1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/conf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/file.h> 45 #include <sys/proc.h> 46 #include <sys/var.h> 47 #include <sys/cpuvar.h> 48 #include <sys/open.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/prsystm.h> 53 #include <sys/debug.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 #include <sys/fcntl.h> 57 #include <sys/poll.h> 58 #include <sys/rctl.h> 59 #include <sys/port_impl.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_add_32(&x, 1) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 static int vpsetattr(vnode_t *, vattr_t *, int); 82 83 static void port_close_fd(portfd_t *); 84 85 /* 86 * File descriptor allocation. 87 * 88 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 89 * The most common case is open(2), in which minfd = 0, but we must also 90 * support fcntl(fd, F_DUPFD, minfd). 91 * 92 * The algorithm is as follows: we keep all file descriptors in an infix 93 * binary tree in which each node records the number of descriptors 94 * allocated in its right subtree, including itself. Starting at minfd, 95 * we ascend the tree until we find a non-fully allocated right subtree. 96 * We then descend that subtree in a binary search for the smallest fd. 97 * Finally, we ascend the tree again to increment the allocation count 98 * of every subtree containing the newly-allocated fd. Freeing an fd 99 * requires only the last step: we ascend the tree to decrement allocation 100 * counts. Each of these three steps (ascent to find non-full subtree, 101 * descent to find lowest fd, ascent to update allocation counts) is 102 * O(log n), thus the algorithm as a whole is O(log n). 103 * 104 * We don't implement the fd tree using the customary left/right/parent 105 * pointers, but instead take advantage of the glorious mathematics of 106 * full infix binary trees. For reference, here's an illustration of the 107 * logical structure of such a tree, rooted at 4 (binary 100), covering 108 * the range 1-7 (binary 001-111). Our canonical trees do not include 109 * fd 0; we'll deal with that later. 110 * 111 * 100 112 * / \ 113 * / \ 114 * 010 110 115 * / \ / \ 116 * 001 011 101 111 117 * 118 * We make the following observations, all of which are easily proven by 119 * induction on the depth of the tree: 120 * 121 * (T1) The least-significant bit (LSB) of any node is equal to its level 122 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 123 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 124 * 125 * (T2) The child size (CSIZE) of node N -- that is, the total number of 126 * right-branch descendants in a child of node N, including itself -- is 127 * given by clearing all but the least significant bit of N. This 128 * follows immediately from (T1). Applying this rule to our example, we 129 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 130 * 131 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 132 * ancestor containing node N in its right child -- is given by clearing 133 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 134 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 135 * the fact that these are leftmost nodes. Note that this algorithm 136 * automatically skips generations as necessary. For example, the parent 137 * of node 101 is 110, which is a *right* ancestor (not what we want); 138 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 139 * of 101 gets us to 100 directly, skipping right past the uninteresting 140 * generation (110). 141 * 142 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 143 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 144 * 145 * LPARENT(N) = N - CSIZE(N) 146 * 147 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 148 * 149 * RPARENT(N) = N + CSIZE(N) 150 * 151 * (T5) For every interior node, the children differ from their parent by 152 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 153 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 154 * 155 * Next, we'll need a few two's-complement math tricks. Suppose a number, 156 * N, has the following form: 157 * 158 * N = xxxx10...0 159 * 160 * That is, the binary representation of N consists of some string of bits, 161 * then a 1, then all zeroes. This amounts to nothing more than saying that 162 * N has a least-significant bit, which is true for any N != 0. If we look 163 * at N and N - 1 together, we see that we can combine them in useful ways: 164 * 165 * N = xxxx10...0 166 * N - 1 = xxxx01...1 167 * ------------------------ 168 * N & (N - 1) = xxxx000000 169 * N | (N - 1) = xxxx111111 170 * N ^ (N - 1) = 111111 171 * 172 * In particular, this suggests several easy ways to clear all but the LSB, 173 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 174 * We'll opt for this formulation: 175 * 176 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 177 * 178 * Similarly, we have an easy way to determine LPARENT(N), which requires 179 * that we clear the LSB of N: 180 * 181 * (L1) LPARENT(N) = N & (N - 1) 182 * 183 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 184 * When combined with (T4), this yields an easy way to compute RPARENT(N): 185 * 186 * (R1) RPARENT(N) = (N | (N - 1)) + 1 187 * 188 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 189 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 190 * so there's no need to belabor the algebra; the revised relations become: 191 * 192 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 193 * 194 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 195 * 196 * (R1a) RPARENT(N) = N | (N + 1) 197 * 198 * This completes the mathematical framework. We now have all the tools 199 * we need to implement fd_find() and fd_reserve(). 200 * 201 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 202 * It does not actually allocate the descriptor; that's done by fd_reserve(). 