xref: /titanic_41/usr/src/uts/common/os/fio.c (revision 146832db19eb2048b216b5dd0ba4424c7d0dfd17)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	All Rights Reserved */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/conf.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
42 #include <sys/file.h>
43 #include <sys/proc.h>
44 #include <sys/var.h>
45 #include <sys/cpuvar.h>
46 #include <sys/open.h>
47 #include <sys/cmn_err.h>
48 #include <sys/priocntl.h>
49 #include <sys/procset.h>
50 #include <sys/prsystm.h>
51 #include <sys/debug.h>
52 #include <sys/kmem.h>
53 #include <sys/atomic.h>
54 #include <sys/fcntl.h>
55 #include <sys/poll.h>
56 #include <sys/rctl.h>
57 #include <sys/port_impl.h>
58 
59 #include <c2/audit.h>
60 #include <sys/nbmlock.h>
61 
62 #ifdef DEBUG
63 
64 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
65 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
66 static uint32_t afd_free;	/* count of kmem_free()s */
67 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
68 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
69 #define	COUNT(x)	atomic_add_32(&x, 1)
70 
71 #else	/* DEBUG */
72 
73 #define	MAXFD(x)
74 #define	COUNT(x)
75 
76 #endif	/* DEBUG */
77 
78 kmem_cache_t *file_cache;
79 static int vpsetattr(vnode_t *, vattr_t *, int);
80 
81 static void port_close_fd(portfd_t *);
82 
83 /*
84  * File descriptor allocation.
85  *
86  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
87  * The most common case is open(2), in which minfd = 0, but we must also
88  * support fcntl(fd, F_DUPFD, minfd).
89  *
90  * The algorithm is as follows: we keep all file descriptors in an infix
91  * binary tree in which each node records the number of descriptors
92  * allocated in its right subtree, including itself.  Starting at minfd,
93  * we ascend the tree until we find a non-fully allocated right subtree.
94  * We then descend that subtree in a binary search for the smallest fd.
95  * Finally, we ascend the tree again to increment the allocation count
96  * of every subtree containing the newly-allocated fd.  Freeing an fd
97  * requires only the last step: we ascend the tree to decrement allocation
98  * counts.  Each of these three steps (ascent to find non-full subtree,
99  * descent to find lowest fd, ascent to update allocation counts) is
100  * O(log n), thus the algorithm as a whole is O(log n).
101  *
102  * We don't implement the fd tree using the customary left/right/parent
103  * pointers, but instead take advantage of the glorious mathematics of
104  * full infix binary trees.  For reference, here's an illustration of the
105  * logical structure of such a tree, rooted at 4 (binary 100), covering
106  * the range 1-7 (binary 001-111).  Our canonical trees do not include
107  * fd 0; we'll deal with that later.
108  *
109  *	      100
110  *	     /	 \
111  *	    /	  \
112  *	  010	  110
113  *	  / \	  / \
114  *	001 011 101 111
115  *
116  * We make the following observations, all of which are easily proven by
117  * induction on the depth of the tree:
118  *
119  * (T1) The least-significant bit (LSB) of any node is equal to its level
120  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
121  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
122  *
123  * (T2) The child size (CSIZE) of node N -- that is, the total number of
124  *	right-branch descendants in a child of node N, including itself -- is
125  *	given by clearing all but the least significant bit of N.  This
126  *	follows immediately from (T1).  Applying this rule to our example, we
127  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
128  *
129  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
130  *	ancestor containing node N in its right child -- is given by clearing
131  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
132  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
133  *	the fact that these are leftmost nodes.  Note that this algorithm
134  *	automatically skips generations as necessary.  For example, the parent
135  *      of node 101 is 110, which is a *right* ancestor (not what we want);
136  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
137  *      of 101 gets us to 100 directly, skipping right past the uninteresting
138  *      generation (110).
139  *
140  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
141  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
142  *
143  *	LPARENT(N) = N - CSIZE(N)
144  *
145  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
146  *
147  *	RPARENT(N) = N + CSIZE(N)
148  *
149  * (T5) For every interior node, the children differ from their parent by
150  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
151  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
152  *
153  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
154  * N, has the following form:
155  *
156  *		N = xxxx10...0
157  *
158  * That is, the binary representation of N consists of some string of bits,
159  * then a 1, then all zeroes.  This amounts to nothing more than saying that
160  * N has a least-significant bit, which is true for any N != 0.  If we look
161  * at N and N - 1 together, we see that we can combine them in useful ways:
162  *
163  *		  N = xxxx10...0
164  *	      N - 1 = xxxx01...1
165  *	------------------------
166  *	N & (N - 1) = xxxx000000
167  *	N | (N - 1) = xxxx111111
168  *	N ^ (N - 1) =     111111
169  *
170  * In particular, this suggests several easy ways to clear all but the LSB,
171  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
172  * We'll opt for this formulation:
173  *
174  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
175  *
176  * Similarly, we have an easy way to determine LPARENT(N), which requires
177  * that we clear the LSB of N:
178  *
179  *	(L1) LPARENT(N) = N & (N - 1)
180  *
181  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
182  * When combined with (T4), this yields an easy way to compute RPARENT(N):
183  *
184  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
185  *
186  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
187  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
188  * so there's no need to belabor the algebra; the revised relations become:
189  *
190  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
191  *
192  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
193  *
194  *	(R1a) RPARENT(N) = N | (N + 1)
195  *
196  * This completes the mathematical framework.  We now have all the tools
197  * we need to implement fd_find() and fd_reserve().
198  *
199  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
200  * It does not actually allocate the descriptor; that's done by fd_reserve().
201  * fd_find() proceeds in two steps:
202  *
203  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
204  *     We start at the right subtree rooted at minfd.  If this subtree is
205  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
206  *     step 1 is done.  Otherwise, we know that all fds in this subtree
207  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
208  *     this process until we either find a candidate subtree or exceed
209  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
210  *
211  * (2) Find the smallest fd in the subtree discovered by step 1.
212  *     Starting at the root of this subtree, we descend to find the
213  *     smallest available fd.  Since the left children have the smaller
214  *     fds, we will descend rightward only when the left child is full.
215  *
216  *     We begin by comparing the number of allocated fds in the root
217  *     to the number of allocated fds in its right child; if they differ
218  *     by exactly CSIZE(child), we know the left subtree is full, so we
219  *     descend right; that is, the right child becomes the search root.
220  *     Otherwise we leave the root alone and start following the right
221  *     child's left children.  As fortune would have it, this is very
222  *     simple computationally: by (T5), the right child of fd is just
223  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
224  *     we find that the right child's left child is fd + size - (size / 2) =
225  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
226  *     fd + (size / 4), and so on.  In general, fd's right child's
227  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
228  *     the right child's left descendants, we just halve the size in
229  *     each iteration of the search.
230  *
231  *     When we descend leftward, we must keep track of the number of fds
232  *     that were allocated in all the right subtrees we rejected, so we
233  *     know how many of the root fd's allocations are in the remaining
234  *     (as yet unexplored) leftmost part of its right subtree.  When we
235  *     encounter a fully-allocated left child -- that is, when we find
236  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
237  *     (as described earlier), resetting ralloc to zero.
238  *
239  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
240  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
241  * the leftmost ancestors (see (T3)) and updates the allocation counts.
