1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/conf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/file.h> 45 #include <sys/proc.h> 46 #include <sys/var.h> 47 #include <sys/cpuvar.h> 48 #include <sys/open.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/prsystm.h> 53 #include <sys/debug.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 #include <sys/fcntl.h> 57 #include <sys/poll.h> 58 #include <sys/rctl.h> 59 #include <sys/port_impl.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_add_32(&x, 1) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 static int vpsetattr(vnode_t *, vattr_t *, int); 82 83 static void port_close_fd(portfd_t *); 84 85 /* 86 * File descriptor allocation. 87 * 88 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 89 * The most common case is open(2), in which minfd = 0, but we must also 90 * support fcntl(fd, F_DUPFD, minfd). 91 * 92 * The algorithm is as follows: we keep all file descriptors in an infix 93 * binary tree in which each node records the number of descriptors 94 * allocated in its right subtree, including itself. Starting at minfd, 95 * we ascend the tree until we find a non-fully allocated right subtree. 96 * We then descend that subtree in a binary search for the smallest fd. 97 * Finally, we ascend the tree again to increment the allocation count 98 * of every subtree containing the newly-allocated fd. Freeing an fd 99 * requires only the last step: we ascend the tree to decrement allocation 100 * counts. Each of these three steps (ascent to find non-full subtree, 101 * descent to find lowest fd, ascent to update allocation counts) is 102 * O(log n), thus the algorithm as a whole is O(log n). 103 * 104 * We don't implement the fd tree using the customary left/right/parent 105 * pointers, but instead take advantage of the glorious mathematics of 106 * full infix binary trees. For reference, here's an illustration of the 107 * logical structure of such a tree, rooted at 4 (binary 100), covering 108 * the range 1-7 (binary 001-111). Our canonical trees do not include 109 * fd 0; we'll deal with that later. 110 * 111 * 100 112 * / \ 113 * / \ 114 * 010 110 115 * / \ / \ 116 * 001 011 101 111 117 * 118 * We make the following observations, all of which are easily proven by 119 * induction on the depth of the tree: 120 * 121 * (T1) The least-significant bit (LSB) of any node is equal to its level 122 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 123 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 124 * 125 * (T2) The child size (CSIZE) of node N -- that is, the total number of 126 * right-branch descendants in a child of node N, including itself -- is 127 * given by clearing all but the least significant bit of N. This 128 * follows immediately from (T1). Applying this rule to our example, we 129 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 130 * 131 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 132 * ancestor containing node N in its right child -- is given by clearing 133 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 134 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 135 * the fact that these are leftmost nodes. Note that this algorithm 136 * automatically skips generations as necessary. For example, the parent 137 * of node 101 is 110, which is a *right* ancestor (not what we want); 138 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 139 * of 101 gets us to 100 directly, skipping right past the uninteresting 140 * generation (110). 141 * 142 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 143 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 144 * 145 * LPARENT(N) = N - CSIZE(N) 146 * 147 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 148 * 149 * RPARENT(N) = N + CSIZE(N) 150 * 151 * (T5) For every interior node, the children differ from their parent by 152 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 153 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 154 * 155 * Next, we'll need a few two's-complement math tricks. Suppose a number, 156 * N, has the following form: 157 * 158 * N = xxxx10...0 159 * 160 * That is, the binary representation of N consists of some string of bits, 161 * then a 1, then all zeroes. This amounts to nothing more than saying that 162 * N has a least-significant bit, which is true for any N != 0. If we look 163 * at N and N - 1 together, we see that we can combine them in useful ways: 164 * 165 * N = xxxx10...0 166 * N - 1 = xxxx01...1 167 * ------------------------ 168 * N & (N - 1) = xxxx000000 169 * N | (N - 1) = xxxx111111 170 * N ^ (N - 1) = 111111 171 * 172 * In particular, this suggests several easy ways to clear all but the LSB, 173 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 174 * We'll opt for this formulation: 175 * 176 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 177 * 178 * Similarly, we have an easy way to determine LPARENT(N), which requires 179 * that we clear the LSB of N: 180 * 181 * (L1) LPARENT(N) = N & (N - 1) 182 * 183 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 184 * When combined with (T4), this yields an easy way to compute RPARENT(N): 185 * 186 * (R1) RPARENT(N) = (N | (N - 1)) + 1 187 * 188 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 189 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 190 * so there's no need to belabor the algebra; the revised relations become: 191 * 192 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 193 * 194 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 195 * 196 * (R1a) RPARENT(N) = N | (N + 1) 197 * 198 * This completes the mathematical framework. We now have all the tools 199 * we need to implement fd_find() and fd_reserve(). 200 * 201 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 202 * It does not actually allocate the descriptor; that's done by fd_reserve(). 