203 * fd_find() proceeds in two steps: 204 * 205 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 206 * We start at the right subtree rooted at minfd. If this subtree is 207 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 208 * step 1 is done. Otherwise, we know that all fds in this subtree 209 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 210 * this process until we either find a candidate subtree or exceed 211 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 212 * 213 * (2) Find the smallest fd in the subtree discovered by step 1. 214 * Starting at the root of this subtree, we descend to find the 215 * smallest available fd. Since the left children have the smaller 216 * fds, we will descend rightward only when the left child is full. 217 * 218 * We begin by comparing the number of allocated fds in the root 219 * to the number of allocated fds in its right child; if they differ 220 * by exactly CSIZE(child), we know the left subtree is full, so we 221 * descend right; that is, the right child becomes the search root. 222 * Otherwise we leave the root alone and start following the right 223 * child's left children. As fortune would have it, this is very 224 * simple computationally: by (T5), the right child of fd is just 225 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 226 * we find that the right child's left child is fd + size - (size / 2) = 227 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 228 * fd + (size / 4), and so on. In general, fd's right child's 229 * leftmost nth descendant is fd + (size >> n). Thus, to follow 230 * the right child's left descendants, we just halve the size in 231 * each iteration of the search. 232 * 233 * When we descend leftward, we must keep track of the number of fds 234 * that were allocated in all the right subtrees we rejected, so we 235 * know how many of the root fd's allocations are in the remaining 236 * (as yet unexplored) leftmost part of its right subtree. When we 237 * encounter a fully-allocated left child -- that is, when we find 238 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 239 * (as described earlier), resetting ralloc to zero. 240 * 241 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 242 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 243 * the leftmost ancestors (see (T3)) and updates the allocation counts. 244 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 245 * 246 * flist_minsize() finds the minimal tree that still covers all 247 * used fds; as long as the allocation count of a root node is zero, we 248 * don't need that node or its right subtree. 249 * 250 * flist_nalloc() counts the number of allocated fds in the tree, by starting 251 * at the top of the tree and summing the right-subtree allocation counts as 252 * it descends leftwards. 253 * 254 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 255 * 2^n - 1. This ensures that the fd trees are always full, which saves 256 * quite a bit of boundary checking. 257 */ 258 static int 259 fd_find(uf_info_t *fip, int minfd) 260 { 261 int size, ralloc, fd; 262 263 ASSERT(MUTEX_HELD(&fip->fi_lock)); 264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 265 266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 267 size = fd ^ (fd | (fd + 1)); 268 if (fip->fi_list[fd].uf_alloc == size) 269 continue; 270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 271 ralloc += fip->fi_list[fd + size].uf_alloc; 272 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 273 fd += size; 274 ralloc = 0; 275 } 276 } 277 return (fd); 278 } 279 return (-1); 280 } 281 282 static void 283 fd_reserve(uf_info_t *fip, int fd, int incr) 284 { 285 int pfd; 286 uf_entry_t *ufp = &fip->fi_list[fd]; 287 288 ASSERT((uint_t)fd < fip->fi_nfiles); 289 ASSERT((ufp->uf_busy == 0 && incr == 1) || 290 (ufp->uf_busy == 1 && incr == -1)); 291 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 292 ASSERT(MUTEX_HELD(&fip->fi_lock)); 293 294 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 295 fip->fi_list[pfd].uf_alloc += incr; 296 297 ufp->uf_busy += incr; 298 } 299 300 static int 301 flist_minsize(uf_info_t *fip) 302 { 303 int fd; 304 305 /* 306 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 307 * by flist_fork(), which relies on other mechanisms for mutual 308 * exclusion. 309 */ 310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 311 312 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 313 if (fip->fi_list[fd >> 1].uf_alloc != 0) 314 break; 315 316 return (fd); 317 } 318 319 static int 320 flist_nalloc(uf_info_t *fip) 321 { 322 int fd; 323 int nalloc = 0; 324 325 ASSERT(MUTEX_HELD(&fip->fi_lock)); 326 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 327 328 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 329 nalloc += fip->fi_list[fd >> 1].uf_alloc; 330 331 return (nalloc); 332 } 333 334 /* 335 * Increase size of the fi_list array to accommodate at least maxfd. 336 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 337 */ 338 static void 339 flist_grow(int maxfd) 340 { 341 uf_info_t *fip = P_FINFO(curproc); 342 int newcnt, oldcnt; 343 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 344 uf_rlist_t *urp; 345 346 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 347 continue; 348 349 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 350 351 mutex_enter(&fip->fi_lock); 352 oldcnt = fip->fi_nfiles; 353 if (newcnt <= oldcnt) { 354 mutex_exit(&fip->fi_lock); 355 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 356 return; 357 } 358 ASSERT((newcnt & (newcnt + 1)) == 0); 359 oldlist = fip->fi_list; 360 oldend = oldlist + oldcnt; 361 newend = newlist + oldcnt; /* no need to lock beyond old end */ 362 363 /* 364 * fi_list and fi_nfiles cannot change while any uf_lock is held, 365 * so we must grab all the old locks *and* the new locks up to oldcnt. 366 * (Locks beyond the end of oldcnt aren't visible until we store 367 * the new fi_nfiles, which is the last thing we do before dropping 368 * all the locks, so there's no need to acquire these locks). 