242  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
243  *
244  * flist_minsize() finds the minimal tree that still covers all
245  * used fds; as long as the allocation count of a root node is zero, we
246  * don't need that node or its right subtree.
247  *
248  * flist_nalloc() counts the number of allocated fds in the tree, by starting
249  * at the top of the tree and summing the right-subtree allocation counts as
250  * it descends leftwards.
251  *
252  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
253  * 2^n - 1.  This ensures that the fd trees are always full, which saves
254  * quite a bit of boundary checking.
255  */
256 static int
257 fd_find(uf_info_t *fip, int minfd)
258 {
259 	int size, ralloc, fd;
260 
261 	ASSERT(MUTEX_HELD(&fip->fi_lock));
262 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
263 
264 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
265 		size = fd ^ (fd | (fd + 1));
266 		if (fip->fi_list[fd].uf_alloc == size)
267 			continue;
268 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
269 			ralloc += fip->fi_list[fd + size].uf_alloc;
270 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
271 				fd += size;
272 				ralloc = 0;
273 			}
274 		}
275 		return (fd);
276 	}
277 	return (-1);
278 }
279 
280 static void
281 fd_reserve(uf_info_t *fip, int fd, int incr)
282 {
283 	int pfd;
284 	uf_entry_t *ufp = &fip->fi_list[fd];
285 
286 	ASSERT((uint_t)fd < fip->fi_nfiles);
287 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
288 	    (ufp->uf_busy == 1 && incr == -1));
289 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
290 	ASSERT(MUTEX_HELD(&fip->fi_lock));
291 
292 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
293 		fip->fi_list[pfd].uf_alloc += incr;
294 
295 	ufp->uf_busy += incr;
296 }
297 
298 static int
299 flist_minsize(uf_info_t *fip)
300 {
301 	int fd;
302 
303 	/*
304 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
305 	 * by flist_fork(), which relies on other mechanisms for mutual
306 	 * exclusion.
307 	 */
308 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
309 
310 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
311 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
312 			break;
313 
314 	return (fd);
315 }
316 
317 static int
318 flist_nalloc(uf_info_t *fip)
319 {
320 	int fd;
321 	int nalloc = 0;
322 
323 	ASSERT(MUTEX_HELD(&fip->fi_lock));
324 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
325 
326 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
327 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
328 
329 	return (nalloc);
330 }
331 
332 /*
333  * Increase size of the fi_list array to accommodate at least maxfd.
334  * We keep the size of the form 2^n - 1 for benefit of fd_find().
335  */
336 static void
337 flist_grow(int maxfd)
338 {
339 	uf_info_t *fip = P_FINFO(curproc);
340 	int newcnt, oldcnt;
341 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
342 	uf_rlist_t *urp;
343 
344 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
345 		continue;
346 
347 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
348 
349 	mutex_enter(&fip->fi_lock);
350 	oldcnt = fip->fi_nfiles;
351 	if (newcnt <= oldcnt) {
352 		mutex_exit(&fip->fi_lock);
353 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
354 		return;
355 	}
356 	ASSERT((newcnt & (newcnt + 1)) == 0);
357 	oldlist = fip->fi_list;
358 	oldend = oldlist + oldcnt;
359 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
360 
361 	/*
362 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
363 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
364 	 * (Locks beyond the end of oldcnt aren't visible until we store
365 	 * the new fi_nfiles, which is the last thing we do before dropping
366 	 * all the locks, so there's no need to acquire these locks).
367 	 * Holding the new locks is necessary because when fi_list changes
368 	 * to point to the new list, fi_nfiles won't have been stored yet.
369 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
370 	 * could see the new fi_list, grab the new uf_lock, and then see
371 	 * fi_nfiles change while the lock is held -- in violation of
372 	 * UF_ENTER() semantics.
373 	 */
374 	for (src = oldlist; src < oldend; src++)
375 		mutex_enter(&src->uf_lock);
376 
377 	for (dst = newlist; dst < newend; dst++)
378 		mutex_enter(&dst->uf_lock);
379 
380 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
381 		dst->uf_file = src->uf_file;
382 		dst->uf_fpollinfo = src->uf_fpollinfo;
383 		dst->uf_refcnt = src->uf_refcnt;
384 		dst->uf_alloc = src->uf_alloc;
385 		dst->uf_flag = src->uf_flag;
386 		dst->uf_busy = src->uf_busy;
387 		dst->uf_portfd = src->uf_portfd;
388 	}
389 
390 	/*
391 	 * As soon as we store the new flist, future locking operations
392 	 * will use it.  Therefore, we must ensure that all the state
393 	 * we've just established reaches global visibility before the
394 	 * new flist does.
395 	 */
396 	membar_producer();
397 	fip->fi_list = newlist;
398 
399 	/*
400 	 * Routines like getf() make an optimistic check on the validity
401 	 * of the supplied file descriptor: if it's less than the current
402 	 * value of fi_nfiles -- examined without any locks -- then it's
403 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
404 	 * assumption because fi_nfiles only increases).  Therefore, it
405 	 * is critical that the new value of fi_nfiles not reach global
406 	 * visibility until after the new fi_list: if it happened the
407 	 * other way around, getf() could see the new fi_nfiles and attempt
408 	 * a UF_ENTER() on the old fi_list, which would write beyond its
409 	 * end if the fd exceeded the old fi_nfiles.
410 	 */
411 	membar_producer();
412 	fip->fi_nfiles = newcnt;
413 
414 	/*
415 	 * The new state is consistent now, so we can drop all the locks.
416 	 */
417 	for (dst = newlist; dst < newend; dst++)
418 		mutex_exit(&dst->uf_lock);
419 
420 	for (src = oldlist; src < oldend; src++) {
421 		/*
422 		 * If any threads are blocked on the old cvs, wake them.
423 		 * This will force them to wake up, discover that fi_list
424 		 * has changed, and go back to sleep on the new cvs.
425 		 */
426 		cv_broadcast(&src->uf_wanted_cv);
427 		cv_broadcast(&src->uf_closing_cv);
428 		mutex_exit(&src->uf_lock);
429 	}
430 
431 	mutex_exit(&fip->fi_lock);
432 
433 	/*
434 	 * Retire the old flist.  We can't actually kmem_free() it now
435 	 * because someone may still have a pointer to it.  Instead,
436 	 * we link it onto a list of retired flists.  The new flist
437 	 * is at least double the size of the previous flist, so the
438 	 * total size of all retired flists will be less than the size
439 	 * of the current one (to prove, consider the sum of a geometric
440 	 * series in powers of 2).  exit() frees the retired flists.
441 	 */
442 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
443 	urp->ur_list = oldlist;
444 	urp->ur_nfiles = oldcnt;
445 
446 	mutex_enter(&fip->fi_lock);
447 	urp->ur_next = fip->fi_rlist;
448 	fip->fi_rlist = urp;
449 	mutex_exit(&fip->fi_lock);
450 }
451 
452 /*
453  * Utility functions for keeping track of the active file descriptors.