203 * fd_find() proceeds in two steps: 204 * 205 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 206 * We start at the right subtree rooted at minfd. If this subtree is 207 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 208 * step 1 is done. Otherwise, we know that all fds in this subtree 209 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 210 * this process until we either find a candidate subtree or exceed 211 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 212 * 213 * (2) Find the smallest fd in the subtree discovered by step 1. 214 * Starting at the root of this subtree, we descend to find the 215 * smallest available fd. Since the left children have the smaller 216 * fds, we will descend rightward only when the left child is full. 217 * 218 * We begin by comparing the number of allocated fds in the root 219 * to the number of allocated fds in its right child; if they differ 220 * by exactly CSIZE(child), we know the left subtree is full, so we 221 * descend right; that is, the right child becomes the search root. 222 * Otherwise we leave the root alone and start following the right 223 * child's left children. As fortune would have it, this is very 224 * simple computationally: by (T5), the right child of fd is just 225 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 226 * we find that the right child's left child is fd + size - (size / 2) = 227 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 228 * fd + (size / 4), and so on. In general, fd's right child's 229 * leftmost nth descendant is fd + (size >> n). Thus, to follow 230 * the right child's left descendants, we just halve the size in 231 * each iteration of the search. 232 * 233 * When we descend leftward, we must keep track of the number of fds 234 * that were allocated in all the right subtrees we rejected, so we 235 * know how many of the root fd's allocations are in the remaining 236 * (as yet unexplored) leftmost part of its right subtree. When we 237 * encounter a fully-allocated left child -- that is, when we find 238 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 239 * (as described earlier), resetting ralloc to zero. 240 * 241 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 242 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 243 * the leftmost ancestors (see (T3)) and updates the allocation counts. 244 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 245 * 246 * flist_minsize() finds the minimal tree that still covers all 247 * used fds; as long as the allocation count of a root node is zero, we 248 * don't need that node or its right subtree. 249 * 250 * flist_nalloc() counts the number of allocated fds in the tree, by starting 251 * at the top of the tree and summing the right-subtree allocation counts as 252 * it descends leftwards. 253 * 254 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 255 * 2^n - 1. This ensures that the fd trees are always full, which saves 256 * quite a bit of boundary checking. 257 */ 258 static int 259 fd_find(uf_info_t *fip, int minfd) 260 { 261 int size, ralloc, fd; 262 263 ASSERT(MUTEX_HELD(&fip->fi_lock)); 264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 265 266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 267 size = fd ^ (fd | (fd + 1)); 268 if (fip->fi_list[fd].uf_alloc == size) 269 continue; 270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 271 ralloc += fip->fi_list[fd + size].uf_alloc; 272 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 273 fd += size; 274 ralloc = 0; 275 } 276 } 277 return (fd); 278 } 279 return (-1); 280 } 281 282 static void 283 fd_reserve(uf_info_t *fip, int fd, int incr) 284 { 285 int pfd; 286 uf_entry_t *ufp = &fip->fi_list[fd]; 287 288 ASSERT((uint_t)fd < fip->fi_nfiles); 289 ASSERT((ufp->uf_busy == 0 && incr == 1) || 290 (ufp->uf_busy == 1 && incr == -1)); 291 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 292 ASSERT(MUTEX_HELD(&fip->fi_lock)); 293 294 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 295 fip->fi_list[pfd].uf_alloc += incr; 296 297 ufp->uf_busy += incr; 298 } 299 300 static int 301 flist_minsize(uf_info_t *fip) 302 { 303 int fd; 304 305 /* 306 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 307 * by flist_fork(), which relies on other mechanisms for mutual 308 * exclusion. 309 */ 310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 311 312 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 313 if (fip->fi_list[fd >> 1].uf_alloc != 0) 314 break; 315 316 return (fd); 317 } 318 319 static int 320 flist_nalloc(uf_info_t *fip) 321 { 322 int fd; 323 int nalloc = 0; 324 325 ASSERT(MUTEX_HELD(&fip->fi_lock)); 326 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 327 328 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 329 nalloc += fip->fi_list[fd >> 1].uf_alloc; 330 331 return (nalloc); 332 } 333 334 /* 335 * Increase size of the fi_list array to accommodate at least maxfd. 336 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 337 */ 338 static void 339 flist_grow(int maxfd) 340 { 341 uf_info_t *fip = P_FINFO(curproc); 342 int newcnt, oldcnt; 343 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 344 uf_rlist_t *urp; 345 346 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 347 continue; 348 349 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 350 351 mutex_enter(&fip->fi_lock); 352 oldcnt = fip->fi_nfiles; 353 if (newcnt <= oldcnt) { 354 mutex_exit(&fip->fi_lock); 355 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 356 return; 357 } 358 ASSERT((newcnt & (newcnt + 1)) == 0); 359 oldlist = fip->fi_list; 360 oldend = oldlist + oldcnt; 361 newend = newlist + oldcnt; /* no need to lock beyond old end */ 362 363 /* 364 * fi_list and fi_nfiles cannot change while any uf_lock is held, 365 * so we must grab all the old locks *and* the new locks up to oldcnt. 366 * (Locks beyond the end of oldcnt aren't visible until we store 367 * the new fi_nfiles, which is the last thing we do before dropping 368 * all the locks, so there's no need to acquire these locks). 