1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/conf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/file.h> 43 #include <sys/proc.h> 44 #include <sys/var.h> 45 #include <sys/cpuvar.h> 46 #include <sys/open.h> 47 #include <sys/cmn_err.h> 48 #include <sys/priocntl.h> 49 #include <sys/procset.h> 50 #include <sys/prsystm.h> 51 #include <sys/debug.h> 52 #include <sys/kmem.h> 53 #include <sys/atomic.h> 54 #include <sys/fcntl.h> 55 #include <sys/poll.h> 56 #include <sys/rctl.h> 57 #include <sys/port_impl.h> 58 59 #include <c2/audit.h> 60 #include <sys/nbmlock.h> 61 62 #ifdef DEBUG 63 64 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 65 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 66 static uint32_t afd_free; /* count of kmem_free()s */ 67 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 68 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 69 #define COUNT(x) atomic_add_32(&x, 1) 70 71 #else /* DEBUG */ 72 73 #define MAXFD(x) 74 #define COUNT(x) 75 76 #endif /* DEBUG */ 77 78 kmem_cache_t *file_cache; 79 static int vpsetattr(vnode_t *, vattr_t *, int); 80 81 static void port_close_fd(portfd_t *); 82 83 /* 84 * File descriptor allocation. 85 * 86 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 87 * The most common case is open(2), in which minfd = 0, but we must also 88 * support fcntl(fd, F_DUPFD, minfd). 89 * 90 * The algorithm is as follows: we keep all file descriptors in an infix 91 * binary tree in which each node records the number of descriptors 92 * allocated in its right subtree, including itself. Starting at minfd, 93 * we ascend the tree until we find a non-fully allocated right subtree. 94 * We then descend that subtree in a binary search for the smallest fd. 95 * Finally, we ascend the tree again to increment the allocation count 96 * of every subtree containing the newly-allocated fd. Freeing an fd 97 * requires only the last step: we ascend the tree to decrement allocation 98 * counts. Each of these three steps (ascent to find non-full subtree, 99 * descent to find lowest fd, ascent to update allocation counts) is 100 * O(log n), thus the algorithm as a whole is O(log n). 101 * 102 * We don't implement the fd tree using the customary left/right/parent 103 * pointers, but instead take advantage of the glorious mathematics of 104 * full infix binary trees. For reference, here's an illustration of the 105 * logical structure of such a tree, rooted at 4 (binary 100), covering 106 * the range 1-7 (binary 001-111). Our canonical trees do not include 107 * fd 0; we'll deal with that later. 108 * 109 * 100 110 * / \ 111 * / \ 112 * 010 110 113 * / \ / \ 114 * 001 011 101 111 115 * 116 * We make the following observations, all of which are easily proven by 117 * induction on the depth of the tree: 118 * 119 * (T1) The least-significant bit (LSB) of any node is equal to its level 120 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 121 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 122 * 123 * (T2) The child size (CSIZE) of node N -- that is, the total number of 124 * right-branch descendants in a child of node N, including itself -- is 125 * given by clearing all but the least significant bit of N. This 126 * follows immediately from (T1). Applying this rule to our example, we 127 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 128 * 129 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 130 * ancestor containing node N in its right child -- is given by clearing 131 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 132 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 133 * the fact that these are leftmost nodes. Note that this algorithm 134 * automatically skips generations as necessary. For example, the parent 135 * of node 101 is 110, which is a *right* ancestor (not what we want); 136 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 137 * of 101 gets us to 100 directly, skipping right past the uninteresting 138 * generation (110). 