454  */
455 void
456 clear_stale_fd()		/* called from post_syscall() */
457 {
458 	afd_t *afd = &curthread->t_activefd;
459 	int i;
460 
461 	/* uninitialized is ok here, a_nfd is then zero */
462 	for (i = 0; i < afd->a_nfd; i++) {
463 		/* assert that this should not be necessary */
464 		ASSERT(afd->a_fd[i] == -1);
465 		afd->a_fd[i] = -1;
466 	}
467 	afd->a_stale = 0;
468 }
469 
470 void
471 free_afd(afd_t *afd)		/* called below and from thread_free() */
472 {
473 	int i;
474 
475 	/* free the buffer if it was kmem_alloc()ed */
476 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
477 		COUNT(afd_free);
478 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
479 	}
480 
481 	/* (re)initialize the structure */
482 	afd->a_fd = &afd->a_buf[0];
483 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
484 	afd->a_stale = 0;
485 	for (i = 0; i < afd->a_nfd; i++)
486 		afd->a_fd[i] = -1;
487 }
488 
489 static void
490 set_active_fd(int fd)
491 {
492 	afd_t *afd = &curthread->t_activefd;
493 	int i;
494 	int *old_fd;
495 	int old_nfd;
496 	int *new_fd;
497 	int new_nfd;
498 
499 	if (afd->a_nfd == 0) {	/* first time initialization */
500 		ASSERT(fd == -1);
501 		mutex_enter(&afd->a_fdlock);
502 		free_afd(afd);
503 		mutex_exit(&afd->a_fdlock);
504 	}
505 
506 	/* insert fd into vacant slot, if any */
507 	for (i = 0; i < afd->a_nfd; i++) {
508 		if (afd->a_fd[i] == -1) {
509 			afd->a_fd[i] = fd;
510 			return;
511 		}
512 	}
513 
514 	/*
515 	 * Reallocate the a_fd[] array to add one more slot.
516 	 */
517 	ASSERT(fd == -1);
518 	old_nfd = afd->a_nfd;
519 	old_fd = afd->a_fd;
520 	new_nfd = old_nfd + 1;
521 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
522 	MAXFD(new_nfd);
523 	COUNT(afd_alloc);
524 
525 	mutex_enter(&afd->a_fdlock);
526 	afd->a_fd = new_fd;
527 	afd->a_nfd = new_nfd;
528 	for (i = 0; i < old_nfd; i++)
529 		afd->a_fd[i] = old_fd[i];
530 	afd->a_fd[i] = fd;
531 	mutex_exit(&afd->a_fdlock);
532 
533 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
534 		COUNT(afd_free);
535 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
536 	}
537 }
538 
539 void
540 clear_active_fd(int fd)		/* called below and from aio.c */
541 {
542 	afd_t *afd = &curthread->t_activefd;
543 	int i;
544 
545 	for (i = 0; i < afd->a_nfd; i++) {
546 		if (afd->a_fd[i] == fd) {
547 			afd->a_fd[i] = -1;
548 			break;
549 		}
550 	}
551 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
552 }
553 
554 /*
555  * Does this thread have this fd active?
556  */
557 static int
558 is_active_fd(kthread_t *t, int fd)
559 {
560 	afd_t *afd = &t->t_activefd;
561 	int i;
562 
563 	ASSERT(t != curthread);
564 	mutex_enter(&afd->a_fdlock);
565 	/* uninitialized is ok here, a_nfd is then zero */
566 	for (i = 0; i < afd->a_nfd; i++) {
567 		if (afd->a_fd[i] == fd) {
568 			mutex_exit(&afd->a_fdlock);
569 			return (1);
570 		}
571 	}
572 	mutex_exit(&afd->a_fdlock);
573 	return (0);
574 }
575 
576 /*
577  * Convert a user supplied file descriptor into a pointer to a file
578  * structure.  Only task is to check range of the descriptor (soft
579  * resource limit was enforced at open time and shouldn't be checked
580  * here).
581  */
582 file_t *
583 getf(int fd)
584 {
585 	uf_info_t *fip = P_FINFO(curproc);
586 	uf_entry_t *ufp;
587 	file_t *fp;
588 
589 	if ((uint_t)fd >= fip->fi_nfiles)
590 		return (NULL);
591 
592 	/*
593 	 * Reserve a slot in the active fd array now so we can call
594 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
595 	 */
596 	set_active_fd(-1);
597 
598 	UF_ENTER(ufp, fip, fd);
599 
600 	if ((fp = ufp->uf_file) == NULL) {
601 		UF_EXIT(ufp);
602 
603 		if (fd == fip->fi_badfd && fip->fi_action > 0)
604 			tsignal(curthread, fip->fi_action);
605 
606 		return (NULL);
607 	}
608 	ufp->uf_refcnt++;
609 
610 	/*
611 	 * archive per file audit data
612 	 */
613 	if (audit_active)
614 		(void) audit_getf(fd);
615 
616 	set_active_fd(fd);	/* record the active file descriptor */
617 
618 	UF_EXIT(ufp);
619 
620 	return (fp);
621 }
622 
623 /*
624  * Close whatever file currently occupies the file descriptor slot
625  * and install the new file, usually NULL, in the file descriptor slot.
626  * The close must complete before we release the file descriptor slot.
627  * If newfp != NULL we only return an error if we can't allocate the
628  * slot so the caller knows that it needs to free the filep;
629  * in the other cases we return the error number from closef().
630  */
631 int
632 closeandsetf(int fd, file_t *newfp)
633 {
634 	proc_t *p = curproc;
635 	uf_info_t *fip = P_FINFO(p);
636 	uf_entry_t *ufp;
637 	file_t *fp;
638 	fpollinfo_t *fpip;
639 	portfd_t *pfd;
640 	int error;
641 
642 	if ((uint_t)fd >= fip->fi_nfiles) {
643 		if (newfp == NULL)
644 			return (EBADF);
645 		flist_grow(fd);
646 	}
647 
648 	if (newfp != NULL) {
649 		/*
650 		 * If ufp is reserved but has no file pointer, it's in the
651 		 * transition between ufalloc() and setf().  We must wait
652 		 * for this transition to complete before assigning the
653 		 * new non-NULL file pointer.
654 		 */
655 		mutex_enter(&fip->fi_lock);
656 		if (fd == fip->fi_badfd) {
657 			mutex_exit(&fip->fi_lock);
658 			if (fip->fi_action > 0)
659 				tsignal(curthread, fip->fi_action);
660 			return (EBADF);
661 		}
662 		UF_ENTER(ufp, fip, fd);
663 		while (ufp->uf_busy && ufp->uf_file == NULL) {
664 			mutex_exit(&fip->fi_lock);
665 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
666 			UF_EXIT(ufp);
667 			mutex_enter(&fip->fi_lock);
668 			UF_ENTER(ufp, fip, fd);
669 		}
670 		if ((fp = ufp->uf_file) == NULL) {
671 			ASSERT(ufp->uf_fpollinfo == NULL);
672 			ASSERT(ufp->uf_flag == 0);
673 			fd_reserve(fip, fd, 1);
674 			ufp->uf_file = newfp;
675 			UF_EXIT(ufp);
676 			mutex_exit(&fip->fi_lock);
677 			return (0);
678 		}
679 		mutex_exit(&fip->fi_lock);
680 	} else {
681 		UF_ENTER(ufp, fip, fd);
682 		if ((fp = ufp->uf_file) == NULL) {
683 			UF_EXIT(ufp);
684 			return (EBADF);
685 		}
686 	}
687 
688 	/*
689 	 * archive per file audit data
690 	 */
691 	if (audit_active)
692 		(void) audit_getf(fd);
693 	ASSERT(ufp->uf_busy);
694 	ufp->uf_file = NULL;
695 	ufp->uf_flag = 0;
696 
697 	/*
698 	 * If the file descriptor reference count is non-zero, then
699 	 * some other lwp in the process is performing system call
700 	 * activity on the file.  To avoid blocking here for a long
701 	 * time (the other lwp might be in a long term sleep in its
702 	 * system call), we scan all other lwps in the process to
703 	 * find the ones with this fd as one of their active fds,
704 	 * set their a_stale flag, and set them running if they
705 	 * are in an interruptible sleep so they will emerge from
706 	 * their system calls immediately.  post_syscall() will
707 	 * test the a_stale flag and set errno to EBADF.