369 * Holding the new locks is necessary because when fi_list changes 370 * to point to the new list, fi_nfiles won't have been stored yet. 371 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 372 * could see the new fi_list, grab the new uf_lock, and then see 373 * fi_nfiles change while the lock is held -- in violation of 374 * UF_ENTER() semantics. 375 */ 376 for (src = oldlist; src < oldend; src++) 377 mutex_enter(&src->uf_lock); 378 379 for (dst = newlist; dst < newend; dst++) 380 mutex_enter(&dst->uf_lock); 381 382 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 383 dst->uf_file = src->uf_file; 384 dst->uf_fpollinfo = src->uf_fpollinfo; 385 dst->uf_refcnt = src->uf_refcnt; 386 dst->uf_alloc = src->uf_alloc; 387 dst->uf_flag = src->uf_flag; 388 dst->uf_busy = src->uf_busy; 389 dst->uf_portfd = src->uf_portfd; 390 } 391 392 /* 393 * As soon as we store the new flist, future locking operations 394 * will use it. Therefore, we must ensure that all the state 395 * we've just established reaches global visibility before the 396 * new flist does. 397 */ 398 membar_producer(); 399 fip->fi_list = newlist; 400 401 /* 402 * Routines like getf() make an optimistic check on the validity 403 * of the supplied file descriptor: if it's less than the current 404 * value of fi_nfiles -- examined without any locks -- then it's 405 * safe to attempt a UF_ENTER() on that fd (which is a valid 406 * assumption because fi_nfiles only increases). Therefore, it 407 * is critical that the new value of fi_nfiles not reach global 408 * visibility until after the new fi_list: if it happened the 409 * other way around, getf() could see the new fi_nfiles and attempt 410 * a UF_ENTER() on the old fi_list, which would write beyond its 411 * end if the fd exceeded the old fi_nfiles. 412 */ 413 membar_producer(); 414 fip->fi_nfiles = newcnt; 415 416 /* 417 * The new state is consistent now, so we can drop all the locks. 418 */ 419 for (dst = newlist; dst < newend; dst++) 420 mutex_exit(&dst->uf_lock); 421 422 for (src = oldlist; src < oldend; src++) { 423 /* 424 * If any threads are blocked on the old cvs, wake them. 425 * This will force them to wake up, discover that fi_list 426 * has changed, and go back to sleep on the new cvs. 427 */ 428 cv_broadcast(&src->uf_wanted_cv); 429 cv_broadcast(&src->uf_closing_cv); 430 mutex_exit(&src->uf_lock); 431 } 432 433 mutex_exit(&fip->fi_lock); 434 435 /* 436 * Retire the old flist. We can't actually kmem_free() it now 437 * because someone may still have a pointer to it. Instead, 438 * we link it onto a list of retired flists. The new flist 439 * is at least double the size of the previous flist, so the 440 * total size of all retired flists will be less than the size 441 * of the current one (to prove, consider the sum of a geometric 442 * series in powers of 2). exit() frees the retired flists. 443 */ 444 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 445 urp->ur_list = oldlist; 446 urp->ur_nfiles = oldcnt; 447 448 mutex_enter(&fip->fi_lock); 449 urp->ur_next = fip->fi_rlist; 450 fip->fi_rlist = urp; 451 mutex_exit(&fip->fi_lock); 452 } 453 454 /* 455 * Utility functions for keeping track of the active file descriptors. 456 */ 457 void 458 clear_stale_fd() /* called from post_syscall() */ 459 { 460 afd_t *afd = &curthread->t_activefd; 461 int i; 462 463 /* uninitialized is ok here, a_nfd is then zero */ 464 for (i = 0; i < afd->a_nfd; i++) { 465 /* assert that this should not be necessary */ 466 ASSERT(afd->a_fd[i] == -1); 467 afd->a_fd[i] = -1; 468 } 469 afd->a_stale = 0; 470 } 471 472 void 473 free_afd(afd_t *afd) /* called below and from thread_free() */ 474 { 475 int i; 476 477 /* free the buffer if it was kmem_alloc()ed */ 478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 479 COUNT(afd_free); 480 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 481 } 482 483 /* (re)initialize the structure */ 484 afd->a_fd = &afd->a_buf[0]; 485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 486 afd->a_stale = 0; 487 for (i = 0; i < afd->a_nfd; i++) 488 afd->a_fd[i] = -1; 489 } 490 491 static void 492 set_active_fd(int fd) 493 { 494 afd_t *afd = &curthread->t_activefd; 495 int i; 496 int *old_fd; 497 int old_nfd; 498 499 if (afd->a_nfd == 0) /* first time initialization */ 500 free_afd(afd); 501 502 /* insert fd into vacant slot, if any */ 503 for (i = 0; i < afd->a_nfd; i++) { 504 if (afd->a_fd[i] == -1) { 505 afd->a_fd[i] = fd; 506 return; 507 } 508 } 509 510 /* 511 * Reallocate the a_fd[] array to add one more slot. 512 */ 513 old_fd = afd->a_fd; 514 old_nfd = afd->a_nfd; 515 afd->a_nfd = old_nfd + 1; 516 MAXFD(afd->a_nfd); 517 COUNT(afd_alloc); 518 afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 519 for (i = 0; i < old_nfd; i++) 520 afd->a_fd[i] = old_fd[i]; 521 afd->a_fd[i] = fd; 522 523 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 524 COUNT(afd_free); 525 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 526 } 527 } 528 529 void 530 clear_active_fd(int fd) /* called below and from aio.c */ 531 { 532 afd_t *afd = &curthread->t_activefd; 533 int i; 534 535 for (i = 0; i < afd->a_nfd; i++) { 536 if (afd->a_fd[i] == fd) { 537 afd->a_fd[i] = -1; 538 break; 539 } 540 } 541 ASSERT(i < afd->a_nfd); /* not found is not ok */ 542 } 543 544 /* 545 * Does this thread have this fd active? 546 */ 547 static int 548 is_active_fd(kthread_t *t, int fd) 549 { 550 afd_t *afd = &t->t_activefd; 551 int i; 552 553 /* uninitialized is ok here, a_nfd is then zero */ 554 for (i = 0; i < afd->a_nfd; i++) { 555 if (afd->a_fd[i] == fd) 556 return (1); 557 } 558 return (0); 559 } 560 561 /* 562 * Convert a user supplied file descriptor into a pointer to a file 563 * structure. Only task is to check range of the descriptor (soft 564 * resource limit was enforced at open time and shouldn't be checked 565 * here). 