369 * Holding the new locks is necessary because when fi_list changes 370 * to point to the new list, fi_nfiles won't have been stored yet. 371 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 372 * could see the new fi_list, grab the new uf_lock, and then see 373 * fi_nfiles change while the lock is held -- in violation of 374 * UF_ENTER() semantics. 375 */ 376 for (src = oldlist; src < oldend; src++) 377 mutex_enter(&src->uf_lock); 378 379 for (dst = newlist; dst < newend; dst++) 380 mutex_enter(&dst->uf_lock); 381 382 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 383 dst->uf_file = src->uf_file; 384 dst->uf_fpollinfo = src->uf_fpollinfo; 385 dst->uf_refcnt = src->uf_refcnt; 386 dst->uf_alloc = src->uf_alloc; 387 dst->uf_flag = src->uf_flag; 388 dst->uf_busy = src->uf_busy; 389 dst->uf_portfd = src->uf_portfd; 390 } 391 392 /* 393 * As soon as we store the new flist, future locking operations 394 * will use it. Therefore, we must ensure that all the state 395 * we've just established reaches global visibility before the 396 * new flist does. 397 */ 398 membar_producer(); 399 fip->fi_list = newlist; 400 401 /* 402 * Routines like getf() make an optimistic check on the validity 403 * of the supplied file descriptor: if it's less than the current 404 * value of fi_nfiles -- examined without any locks -- then it's 405 * safe to attempt a UF_ENTER() on that fd (which is a valid 406 * assumption because fi_nfiles only increases). Therefore, it 407 * is critical that the new value of fi_nfiles not reach global 408 * visibility until after the new fi_list: if it happened the 409 * other way around, getf() could see the new fi_nfiles and attempt 410 * a UF_ENTER() on the old fi_list, which would write beyond its 411 * end if the fd exceeded the old fi_nfiles. 412 */ 413 membar_producer(); 414 fip->fi_nfiles = newcnt; 415 416 /* 417 * The new state is consistent now, so we can drop all the locks. 418 */ 419 for (dst = newlist; dst < newend; dst++) 420 mutex_exit(&dst->uf_lock); 421 422 for (src = oldlist; src < oldend; src++) { 423 /* 424 * If any threads are blocked on the old cvs, wake them. 425 * This will force them to wake up, discover that fi_list 426 * has changed, and go back to sleep on the new cvs. 427 */ 428 cv_broadcast(&src->uf_wanted_cv); 429 cv_broadcast(&src->uf_closing_cv); 430 mutex_exit(&src->uf_lock); 431 } 432 433 mutex_exit(&fip->fi_lock); 434 435 /* 436 * Retire the old flist. We can't actually kmem_free() it now 437 * because someone may still have a pointer to it. Instead, 438 * we link it onto a list of retired flists. The new flist 439 * is at least double the size of the previous flist, so the 440 * total size of all retired flists will be less than the size 441 * of the current one (to prove, consider the sum of a geometric 442 * series in powers of 2). exit() frees the retired flists. 443 */ 444 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 445 urp->ur_list = oldlist; 446 urp->ur_nfiles = oldcnt; 447 448 mutex_enter(&fip->fi_lock); 449 urp->ur_next = fip->fi_rlist; 450 fip->fi_rlist = urp; 451 mutex_exit(&fip->fi_lock); 452 } 453 454 /* 455 * Utility functions for keeping track of the active file descriptors. 456 */ 457 void 458 clear_stale_fd() /* called from post_syscall() */ 459 { 460 afd_t *afd = &curthread->t_activefd; 461 int i; 462 463 /* uninitialized is ok here, a_nfd is then zero */ 464 for (i = 0; i < afd->a_nfd; i++) { 465 /* assert that this should not be necessary */ 466 ASSERT(afd->a_fd[i] == -1); 467 afd->a_fd[i] = -1; 468 } 469 afd->a_stale = 0; 470 } 471 472 void 473 free_afd(afd_t *afd) /* called below and from thread_free() */ 474 { 475 int i; 476 477 /* free the buffer if it was kmem_alloc()ed */ 478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 479 COUNT(afd_free); 480 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 481 } 482 483 /* (re)initialize the structure */ 484 afd->a_fd = &afd->a_buf[0]; 485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 486 afd->a_stale = 0; 487 for (i = 0; i < afd->a_nfd; i++) 488 afd->a_fd[i] = -1; 489 } 490 491 static void 492 set_active_fd(int fd) 493 { 494 afd_t *afd = &curthread->t_activefd; 495 int i; 496 int *old_fd; 497 int old_nfd; 498 499 if (afd->a_nfd == 0) /* first time initialization */ 500 free_afd(afd); 501 502 /* insert fd into vacant slot, if any */ 503 for (i = 0; i < afd->a_nfd; i++) { 504 if (afd->a_fd[i] == -1) { 505 afd->a_fd[i] = fd; 506 return; 507 } 508 } 509 510 /* 511 * Reallocate the a_fd[] array to add one more slot. 512 */ 513 old_fd = afd->a_fd; 514 old_nfd = afd->a_nfd; 515 afd->a_nfd = old_nfd + 1; 516 MAXFD(afd->a_nfd); 517 COUNT(afd_alloc); 518 afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 519 for (i = 0; i < old_nfd; i++) 520 afd->a_fd[i] = old_fd[i]; 521 afd->a_fd[i] = fd; 522 523 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 524 COUNT(afd_free); 525 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 526 } 527 } 528 529 void 530 clear_active_fd(int fd) /* called below and from aio.c */ 531 { 532 afd_t *afd = &curthread->t_activefd; 533 int i; 534 535 for (i = 0; i < afd->a_nfd; i++) { 536 if (afd->a_fd[i] == fd) { 537 afd->a_fd[i] = -1; 538 break; 539 } 540 } 541 ASSERT(i < afd->a_nfd); /* not found is not ok */ 542 } 543 544 /* 545 * Does this thread have this fd active? 546 */ 547 static int 548 is_active_fd(kthread_t *t, int fd) 549 { 550 afd_t *afd = &t->t_activefd; 551 int i; 552 553 /* uninitialized is ok here, a_nfd is then zero */ 554 for (i = 0; i < afd->a_nfd; i++) { 555 if (afd->a_fd[i] == fd) 556 return (1); 557 } 558 return (0); 559 } 560 561 /* 562 * Convert a user supplied file descriptor into a pointer to a file 563 * structure. Only task is to check range of the descriptor (soft 564 * resource limit was enforced at open time and shouldn't be checked 565 * here). 