708 	 */
709 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
710 	if (ufp->uf_refcnt > 0) {
711 		kthread_t *t;
712 
713 		/*
714 		 * We call sprlock_proc(p) to ensure that the thread
715 		 * list will not change while we are scanning it.
716 		 * To do this, we must drop ufp->uf_lock and then
717 		 * reacquire it (so we are not holding both p->p_lock
718 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
719 		 * must be held for is_active_fd() to be correct
720 		 * (set_active_fd() is called while holding ufp->uf_lock).
721 		 *
722 		 * This is a convoluted dance, but it is better than
723 		 * the old brute-force method of stopping every thread
724 		 * in the process by calling holdlwps(SHOLDFORK1).
725 		 */
726 
727 		UF_EXIT(ufp);
728 		COUNT(afd_wait);
729 
730 		mutex_enter(&p->p_lock);
731 		sprlock_proc(p);
732 		mutex_exit(&p->p_lock);
733 
734 		UF_ENTER(ufp, fip, fd);
735 		ASSERT(ufp->uf_file == NULL);
736 
737 		if (ufp->uf_refcnt > 0) {
738 			for (t = curthread->t_forw;
739 			    t != curthread;
740 			    t = t->t_forw) {
741 				if (is_active_fd(t, fd)) {
742 					thread_lock(t);
743 					t->t_activefd.a_stale = 1;
744 					t->t_post_sys = 1;
745 					if (ISWAKEABLE(t))
746 						setrun_locked(t);
747 					thread_unlock(t);
748 				}
749 			}
750 		}
751 
752 		UF_EXIT(ufp);
753 
754 		mutex_enter(&p->p_lock);
755 		sprunlock(p);
756 
757 		UF_ENTER(ufp, fip, fd);
758 		ASSERT(ufp->uf_file == NULL);
759 	}
760 
761 	/*
762 	 * Wait for other lwps to stop using this file descriptor.
763 	 */
764 	while (ufp->uf_refcnt > 0) {
765 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
766 		/*
767 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
768 		 * can change.  Drop the lock on our (possibly) stale
769 		 * ufp and let UF_ENTER() find and lock the current ufp.
770 		 */
771 		UF_EXIT(ufp);
772 		UF_ENTER(ufp, fip, fd);
773 	}
774 
775 #ifdef DEBUG
776 	/*
777 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
778 	 */
779 	if (ufp->uf_fpollinfo != NULL)
780 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
781 #endif	/* DEBUG */
782 
783 	/*
784 	 * We may need to cleanup some cached poll states in t_pollstate
785 	 * before the fd can be reused. It is important that we don't
786 	 * access a stale thread structure. We will do the cleanup in two
787 	 * phases to avoid deadlock and holding uf_lock for too long.
788 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
789 	 * state in t_pollstate struct so that a thread does not exit on
790 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
791 	 */
792 	pfd = ufp->uf_portfd;
793 	ufp->uf_portfd = NULL;
794 	fpip = ufp->uf_fpollinfo;
795 	ufp->uf_fpollinfo = NULL;
796 	if (fpip != NULL)
797 		pollblockexit(fpip);
798 	UF_EXIT(ufp);
799 	if (fpip != NULL)
800 		pollcacheclean(fpip, fd);
801 	if (pfd)
802 		port_close_fd(pfd);
803 
804 	/*
805 	 * Keep the file descriptor entry reserved across the closef().
806 	 */
807 	error = closef(fp);
808 
809 	setf(fd, newfp);
810 
811 	/* Only return closef() error when closing is all we do */
812 	return (newfp == NULL ? error : 0);
813 }
814 
815 /*
816  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
817  */
818 void
819 releasef(int fd)
820 {
821 	uf_info_t *fip = P_FINFO(curproc);
822 	uf_entry_t *ufp;
823 
824 	UF_ENTER(ufp, fip, fd);
825 	ASSERT(ufp->uf_refcnt > 0);
826 	clear_active_fd(fd);	/* clear the active file descriptor */
827 	if (--ufp->uf_refcnt == 0)
828 		cv_broadcast(&ufp->uf_closing_cv);
829 	UF_EXIT(ufp);
830 }
831 
832 /*
833  * Identical to releasef() but can be called from another process.
834  */
835 void
836 areleasef(int fd, uf_info_t *fip)
837 {
838 	uf_entry_t *ufp;
839 
840 	UF_ENTER(ufp, fip, fd);
841 	ASSERT(ufp->uf_refcnt > 0);
842 	if (--ufp->uf_refcnt == 0)
843 		cv_broadcast(&ufp->uf_closing_cv);
844 	UF_EXIT(ufp);
845 }
846 
847 /*
848  * Duplicate all file descriptors across a fork.
849  */
850 void
851 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
852 {
853 	int fd, nfiles;
854 	uf_entry_t *pufp, *cufp;
855 
856 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
857 	cfip->fi_rlist = NULL;
858 
859 	/*
860 	 * We don't need to hold fi_lock because all other lwp's in the
861 	 * parent have been held.
862 	 */
863 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
864 
865 	cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
866 
867 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
868 	    fd++, pufp++, cufp++) {
869 		cufp->uf_file = pufp->uf_file;
870 		cufp->uf_alloc = pufp->uf_alloc;
871 		cufp->uf_flag = pufp->uf_flag;
872 		cufp->uf_busy = pufp->uf_busy;
873 		if (pufp->uf_file == NULL) {
874 			ASSERT(pufp->uf_flag == 0);
875 			if (pufp->uf_busy) {
876 				/*
877 				 * Grab locks to appease ASSERTs in fd_reserve
878 				 */
879 				mutex_enter(&cfip->fi_lock);
880 				mutex_enter(&cufp->uf_lock);
881 				fd_reserve(cfip, fd, -1);
882 				mutex_exit(&cufp->uf_lock);
883 				mutex_exit(&cfip->fi_lock);
884 			}
885 		}
886 	}
887 }
888 
889 /*
890  * Close all open file descriptors for the current process.
891  * This is only called from exit(), which is single-threaded,
892  * so we don't need any locking.