566 */ 567 file_t * 568 getf(int fd) 569 { 570 uf_info_t *fip = P_FINFO(curproc); 571 uf_entry_t *ufp; 572 file_t *fp; 573 574 if ((uint_t)fd >= fip->fi_nfiles) 575 return (NULL); 576 577 UF_ENTER(ufp, fip, fd); 578 if ((fp = ufp->uf_file) == NULL) { 579 UF_EXIT(ufp); 580 581 if (fd == fip->fi_badfd && fip->fi_action > 0) 582 tsignal(curthread, fip->fi_action); 583 584 return (NULL); 585 } 586 ufp->uf_refcnt++; 587 588 #ifdef C2_AUDIT 589 /* 590 * archive per file audit data 591 */ 592 if (audit_active) 593 (void) audit_getf(fd); 594 #endif 595 UF_EXIT(ufp); 596 597 set_active_fd(fd); /* record the active file descriptor */ 598 599 return (fp); 600 } 601 602 /* 603 * Close whatever file currently occupies the file descriptor slot 604 * and install the new file, usually NULL, in the file descriptor slot. 605 * The close must complete before we release the file descriptor slot. 606 * If newfp != NULL we only return an error if we can't allocate the 607 * slot so the caller knows that it needs to free the filep; 608 * in the other cases we return the error number from closef(). 609 */ 610 int 611 closeandsetf(int fd, file_t *newfp) 612 { 613 proc_t *p = curproc; 614 uf_info_t *fip = P_FINFO(p); 615 uf_entry_t *ufp; 616 file_t *fp; 617 fpollinfo_t *fpip; 618 portfd_t *pfd; 619 int error; 620 621 if ((uint_t)fd >= fip->fi_nfiles) { 622 if (newfp == NULL) 623 return (EBADF); 624 flist_grow(fd); 625 } 626 627 if (newfp != NULL) { 628 /* 629 * If ufp is reserved but has no file pointer, it's in the 630 * transition between ufalloc() and setf(). We must wait 631 * for this transition to complete before assigning the 632 * new non-NULL file pointer. 633 */ 634 mutex_enter(&fip->fi_lock); 635 if (fd == fip->fi_badfd) { 636 mutex_exit(&fip->fi_lock); 637 if (fip->fi_action > 0) 638 tsignal(curthread, fip->fi_action); 639 return (EBADF); 640 } 641 UF_ENTER(ufp, fip, fd); 642 while (ufp->uf_busy && ufp->uf_file == NULL) { 643 mutex_exit(&fip->fi_lock); 644 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 645 UF_EXIT(ufp); 646 mutex_enter(&fip->fi_lock); 647 UF_ENTER(ufp, fip, fd); 648 } 649 if ((fp = ufp->uf_file) == NULL) { 650 ASSERT(ufp->uf_fpollinfo == NULL); 651 ASSERT(ufp->uf_flag == 0); 652 fd_reserve(fip, fd, 1); 653 ufp->uf_file = newfp; 654 UF_EXIT(ufp); 655 mutex_exit(&fip->fi_lock); 656 return (0); 657 } 658 mutex_exit(&fip->fi_lock); 659 } else { 660 UF_ENTER(ufp, fip, fd); 661 if ((fp = ufp->uf_file) == NULL) { 662 UF_EXIT(ufp); 663 return (EBADF); 664 } 665 } 666 667 #ifdef C2_AUDIT 668 /* 669 * archive per file audit data 670 */ 671 if (audit_active) 672 (void) audit_getf(fd); 673 #endif 674 ASSERT(ufp->uf_busy); 675 ufp->uf_file = NULL; 676 ufp->uf_flag = 0; 677 678 /* 679 * If the file descriptor reference count is non-zero, then 680 * some other lwp in the process is performing system call 681 * activity on the file. To avoid blocking here for a long 682 * time (the other lwp might be in a long term sleep in its 683 * system call), we stop all other lwps in the process and 684 * scan them to find the ones with this fd as one of their 685 * active fds and set their a_stale flag so they will emerge 686 * from their system calls immediately. post_syscall() will 687 * test the a_stale flag and set errno to EBADF. 688 */ 689 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 690 if (ufp->uf_refcnt > 0) { 691 UF_EXIT(ufp); 692 COUNT(afd_wait); 693 694 /* 695 * Make all other lwps hold in place, as if doing fork1(). 696 * holdlwps(SHOLDFORK1) fails only if another lwp wants to 697 * perform a forkall() or the process is exiting. In either 698 * case, all other lwps are either returning from their 699 * system calls (because of SHOLDFORK) or calling lwp_exit() 700 * (because of SEXITLWPS) so we don't need to scan them. 701 */ 702 if (holdlwps(SHOLDFORK1)) { 703 kthread_t *t; 704 705 mutex_enter(&p->p_lock); 706 for (t = curthread->t_forw; t != curthread; 707 t = t->t_forw) { 708 if (is_active_fd(t, fd)) { 709 t->t_activefd.a_stale = 1; 710 t->t_post_sys = 1; 711 } 712 } 713 continuelwps(p); 714 mutex_exit(&p->p_lock); 715 } 716 UF_ENTER(ufp, fip, fd); 717 ASSERT(ufp->uf_file == NULL); 718 } 719 720 /* 721 * Wait for other lwps to stop using this file descriptor. 722 */ 723 while (ufp->uf_refcnt > 0) { 724 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 725 /* 726 * cv_wait_stop() drops ufp->uf_lock, so the file list 727 * can change. Drop the lock on our (possibly) stale 728 * ufp and let UF_ENTER() find and lock the current ufp. 729 */ 730 UF_EXIT(ufp); 731 UF_ENTER(ufp, fip, fd); 732 } 733 734 #ifdef DEBUG 735 /* 736 * catch a watchfd on device's pollhead list but not on fpollinfo list 737 */ 738 if (ufp->uf_fpollinfo != NULL) 739 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 740 #endif /* DEBUG */ 741 742 /* 743 * We may need to cleanup some cached poll states in t_pollstate 744 * before the fd can be reused. It is important that we don't 745 * access a stale thread structure. We will do the cleanup in two 746 * phases to avoid deadlock and holding uf_lock for too long. 747 * In phase 1, hold the uf_lock and call pollblockexit() to set 748 * state in t_pollstate struct so that a thread does not exit on 749 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 750 */ 751 pfd = ufp->uf_portfd; 752 ufp->uf_portfd = NULL; 753 fpip = ufp->uf_fpollinfo; 754 ufp->uf_fpollinfo = NULL; 755 if (fpip != NULL) 756 pollblockexit(fpip); 757 UF_EXIT(ufp); 758 if (fpip != NULL) 759 pollcacheclean(fpip, fd); 760 if (pfd) 761 port_close_fd(pfd); 762 763 /* 764 * Keep the file descriptor entry reserved across the closef(). 765 */ 766 error = closef(fp); 767 768 setf(fd, newfp); 769 770 /* Only return closef() error when closing is all we do */ 771 return (newfp == NULL ? error : 0); 772 } 773 774 /* 775 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 776 */ 777 void 778 releasef(int fd) 779 { 780 uf_info_t *fip = P_FINFO(curproc); 781 uf_entry_t *ufp; 782 783 clear_active_fd(fd); /* clear the active file descriptor */ 784 785 UF_ENTER(ufp, fip, fd); 786 ASSERT(ufp->uf_refcnt > 0); 787 if (--ufp->uf_refcnt == 0) 788 cv_broadcast(&ufp->uf_closing_cv); 789 UF_EXIT(ufp); 790 } 791 792 /* 793 * Identical to releasef() but can be called from another process. 