566 */ 567 file_t * 568 getf(int fd) 569 { 570 uf_info_t *fip = P_FINFO(curproc); 571 uf_entry_t *ufp; 572 file_t *fp; 573 574 if ((uint_t)fd >= fip->fi_nfiles) 575 return (NULL); 576 577 UF_ENTER(ufp, fip, fd); 578 if ((fp = ufp->uf_file) == NULL) { 579 UF_EXIT(ufp); 580 581 if (fd == fip->fi_badfd && fip->fi_action > 0) 582 tsignal(curthread, fip->fi_action); 583 584 return (NULL); 585 } 586 ufp->uf_refcnt++; 587 588 /* 589 * archive per file audit data 590 */ 591 if (audit_active) 592 (void) audit_getf(fd); 593 UF_EXIT(ufp); 594 595 set_active_fd(fd); /* record the active file descriptor */ 596 597 return (fp); 598 } 599 600 /* 601 * Close whatever file currently occupies the file descriptor slot 602 * and install the new file, usually NULL, in the file descriptor slot. 603 * The close must complete before we release the file descriptor slot. 604 * If newfp != NULL we only return an error if we can't allocate the 605 * slot so the caller knows that it needs to free the filep; 606 * in the other cases we return the error number from closef(). 607 */ 608 int 609 closeandsetf(int fd, file_t *newfp) 610 { 611 proc_t *p = curproc; 612 uf_info_t *fip = P_FINFO(p); 613 uf_entry_t *ufp; 614 file_t *fp; 615 fpollinfo_t *fpip; 616 portfd_t *pfd; 617 int error; 618 619 if ((uint_t)fd >= fip->fi_nfiles) { 620 if (newfp == NULL) 621 return (EBADF); 622 flist_grow(fd); 623 } 624 625 if (newfp != NULL) { 626 /* 627 * If ufp is reserved but has no file pointer, it's in the 628 * transition between ufalloc() and setf(). We must wait 629 * for this transition to complete before assigning the 630 * new non-NULL file pointer. 631 */ 632 mutex_enter(&fip->fi_lock); 633 if (fd == fip->fi_badfd) { 634 mutex_exit(&fip->fi_lock); 635 if (fip->fi_action > 0) 636 tsignal(curthread, fip->fi_action); 637 return (EBADF); 638 } 639 UF_ENTER(ufp, fip, fd); 640 while (ufp->uf_busy && ufp->uf_file == NULL) { 641 mutex_exit(&fip->fi_lock); 642 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 643 UF_EXIT(ufp); 644 mutex_enter(&fip->fi_lock); 645 UF_ENTER(ufp, fip, fd); 646 } 647 if ((fp = ufp->uf_file) == NULL) { 648 ASSERT(ufp->uf_fpollinfo == NULL); 649 ASSERT(ufp->uf_flag == 0); 650 fd_reserve(fip, fd, 1); 651 ufp->uf_file = newfp; 652 UF_EXIT(ufp); 653 mutex_exit(&fip->fi_lock); 654 return (0); 655 } 656 mutex_exit(&fip->fi_lock); 657 } else { 658 UF_ENTER(ufp, fip, fd); 659 if ((fp = ufp->uf_file) == NULL) { 660 UF_EXIT(ufp); 661 return (EBADF); 662 } 663 } 664 665 /* 666 * archive per file audit data 667 */ 668 if (audit_active) 669 (void) audit_getf(fd); 670 ASSERT(ufp->uf_busy); 671 ufp->uf_file = NULL; 672 ufp->uf_flag = 0; 673 674 /* 675 * If the file descriptor reference count is non-zero, then 676 * some other lwp in the process is performing system call 677 * activity on the file. To avoid blocking here for a long 678 * time (the other lwp might be in a long term sleep in its 679 * system call), we stop all other lwps in the process and 680 * scan them to find the ones with this fd as one of their 681 * active fds and set their a_stale flag so they will emerge 682 * from their system calls immediately. post_syscall() will 683 * test the a_stale flag and set errno to EBADF. 684 */ 685 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 686 if (ufp->uf_refcnt > 0) { 687 UF_EXIT(ufp); 688 COUNT(afd_wait); 689 690 /* 691 * Make all other lwps hold in place, as if doing fork1(). 692 * holdlwps(SHOLDFORK1) fails only if another lwp wants to 693 * perform a forkall() or the process is exiting. In either 694 * case, all other lwps are either returning from their 695 * system calls (because of SHOLDFORK) or calling lwp_exit() 696 * (because of SEXITLWPS) so we don't need to scan them. 697 */ 698 if (holdlwps(SHOLDFORK1)) { 699 kthread_t *t; 700 701 mutex_enter(&p->p_lock); 702 for (t = curthread->t_forw; t != curthread; 703 t = t->t_forw) { 704 if (is_active_fd(t, fd)) { 705 t->t_activefd.a_stale = 1; 706 t->t_post_sys = 1; 707 } 708 } 709 continuelwps(p); 710 mutex_exit(&p->p_lock); 711 } 712 UF_ENTER(ufp, fip, fd); 713 ASSERT(ufp->uf_file == NULL); 714 } 715 716 /* 717 * Wait for other lwps to stop using this file descriptor. 718 */ 719 while (ufp->uf_refcnt > 0) { 720 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 721 /* 722 * cv_wait_stop() drops ufp->uf_lock, so the file list 723 * can change. Drop the lock on our (possibly) stale 724 * ufp and let UF_ENTER() find and lock the current ufp. 725 */ 726 UF_EXIT(ufp); 727 UF_ENTER(ufp, fip, fd); 728 } 729 730 #ifdef DEBUG 731 /* 732 * catch a watchfd on device's pollhead list but not on fpollinfo list 733 */ 734 if (ufp->uf_fpollinfo != NULL) 735 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 736 #endif /* DEBUG */ 737 738 /* 739 * We may need to cleanup some cached poll states in t_pollstate 740 * before the fd can be reused. It is important that we don't 741 * access a stale thread structure. We will do the cleanup in two 742 * phases to avoid deadlock and holding uf_lock for too long. 743 * In phase 1, hold the uf_lock and call pollblockexit() to set 744 * state in t_pollstate struct so that a thread does not exit on 745 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 746 */ 747 pfd = ufp->uf_portfd; 748 ufp->uf_portfd = NULL; 749 fpip = ufp->uf_fpollinfo; 750 ufp->uf_fpollinfo = NULL; 751 if (fpip != NULL) 752 pollblockexit(fpip); 753 UF_EXIT(ufp); 754 if (fpip != NULL) 755 pollcacheclean(fpip, fd); 756 if (pfd) 757 port_close_fd(pfd); 758 759 /* 760 * Keep the file descriptor entry reserved across the closef(). 761 */ 762 error = closef(fp); 763 764 setf(fd, newfp); 765 766 /* Only return closef() error when closing is all we do */ 767 return (newfp == NULL ? error : 0); 768 } 769 770 /* 771 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 772 */ 773 void 774 releasef(int fd) 775 { 776 uf_info_t *fip = P_FINFO(curproc); 777 uf_entry_t *ufp; 778 779 clear_active_fd(fd); /* clear the active file descriptor */ 780 781 UF_ENTER(ufp, fip, fd); 782 ASSERT(ufp->uf_refcnt > 0); 783 if (--ufp->uf_refcnt == 0) 784 cv_broadcast(&ufp->uf_closing_cv); 785 UF_EXIT(ufp); 786 } 787 788 /* 789 * Identical to releasef() but can be called from another process. 