893  */
894 void
895 closeall(uf_info_t *fip)
896 {
897 	int fd;
898 	file_t *fp;
899 	uf_entry_t *ufp;
900 
901 	ufp = fip->fi_list;
902 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
903 		if ((fp = ufp->uf_file) != NULL) {
904 			ufp->uf_file = NULL;
905 			if (ufp->uf_portfd != NULL) {
906 				portfd_t *pfd;
907 				/* remove event port association */
908 				pfd = ufp->uf_portfd;
909 				ufp->uf_portfd = NULL;
910 				port_close_fd(pfd);
911 			}
912 			ASSERT(ufp->uf_fpollinfo == NULL);
913 			(void) closef(fp);
914 		}
915 	}
916 
917 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
918 	fip->fi_list = NULL;
919 	fip->fi_nfiles = 0;
920 	while (fip->fi_rlist != NULL) {
921 		uf_rlist_t *urp = fip->fi_rlist;
922 		fip->fi_rlist = urp->ur_next;
923 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
924 		kmem_free(urp, sizeof (uf_rlist_t));
925 	}
926 }
927 
928 /*
929  * Internal form of close.  Decrement reference count on file
930  * structure.  Decrement reference count on the vnode following
931  * removal of the referencing file structure.
932  */
933 int
934 closef(file_t *fp)
935 {
936 	vnode_t *vp;
937 	int error;
938 	int count;
939 	int flag;
940 	offset_t offset;
941 
942 	/*
943 	 * audit close of file (may be exit)
944 	 */
945 	if (audit_active)
946 		audit_closef(fp);
947 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
948 
949 	mutex_enter(&fp->f_tlock);
950 
951 	ASSERT(fp->f_count > 0);
952 
953 	count = fp->f_count--;
954 	flag = fp->f_flag;
955 	offset = fp->f_offset;
956 
957 	vp = fp->f_vnode;
958 
959 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
960 
961 	if (count > 1) {
962 		mutex_exit(&fp->f_tlock);
963 		return (error);
964 	}
965 	ASSERT(fp->f_count == 0);
966 	mutex_exit(&fp->f_tlock);
967 
968 	VN_RELE(vp);
969 	/*
970 	 * deallocate resources to audit_data
971 	 */
972 	if (audit_active)
973 		audit_unfalloc(fp);
974 	crfree(fp->f_cred);
975 	kmem_cache_free(file_cache, fp);
976 	return (error);
977 }
978 
979 /*
980  * This is a combination of ufalloc() and setf().
981  */
982 int
983 ufalloc_file(int start, file_t *fp)
984 {
985 	proc_t *p = curproc;
986 	uf_info_t *fip = P_FINFO(p);
987 	int filelimit;
988 	uf_entry_t *ufp;
989 	int nfiles;
990 	int fd;
991 
992 	/*
993 	 * Assertion is to convince the correctness of the following
994 	 * assignment for filelimit after casting to int.
995 	 */
996 	ASSERT(p->p_fno_ctl <= INT_MAX);
997 	filelimit = (int)p->p_fno_ctl;
998 
999 	for (;;) {
1000 		mutex_enter(&fip->fi_lock);
1001 		fd = fd_find(fip, start);
1002 		if (fd >= 0 && fd == fip->fi_badfd) {
1003 			start = fd + 1;
1004 			mutex_exit(&fip->fi_lock);
1005 			continue;
1006 		}
1007 		if ((uint_t)fd < filelimit)
1008 			break;
1009 		if (fd >= filelimit) {
1010 			mutex_exit(&fip->fi_lock);
1011 			mutex_enter(&p->p_lock);
1012 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1013 			    p->p_rctls, p, RCA_SAFE);
1014 			mutex_exit(&p->p_lock);
1015 			return (-1);
1016 		}
1017 		/* fd_find() returned -1 */
1018 		nfiles = fip->fi_nfiles;
1019 		mutex_exit(&fip->fi_lock);
1020 		flist_grow(MAX(start, nfiles));
1021 	}
1022 
1023 	UF_ENTER(ufp, fip, fd);
1024 	fd_reserve(fip, fd, 1);
1025 	ASSERT(ufp->uf_file == NULL);
1026 	ufp->uf_file = fp;
1027 	UF_EXIT(ufp);
1028 	mutex_exit(&fip->fi_lock);
1029 	return (fd);
1030 }
1031 
1032 /*
1033  * Allocate a user file descriptor greater than or equal to "start".
1034  */
1035 int
1036 ufalloc(int start)
1037 {
1038 	return (ufalloc_file(start, NULL));
1039 }
1040 
1041 /*
1042  * Check that a future allocation of count fds on proc p has a good
1043  * chance of succeeding.  If not, do rctl processing as if we'd failed
1044  * the allocation.
1045  *
1046  * Our caller must guarantee that p cannot disappear underneath us.
1047  */
1048 int
1049 ufcanalloc(proc_t *p, uint_t count)
1050 {
1051 	uf_info_t *fip = P_FINFO(p);
1052 	int filelimit;
1053 	int current;
1054 
1055 	if (count == 0)
1056 		return (1);
1057 
1058 	ASSERT(p->p_fno_ctl <= INT_MAX);
1059 	filelimit = (int)p->p_fno_ctl;
1060 
1061 	mutex_enter(&fip->fi_lock);
1062 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1063 	mutex_exit(&fip->fi_lock);
1064 
1065 	/*
1066 	 * If count is a positive integer, the worst that can happen is
1067 	 * an overflow to a negative value, which is caught by the >= 0 check.
1068 	 */
1069 	current += count;
1070 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1071 		return (1);
1072 
1073 	mutex_enter(&p->p_lock);
1074 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1075 	    p->p_rctls, p, RCA_SAFE);
1076 	mutex_exit(&p->p_lock);
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Allocate a user file descriptor and a file structure.
1082  * Initialize the descriptor to point at the file structure.
1083  * If fdp is NULL, the user file descriptor will not be allocated.
1084  */
1085 int
1086 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1087 {
1088 	file_t *fp;
1089 	int fd;
1090 
1091 	if (fdp) {
1092 		if ((fd = ufalloc(0)) == -1)
1093 			return (EMFILE);
1094 	}
1095 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1096 	/*
1097 	 * Note: falloc returns the fp locked
1098 	 */
1099 	mutex_enter(&fp->f_tlock);
1100 	fp->f_count = 1;
1101 	fp->f_flag = (ushort_t)flag;
1102 	fp->f_vnode = vp;
1103 	fp->f_offset = 0;
1104 	fp->f_audit_data = 0;
1105 	crhold(fp->f_cred = CRED());
1106 	/*
1107 	 * allocate resources to audit_data
1108 	 */
1109 	if (audit_active)
1110 		audit_falloc(fp);
1111 	*fpp = fp;
1112 	if (fdp)
1113 		*fdp = fd;
1114 	return (0);
1115 }
1116 
1117 /*ARGSUSED*/
1118 static int
1119 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1120 {
1121 	file_t *fp = buf;
1122 
1123 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1124 	return (0);
1125 }
1126 
1127 /*ARGSUSED*/
1128 static void
1129 file_cache_destructor(void *buf, void *cdrarg)
1130 {
1131 	file_t *fp = buf;
1132 
1133 	mutex_destroy(&fp->f_tlock);
1134 }
1135 
1136 void
1137 finit()
1138 {
1139 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1140 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1141 }
1142 
1143 void
1144 unfalloc(file_t *fp)
1145 {
1146 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1147 	if (--fp->f_count <= 0) {
1148 		/*
1149 		 * deallocate resources to audit_data
1150 		 */
1151 		if (audit_active)
1152 			audit_unfalloc(fp);
1153 		crfree(fp->f_cred);
1154 		mutex_exit(&fp->f_tlock);
1155 		kmem_cache_free(file_cache, fp);
1156 	} else
1157 		mutex_exit(&fp->f_tlock);
1158 }
1159 
1160 /*
1161  * Given a file descriptor, set the user's
1162  * file pointer to the given parameter.