794 */ 795 void 796 areleasef(int fd, uf_info_t *fip) 797 { 798 uf_entry_t *ufp; 799 800 UF_ENTER(ufp, fip, fd); 801 ASSERT(ufp->uf_refcnt > 0); 802 if (--ufp->uf_refcnt == 0) 803 cv_broadcast(&ufp->uf_closing_cv); 804 UF_EXIT(ufp); 805 } 806 807 /* 808 * Duplicate all file descriptors across a fork. 809 */ 810 void 811 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 812 { 813 int fd, nfiles; 814 uf_entry_t *pufp, *cufp; 815 816 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 817 cfip->fi_rlist = NULL; 818 819 /* 820 * We don't need to hold fi_lock because all other lwp's in the 821 * parent have been held. 822 */ 823 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 824 825 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 826 827 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 828 fd++, pufp++, cufp++) { 829 cufp->uf_file = pufp->uf_file; 830 cufp->uf_alloc = pufp->uf_alloc; 831 cufp->uf_flag = pufp->uf_flag; 832 cufp->uf_busy = pufp->uf_busy; 833 if (pufp->uf_file == NULL) { 834 ASSERT(pufp->uf_flag == 0); 835 if (pufp->uf_busy) { 836 /* 837 * Grab locks to appease ASSERTs in fd_reserve 838 */ 839 mutex_enter(&cfip->fi_lock); 840 mutex_enter(&cufp->uf_lock); 841 fd_reserve(cfip, fd, -1); 842 mutex_exit(&cufp->uf_lock); 843 mutex_exit(&cfip->fi_lock); 844 } 845 } 846 } 847 } 848 849 /* 850 * Close all open file descriptors for the current process. 851 * This is only called from exit(), which is single-threaded, 852 * so we don't need any locking. 853 */ 854 void 855 closeall(uf_info_t *fip) 856 { 857 int fd; 858 file_t *fp; 859 uf_entry_t *ufp; 860 861 ufp = fip->fi_list; 862 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 863 if ((fp = ufp->uf_file) != NULL) { 864 ufp->uf_file = NULL; 865 if (ufp->uf_portfd != NULL) { 866 portfd_t *pfd; 867 /* remove event port association */ 868 pfd = ufp->uf_portfd; 869 ufp->uf_portfd = NULL; 870 port_close_fd(pfd); 871 } 872 ASSERT(ufp->uf_fpollinfo == NULL); 873 (void) closef(fp); 874 } 875 } 876 877 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 878 fip->fi_list = NULL; 879 fip->fi_nfiles = 0; 880 while (fip->fi_rlist != NULL) { 881 uf_rlist_t *urp = fip->fi_rlist; 882 fip->fi_rlist = urp->ur_next; 883 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 884 kmem_free(urp, sizeof (uf_rlist_t)); 885 } 886 } 887 888 /* 889 * Internal form of close. Decrement reference count on file 890 * structure. Decrement reference count on the vnode following 891 * removal of the referencing file structure. 892 */ 893 int 894 closef(file_t *fp) 895 { 896 vnode_t *vp; 897 int error; 898 int count; 899 int flag; 900 offset_t offset; 901 902 #ifdef C2_AUDIT 903 /* 904 * audit close of file (may be exit) 905 */ 906 if (audit_active) 907 audit_closef(fp); 908 #endif 909 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 910 911 mutex_enter(&fp->f_tlock); 912 913 ASSERT(fp->f_count > 0); 914 915 count = fp->f_count--; 916 flag = fp->f_flag; 917 offset = fp->f_offset; 918 919 vp = fp->f_vnode; 920 921 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred); 922 923 if (count > 1) { 924 mutex_exit(&fp->f_tlock); 925 return (error); 926 } 927 ASSERT(fp->f_count == 0); 928 mutex_exit(&fp->f_tlock); 929 930 VN_RELE(vp); 931 #ifdef C2_AUDIT 932 /* 933 * deallocate resources to audit_data 934 */ 935 if (audit_active) 936 audit_unfalloc(fp); 937 #endif 938 crfree(fp->f_cred); 939 kmem_cache_free(file_cache, fp); 940 return (error); 941 } 942 943 /* 944 * This is a combination of ufalloc() and setf(). 945 */ 946 int 947 ufalloc_file(int start, file_t *fp) 948 { 949 proc_t *p = curproc; 950 uf_info_t *fip = P_FINFO(p); 951 int filelimit; 952 uf_entry_t *ufp; 953 int nfiles; 954 int fd; 955 956 /* 957 * Assertion is to convince the correctness of the following 958 * assignment for filelimit after casting to int. 959 */ 960 ASSERT(p->p_fno_ctl <= INT_MAX); 961 filelimit = (int)p->p_fno_ctl; 962 963 for (;;) { 964 mutex_enter(&fip->fi_lock); 965 fd = fd_find(fip, start); 966 if (fd >= 0 && fd == fip->fi_badfd) { 967 start = fd + 1; 968 mutex_exit(&fip->fi_lock); 969 continue; 970 } 971 if ((uint_t)fd < filelimit) 972 break; 973 if (fd >= filelimit) { 974 mutex_exit(&fip->fi_lock); 975 mutex_enter(&p->p_lock); 976 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 977 p->p_rctls, p, RCA_SAFE); 978 mutex_exit(&p->p_lock); 979 return (-1); 980 } 981 /* fd_find() returned -1 */ 982 nfiles = fip->fi_nfiles; 983 mutex_exit(&fip->fi_lock); 984 flist_grow(MAX(start, nfiles)); 985 } 986 987 UF_ENTER(ufp, fip, fd); 988 fd_reserve(fip, fd, 1); 989 ASSERT(ufp->uf_file == NULL); 990 ufp->uf_file = fp; 991 UF_EXIT(ufp); 992 mutex_exit(&fip->fi_lock); 993 return (fd); 994 } 995 996 /* 997 * Allocate a user file descriptor greater than or equal to "start". 998 */ 999 int 1000 ufalloc(int start) 1001 { 1002 return (ufalloc_file(start, NULL)); 1003 } 1004 1005 /* 1006 * Check that a future allocation of count fds on proc p has a good 1007 * chance of succeeding. If not, do rctl processing as if we'd failed 1008 * the allocation. 1009 * 1010 * Our caller must guarantee that p cannot disappear underneath us. 1011 */ 1012 int 1013 ufcanalloc(proc_t *p, uint_t count) 1014 { 1015 uf_info_t *fip = P_FINFO(p); 1016 int filelimit; 1017 int current; 1018 1019 if (count == 0) 1020 return (1); 1021 1022 ASSERT(p->p_fno_ctl <= INT_MAX); 1023 filelimit = (int)p->p_fno_ctl; 1024 1025 mutex_enter(&fip->fi_lock); 1026 current = flist_nalloc(fip); /* # of in-use descriptors */ 1027 mutex_exit(&fip->fi_lock); 1028 1029 /* 1030 * If count is a positive integer, the worst that can happen is 1031 * an overflow to a negative value, which is caught by the >= 0 check. 1032 */ 1033 current += count; 1034 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1035 return (1); 1036 1037 mutex_enter(&p->p_lock); 1038 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1039 p->p_rctls, p, RCA_SAFE); 1040 mutex_exit(&p->p_lock); 1041 return (0); 1042 } 1043 1044 /* 1045 * Allocate a user file descriptor and a file structure. 