139 * 140 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 141 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 142 * 143 * LPARENT(N) = N - CSIZE(N) 144 * 145 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 146 * 147 * RPARENT(N) = N + CSIZE(N) 148 * 149 * (T5) For every interior node, the children differ from their parent by 150 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 151 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 152 * 153 * Next, we'll need a few two's-complement math tricks. Suppose a number, 154 * N, has the following form: 155 * 156 * N = xxxx10...0 157 * 158 * That is, the binary representation of N consists of some string of bits, 159 * then a 1, then all zeroes. This amounts to nothing more than saying that 160 * N has a least-significant bit, which is true for any N != 0. If we look 161 * at N and N - 1 together, we see that we can combine them in useful ways: 162 * 163 * N = xxxx10...0 164 * N - 1 = xxxx01...1 165 * ------------------------ 166 * N & (N - 1) = xxxx000000 167 * N | (N - 1) = xxxx111111 168 * N ^ (N - 1) = 111111 169 * 170 * In particular, this suggests several easy ways to clear all but the LSB, 171 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 172 * We'll opt for this formulation: 173 * 174 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 175 * 176 * Similarly, we have an easy way to determine LPARENT(N), which requires 177 * that we clear the LSB of N: 178 * 179 * (L1) LPARENT(N) = N & (N - 1) 180 * 181 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 182 * When combined with (T4), this yields an easy way to compute RPARENT(N): 183 * 184 * (R1) RPARENT(N) = (N | (N - 1)) + 1 185 * 186 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 187 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 188 * so there's no need to belabor the algebra; the revised relations become: 189 * 190 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 191 * 192 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 193 * 194 * (R1a) RPARENT(N) = N | (N + 1) 195 * 196 * This completes the mathematical framework. We now have all the tools 197 * we need to implement fd_find() and fd_reserve(). 198 * 199 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 200 * It does not actually allocate the descriptor; that's done by fd_reserve(). 201 * fd_find() proceeds in two steps: 202 * 203 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 204 * We start at the right subtree rooted at minfd. If this subtree is 205 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 206 * step 1 is done. Otherwise, we know that all fds in this subtree 207 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 208 * this process until we either find a candidate subtree or exceed 209 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 210 * 211 * (2) Find the smallest fd in the subtree discovered by step 1. 212 * Starting at the root of this subtree, we descend to find the 213 * smallest available fd. Since the left children have the smaller 214 * fds, we will descend rightward only when the left child is full. 215 * 216 * We begin by comparing the number of allocated fds in the root 217 * to the number of allocated fds in its right child; if they differ 218 * by exactly CSIZE(child), we know the left subtree is full, so we 219 * descend right; that is, the right child becomes the search root. 220 * Otherwise we leave the root alone and start following the right 221 * child's left children. As fortune would have it, this is very 222 * simple computationally: by (T5), the right child of fd is just 223 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 224 * we find that the right child's left child is fd + size - (size / 2) = 225 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 226 * fd + (size / 4), and so on. In general, fd's right child's 227 * leftmost nth descendant is fd + (size >> n). Thus, to follow 228 * the right child's left descendants, we just halve the size in 229 * each iteration of the search. 230 * 231 * When we descend leftward, we must keep track of the number of fds 232 * that were allocated in all the right subtrees we rejected, so we 233 * know how many of the root fd's allocations are in the remaining 234 * (as yet unexplored) leftmost part of its right subtree. When we 235 * encounter a fully-allocated left child -- that is, when we find 236 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 237 * (as described earlier), resetting ralloc to zero. 238 * 239 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 240 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 241 * the leftmost ancestors (see (T3)) and updates the allocation counts. 