1163  */
1164 void
1165 setf(int fd, file_t *fp)
1166 {
1167 	uf_info_t *fip = P_FINFO(curproc);
1168 	uf_entry_t *ufp;
1169 
1170 	if (audit_active)
1171 		audit_setf(fp, fd);
1172 
1173 	if (fp == NULL) {
1174 		mutex_enter(&fip->fi_lock);
1175 		UF_ENTER(ufp, fip, fd);
1176 		fd_reserve(fip, fd, -1);
1177 		mutex_exit(&fip->fi_lock);
1178 	} else {
1179 		UF_ENTER(ufp, fip, fd);
1180 		ASSERT(ufp->uf_busy);
1181 	}
1182 	ASSERT(ufp->uf_fpollinfo == NULL);
1183 	ASSERT(ufp->uf_flag == 0);
1184 	ufp->uf_file = fp;
1185 	cv_broadcast(&ufp->uf_wanted_cv);
1186 	UF_EXIT(ufp);
1187 }
1188 
1189 /*
1190  * Given a file descriptor, return the file table flags, plus,
1191  * if this is a socket in asynchronous mode, the FASYNC flag.
1192  * getf() may or may not have been called before calling f_getfl().
1193  */
1194 int
1195 f_getfl(int fd, int *flagp)
1196 {
1197 	uf_info_t *fip = P_FINFO(curproc);
1198 	uf_entry_t *ufp;
1199 	file_t *fp;
1200 	int error;
1201 
1202 	if ((uint_t)fd >= fip->fi_nfiles)
1203 		error = EBADF;
1204 	else {
1205 		UF_ENTER(ufp, fip, fd);
1206 		if ((fp = ufp->uf_file) == NULL)
1207 			error = EBADF;
1208 		else {
1209 			vnode_t *vp = fp->f_vnode;
1210 			int flag = fp->f_flag;
1211 
1212 			/*
1213 			 * BSD fcntl() FASYNC compatibility.
1214 			 */
1215 			if (vp->v_type == VSOCK)
1216 				flag |= sock_getfasync(vp);
1217 			*flagp = flag;
1218 			error = 0;
1219 		}
1220 		UF_EXIT(ufp);
1221 	}
1222 
1223 	return (error);
1224 }
1225 
1226 /*
1227  * Given a file descriptor, return the user's file flags.
1228  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1229  * getf() may or may not have been called before calling f_getfd_error().
1230  */
1231 int
1232 f_getfd_error(int fd, int *flagp)
1233 {
1234 	uf_info_t *fip = P_FINFO(curproc);
1235 	uf_entry_t *ufp;
1236 	file_t *fp;
1237 	int flag;
1238 	int error;
1239 
1240 	if ((uint_t)fd >= fip->fi_nfiles)
1241 		error = EBADF;
1242 	else {
1243 		UF_ENTER(ufp, fip, fd);
1244 		if ((fp = ufp->uf_file) == NULL)
1245 			error = EBADF;
1246 		else {
1247 			flag = ufp->uf_flag;
1248 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1249 				flag |= FD_CLOEXEC;
1250 			*flagp = flag;
1251 			error = 0;
1252 		}
1253 		UF_EXIT(ufp);
1254 	}
1255 
1256 	return (error);
1257 }
1258 
1259 /*
1260  * getf() must have been called before calling f_getfd().
1261  */
1262 char
1263 f_getfd(int fd)
1264 {
1265 	int flag = 0;
1266 	(void) f_getfd_error(fd, &flag);
1267 	return ((char)flag);
1268 }
1269 
1270 /*
1271  * Given a file descriptor and file flags, set the user's file flags.
1272  * At present, the only valid flag is FD_CLOEXEC.
1273  * getf() may or may not have been called before calling f_setfd_error().
1274  */
1275 int
1276 f_setfd_error(int fd, int flags)
1277 {
1278 	uf_info_t *fip = P_FINFO(curproc);
1279 	uf_entry_t *ufp;
1280 	int error;
1281 
1282 	if ((uint_t)fd >= fip->fi_nfiles)
1283 		error = EBADF;
1284 	else {
1285 		UF_ENTER(ufp, fip, fd);
1286 		if (ufp->uf_file == NULL)
1287 			error = EBADF;
1288 		else {
1289 			ufp->uf_flag = flags & FD_CLOEXEC;
1290 			error = 0;
1291 		}
1292 		UF_EXIT(ufp);
1293 	}
1294 	return (error);
1295 }
1296 
1297 void
1298 f_setfd(int fd, char flags)
1299 {
1300 	(void) f_setfd_error(fd, flags);
1301 }
1302 
1303 #define	BADFD_MIN	3
1304 #define	BADFD_MAX	255
1305 
1306 /*
1307  * Attempt to allocate a file descriptor which is bad and which
1308  * is "poison" to the application.  It cannot be closed (except
1309  * on exec), allocated for a different use, etc.
1310  */
1311 int
1312 f_badfd(int start, int *fdp, int action)
1313 {
1314 	int fdr;
1315 	int badfd;
1316 	uf_info_t *fip = P_FINFO(curproc);
1317 
1318 #ifdef _LP64
1319 	/* No restrictions on 64 bit _file */
1320 	if (get_udatamodel() != DATAMODEL_ILP32)
1321 		return (EINVAL);
1322 #endif
1323 
1324 	if (start > BADFD_MAX || start < BADFD_MIN)
1325 		return (EINVAL);
1326 
1327 	if (action >= NSIG || action < 0)
1328 		return (EINVAL);
1329 
1330 	mutex_enter(&fip->fi_lock);
1331 	badfd = fip->fi_badfd;
1332 	mutex_exit(&fip->fi_lock);
1333 
1334 	if (badfd != -1)
1335 		return (EAGAIN);
1336 
1337 	fdr = ufalloc(start);
1338 
1339 	if (fdr > BADFD_MAX) {
1340 		setf(fdr, NULL);
1341 		return (EMFILE);
1342 	}
1343 	if (fdr < 0)
1344 		return (EMFILE);
1345 
1346 	mutex_enter(&fip->fi_lock);
1347 	if (fip->fi_badfd != -1) {
1348 		/* Lost race */
1349 		mutex_exit(&fip->fi_lock);
1350 		setf(fdr, NULL);
1351 		return (EAGAIN);
1352 	}
1353 	fip->fi_action = action;
1354 	fip->fi_badfd = fdr;
1355 	mutex_exit(&fip->fi_lock);
1356 	setf(fdr, NULL);
1357 
1358 	*fdp = fdr;
1359 
1360 	return (0);
1361 }
1362 
1363 /*
1364  * Allocate a file descriptor and assign it to the vnode "*vpp",
1365  * performing the usual open protocol upon it and returning the
1366  * file descriptor allocated.  It is the responsibility of the
1367  * caller to dispose of "*vpp" if any error occurs.