790 */ 791 void 792 areleasef(int fd, uf_info_t *fip) 793 { 794 uf_entry_t *ufp; 795 796 UF_ENTER(ufp, fip, fd); 797 ASSERT(ufp->uf_refcnt > 0); 798 if (--ufp->uf_refcnt == 0) 799 cv_broadcast(&ufp->uf_closing_cv); 800 UF_EXIT(ufp); 801 } 802 803 /* 804 * Duplicate all file descriptors across a fork. 805 */ 806 void 807 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 808 { 809 int fd, nfiles; 810 uf_entry_t *pufp, *cufp; 811 812 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 813 cfip->fi_rlist = NULL; 814 815 /* 816 * We don't need to hold fi_lock because all other lwp's in the 817 * parent have been held. 818 */ 819 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 820 821 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 822 823 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 824 fd++, pufp++, cufp++) { 825 cufp->uf_file = pufp->uf_file; 826 cufp->uf_alloc = pufp->uf_alloc; 827 cufp->uf_flag = pufp->uf_flag; 828 cufp->uf_busy = pufp->uf_busy; 829 if (pufp->uf_file == NULL) { 830 ASSERT(pufp->uf_flag == 0); 831 if (pufp->uf_busy) { 832 /* 833 * Grab locks to appease ASSERTs in fd_reserve 834 */ 835 mutex_enter(&cfip->fi_lock); 836 mutex_enter(&cufp->uf_lock); 837 fd_reserve(cfip, fd, -1); 838 mutex_exit(&cufp->uf_lock); 839 mutex_exit(&cfip->fi_lock); 840 } 841 } 842 } 843 } 844 845 /* 846 * Close all open file descriptors for the current process. 847 * This is only called from exit(), which is single-threaded, 848 * so we don't need any locking. 849 */ 850 void 851 closeall(uf_info_t *fip) 852 { 853 int fd; 854 file_t *fp; 855 uf_entry_t *ufp; 856 857 ufp = fip->fi_list; 858 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 859 if ((fp = ufp->uf_file) != NULL) { 860 ufp->uf_file = NULL; 861 if (ufp->uf_portfd != NULL) { 862 portfd_t *pfd; 863 /* remove event port association */ 864 pfd = ufp->uf_portfd; 865 ufp->uf_portfd = NULL; 866 port_close_fd(pfd); 867 } 868 ASSERT(ufp->uf_fpollinfo == NULL); 869 (void) closef(fp); 870 } 871 } 872 873 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 874 fip->fi_list = NULL; 875 fip->fi_nfiles = 0; 876 while (fip->fi_rlist != NULL) { 877 uf_rlist_t *urp = fip->fi_rlist; 878 fip->fi_rlist = urp->ur_next; 879 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 880 kmem_free(urp, sizeof (uf_rlist_t)); 881 } 882 } 883 884 /* 885 * Internal form of close. Decrement reference count on file 886 * structure. Decrement reference count on the vnode following 887 * removal of the referencing file structure. 888 */ 889 int 890 closef(file_t *fp) 891 { 892 vnode_t *vp; 893 int error; 894 int count; 895 int flag; 896 offset_t offset; 897 898 /* 899 * audit close of file (may be exit) 900 */ 901 if (audit_active) 902 audit_closef(fp); 903 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 904 905 mutex_enter(&fp->f_tlock); 906 907 ASSERT(fp->f_count > 0); 908 909 count = fp->f_count--; 910 flag = fp->f_flag; 911 offset = fp->f_offset; 912 913 vp = fp->f_vnode; 914 915 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 916 917 if (count > 1) { 918 mutex_exit(&fp->f_tlock); 919 return (error); 920 } 921 ASSERT(fp->f_count == 0); 922 mutex_exit(&fp->f_tlock); 923 924 VN_RELE(vp); 925 /* 926 * deallocate resources to audit_data 927 */ 928 if (audit_active) 929 audit_unfalloc(fp); 930 crfree(fp->f_cred); 931 kmem_cache_free(file_cache, fp); 932 return (error); 933 } 934 935 /* 936 * This is a combination of ufalloc() and setf(). 937 */ 938 int 939 ufalloc_file(int start, file_t *fp) 940 { 941 proc_t *p = curproc; 942 uf_info_t *fip = P_FINFO(p); 943 int filelimit; 944 uf_entry_t *ufp; 945 int nfiles; 946 int fd; 947 948 /* 949 * Assertion is to convince the correctness of the following 950 * assignment for filelimit after casting to int. 951 */ 952 ASSERT(p->p_fno_ctl <= INT_MAX); 953 filelimit = (int)p->p_fno_ctl; 954 955 for (;;) { 956 mutex_enter(&fip->fi_lock); 957 fd = fd_find(fip, start); 958 if (fd >= 0 && fd == fip->fi_badfd) { 959 start = fd + 1; 960 mutex_exit(&fip->fi_lock); 961 continue; 962 } 963 if ((uint_t)fd < filelimit) 964 break; 965 if (fd >= filelimit) { 966 mutex_exit(&fip->fi_lock); 967 mutex_enter(&p->p_lock); 968 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 969 p->p_rctls, p, RCA_SAFE); 970 mutex_exit(&p->p_lock); 971 return (-1); 972 } 973 /* fd_find() returned -1 */ 974 nfiles = fip->fi_nfiles; 975 mutex_exit(&fip->fi_lock); 976 flist_grow(MAX(start, nfiles)); 977 } 978 979 UF_ENTER(ufp, fip, fd); 980 fd_reserve(fip, fd, 1); 981 ASSERT(ufp->uf_file == NULL); 982 ufp->uf_file = fp; 983 UF_EXIT(ufp); 984 mutex_exit(&fip->fi_lock); 985 return (fd); 986 } 987 988 /* 989 * Allocate a user file descriptor greater than or equal to "start". 990 */ 991 int 992 ufalloc(int start) 993 { 994 return (ufalloc_file(start, NULL)); 995 } 996 997 /* 998 * Check that a future allocation of count fds on proc p has a good 999 * chance of succeeding. If not, do rctl processing as if we'd failed 1000 * the allocation. 1001 * 1002 * Our caller must guarantee that p cannot disappear underneath us. 1003 */ 1004 int 1005 ufcanalloc(proc_t *p, uint_t count) 1006 { 1007 uf_info_t *fip = P_FINFO(p); 1008 int filelimit; 1009 int current; 1010 1011 if (count == 0) 1012 return (1); 1013 1014 ASSERT(p->p_fno_ctl <= INT_MAX); 1015 filelimit = (int)p->p_fno_ctl; 1016 1017 mutex_enter(&fip->fi_lock); 1018 current = flist_nalloc(fip); /* # of in-use descriptors */ 1019 mutex_exit(&fip->fi_lock); 1020 1021 /* 1022 * If count is a positive integer, the worst that can happen is 1023 * an overflow to a negative value, which is caught by the >= 0 check. 1024 */ 1025 current += count; 1026 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1027 return (1); 1028 1029 mutex_enter(&p->p_lock); 1030 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1031 p->p_rctls, p, RCA_SAFE); 1032 mutex_exit(&p->p_lock); 1033 return (0); 1034 } 1035 1036 /* 1037 * Allocate a user file descriptor and a file structure. 