242 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 243 * 244 * flist_minsize() finds the minimal tree that still covers all 245 * used fds; as long as the allocation count of a root node is zero, we 246 * don't need that node or its right subtree. 247 * 248 * flist_nalloc() counts the number of allocated fds in the tree, by starting 249 * at the top of the tree and summing the right-subtree allocation counts as 250 * it descends leftwards. 251 * 252 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 253 * 2^n - 1. This ensures that the fd trees are always full, which saves 254 * quite a bit of boundary checking. 255 */ 256 static int 257 fd_find(uf_info_t *fip, int minfd) 258 { 259 int size, ralloc, fd; 260 261 ASSERT(MUTEX_HELD(&fip->fi_lock)); 262 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 263 264 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 265 size = fd ^ (fd | (fd + 1)); 266 if (fip->fi_list[fd].uf_alloc == size) 267 continue; 268 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 269 ralloc += fip->fi_list[fd + size].uf_alloc; 270 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 271 fd += size; 272 ralloc = 0; 273 } 274 } 275 return (fd); 276 } 277 return (-1); 278 } 279 280 static void 281 fd_reserve(uf_info_t *fip, int fd, int incr) 282 { 283 int pfd; 284 uf_entry_t *ufp = &fip->fi_list[fd]; 285 286 ASSERT((uint_t)fd < fip->fi_nfiles); 287 ASSERT((ufp->uf_busy == 0 && incr == 1) || 288 (ufp->uf_busy == 1 && incr == -1)); 289 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 290 ASSERT(MUTEX_HELD(&fip->fi_lock)); 291 292 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 293 fip->fi_list[pfd].uf_alloc += incr; 294 295 ufp->uf_busy += incr; 296 } 297 298 static int 299 flist_minsize(uf_info_t *fip) 300 { 301 int fd; 302 303 /* 304 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 305 * by flist_fork(), which relies on other mechanisms for mutual 306 * exclusion. 307 */ 308 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 309 310 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 311 if (fip->fi_list[fd >> 1].uf_alloc != 0) 312 break; 313 314 return (fd); 315 } 316 317 static int 318 flist_nalloc(uf_info_t *fip) 319 { 320 int fd; 321 int nalloc = 0; 322 323 ASSERT(MUTEX_HELD(&fip->fi_lock)); 324 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 325 326 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 327 nalloc += fip->fi_list[fd >> 1].uf_alloc; 328 329 return (nalloc); 330 } 331 332 /* 333 * Increase size of the fi_list array to accommodate at least maxfd. 334 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 335 */ 336 static void 337 flist_grow(int maxfd) 338 { 339 uf_info_t *fip = P_FINFO(curproc); 340 int newcnt, oldcnt; 341 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 342 uf_rlist_t *urp; 343 344 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 345 continue; 346 347 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 348 349 mutex_enter(&fip->fi_lock); 350 oldcnt = fip->fi_nfiles; 351 if (newcnt <= oldcnt) { 352 mutex_exit(&fip->fi_lock); 353 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 354 return; 355 } 356 ASSERT((newcnt & (newcnt + 1)) == 0); 357 oldlist = fip->fi_list; 358 oldend = oldlist + oldcnt; 359 newend = newlist + oldcnt; /* no need to lock beyond old end */ 360 361 /* 362 * fi_list and fi_nfiles cannot change while any uf_lock is held, 363 * so we must grab all the old locks *and* the new locks up to oldcnt. 364 * (Locks beyond the end of oldcnt aren't visible until we store 365 * the new fi_nfiles, which is the last thing we do before dropping 366 * all the locks, so there's no need to acquire these locks). 367 * Holding the new locks is necessary because when fi_list changes 368 * to point to the new list, fi_nfiles won't have been stored yet. 369 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 370 * could see the new fi_list, grab the new uf_lock, and then see 371 * fi_nfiles change while the lock is held -- in violation of 372 * UF_ENTER() semantics. 