1046 * Initialize the descriptor to point at the file structure. 1047 * If fdp is NULL, the user file descriptor will not be allocated. 1048 */ 1049 int 1050 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1051 { 1052 file_t *fp; 1053 int fd; 1054 1055 if (fdp) { 1056 if ((fd = ufalloc(0)) == -1) 1057 return (EMFILE); 1058 } 1059 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1060 /* 1061 * Note: falloc returns the fp locked 1062 */ 1063 mutex_enter(&fp->f_tlock); 1064 fp->f_count = 1; 1065 fp->f_flag = (ushort_t)flag; 1066 fp->f_vnode = vp; 1067 fp->f_offset = 0; 1068 fp->f_audit_data = 0; 1069 crhold(fp->f_cred = CRED()); 1070 #ifdef C2_AUDIT 1071 /* 1072 * allocate resources to audit_data 1073 */ 1074 if (audit_active) 1075 audit_falloc(fp); 1076 #endif 1077 *fpp = fp; 1078 if (fdp) 1079 *fdp = fd; 1080 return (0); 1081 } 1082 1083 /*ARGSUSED*/ 1084 static int 1085 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1086 { 1087 file_t *fp = buf; 1088 1089 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1090 return (0); 1091 } 1092 1093 /*ARGSUSED*/ 1094 static void 1095 file_cache_destructor(void *buf, void *cdrarg) 1096 { 1097 file_t *fp = buf; 1098 1099 mutex_destroy(&fp->f_tlock); 1100 } 1101 1102 void 1103 finit() 1104 { 1105 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1106 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1107 } 1108 1109 void 1110 unfalloc(file_t *fp) 1111 { 1112 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1113 if (--fp->f_count <= 0) { 1114 #ifdef C2_AUDIT 1115 /* 1116 * deallocate resources to audit_data 1117 */ 1118 if (audit_active) 1119 audit_unfalloc(fp); 1120 #endif 1121 crfree(fp->f_cred); 1122 mutex_exit(&fp->f_tlock); 1123 kmem_cache_free(file_cache, fp); 1124 } else 1125 mutex_exit(&fp->f_tlock); 1126 } 1127 1128 /* 1129 * Given a file descriptor, set the user's 1130 * file pointer to the given parameter. 1131 */ 1132 void 1133 setf(int fd, file_t *fp) 1134 { 1135 uf_info_t *fip = P_FINFO(curproc); 1136 uf_entry_t *ufp; 1137 1138 #ifdef C2_AUDIT 1139 if (audit_active) 1140 audit_setf(fp, fd); 1141 #endif /* C2_AUDIT */ 1142 1143 if (fp == NULL) { 1144 mutex_enter(&fip->fi_lock); 1145 UF_ENTER(ufp, fip, fd); 1146 fd_reserve(fip, fd, -1); 1147 mutex_exit(&fip->fi_lock); 1148 } else { 1149 UF_ENTER(ufp, fip, fd); 1150 ASSERT(ufp->uf_busy); 1151 } 1152 ASSERT(ufp->uf_fpollinfo == NULL); 1153 ASSERT(ufp->uf_flag == 0); 1154 ufp->uf_file = fp; 1155 cv_broadcast(&ufp->uf_wanted_cv); 1156 UF_EXIT(ufp); 1157 } 1158 1159 /* 1160 * Given a file descriptor, return the file table flags, plus, 1161 * if this is a socket in asynchronous mode, the FASYNC flag. 1162 * getf() may or may not have been called before calling f_getfl(). 1163 */ 1164 int 1165 f_getfl(int fd, int *flagp) 1166 { 1167 uf_info_t *fip = P_FINFO(curproc); 1168 uf_entry_t *ufp; 1169 file_t *fp; 1170 int error; 1171 1172 if ((uint_t)fd >= fip->fi_nfiles) 1173 error = EBADF; 1174 else { 1175 UF_ENTER(ufp, fip, fd); 1176 if ((fp = ufp->uf_file) == NULL) 1177 error = EBADF; 1178 else { 1179 vnode_t *vp = fp->f_vnode; 1180 int flag = fp->f_flag; 1181 1182 /* 1183 * BSD fcntl() FASYNC compatibility. 1184 * 1185 * SCTP doesn't have an associated stream and thus 1186 * doesn't store flags on it. 1187 */ 1188 if ((vp->v_type == VSOCK) && (vp->v_stream != NULL)) 1189 flag |= sock_getfasync(vp); 1190 *flagp = flag; 1191 error = 0; 1192 } 1193 UF_EXIT(ufp); 1194 } 1195 1196 return (error); 1197 } 1198 1199 /* 1200 * Given a file descriptor, return the user's file flags. 1201 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1202 * getf() may or may not have been called before calling f_getfd_error(). 1203 */ 1204 int 1205 f_getfd_error(int fd, int *flagp) 1206 { 1207 uf_info_t *fip = P_FINFO(curproc); 1208 uf_entry_t *ufp; 1209 file_t *fp; 1210 int flag; 1211 int error; 1212 1213 if ((uint_t)fd >= fip->fi_nfiles) 1214 error = EBADF; 1215 else { 1216 UF_ENTER(ufp, fip, fd); 1217 if ((fp = ufp->uf_file) == NULL) 1218 error = EBADF; 1219 else { 1220 flag = ufp->uf_flag; 1221 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1222 flag |= FD_CLOEXEC; 1223 *flagp = flag; 1224 error = 0; 1225 } 1226 UF_EXIT(ufp); 1227 } 1228 1229 return (error); 1230 } 1231 1232 /* 1233 * getf() must have been called before calling f_getfd(). 1234 */ 1235 char 1236 f_getfd(int fd) 1237 { 1238 int flag = 0; 1239 (void) f_getfd_error(fd, &flag); 1240 return ((char)flag); 1241 } 1242 1243 /* 1244 * Given a file descriptor and file flags, set the user's file flags. 1245 * At present, the only valid flag is FD_CLOEXEC. 1246 * getf() may or may not have been called before calling f_setfd_error(). 1247 */ 1248 int 1249 f_setfd_error(int fd, int flags) 1250 { 1251 uf_info_t *fip = P_FINFO(curproc); 1252 uf_entry_t *ufp; 1253 int error; 1254 1255 if ((uint_t)fd >= fip->fi_nfiles) 1256 error = EBADF; 1257 else { 1258 UF_ENTER(ufp, fip, fd); 1259 if (ufp->uf_file == NULL) 1260 error = EBADF; 1261 else { 1262 ufp->uf_flag = flags & FD_CLOEXEC; 1263 error = 0; 1264 } 1265 UF_EXIT(ufp); 1266 } 1267 return (error); 1268 } 1269 1270 void 1271 f_setfd(int fd, char flags) 1272 { 1273 (void) f_setfd_error(fd, flags); 1274 } 1275 1276 #define BADFD_MIN 3 1277 #define BADFD_MAX 255 1278 1279 /* 1280 * Attempt to allocate a file descriptor which is bad and which 1281 * is "poison" to the application. It cannot be closed (except 1282 * on exec), allocated for a different use, etc. 1283 */ 1284 int 1285 f_badfd(int start, int *fdp, int action) 1286 { 1287 int fdr; 1288 int badfd; 1289 uf_info_t *fip = P_FINFO(curproc); 1290 1291 #ifdef _LP64 1292 /* No restrictions on 64 bit _file */ 1293 if (get_udatamodel() != DATAMODEL_ILP32) 1294 return (EINVAL); 1295 #endif 1296 1297 if (start > BADFD_MAX || start < BADFD_MIN) 1298 return (EINVAL); 1299 1300 if (action >= NSIG || action < 0) 1301 return (EINVAL); 1302 1303 mutex_enter(&fip->fi_lock); 1304 badfd = fip->fi_badfd; 1305 mutex_exit(&fip->fi_lock); 1306 1307 if (badfd != -1) 1308 return (EAGAIN); 1309 1310 fdr = ufalloc(start); 1311 1312 if (fdr > BADFD_MAX) { 1313 setf(fdr, NULL); 1314 return (EMFILE); 1315 } 1316 if (fdr < 0) 1317 return (EMFILE); 1318 1319 mutex_enter(&fip->fi_lock); 1320 if (fip->fi_badfd != -1) { 1321 /* Lost race */ 1322 mutex_exit(&fip->fi_lock); 1323 setf(fdr, NULL); 1324 return (EAGAIN); 1325 } 1326 fip->fi_action = action; 1327 fip->fi_badfd = fdr; 1328 mutex_exit(&fip->fi_lock); 1329 setf(fdr, NULL); 1330 1331 *fdp = fdr; 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Allocate a file descriptor and assign it to the vnode "*vpp", 1338 * performing the usual open protocol upon it and returning the 1339 * file descriptor allocated. It is the responsibility of the 1340 * caller to dispose of "*vpp" if any error occurs. 