1038 * Initialize the descriptor to point at the file structure. 1039 * If fdp is NULL, the user file descriptor will not be allocated. 1040 */ 1041 int 1042 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1043 { 1044 file_t *fp; 1045 int fd; 1046 1047 if (fdp) { 1048 if ((fd = ufalloc(0)) == -1) 1049 return (EMFILE); 1050 } 1051 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1052 /* 1053 * Note: falloc returns the fp locked 1054 */ 1055 mutex_enter(&fp->f_tlock); 1056 fp->f_count = 1; 1057 fp->f_flag = (ushort_t)flag; 1058 fp->f_vnode = vp; 1059 fp->f_offset = 0; 1060 fp->f_audit_data = 0; 1061 crhold(fp->f_cred = CRED()); 1062 /* 1063 * allocate resources to audit_data 1064 */ 1065 if (audit_active) 1066 audit_falloc(fp); 1067 *fpp = fp; 1068 if (fdp) 1069 *fdp = fd; 1070 return (0); 1071 } 1072 1073 /*ARGSUSED*/ 1074 static int 1075 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1076 { 1077 file_t *fp = buf; 1078 1079 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1080 return (0); 1081 } 1082 1083 /*ARGSUSED*/ 1084 static void 1085 file_cache_destructor(void *buf, void *cdrarg) 1086 { 1087 file_t *fp = buf; 1088 1089 mutex_destroy(&fp->f_tlock); 1090 } 1091 1092 void 1093 finit() 1094 { 1095 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1096 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1097 } 1098 1099 void 1100 unfalloc(file_t *fp) 1101 { 1102 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1103 if (--fp->f_count <= 0) { 1104 /* 1105 * deallocate resources to audit_data 1106 */ 1107 if (audit_active) 1108 audit_unfalloc(fp); 1109 crfree(fp->f_cred); 1110 mutex_exit(&fp->f_tlock); 1111 kmem_cache_free(file_cache, fp); 1112 } else 1113 mutex_exit(&fp->f_tlock); 1114 } 1115 1116 /* 1117 * Given a file descriptor, set the user's 1118 * file pointer to the given parameter. 1119 */ 1120 void 1121 setf(int fd, file_t *fp) 1122 { 1123 uf_info_t *fip = P_FINFO(curproc); 1124 uf_entry_t *ufp; 1125 1126 if (audit_active) 1127 audit_setf(fp, fd); 1128 1129 if (fp == NULL) { 1130 mutex_enter(&fip->fi_lock); 1131 UF_ENTER(ufp, fip, fd); 1132 fd_reserve(fip, fd, -1); 1133 mutex_exit(&fip->fi_lock); 1134 } else { 1135 UF_ENTER(ufp, fip, fd); 1136 ASSERT(ufp->uf_busy); 1137 } 1138 ASSERT(ufp->uf_fpollinfo == NULL); 1139 ASSERT(ufp->uf_flag == 0); 1140 ufp->uf_file = fp; 1141 cv_broadcast(&ufp->uf_wanted_cv); 1142 UF_EXIT(ufp); 1143 } 1144 1145 /* 1146 * Given a file descriptor, return the file table flags, plus, 1147 * if this is a socket in asynchronous mode, the FASYNC flag. 1148 * getf() may or may not have been called before calling f_getfl(). 1149 */ 1150 int 1151 f_getfl(int fd, int *flagp) 1152 { 1153 uf_info_t *fip = P_FINFO(curproc); 1154 uf_entry_t *ufp; 1155 file_t *fp; 1156 int error; 1157 1158 if ((uint_t)fd >= fip->fi_nfiles) 1159 error = EBADF; 1160 else { 1161 UF_ENTER(ufp, fip, fd); 1162 if ((fp = ufp->uf_file) == NULL) 1163 error = EBADF; 1164 else { 1165 vnode_t *vp = fp->f_vnode; 1166 int flag = fp->f_flag; 1167 1168 /* 1169 * BSD fcntl() FASYNC compatibility. 1170 * 1171 * SCTP doesn't have an associated stream and thus 1172 * doesn't store flags on it. 1173 */ 1174 if ((vp->v_type == VSOCK) && (vp->v_stream != NULL)) 1175 flag |= sock_getfasync(vp); 1176 *flagp = flag; 1177 error = 0; 1178 } 1179 UF_EXIT(ufp); 1180 } 1181 1182 return (error); 1183 } 1184 1185 /* 1186 * Given a file descriptor, return the user's file flags. 1187 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1188 * getf() may or may not have been called before calling f_getfd_error(). 1189 */ 1190 int 1191 f_getfd_error(int fd, int *flagp) 1192 { 1193 uf_info_t *fip = P_FINFO(curproc); 1194 uf_entry_t *ufp; 1195 file_t *fp; 1196 int flag; 1197 int error; 1198 1199 if ((uint_t)fd >= fip->fi_nfiles) 1200 error = EBADF; 1201 else { 1202 UF_ENTER(ufp, fip, fd); 1203 if ((fp = ufp->uf_file) == NULL) 1204 error = EBADF; 1205 else { 1206 flag = ufp->uf_flag; 1207 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1208 flag |= FD_CLOEXEC; 1209 *flagp = flag; 1210 error = 0; 1211 } 1212 UF_EXIT(ufp); 1213 } 1214 1215 return (error); 1216 } 1217 1218 /* 1219 * getf() must have been called before calling f_getfd(). 1220 */ 1221 char 1222 f_getfd(int fd) 1223 { 1224 int flag = 0; 1225 (void) f_getfd_error(fd, &flag); 1226 return ((char)flag); 1227 } 1228 1229 /* 1230 * Given a file descriptor and file flags, set the user's file flags. 1231 * At present, the only valid flag is FD_CLOEXEC. 1232 * getf() may or may not have been called before calling f_setfd_error(). 1233 */ 1234 int 1235 f_setfd_error(int fd, int flags) 1236 { 1237 uf_info_t *fip = P_FINFO(curproc); 1238 uf_entry_t *ufp; 1239 int error; 1240 1241 if ((uint_t)fd >= fip->fi_nfiles) 1242 error = EBADF; 1243 else { 1244 UF_ENTER(ufp, fip, fd); 1245 if (ufp->uf_file == NULL) 1246 error = EBADF; 1247 else { 1248 ufp->uf_flag = flags & FD_CLOEXEC; 1249 error = 0; 1250 } 1251 UF_EXIT(ufp); 1252 } 1253 return (error); 1254 } 1255 1256 void 1257 f_setfd(int fd, char flags) 1258 { 1259 (void) f_setfd_error(fd, flags); 1260 } 1261 1262 #define BADFD_MIN 3 1263 #define BADFD_MAX 255 1264 1265 /* 1266 * Attempt to allocate a file descriptor which is bad and which 1267 * is "poison" to the application. It cannot be closed (except 1268 * on exec), allocated for a different use, etc. 1269 */ 1270 int 1271 f_badfd(int start, int *fdp, int action) 1272 { 1273 int fdr; 1274 int badfd; 1275 uf_info_t *fip = P_FINFO(curproc); 1276 1277 #ifdef _LP64 1278 /* No restrictions on 64 bit _file */ 1279 if (get_udatamodel() != DATAMODEL_ILP32) 1280 return (EINVAL); 1281 #endif 1282 1283 if (start > BADFD_MAX || start < BADFD_MIN) 1284 return (EINVAL); 1285 1286 if (action >= NSIG || action < 0) 1287 return (EINVAL); 1288 1289 mutex_enter(&fip->fi_lock); 1290 badfd = fip->fi_badfd; 1291 mutex_exit(&fip->fi_lock); 1292 1293 if (badfd != -1) 1294 return (EAGAIN); 1295 1296 fdr = ufalloc(start); 1297 1298 if (fdr > BADFD_MAX) { 1299 setf(fdr, NULL); 1300 return (EMFILE); 1301 } 1302 if (fdr < 0) 1303 return (EMFILE); 1304 1305 mutex_enter(&fip->fi_lock); 1306 if (fip->fi_badfd != -1) { 1307 /* Lost race */ 1308 mutex_exit(&fip->fi_lock); 1309 setf(fdr, NULL); 1310 return (EAGAIN); 1311 } 1312 fip->fi_action = action; 1313 fip->fi_badfd = fdr; 1314 mutex_exit(&fip->fi_lock); 1315 setf(fdr, NULL); 1316 1317 *fdp = fdr; 1318 1319 return (0); 1320 } 1321 1322 /* 1323 * Allocate a file descriptor and assign it to the vnode "*vpp", 1324 * performing the usual open protocol upon it and returning the 1325 * file descriptor allocated. It is the responsibility of the 1326 * caller to dispose of "*vpp" if any error occurs. 