struct uf_entry *ufp; 1574 fpollinfo_t *fpip; 1575 uf_info_t *fip = P_FINFO(curproc); 1576 1577 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1578 fpip->fp_thread = curthread; 1579 UF_ENTER(ufp, fip, fd); 1580 /* 1581 * Assert we are not already on the list, that is, that 1582 * this lwp did not call addfpollinfo twice for the same fd. 1583 */ 1584 ASSERT(!curthread_in_plist(ufp)); 1585 /* 1586 * addfpollinfo is always done inside the getf/releasef pair. 1587 */ 1588 ASSERT(ufp->uf_refcnt >= 1); 1589 fpip->fp_next = ufp->uf_fpollinfo; 1590 ufp->uf_fpollinfo = fpip; 1591 UF_EXIT(ufp); 1592 } 1593 1594 /* 1595 * delete curthread from fpollinfo list. 1596 */ 1597 /*ARGSUSED*/ 1598 void 1599 delfpollinfo(int fd) 1600 { 1601 struct uf_entry *ufp; 1602 struct fpollinfo *fpip; 1603 struct fpollinfo **fpipp; 1604 uf_info_t *fip = P_FINFO(curproc); 1605 1606 UF_ENTER(ufp, fip, fd); 1607 if (ufp->uf_fpollinfo == NULL) { 1608 UF_EXIT(ufp); 1609 return; 1610 } 1611 ASSERT(ufp->uf_busy); 1612 /* 1613 * Find and delete curthread from the list. 1614 */ 1615 fpipp = &ufp->uf_fpollinfo; 1616 while ((fpip = *fpipp)->fp_thread != curthread) 1617 fpipp = &fpip->fp_next; 1618 *fpipp = fpip->fp_next; 1619 kmem_free(fpip, sizeof (fpollinfo_t)); 1620 /* 1621 * Assert that we are not still on the list, that is, that 1622 * this lwp did not call addfpollinfo twice for the same fd. 1623 */ 1624 ASSERT(!curthread_in_plist(ufp)); 1625 UF_EXIT(ufp); 1626 } 1627 1628 /* 1629 * fd is associated with a port. pfd is a pointer to the fd entry in the 1630 * cache of the port. 1631 */ 1632 1633 void 1634 addfd_port(int fd, portfd_t *pfd) 1635 { 1636 struct uf_entry *ufp; 1637 uf_info_t *fip = P_FINFO(curproc); 1638 1639 UF_ENTER(ufp, fip, fd); 1640 /* 1641 * addfd_port is always done inside the getf/releasef pair. 1642 */ 1643 ASSERT(ufp->uf_refcnt >= 1); 1644 if (ufp->uf_portfd == NULL) { 1645 /* first entry */ 1646 ufp->uf_portfd = pfd; 1647 pfd->pfd_next = NULL; 1648 } else { 1649 pfd->pfd_next = ufp->uf_portfd; 1650 ufp->uf_portfd = pfd; 1651 pfd->pfd_next->pfd_prev = pfd; 1652 } 1653 UF_EXIT(ufp); 1654 } 1655 1656 void 1657 delfd_port(int fd, portfd_t *pfd) 1658 { 1659 struct uf_entry *ufp; 1660 uf_info_t *fip = P_FINFO(curproc); 1661 1662 UF_ENTER(ufp, fip, fd); 1663 /* 1664 * delfd_port is always done inside the getf/releasef pair. 1665 */ 1666 ASSERT(ufp->uf_refcnt >= 1); 1667 if (ufp->uf_portfd == pfd) { 1668 /* remove first entry */ 1669 ufp->uf_portfd = pfd->pfd_next; 1670 } else { 1671 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1672 if (pfd->pfd_next != NULL) 1673 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1674 } 1675 UF_EXIT(ufp); 1676 } 1677 1678 static void 1679 port_close_fd(portfd_t *pfd, int fd) 1680 { 1681 portfd_t *pfdn; 1682 struct uf_entry *ufp; 1683 uf_info_t *fip = P_FINFO(curproc); 1684 1685 UF_ENTER(ufp, fip, fd); 1686 for (; pfd != NULL; pfd = pfdn) { 1687 pfdn = pfd->pfd_next; 1688 port_close_pfd(pfd); 1689 } 1690 UF_EXIT(ufp); 1691 } 1692