373 */ 374 for (src = oldlist; src < oldend; src++) 375 mutex_enter(&src->uf_lock); 376 377 for (dst = newlist; dst < newend; dst++) 378 mutex_enter(&dst->uf_lock); 379 380 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 381 dst->uf_file = src->uf_file; 382 dst->uf_fpollinfo = src->uf_fpollinfo; 383 dst->uf_refcnt = src->uf_refcnt; 384 dst->uf_alloc = src->uf_alloc; 385 dst->uf_flag = src->uf_flag; 386 dst->uf_busy = src->uf_busy; 387 dst->uf_portfd = src->uf_portfd; 388 } 389 390 /* 391 * As soon as we store the new flist, future locking operations 392 * will use it. Therefore, we must ensure that all the state 393 * we've just established reaches global visibility before the 394 * new flist does. 395 */ 396 membar_producer(); 397 fip->fi_list = newlist; 398 399 /* 400 * Routines like getf() make an optimistic check on the validity 401 * of the supplied file descriptor: if it's less than the current 402 * value of fi_nfiles -- examined without any locks -- then it's 403 * safe to attempt a UF_ENTER() on that fd (which is a valid 404 * assumption because fi_nfiles only increases). Therefore, it 405 * is critical that the new value of fi_nfiles not reach global 406 * visibility until after the new fi_list: if it happened the 407 * other way around, getf() could see the new fi_nfiles and attempt 408 * a UF_ENTER() on the old fi_list, which would write beyond its 409 * end if the fd exceeded the old fi_nfiles. 410 */ 411 membar_producer(); 412 fip->fi_nfiles = newcnt; 413 414 /* 415 * The new state is consistent now, so we can drop all the locks. 416 */ 417 for (dst = newlist; dst < newend; dst++) 418 mutex_exit(&dst->uf_lock); 419 420 for (src = oldlist; src < oldend; src++) { 421 /* 422 * If any threads are blocked on the old cvs, wake them. 423 * This will force them to wake up, discover that fi_list 424 * has changed, and go back to sleep on the new cvs. 425 */ 426 cv_broadcast(&src->uf_wanted_cv); 427 cv_broadcast(&src->uf_closing_cv); 428 mutex_exit(&src->uf_lock); 429 } 430 431 mutex_exit(&fip->fi_lock); 432 433 /* 434 * Retire the old flist. We can't actually kmem_free() it now 435 * because someone may still have a pointer to it. Instead, 436 * we link it onto a list of retired flists. The new flist 437 * is at least double the size of the previous flist, so the 438 * total size of all retired flists will be less than the size 439 * of the current one (to prove, consider the sum of a geometric 440 * series in powers of 2). exit() frees the retired flists. 441 */ 442 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 443 urp->ur_list = oldlist; 444 urp->ur_nfiles = oldcnt; 445 446 mutex_enter(&fip->fi_lock); 447 urp->ur_next = fip->fi_rlist; 448 fip->fi_rlist = urp; 449 mutex_exit(&fip->fi_lock); 450 } 451 452 /* 453 * Utility functions for keeping track of the active file descriptors. 454 */ 455 void 456 clear_stale_fd() /* called from post_syscall() */ 457 { 458 afd_t *afd = &curthread->t_activefd; 459 int i; 460 461 /* uninitialized is ok here, a_nfd is then zero */ 462 for (i = 0; i < afd->a_nfd; i++) { 463 /* assert that this should not be necessary */ 464 ASSERT(afd->a_fd[i] == -1); 465 afd->a_fd[i] = -1; 466 } 467 afd->a_stale = 0; 468 } 469 470 void 471 free_afd(afd_t *afd) /* called below and from thread_free() */ 472 { 473 int i; 474 475 /* free the buffer if it was kmem_alloc()ed */ 476 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 477 COUNT(afd_free); 478 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 479 } 480 481 /* (re)initialize the structure */ 482 afd->a_fd = &afd->a_buf[0]; 483 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 484 afd->a_stale = 0; 485 for (i = 0; i < afd->a_nfd; i++) 486 afd->a_fd[i] = -1; 487 } 488 489 static void 490 set_active_fd(int fd) 491 { 492 afd_t *afd = &curthread->t_activefd; 493 int i; 494 int *old_fd; 495 int old_nfd; 496 int *new_fd; 497 int new_nfd; 498 499 if (afd->a_nfd == 0) { /* first time initialization */ 500 ASSERT(fd == -1); 501 mutex_enter(&afd->a_fdlock); 502 free_afd(afd); 503 mutex_exit(&afd->a_fdlock); 504 } 505 506 /* insert fd into vacant slot, if any */ 507 for (i = 0; i < afd->a_nfd; i++) { 508 if (afd->a_fd[i] == -1) { 509 afd->a_fd[i] = fd; 510 return; 511 } 512 } 513 514 /* 515 * Reallocate the a_fd[] array to add one more slot. 516 */ 517 ASSERT(fd == -1); 518 old_nfd = afd->a_nfd; 519 old_fd = afd->a_fd; 520 new_nfd = old_nfd + 1; 521 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 522 MAXFD(new_nfd); 523 COUNT(afd_alloc); 524 525 mutex_enter(&afd->a_fdlock); 526 afd->a_fd = new_fd; 527 afd->a_nfd = new_nfd; 528 for (i = 0; i < old_nfd; i++) 529 afd->a_fd[i] = old_fd[i]; 530 afd->a_fd[i] = fd; 531 mutex_exit(&afd->a_fdlock); 532 533 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 534 COUNT(afd_free); 535 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 536 } 537 } 538 539 void 540 clear_active_fd(int fd) /* called below and from aio.c */ 541 { 542 afd_t *afd = &curthread->t_activefd; 543 int i; 544 545 for (i = 0; i < afd->a_nfd; i++) { 546 if (afd->a_fd[i] == fd) { 547 afd->a_fd[i] = -1; 548 break; 549 } 550 } 551 ASSERT(i < afd->a_nfd); /* not found is not ok */ 552 } 553 554 /* 555 * Does this thread have this fd active? 556 */ 557 static int 558 is_active_fd(kthread_t *t, int fd) 559 { 560 afd_t *afd = &t->t_activefd; 561 int i; 562 563 ASSERT(t != curthread); 564 mutex_enter(&afd->a_fdlock); 565 /* uninitialized is ok here, a_nfd is then zero */ 566 for (i = 0; i < afd->a_nfd; i++) { 567 if (afd->a_fd[i] == fd) { 568 mutex_exit(&afd->a_fdlock); 569 return (1); 570 } 571 } 572 mutex_exit(&afd->a_fdlock); 573 return (0); 574 } 575 576 /* 577 * Convert a user supplied file descriptor into a pointer to a file 578 * structure. Only task is to check range of the descriptor (soft 579 * resource limit was enforced at open time and shouldn't be checked 580 * here). 581 */ 582 file_t * 583 getf(int fd) 584 { 585 uf_info_t *fip = P_FINFO(curproc); 586 uf_entry_t *ufp; 587 file_t *fp; 588 589 if ((uint_t)fd >= fip->fi_nfiles) 590 return (NULL); 591 592 /* 593 * Reserve a slot in the active fd array now so we can call 594 * set_active_fd(fd) for real below, while still inside UF_ENTER(). 595 */ 596 set_active_fd(-1); 597 598 UF_ENTER(ufp, fip, fd); 599 600 if ((fp = ufp->uf_file) == NULL) { 601 UF_EXIT(ufp); 602 603 if (fd == fip->fi_badfd && fip->fi_action > 0) 604 tsignal(curthread, fip->fi_action); 605 606 return (NULL); 607 } 608 ufp->uf_refcnt++; 609 610 /* 611 * archive per file audit data 612 */ 613 if (audit_active) 614 (void) audit_getf(fd); 615 616 set_active_fd(fd); /* record the active file descriptor */ 617 618 UF_EXIT(ufp); 619 620 return (fp); 621 } 622 623 /* 624 * Close whatever file currently occupies the file descriptor slot 625 * and install the new file, usually NULL, in the file descriptor slot. 626 * The close must complete before we release the file descriptor slot. 627 * If newfp != NULL we only return an error if we can't allocate the 628 * slot so the caller knows that it needs to free the filep; 629 * in the other cases we return the error number from closef(). 630 */ 631 int 632 closeandsetf(int fd, file_t *newfp) 633 { 634 proc_t *p = curproc; 635 uf_info_t *fip = P_FINFO(p); 636 uf_entry_t *ufp; 637 file_t *fp; 638 fpollinfo_t *fpip; 639 portfd_t *pfd; 640 int error; 641 642 if ((uint_t)fd >= fip->fi_nfiles) { 643 if (newfp == NULL) 644 return (EBADF); 645 flist_grow(fd); 646 } 647 648 if (newfp != NULL) { 649 /* 650 * If ufp is reserved but has no file pointer, it's in the 651 * transition between ufalloc() and setf(). We must wait 652 * for this transition to complete before assigning the 653 * new non-NULL file pointer. 654 */ 655 mutex_enter(&fip->fi_lock); 656 if (fd == fip->fi_badfd) { 657 mutex_exit(&fip->fi_lock); 658 if (fip->fi_action > 0) 659 tsignal(curthread, fip->fi_action); 660 return (EBADF); 661 } 662 UF_ENTER(ufp, fip, fd); 663 while (ufp->uf_busy && ufp->uf_file == NULL) { 664 mutex_exit(&fip->fi_lock); 665 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 666 UF_EXIT(ufp); 667 mutex_enter(&fip->fi_lock); 668 UF_ENTER(ufp, fip, fd); 669 } 670 if ((fp = ufp->uf_file) == NULL) { 671 ASSERT(ufp->uf_fpollinfo == NULL); 672 ASSERT(ufp->uf_flag == 0); 673 fd_reserve(fip, fd, 1); 674 ufp->uf_file = newfp; 675 UF_EXIT(ufp); 676 mutex_exit(&fip->fi_lock); 677 return (0); 678 } 679 mutex_exit(&fip->fi_lock); 680 } else { 681 UF_ENTER(ufp, fip, fd); 682 if ((fp = ufp->uf_file) == NULL) { 683 UF_EXIT(ufp); 684 return (EBADF); 685 } 686 } 687 688 /* 689 * archive per file audit data 690 */ 691 if (audit_active) 692 (void) audit_getf(fd); 693 ASSERT(ufp->uf_busy); 694 ufp->uf_file = NULL; 695 ufp->uf_flag = 0; 696 697 /* 698 * If the file descriptor reference count is non-zero, then 699 * some other lwp in the process is performing system call 700 * activity on the file. To avoid blocking here for a long 701 * time (the other lwp might be in a long term sleep in its 702 * system call), we scan all other lwps in the process to 703 * find the ones with this fd as one of their active fds, 704 * set their a_stale flag, and set them running if they 705 * are in an interruptible sleep so they will emerge from 706 * their system calls immediately. post_syscall() will 707 * test the a_stale flag and set errno to EBADF. 