1327 */ 1328 int 1329 fassign(vnode_t **vpp, int mode, int *fdp) 1330 { 1331 file_t *fp; 1332 int error; 1333 int fd; 1334 1335 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1336 return (error); 1337 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1338 setf(fd, NULL); 1339 unfalloc(fp); 1340 return (error); 1341 } 1342 fp->f_vnode = *vpp; 1343 mutex_exit(&fp->f_tlock); 1344 /* 1345 * Fill in the slot falloc reserved. 1346 */ 1347 setf(fd, fp); 1348 *fdp = fd; 1349 return (0); 1350 } 1351 1352 /* 1353 * When a process forks it must increment the f_count of all file pointers 1354 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1355 * Since we are called when there is only 1 active lwp we don't need to 1356 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1357 * fcnt_add(fip, -1) to restore the counts. 1358 */ 1359 void 1360 fcnt_add(uf_info_t *fip, int incr) 1361 { 1362 int i; 1363 uf_entry_t *ufp; 1364 file_t *fp; 1365 1366 ufp = fip->fi_list; 1367 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1368 if ((fp = ufp->uf_file) != NULL) { 1369 mutex_enter(&fp->f_tlock); 1370 ASSERT((incr == 1 && fp->f_count >= 1) || 1371 (incr == -1 && fp->f_count >= 2)); 1372 fp->f_count += incr; 1373 mutex_exit(&fp->f_tlock); 1374 } 1375 } 1376 } 1377 1378 /* 1379 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1380 * set and also to close all self-open for write /proc file descriptors. 1381 */ 1382 void 1383 close_exec(uf_info_t *fip) 1384 { 1385 int fd; 1386 file_t *fp; 1387 fpollinfo_t *fpip; 1388 uf_entry_t *ufp; 1389 portfd_t *pfd; 1390 1391 ufp = fip->fi_list; 1392 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1393 if ((fp = ufp->uf_file) != NULL && 1394 ((ufp->uf_flag & FD_CLOEXEC) || 1395 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1396 fpip = ufp->uf_fpollinfo; 1397 mutex_enter(&fip->fi_lock); 1398 mutex_enter(&ufp->uf_lock); 1399 fd_reserve(fip, fd, -1); 1400 mutex_exit(&fip->fi_lock); 1401 ufp->uf_file = NULL; 1402 ufp->uf_fpollinfo = NULL; 1403 ufp->uf_flag = 0; 1404 /* 1405 * We may need to cleanup some cached poll states 1406 * in t_pollstate before the fd can be reused. It 1407 * is important that we don't access a stale thread 1408 * structure. We will do the cleanup in two 1409 * phases to avoid deadlock and holding uf_lock for 1410 * too long. In phase 1, hold the uf_lock and call 1411 * pollblockexit() to set state in t_pollstate struct 1412 * so that a thread does not exit on us. In phase 2, 1413 * we drop the uf_lock and call pollcacheclean(). 1414 */ 1415 pfd = ufp->uf_portfd; 1416 ufp->uf_portfd = NULL; 1417 if (fpip != NULL) 1418 pollblockexit(fpip); 1419 mutex_exit(&ufp->uf_lock); 1420 if (fpip != NULL) 1421 pollcacheclean(fpip, fd); 1422 if (pfd) 1423 port_close_fd(pfd); 1424 (void) closef(fp); 1425 } 1426 } 1427 1428 /* Reset bad fd */ 1429 fip->fi_badfd = -1; 1430 fip->fi_action = -1; 1431 } 1432 1433 /* 1434 * Common routine for modifying attributes of named files. 1435 */ 1436 int 1437 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1438 { 1439 vnode_t *vp; 1440 int error = 0; 1441 1442 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1443 return (set_errno(error)); 1444 if (error = vpsetattr(vp, vap, flags)) 1445 (void) set_errno(error); 1446 VN_RELE(vp); 1447 return (error); 1448 } 1449 1450 /* 1451 * Common routine for modifying attributes of files referenced 1452 * by descriptor. 1453 */ 1454 int 1455 fdsetattr(int fd, vattr_t *vap) 1456 { 1457 file_t *fp; 1458 vnode_t *vp; 1459 int error = 0; 1460 1461 if ((fp = getf(fd)) != NULL) { 1462 vp = fp->f_vnode; 1463 if (error = vpsetattr(vp, vap, 0)) { 1464 (void) set_errno(error); 1465 } 1466 releasef(fd); 1467 } else 1468 error = set_errno(EBADF); 1469 return (error); 1470 } 1471 1472 /* 1473 * Common routine to set the attributes for the given vnode. 1474 * If the vnode is a file and the filesize is being manipulated, 1475 * this makes sure that there are no conflicting non-blocking 1476 * mandatory locks in that region. 1477 */ 1478 static int 1479 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1480 { 1481 int error = 0; 1482 int in_crit = 0; 1483 u_offset_t begin; 1484 vattr_t vattr; 1485 ssize_t length; 1486 1487 if (vn_is_readonly(vp)) { 1488 error = EROFS; 1489 } 1490 if (!error && (vap->va_mask & AT_SIZE) && 1491 nbl_need_check(vp)) { 1492 nbl_start_crit(vp, RW_READER); 1493 in_crit = 1; 1494 vattr.va_mask = AT_SIZE; 1495 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1496 begin = vap->va_size > vattr.va_size ? 1497 vattr.va_size : vap->va_size; 1498 length = vattr.va_size > vap->va_size ? 1499 vattr.va_size - vap->va_size : 1500 vap->va_size - vattr.va_size; 1501 1502 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0, 1503 NULL)) { 1504 error = EACCES; 1505 } 1506 } 1507 } 1508 if (!error) 1509 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1510 1511 if (in_crit) 1512 nbl_end_crit(vp); 1513 1514 return (error); 1515 } 1516 1517 /* 1518 * Return true if the given vnode is referenced by any 1519 * entry in the current process's file descriptor table. 