1368  */
1369 int
1370 fassign(vnode_t **vpp, int mode, int *fdp)
1371 {
1372 	file_t *fp;
1373 	int error;
1374 	int fd;
1375 
1376 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1377 		return (error);
1378 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1379 		setf(fd, NULL);
1380 		unfalloc(fp);
1381 		return (error);
1382 	}
1383 	fp->f_vnode = *vpp;
1384 	mutex_exit(&fp->f_tlock);
1385 	/*
1386 	 * Fill in the slot falloc reserved.
1387 	 */
1388 	setf(fd, fp);
1389 	*fdp = fd;
1390 	return (0);
1391 }
1392 
1393 /*
1394  * When a process forks it must increment the f_count of all file pointers
1395  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1396  * Since we are called when there is only 1 active lwp we don't need to
1397  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1398  * fcnt_add(fip, -1) to restore the counts.
1399  */
1400 void
1401 fcnt_add(uf_info_t *fip, int incr)
1402 {
1403 	int i;
1404 	uf_entry_t *ufp;
1405 	file_t *fp;
1406 
1407 	ufp = fip->fi_list;
1408 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1409 		if ((fp = ufp->uf_file) != NULL) {
1410 			mutex_enter(&fp->f_tlock);
1411 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1412 			    (incr == -1 && fp->f_count >= 2));
1413 			fp->f_count += incr;
1414 			mutex_exit(&fp->f_tlock);
1415 		}
1416 	}
1417 }
1418 
1419 /*
1420  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1421  * set and also to close all self-open for write /proc file descriptors.
1422  */
1423 void
1424 close_exec(uf_info_t *fip)
1425 {
1426 	int fd;
1427 	file_t *fp;
1428 	fpollinfo_t *fpip;
1429 	uf_entry_t *ufp;
1430 	portfd_t *pfd;
1431 
1432 	ufp = fip->fi_list;
1433 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1434 		if ((fp = ufp->uf_file) != NULL &&
1435 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1436 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1437 			fpip = ufp->uf_fpollinfo;
1438 			mutex_enter(&fip->fi_lock);
1439 			mutex_enter(&ufp->uf_lock);
1440 			fd_reserve(fip, fd, -1);
1441 			mutex_exit(&fip->fi_lock);
1442 			ufp->uf_file = NULL;
1443 			ufp->uf_fpollinfo = NULL;
1444 			ufp->uf_flag = 0;
1445 			/*
1446 			 * We may need to cleanup some cached poll states
1447 			 * in t_pollstate before the fd can be reused. It
1448 			 * is important that we don't access a stale thread
1449 			 * structure. We will do the cleanup in two
1450 			 * phases to avoid deadlock and holding uf_lock for
1451 			 * too long. In phase 1, hold the uf_lock and call
1452 			 * pollblockexit() to set state in t_pollstate struct
1453 			 * so that a thread does not exit on us. In phase 2,
1454 			 * we drop the uf_lock and call pollcacheclean().
1455 			 */
1456 			pfd = ufp->uf_portfd;
1457 			ufp->uf_portfd = NULL;
1458 			if (fpip != NULL)
1459 				pollblockexit(fpip);
1460 			mutex_exit(&ufp->uf_lock);
1461 			if (fpip != NULL)
1462 				pollcacheclean(fpip, fd);
1463 			if (pfd)
1464 				port_close_fd(pfd);
1465 			(void) closef(fp);
1466 		}
1467 	}
1468 
1469 	/* Reset bad fd */
1470 	fip->fi_badfd = -1;
1471 	fip->fi_action = -1;
1472 }
1473 
1474 /*
1475  * Common routine for modifying attributes of named files.
1476  */
1477 int
1478 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags)
1479 {
1480 	vnode_t *vp;
1481 	int error = 0;
1482 
1483 	if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp))
1484 		return (set_errno(error));
1485 	if (error = vpsetattr(vp, vap, flags))
1486 		(void) set_errno(error);
1487 	VN_RELE(vp);
1488 	return (error);
1489 }
1490 
1491 /*
1492  * Common routine for modifying attributes of files referenced
1493  * by descriptor.
1494  */
1495 int
1496 fdsetattr(int fd, vattr_t *vap)
1497 {
1498 	file_t *fp;
1499 	vnode_t *vp;
1500 	int error = 0;
1501 
1502 	if ((fp = getf(fd)) != NULL) {
1503 		vp = fp->f_vnode;
1504 		if (error = vpsetattr(vp, vap, 0)) {
1505 			(void) set_errno(error);
1506 		}
1507 		releasef(fd);
1508 	} else
1509 		error = set_errno(EBADF);
1510 	return (error);
1511 }
1512 
1513 /*
1514  * Common routine to set the attributes for the given vnode.
1515  * If the vnode is a file and the filesize is being manipulated,
1516  * this makes sure that there are no conflicting non-blocking
1517  * mandatory locks in that region.
1518  */
1519 static int
1520 vpsetattr(vnode_t *vp, vattr_t *vap, int flags)
1521 {
1522 	int error = 0;
1523 	int in_crit = 0;
1524 	u_offset_t	begin;
1525 	vattr_t	vattr;
1526 	ssize_t	length;
1527 
1528 	if (vn_is_readonly(vp)) {
1529 		error = EROFS;
1530 	}
1531 	if (!error && (vap->va_mask & AT_SIZE) &&
1532 	    nbl_need_check(vp)) {
1533 		nbl_start_crit(vp, RW_READER);
1534 		in_crit = 1;
1535 		vattr.va_mask = AT_SIZE;
1536 		if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1537 			begin = vap->va_size > vattr.va_size ?
1538 			    vattr.va_size : vap->va_size;
1539 			length = vattr.va_size > vap->va_size ?
1540 			    vattr.va_size - vap->va_size :
1541 			    vap->va_size - vattr.va_size;
1542 
1543 			if (nbl_conflict(vp, NBL_WRITE, begin, length, 0,
1544 			    NULL)) {
1545 				error = EACCES;
1546 			}
1547 		}
1548 	}
1549 	if (!error)
1550 		error = VOP_SETATTR(vp, vap, flags, CRED(), NULL);
1551 
1552 	if (in_crit)
1553 		nbl_end_crit(vp);
1554 
1555 	return (error);
1556 }
1557 
1558 /*
1559  * Return true if the given vnode is referenced by any
1560  * entry in the current process's file descriptor table.
1561  */
1562 int
1563 fisopen(vnode_t *vp)
1564 {
1565 	int fd;
1566 	file_t *fp;
1567 	vnode_t *ovp;
1568 	uf_info_t *fip = P_FINFO(curproc);
1569 	uf_entry_t *ufp;
1570 
1571 	mutex_enter(&fip->fi_lock);
1572 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1573 		UF_ENTER(ufp, fip, fd);
1574 		if ((fp = ufp->uf_file) != NULL &&
1575 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1576 			UF_EXIT(ufp);
1577 			mutex_exit(&fip->fi_lock);
1578 			return (1);
1579 		}
1580 		UF_EXIT(ufp);
1581 	}
1582 	mutex_exit(&fip->fi_lock);
1583 	return (0);
1584 }
1585 
1586 /*
1587  * Return zero if at least one file currently open (by curproc) shouldn't be
1588  * allowed to change zones.