708 */ 709 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 710 if (ufp->uf_refcnt > 0) { 711 kthread_t *t; 712 713 /* 714 * We call sprlock_proc(p) to ensure that the thread 715 * list will not change while we are scanning it. 716 * To do this, we must drop ufp->uf_lock and then 717 * reacquire it (so we are not holding both p->p_lock 718 * and ufp->uf_lock at the same time). ufp->uf_lock 719 * must be held for is_active_fd() to be correct 720 * (set_active_fd() is called while holding ufp->uf_lock). 721 * 722 * This is a convoluted dance, but it is better than 723 * the old brute-force method of stopping every thread 724 * in the process by calling holdlwps(SHOLDFORK1). 725 */ 726 727 UF_EXIT(ufp); 728 COUNT(afd_wait); 729 730 mutex_enter(&p->p_lock); 731 sprlock_proc(p); 732 mutex_exit(&p->p_lock); 733 734 UF_ENTER(ufp, fip, fd); 735 ASSERT(ufp->uf_file == NULL); 736 737 if (ufp->uf_refcnt > 0) { 738 for (t = curthread->t_forw; 739 t != curthread; 740 t = t->t_forw) { 741 if (is_active_fd(t, fd)) { 742 thread_lock(t); 743 t->t_activefd.a_stale = 1; 744 t->t_post_sys = 1; 745 if (ISWAKEABLE(t)) 746 setrun_locked(t); 747 thread_unlock(t); 748 } 749 } 750 } 751 752 UF_EXIT(ufp); 753 754 mutex_enter(&p->p_lock); 755 sprunlock(p); 756 757 UF_ENTER(ufp, fip, fd); 758 ASSERT(ufp->uf_file == NULL); 759 } 760 761 /* 762 * Wait for other lwps to stop using this file descriptor. 763 */ 764 while (ufp->uf_refcnt > 0) { 765 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 766 /* 767 * cv_wait_stop() drops ufp->uf_lock, so the file list 768 * can change. Drop the lock on our (possibly) stale 769 * ufp and let UF_ENTER() find and lock the current ufp. 770 */ 771 UF_EXIT(ufp); 772 UF_ENTER(ufp, fip, fd); 773 } 774 775 #ifdef DEBUG 776 /* 777 * catch a watchfd on device's pollhead list but not on fpollinfo list 778 */ 779 if (ufp->uf_fpollinfo != NULL) 780 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 781 #endif /* DEBUG */ 782 783 /* 784 * We may need to cleanup some cached poll states in t_pollstate 785 * before the fd can be reused. It is important that we don't 786 * access a stale thread structure. We will do the cleanup in two 787 * phases to avoid deadlock and holding uf_lock for too long. 788 * In phase 1, hold the uf_lock and call pollblockexit() to set 789 * state in t_pollstate struct so that a thread does not exit on 790 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 791 */ 792 pfd = ufp->uf_portfd; 793 ufp->uf_portfd = NULL; 794 fpip = ufp->uf_fpollinfo; 795 ufp->uf_fpollinfo = NULL; 796 if (fpip != NULL) 797 pollblockexit(fpip); 798 UF_EXIT(ufp); 799 if (fpip != NULL) 800 pollcacheclean(fpip, fd); 801 if (pfd) 802 port_close_fd(pfd); 803 804 /* 805 * Keep the file descriptor entry reserved across the closef(). 806 */ 807 error = closef(fp); 808 809 setf(fd, newfp); 810 811 /* Only return closef() error when closing is all we do */ 812 return (newfp == NULL ? error : 0); 813 } 814 815 /* 816 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 817 */ 818 void 819 releasef(int fd) 820 { 821 uf_info_t *fip = P_FINFO(curproc); 822 uf_entry_t *ufp; 823 824 UF_ENTER(ufp, fip, fd); 825 ASSERT(ufp->uf_refcnt > 0); 826 clear_active_fd(fd); /* clear the active file descriptor */ 827 if (--ufp->uf_refcnt == 0) 828 cv_broadcast(&ufp->uf_closing_cv); 829 UF_EXIT(ufp); 830 } 831 832 /* 833 * Identical to releasef() but can be called from another process. 