1520 */ 1521 int 1522 fisopen(vnode_t *vp) 1523 { 1524 int fd; 1525 file_t *fp; 1526 vnode_t *ovp; 1527 uf_info_t *fip = P_FINFO(curproc); 1528 uf_entry_t *ufp; 1529 1530 mutex_enter(&fip->fi_lock); 1531 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1532 UF_ENTER(ufp, fip, fd); 1533 if ((fp = ufp->uf_file) != NULL && 1534 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1535 UF_EXIT(ufp); 1536 mutex_exit(&fip->fi_lock); 1537 return (1); 1538 } 1539 UF_EXIT(ufp); 1540 } 1541 mutex_exit(&fip->fi_lock); 1542 return (0); 1543 } 1544 1545 /* 1546 * Return zero if at least one file currently open (by curproc) shouldn't be 1547 * allowed to change zones. 1548 */ 1549 int 1550 files_can_change_zones(void) 1551 { 1552 int fd; 1553 file_t *fp; 1554 uf_info_t *fip = P_FINFO(curproc); 1555 uf_entry_t *ufp; 1556 1557 mutex_enter(&fip->fi_lock); 1558 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1559 UF_ENTER(ufp, fip, fd); 1560 if ((fp = ufp->uf_file) != NULL && 1561 !vn_can_change_zones(fp->f_vnode)) { 1562 UF_EXIT(ufp); 1563 mutex_exit(&fip->fi_lock); 1564 return (0); 1565 } 1566 UF_EXIT(ufp); 1567 } 1568 mutex_exit(&fip->fi_lock); 1569 return (1); 1570 } 1571 1572 #ifdef DEBUG 1573 1574 /* 1575 * The following functions are only used in ASSERT()s elsewhere. 1576 * They do not modify the state of the system. 1577 */ 1578 1579 /* 1580 * Return true (1) if the current thread is in the fpollinfo 1581 * list for this file descriptor, else false (0). 1582 */ 1583 static int 1584 curthread_in_plist(uf_entry_t *ufp) 1585 { 1586 fpollinfo_t *fpip; 1587 1588 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1589 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1590 if (fpip->fp_thread == curthread) 1591 return (1); 1592 return (0); 1593 } 1594 1595 /* 1596 * Sanity check to make sure that after lwp_exit(), 1597 * curthread does not appear on any fd's fpollinfo list. 1598 */ 1599 void 1600 checkfpollinfo(void) 1601 { 1602 int fd; 1603 uf_info_t *fip = P_FINFO(curproc); 1604 uf_entry_t *ufp; 1605 1606 mutex_enter(&fip->fi_lock); 1607 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1608 UF_ENTER(ufp, fip, fd); 1609 ASSERT(!curthread_in_plist(ufp)); 1610 UF_EXIT(ufp); 1611 } 1612 mutex_exit(&fip->fi_lock); 1613 } 1614 1615 /* 1616 * Return true (1) if the current thread is in the fpollinfo 1617 * list for this file descriptor, else false (0). 1618 * This is the same as curthread_in_plist(), 1619 * but is called w/o holding uf_lock. 1620 */ 1621 int 1622 infpollinfo(int fd) 1623 { 1624 uf_info_t *fip = P_FINFO(curproc); 1625 uf_entry_t *ufp; 1626 int rc; 1627 1628 UF_ENTER(ufp, fip, fd); 1629 rc = curthread_in_plist(ufp); 1630 UF_EXIT(ufp); 1631 return (rc); 1632 } 1633 1634 #endif /* DEBUG */ 1635 1636 /* 1637 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1638 * thread's poll cache. Each lwp polling this file descriptor should call 1639 * this routine once. 1640 */ 1641 void 1642 addfpollinfo(int fd) 1643 { 1644 struct uf_entry *ufp; 1645 fpollinfo_t *fpip; 1646 uf_info_t *fip = P_FINFO(curproc); 1647 1648 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1649 fpip->fp_thread = curthread; 1650 UF_ENTER(ufp, fip, fd); 1651 /* 1652 * Assert we are not already on the list, that is, that 1653 * this lwp did not call addfpollinfo twice for the same fd. 1654 */ 1655 ASSERT(!curthread_in_plist(ufp)); 1656 /* 1657 * addfpollinfo is always done inside the getf/releasef pair. 1658 */ 1659 ASSERT(ufp->uf_refcnt >= 1); 1660 fpip->fp_next = ufp->uf_fpollinfo; 1661 ufp->uf_fpollinfo = fpip; 1662 UF_EXIT(ufp); 1663 } 1664 1665 /* 1666 * delete curthread from fpollinfo list. 1667 */ 1668 /*ARGSUSED*/ 1669 void 1670 delfpollinfo(int fd) 1671 { 1672 struct uf_entry *ufp; 1673 struct fpollinfo *fpip; 1674 struct fpollinfo **fpipp; 1675 uf_info_t *fip = P_FINFO(curproc); 1676 1677 UF_ENTER(ufp, fip, fd); 1678 if (ufp->uf_fpollinfo == NULL) { 1679 UF_EXIT(ufp); 1680 return; 1681 } 1682 ASSERT(ufp->uf_busy); 1683 /* 1684 * Find and delete curthread from the list. 1685 */ 1686 fpipp = &ufp->uf_fpollinfo; 1687 while ((fpip = *fpipp)->fp_thread != curthread) 1688 fpipp = &fpip->fp_next; 1689 *fpipp = fpip->fp_next; 1690 kmem_free(fpip, sizeof (fpollinfo_t)); 1691 /* 1692 * Assert that we are not still on the list, that is, that 1693 * this lwp did not call addfpollinfo twice for the same fd. 1694 */ 1695 ASSERT(!curthread_in_plist(ufp)); 1696 UF_EXIT(ufp); 1697 } 1698 1699 /* 1700 * fd is associated with a port. pfd is a pointer to the fd entry in the 1701 * cache of the port. 1702 */ 1703 1704 void 1705 addfd_port(int fd, portfd_t *pfd) 1706 { 1707 struct uf_entry *ufp; 1708 uf_info_t *fip = P_FINFO(curproc); 1709 1710 UF_ENTER(ufp, fip, fd); 1711 /* 1712 * addfd_port is always done inside the getf/releasef pair. 1713 */ 1714 ASSERT(ufp->uf_refcnt >= 1); 1715 if (ufp->uf_portfd == NULL) { 1716 /* first entry */ 1717 ufp->uf_portfd = pfd; 1718 pfd->pfd_next = NULL; 1719 } else { 1720 pfd->pfd_next = ufp->uf_portfd; 1721 ufp->uf_portfd = pfd; 1722 pfd->pfd_next->pfd_prev = pfd; 1723 } 1724 UF_EXIT(ufp); 1725 } 1726 1727 void 1728 delfd_port(int fd, portfd_t *pfd) 1729 { 1730 struct uf_entry *ufp; 1731 uf_info_t *fip = P_FINFO(curproc); 1732 1733 UF_ENTER(ufp, fip, fd); 1734 /* 1735 * delfd_port is always done inside the getf/releasef pair. 1736 */ 1737 ASSERT(ufp->uf_refcnt >= 1); 1738 if (ufp->uf_portfd == pfd) { 1739 /* remove first entry */ 1740 ufp->uf_portfd = pfd->pfd_next; 1741 } else { 1742 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1743 if (pfd->pfd_next != NULL) 1744 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1745 } 1746 UF_EXIT(ufp); 1747 } 1748 1749 static void 1750 port_close_fd(portfd_t *pfd) 1751 { 1752 portfd_t *pfdn; 1753 1754 /* 1755 * At this point, no other thread should access 1756 * the portfd_t list for this fd. The uf_file, uf_portfd 1757 * pointers in the uf_entry_t struct for this fd would 1758 * be set to NULL. 1759 */ 1760 for (; pfd != NULL; pfd = pfdn) { 1761 pfdn = pfd->pfd_next; 1762 port_close_pfd(pfd); 1763 } 1764 } 1765