1589  */
1590 int
1591 files_can_change_zones(void)
1592 {
1593 	int fd;
1594 	file_t *fp;
1595 	uf_info_t *fip = P_FINFO(curproc);
1596 	uf_entry_t *ufp;
1597 
1598 	mutex_enter(&fip->fi_lock);
1599 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1600 		UF_ENTER(ufp, fip, fd);
1601 		if ((fp = ufp->uf_file) != NULL &&
1602 		    !vn_can_change_zones(fp->f_vnode)) {
1603 			UF_EXIT(ufp);
1604 			mutex_exit(&fip->fi_lock);
1605 			return (0);
1606 		}
1607 		UF_EXIT(ufp);
1608 	}
1609 	mutex_exit(&fip->fi_lock);
1610 	return (1);
1611 }
1612 
1613 #ifdef DEBUG
1614 
1615 /*
1616  * The following functions are only used in ASSERT()s elsewhere.
1617  * They do not modify the state of the system.
1618  */
1619 
1620 /*
1621  * Return true (1) if the current thread is in the fpollinfo
1622  * list for this file descriptor, else false (0).
1623  */
1624 static int
1625 curthread_in_plist(uf_entry_t *ufp)
1626 {
1627 	fpollinfo_t *fpip;
1628 
1629 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1630 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1631 		if (fpip->fp_thread == curthread)
1632 			return (1);
1633 	return (0);
1634 }
1635 
1636 /*
1637  * Sanity check to make sure that after lwp_exit(),
1638  * curthread does not appear on any fd's fpollinfo list.
1639  */
1640 void
1641 checkfpollinfo(void)
1642 {
1643 	int fd;
1644 	uf_info_t *fip = P_FINFO(curproc);
1645 	uf_entry_t *ufp;
1646 
1647 	mutex_enter(&fip->fi_lock);
1648 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1649 		UF_ENTER(ufp, fip, fd);
1650 		ASSERT(!curthread_in_plist(ufp));
1651 		UF_EXIT(ufp);
1652 	}
1653 	mutex_exit(&fip->fi_lock);
1654 }
1655 
1656 /*
1657  * Return true (1) if the current thread is in the fpollinfo
1658  * list for this file descriptor, else false (0).
1659  * This is the same as curthread_in_plist(),
1660  * but is called w/o holding uf_lock.
1661  */
1662 int
1663 infpollinfo(int fd)
1664 {
1665 	uf_info_t *fip = P_FINFO(curproc);
1666 	uf_entry_t *ufp;
1667 	int rc;
1668 
1669 	UF_ENTER(ufp, fip, fd);
1670 	rc = curthread_in_plist(ufp);
1671 	UF_EXIT(ufp);
1672 	return (rc);
1673 }
1674 
1675 #endif	/* DEBUG */
1676 
1677 /*
1678  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1679  * thread's poll cache. Each lwp polling this file descriptor should call
1680  * this routine once.
1681  */
1682 void
1683 addfpollinfo(int fd)
1684 {
1685 	struct uf_entry *ufp;
1686 	fpollinfo_t *fpip;
1687 	uf_info_t *fip = P_FINFO(curproc);
1688 
1689 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1690 	fpip->fp_thread = curthread;
1691 	UF_ENTER(ufp, fip, fd);
1692 	/*
1693 	 * Assert we are not already on the list, that is, that
1694 	 * this lwp did not call addfpollinfo twice for the same fd.
1695 	 */
1696 	ASSERT(!curthread_in_plist(ufp));
1697 	/*
1698 	 * addfpollinfo is always done inside the getf/releasef pair.
1699 	 */
1700 	ASSERT(ufp->uf_refcnt >= 1);
1701 	fpip->fp_next = ufp->uf_fpollinfo;
1702 	ufp->uf_fpollinfo = fpip;
1703 	UF_EXIT(ufp);
1704 }
1705 
1706 /*
1707  * delete curthread from fpollinfo list.
1708  */
1709 /*ARGSUSED*/
1710 void
1711 delfpollinfo(int fd)
1712 {
1713 	struct uf_entry *ufp;
1714 	struct fpollinfo *fpip;
1715 	struct fpollinfo **fpipp;
1716 	uf_info_t *fip = P_FINFO(curproc);
1717 
1718 	UF_ENTER(ufp, fip, fd);
1719 	if (ufp->uf_fpollinfo == NULL) {
1720 		UF_EXIT(ufp);
1721 		return;
1722 	}
1723 	ASSERT(ufp->uf_busy);
1724 	/*
1725 	 * Find and delete curthread from the list.
1726 	 */
1727 	fpipp = &ufp->uf_fpollinfo;
1728 	while ((fpip = *fpipp)->fp_thread != curthread)
1729 		fpipp = &fpip->fp_next;
1730 	*fpipp = fpip->fp_next;
1731 	kmem_free(fpip, sizeof (fpollinfo_t));
1732 	/*
1733 	 * Assert that we are not still on the list, that is, that
1734 	 * this lwp did not call addfpollinfo twice for the same fd.
1735 	 */
1736 	ASSERT(!curthread_in_plist(ufp));
1737 	UF_EXIT(ufp);
1738 }
1739 
1740 /*
1741  * fd is associated with a port. pfd is a pointer to the fd entry in the
1742  * cache of the port.
1743  */
1744 
1745 void
1746 addfd_port(int fd, portfd_t *pfd)
1747 {
1748 	struct uf_entry *ufp;
1749 	uf_info_t *fip = P_FINFO(curproc);
1750 
1751 	UF_ENTER(ufp, fip, fd);
1752 	/*
1753 	 * addfd_port is always done inside the getf/releasef pair.
1754 	 */
1755 	ASSERT(ufp->uf_refcnt >= 1);
1756 	if (ufp->uf_portfd == NULL) {
1757 		/* first entry */
1758 		ufp->uf_portfd = pfd;
1759 		pfd->pfd_next = NULL;
1760 	} else {
1761 		pfd->pfd_next = ufp->uf_portfd;
1762 		ufp->uf_portfd = pfd;
1763 		pfd->pfd_next->pfd_prev = pfd;
1764 	}
1765 	UF_EXIT(ufp);
1766 }
1767 
1768 void
1769 delfd_port(int fd, portfd_t *pfd)
1770 {
1771 	struct uf_entry *ufp;
1772 	uf_info_t *fip = P_FINFO(curproc);
1773 
1774 	UF_ENTER(ufp, fip, fd);
1775 	/*
1776 	 * delfd_port is always done inside the getf/releasef pair.
1777 	 */
1778 	ASSERT(ufp->uf_refcnt >= 1);
1779 	if (ufp->uf_portfd == pfd) {
1780 		/* remove first entry */
1781 		ufp->uf_portfd = pfd->pfd_next;
1782 	} else {
1783 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1784 		if (pfd->pfd_next != NULL)
1785 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1786 	}
1787 	UF_EXIT(ufp);
1788 }
1789 
1790 static void
1791 port_close_fd(portfd_t *pfd)
1792 {
1793 	portfd_t	*pfdn;
1794 
1795 	/*
1796 	 * At this point, no other thread should access
1797 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1798 	 * pointers in the uf_entry_t struct for this fd would
1799 	 * be set to NULL.
1800 	 */
1801 	for (; pfd != NULL; pfd = pfdn) {
1802 		pfdn = pfd->pfd_next;
1803 		port_close_pfd(pfd);
1804 	}
1805 }
1806