834 */ 835 void 836 areleasef(int fd, uf_info_t *fip) 837 { 838 uf_entry_t *ufp; 839 840 UF_ENTER(ufp, fip, fd); 841 ASSERT(ufp->uf_refcnt > 0); 842 if (--ufp->uf_refcnt == 0) 843 cv_broadcast(&ufp->uf_closing_cv); 844 UF_EXIT(ufp); 845 } 846 847 /* 848 * Duplicate all file descriptors across a fork. 849 */ 850 void 851 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 852 { 853 int fd, nfiles; 854 uf_entry_t *pufp, *cufp; 855 856 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 857 cfip->fi_rlist = NULL; 858 859 /* 860 * We don't need to hold fi_lock because all other lwp's in the 861 * parent have been held. 862 */ 863 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 864 865 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 866 867 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 868 fd++, pufp++, cufp++) { 869 cufp->uf_file = pufp->uf_file; 870 cufp->uf_alloc = pufp->uf_alloc; 871 cufp->uf_flag = pufp->uf_flag; 872 cufp->uf_busy = pufp->uf_busy; 873 if (pufp->uf_file == NULL) { 874 ASSERT(pufp->uf_flag == 0); 875 if (pufp->uf_busy) { 876 /* 877 * Grab locks to appease ASSERTs in fd_reserve 878 */ 879 mutex_enter(&cfip->fi_lock); 880 mutex_enter(&cufp->uf_lock); 881 fd_reserve(cfip, fd, -1); 882 mutex_exit(&cufp->uf_lock); 883 mutex_exit(&cfip->fi_lock); 884 } 885 } 886 } 887 } 888 889 /* 890 * Close all open file descriptors for the current process. 891 * This is only called from exit(), which is single-threaded, 892 * so we don't need any locking. 893 */ 894 void 895 closeall(uf_info_t *fip) 896 { 897 int fd; 898 file_t *fp; 899 uf_entry_t *ufp; 900 901 ufp = fip->fi_list; 902 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 903 if ((fp = ufp->uf_file) != NULL) { 904 ufp->uf_file = NULL; 905 if (ufp->uf_portfd != NULL) { 906 portfd_t *pfd; 907 /* remove event port association */ 908 pfd = ufp->uf_portfd; 909 ufp->uf_portfd = NULL; 910 port_close_fd(pfd); 911 } 912 ASSERT(ufp->uf_fpollinfo == NULL); 913 (void) closef(fp); 914 } 915 } 916 917 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 918 fip->fi_list = NULL; 919 fip->fi_nfiles = 0; 920 while (fip->fi_rlist != NULL) { 921 uf_rlist_t *urp = fip->fi_rlist; 922 fip->fi_rlist = urp->ur_next; 923 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 924 kmem_free(urp, sizeof (uf_rlist_t)); 925 } 926 } 927 928 /* 929 * Internal form of close. Decrement reference count on file 930 * structure. Decrement reference count on the vnode following 931 * removal of the referencing file structure. 932 */ 933 int 934 closef(file_t *fp) 935 { 936 vnode_t *vp; 937 int error; 938 int count; 939 int flag; 940 offset_t offset; 941 942 /* 943 * audit close of file (may be exit) 944 */ 945 if (audit_active) 946 audit_closef(fp); 947 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 948 949 mutex_enter(&fp->f_tlock); 950 951 ASSERT(fp->f_count > 0); 952 953 count = fp->f_count--; 954 flag = fp->f_flag; 955 offset = fp->f_offset; 956 957 vp = fp->f_vnode; 958 959 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 960 961 if (count > 1) { 962 mutex_exit(&fp->f_tlock); 963 return (error); 964 } 965 ASSERT(fp->f_count == 0); 966 mutex_exit(&fp->f_tlock); 967 968 VN_RELE(vp); 969 /* 970 * deallocate resources to audit_data 971 */ 972 if (audit_active) 973 audit_unfalloc(fp); 974 crfree(fp->f_cred); 975 kmem_cache_free(file_cache, fp); 976 return (error); 977 } 978 979 /* 980 * This is a combination of ufalloc() and setf(). 981 */ 982 int 983 ufalloc_file(int start, file_t *fp) 984 { 985 proc_t *p = curproc; 986 uf_info_t *fip = P_FINFO(p); 987 int filelimit; 988 uf_entry_t *ufp; 989 int nfiles; 990 int fd; 991 992 /* 993 * Assertion is to convince the correctness of the following 994 * assignment for filelimit after casting to int. 995 */ 996 ASSERT(p->p_fno_ctl <= INT_MAX); 997 filelimit = (int)p->p_fno_ctl; 998 999 for (;;) { 1000 mutex_enter(&fip->fi_lock); 1001 fd = fd_find(fip, start); 1002 if (fd >= 0 && fd == fip->fi_badfd) { 1003 start = fd + 1; 1004 mutex_exit(&fip->fi_lock); 1005 continue; 1006 } 1007 if ((uint_t)fd < filelimit) 1008 break; 1009 if (fd >= filelimit) { 1010 mutex_exit(&fip->fi_lock); 1011 mutex_enter(&p->p_lock); 1012 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1013 p->p_rctls, p, RCA_SAFE); 1014 mutex_exit(&p->p_lock); 1015 return (-1); 1016 } 1017 /* fd_find() returned -1 */ 1018 nfiles = fip->fi_nfiles; 1019 mutex_exit(&fip->fi_lock); 1020 flist_grow(MAX(start, nfiles)); 1021 } 1022 1023 UF_ENTER(ufp, fip, fd); 1024 fd_reserve(fip, fd, 1); 1025 ASSERT(ufp->uf_file == NULL); 1026 ufp->uf_file = fp; 1027 UF_EXIT(ufp); 1028 mutex_exit(&fip->fi_lock); 1029 return (fd); 1030 } 1031 1032 /* 1033 * Allocate a user file descriptor greater than or equal to "start". 