1341 */ 1342 int 1343 fassign(vnode_t **vpp, int mode, int *fdp) 1344 { 1345 file_t *fp; 1346 int error; 1347 int fd; 1348 1349 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1350 return (error); 1351 if (error = VOP_OPEN(vpp, mode, fp->f_cred)) { 1352 setf(fd, NULL); 1353 unfalloc(fp); 1354 return (error); 1355 } 1356 fp->f_vnode = *vpp; 1357 mutex_exit(&fp->f_tlock); 1358 /* 1359 * Fill in the slot falloc reserved. 1360 */ 1361 setf(fd, fp); 1362 *fdp = fd; 1363 return (0); 1364 } 1365 1366 /* 1367 * When a process forks it must increment the f_count of all file pointers 1368 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1369 * Since we are called when there is only 1 active lwp we don't need to 1370 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1371 * fcnt_add(fip, -1) to restore the counts. 1372 */ 1373 void 1374 fcnt_add(uf_info_t *fip, int incr) 1375 { 1376 int i; 1377 uf_entry_t *ufp; 1378 file_t *fp; 1379 1380 ufp = fip->fi_list; 1381 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1382 if ((fp = ufp->uf_file) != NULL) { 1383 mutex_enter(&fp->f_tlock); 1384 ASSERT((incr == 1 && fp->f_count >= 1) || 1385 (incr == -1 && fp->f_count >= 2)); 1386 fp->f_count += incr; 1387 mutex_exit(&fp->f_tlock); 1388 } 1389 } 1390 } 1391 1392 /* 1393 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1394 * set and also to close all self-open for write /proc file descriptors. 1395 */ 1396 void 1397 close_exec(uf_info_t *fip) 1398 { 1399 int fd; 1400 file_t *fp; 1401 fpollinfo_t *fpip; 1402 uf_entry_t *ufp; 1403 portfd_t *pfd; 1404 1405 ufp = fip->fi_list; 1406 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1407 if ((fp = ufp->uf_file) != NULL && 1408 ((ufp->uf_flag & FD_CLOEXEC) || 1409 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1410 fpip = ufp->uf_fpollinfo; 1411 mutex_enter(&fip->fi_lock); 1412 mutex_enter(&ufp->uf_lock); 1413 fd_reserve(fip, fd, -1); 1414 mutex_exit(&fip->fi_lock); 1415 ufp->uf_file = NULL; 1416 ufp->uf_fpollinfo = NULL; 1417 ufp->uf_flag = 0; 1418 /* 1419 * We may need to cleanup some cached poll states 1420 * in t_pollstate before the fd can be reused. It 1421 * is important that we don't access a stale thread 1422 * structure. We will do the cleanup in two 1423 * phases to avoid deadlock and holding uf_lock for 1424 * too long. In phase 1, hold the uf_lock and call 1425 * pollblockexit() to set state in t_pollstate struct 1426 * so that a thread does not exit on us. In phase 2, 1427 * we drop the uf_lock and call pollcacheclean(). 1428 */ 1429 pfd = ufp->uf_portfd; 1430 ufp->uf_portfd = NULL; 1431 if (fpip != NULL) 1432 pollblockexit(fpip); 1433 mutex_exit(&ufp->uf_lock); 1434 if (fpip != NULL) 1435 pollcacheclean(fpip, fd); 1436 if (pfd) 1437 port_close_fd(pfd); 1438 (void) closef(fp); 1439 } 1440 } 1441 1442 /* Reset bad fd */ 1443 fip->fi_badfd = -1; 1444 fip->fi_action = -1; 1445 } 1446 1447 /* 1448 * Common routine for modifying attributes of named files. 1449 */ 1450 int 1451 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1452 { 1453 vnode_t *vp; 1454 int error = 0; 1455 1456 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1457 return (set_errno(error)); 1458 if (error = vpsetattr(vp, vap, flags)) 1459 (void) set_errno(error); 1460 VN_RELE(vp); 1461 return (error); 1462 } 1463 1464 /* 1465 * Common routine for modifying attributes of files referenced 1466 * by descriptor. 1467 */ 1468 int 1469 fdsetattr(int fd, vattr_t *vap) 1470 { 1471 file_t *fp; 1472 vnode_t *vp; 1473 int error = 0; 1474 1475 if ((fp = getf(fd)) != NULL) { 1476 vp = fp->f_vnode; 1477 if (error = vpsetattr(vp, vap, 0)) { 1478 (void) set_errno(error); 1479 } 1480 releasef(fd); 1481 } else 1482 error = set_errno(EBADF); 1483 return (error); 1484 } 1485 1486 /* 1487 * Common routine to set the attributes for the given vnode. 1488 * If the vnode is a file and the filesize is being manipulated, 1489 * this makes sure that there are no conflicting non-blocking 1490 * mandatory locks in that region. 1491 */ 1492 static int 1493 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1494 { 1495 int error = 0; 1496 int in_crit = 0; 1497 u_offset_t begin; 1498 vattr_t vattr; 1499 ssize_t length; 1500 1501 if (vn_is_readonly(vp)) { 1502 error = EROFS; 1503 } 1504 if (!error && (vap->va_mask & AT_SIZE) && 1505 nbl_need_check(vp)) { 1506 nbl_start_crit(vp, RW_READER); 1507 in_crit = 1; 1508 vattr.va_mask = AT_SIZE; 1509 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1510 begin = vap->va_size > vattr.va_size ? 1511 vattr.va_size : vap->va_size; 1512 length = vattr.va_size > vap->va_size ? 1513 vattr.va_size - vap->va_size : 1514 vap->va_size - vattr.va_size; 1515 1516 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0)) { 1517 error = EACCES; 1518 } 1519 } 1520 } 1521 if (!error) 1522 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1523 1524 if (in_crit) 1525 nbl_end_crit(vp); 1526 1527 return (error); 1528 } 1529 1530 /* 1531 * Return true if the given vnode is referenced by any 1532 * entry in the current process's file descriptor table. 1533 */ 1534 int 1535 fisopen(vnode_t *vp) 1536 { 1537 int fd; 1538 file_t *fp; 1539 vnode_t *ovp; 1540 uf_info_t *fip = P_FINFO(curproc); 1541 uf_entry_t *ufp; 1542 1543 mutex_enter(&fip->fi_lock); 1544 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1545 UF_ENTER(ufp, fip, fd); 1546 if ((fp = ufp->uf_file) != NULL && 1547 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1548 UF_EXIT(ufp); 1549 mutex_exit(&fip->fi_lock); 1550 return (1); 1551 } 1552 UF_EXIT(ufp); 1553 } 1554 mutex_exit(&fip->fi_lock); 1555 return (0); 1556 } 1557 1558 /* 1559 * Return zero if at least one file currently open (by curproc) shouldn't be 1560 * allowed to change zones. 1561 */ 1562 int 1563 files_can_change_zones(void) 1564 { 1565 int fd; 1566 file_t *fp; 1567 uf_info_t *fip = P_FINFO(curproc); 1568 uf_entry_t *ufp; 1569 1570 mutex_enter(&fip->fi_lock); 1571 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1572 UF_ENTER(ufp, fip, fd); 1573 if ((fp = ufp->uf_file) != NULL && 1574 !vn_can_change_zones(fp->f_vnode)) { 1575 UF_EXIT(ufp); 1576 mutex_exit(&fip->fi_lock); 1577 return (0); 1578 } 1579 UF_EXIT(ufp); 1580 } 1581 mutex_exit(&fip->fi_lock); 1582 return (1); 1583 } 1584 1585 #ifdef DEBUG 1586 1587 /* 1588 * The following functions are only used in ASSERT()s elsewhere. 1589 * They do not modify the state of the system. 1590 */ 1591 1592 /* 1593 * Return true (1) if the current thread is in the fpollinfo 1594 * list for this file descriptor, else false (0). 1595 */ 1596 static int 1597 curthread_in_plist(uf_entry_t *ufp) 1598 { 1599 fpollinfo_t *fpip; 1600 1601 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1602 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1603 if (fpip->fp_thread == curthread) 1604 return (1); 1605 return (0); 1606 } 1607 1608 /* 1609 * Sanity check to make sure that after lwp_exit(), 1610 * curthread does not appear on any fd's fpollinfo list. 1611 */ 1612 void 1613 checkfpollinfo(void) 1614 { 1615 int fd; 1616 uf_info_t *fip = P_FINFO(curproc); 1617 uf_entry_t *ufp; 1618 1619 mutex_enter(&fip->fi_lock); 1620 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1621 UF_ENTER(ufp, fip, fd); 1622 ASSERT(!curthread_in_plist(ufp)); 1623 UF_EXIT(ufp); 1624 } 1625 mutex_exit(&fip->fi_lock); 1626 } 1627 1628 /* 1629 * Return true (1) if the current thread is in the fpollinfo 1630 * list for this file descriptor, else false (0). 1631 * This is the same as curthread_in_plist(), 1632 * but is called w/o holding uf_lock. 1633 */ 1634 int 1635 infpollinfo(int fd) 1636 { 1637 uf_info_t *fip = P_FINFO(curproc); 1638 uf_entry_t *ufp; 1639 int rc; 1640 1641 UF_ENTER(ufp, fip, fd); 1642 rc = curthread_in_plist(ufp); 1643 UF_EXIT(ufp); 1644 return (rc); 1645 } 1646 1647 #endif /* DEBUG */ 1648 1649 /* 1650 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1651 * thread's poll cache. Each lwp polling this file descriptor should call 1652 * this routine once. 1653 */ 1654 void 1655 addfpollinfo(int fd) 1656 { 1657 struct uf_entry *ufp; 1658 fpollinfo_t *fpip; 1659 uf_info_t *fip = P_FINFO(curproc); 1660 1661 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1662 fpip->fp_thread = curthread; 1663 UF_ENTER(ufp, fip, fd); 1664 /* 1665 * Assert we are not already on the list, that is, that 1666 * this lwp did not call addfpollinfo twice for the same fd. 1667 */ 1668 ASSERT(!curthread_in_plist(ufp)); 1669 /* 1670 * addfpollinfo is always done inside the getf/releasef pair. 1671 */ 1672 ASSERT(ufp->uf_refcnt >= 1); 1673 fpip->fp_next = ufp->uf_fpollinfo; 1674 ufp->uf_fpollinfo = fpip; 1675 UF_EXIT(ufp); 1676 } 1677 1678 /* 1679 * delete curthread from fpollinfo list. 1680 */ 1681 /*ARGSUSED*/ 1682 void 1683 delfpollinfo(int fd) 1684 { 1685 struct uf_entry *ufp; 1686 struct fpollinfo *fpip; 1687 struct fpollinfo **fpipp; 1688 uf_info_t *fip = P_FINFO(curproc); 1689 1690 UF_ENTER(ufp, fip, fd); 1691 if (ufp->uf_fpollinfo == NULL) { 1692 UF_EXIT(ufp); 1693 return; 1694 } 1695 ASSERT(ufp->uf_busy); 1696 /* 1697 * Find and delete curthread from the list. 1698 */ 1699 fpipp = &ufp->uf_fpollinfo; 1700 while ((fpip = *fpipp)->fp_thread != curthread) 1701 fpipp = &fpip->fp_next; 1702 *fpipp = fpip->fp_next; 1703 kmem_free(fpip, sizeof (fpollinfo_t)); 1704 /* 1705 * Assert that we are not still on the list, that is, that 1706 * this lwp did not call addfpollinfo twice for the same fd. 1707 */ 1708 ASSERT(!curthread_in_plist(ufp)); 1709 UF_EXIT(ufp); 1710 } 1711 1712 /* 1713 * fd is associated with a port. pfd is a pointer to the fd entry in the 1714 * cache of the port. 1715 */ 1716 1717 void 1718 addfd_port(int fd, portfd_t *pfd) 1719 { 1720 struct uf_entry *ufp; 1721 uf_info_t *fip = P_FINFO(curproc); 1722 1723 UF_ENTER(ufp, fip, fd); 1724 /* 1725 * addfd_port is always done inside the getf/releasef pair. 1726 */ 1727 ASSERT(ufp->uf_refcnt >= 1); 1728 if (ufp->uf_portfd == NULL) { 1729 /* first entry */ 1730 ufp->uf_portfd = pfd; 1731 pfd->pfd_next = NULL; 1732 } else { 1733 pfd->pfd_next = ufp->uf_portfd; 1734 ufp->uf_portfd = pfd; 1735 pfd->pfd_next->pfd_prev = pfd; 1736 } 1737 UF_EXIT(ufp); 1738 } 1739 1740 void 1741 delfd_port(int fd, portfd_t *pfd) 1742 { 1743 struct uf_entry *ufp; 1744 uf_info_t *fip = P_FINFO(curproc); 1745 1746 UF_ENTER(ufp, fip, fd); 1747 /* 1748 * delfd_port is always done inside the getf/releasef pair. 1749 */ 1750 ASSERT(ufp->uf_refcnt >= 1); 1751 if (ufp->uf_portfd == pfd) { 1752 /* remove first entry */ 1753 ufp->uf_portfd = pfd->pfd_next; 1754 } else { 1755 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1756 if (pfd->pfd_next != NULL) 1757 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1758 } 1759 UF_EXIT(ufp); 1760 } 1761 1762 static void 1763 port_close_fd(portfd_t *pfd) 1764 { 1765 portfd_t *pfdn; 1766 1767 /* 1768 * At this point, no other thread should access 1769 * the portfd_t list for this fd. The uf_file, uf_portfd 1770 * pointers in the uf_entry_t struct for this fd would 1771 * be set to NULL. 1772 */ 1773 for (; pfd != NULL; pfd = pfdn) { 1774 pfdn = pfd->pfd_next; 1775 port_close_pfd(pfd); 1776 } 1777 } 1778