1034 */ 1035 int 1036 ufalloc(int start) 1037 { 1038 return (ufalloc_file(start, NULL)); 1039 } 1040 1041 /* 1042 * Check that a future allocation of count fds on proc p has a good 1043 * chance of succeeding. If not, do rctl processing as if we'd failed 1044 * the allocation. 1045 * 1046 * Our caller must guarantee that p cannot disappear underneath us. 1047 */ 1048 int 1049 ufcanalloc(proc_t *p, uint_t count) 1050 { 1051 uf_info_t *fip = P_FINFO(p); 1052 int filelimit; 1053 int current; 1054 1055 if (count == 0) 1056 return (1); 1057 1058 ASSERT(p->p_fno_ctl <= INT_MAX); 1059 filelimit = (int)p->p_fno_ctl; 1060 1061 mutex_enter(&fip->fi_lock); 1062 current = flist_nalloc(fip); /* # of in-use descriptors */ 1063 mutex_exit(&fip->fi_lock); 1064 1065 /* 1066 * If count is a positive integer, the worst that can happen is 1067 * an overflow to a negative value, which is caught by the >= 0 check. 1068 */ 1069 current += count; 1070 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1071 return (1); 1072 1073 mutex_enter(&p->p_lock); 1074 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1075 p->p_rctls, p, RCA_SAFE); 1076 mutex_exit(&p->p_lock); 1077 return (0); 1078 } 1079 1080 /* 1081 * Allocate a user file descriptor and a file structure. 1082 * Initialize the descriptor to point at the file structure. 1083 * If fdp is NULL, the user file descriptor will not be allocated. 1084 */ 1085 int 1086 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1087 { 1088 file_t *fp; 1089 int fd; 1090 1091 if (fdp) { 1092 if ((fd = ufalloc(0)) == -1) 1093 return (EMFILE); 1094 } 1095 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1096 /* 1097 * Note: falloc returns the fp locked 1098 */ 1099 mutex_enter(&fp->f_tlock); 1100 fp->f_count = 1; 1101 fp->f_flag = (ushort_t)flag; 1102 fp->f_vnode = vp; 1103 fp->f_offset = 0; 1104 fp->f_audit_data = 0; 1105 crhold(fp->f_cred = CRED()); 1106 /* 1107 * allocate resources to audit_data 1108 */ 1109 if (audit_active) 1110 audit_falloc(fp); 1111 *fpp = fp; 1112 if (fdp) 1113 *fdp = fd; 1114 return (0); 1115 } 1116 1117 /*ARGSUSED*/ 1118 static int 1119 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1120 { 1121 file_t *fp = buf; 1122 1123 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1124 return (0); 1125 } 1126 1127 /*ARGSUSED*/ 1128 static void 1129 file_cache_destructor(void *buf, void *cdrarg) 1130 { 1131 file_t *fp = buf; 1132 1133 mutex_destroy(&fp->f_tlock); 1134 } 1135 1136 void 1137 finit() 1138 { 1139 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1140 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1141 } 1142 1143 void 1144 unfalloc(file_t *fp) 1145 { 1146 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1147 if (--fp->f_count <= 0) { 1148 /* 1149 * deallocate resources to audit_data 1150 */ 1151 if (audit_active) 1152 audit_unfalloc(fp); 1153 crfree(fp->f_cred); 1154 mutex_exit(&fp->f_tlock); 1155 kmem_cache_free(file_cache, fp); 1156 } else 1157 mutex_exit(&fp->f_tlock); 1158 } 1159 1160 /* 1161 * Given a file descriptor, set the user's 1162 * file pointer to the given parameter. 1163 */ 1164 void 1165 setf(int fd, file_t *fp) 1166 { 1167 uf_info_t *fip = P_FINFO(curproc); 1168 uf_entry_t *ufp; 1169 1170 if (audit_active) 1171 audit_setf(fp, fd); 1172 1173 if (fp == NULL) { 1174 mutex_enter(&fip->fi_lock); 1175 UF_ENTER(ufp, fip, fd); 1176 fd_reserve(fip, fd, -1); 1177 mutex_exit(&fip->fi_lock); 1178 } else { 1179 UF_ENTER(ufp, fip, fd); 1180 ASSERT(ufp->uf_busy); 1181 } 1182 ASSERT(ufp->uf_fpollinfo == NULL); 1183 ASSERT(ufp->uf_flag == 0); 1184 ufp->uf_file = fp; 1185 cv_broadcast(&ufp->uf_wanted_cv); 1186 UF_EXIT(ufp); 1187 } 1188 1189 /* 1190 * Given a file descriptor, return the file table flags, plus, 1191 * if this is a socket in asynchronous mode, the FASYNC flag. 1192 * getf() may or may not have been called before calling f_getfl(). 1193 */ 1194 int 1195 f_getfl(int fd, int *flagp) 1196 { 1197 uf_info_t *fip = P_FINFO(curproc); 1198 uf_entry_t *ufp; 1199 file_t *fp; 1200 int error; 1201 1202 if ((uint_t)fd >= fip->fi_nfiles) 1203 error = EBADF; 1204 else { 1205 UF_ENTER(ufp, fip, fd); 1206 if ((fp = ufp->uf_file) == NULL) 1207 error = EBADF; 1208 else { 1209 vnode_t *vp = fp->f_vnode; 1210 int flag = fp->f_flag; 1211 1212 /* 1213 * BSD fcntl() FASYNC compatibility. 1214 */ 1215 if (vp->v_type == VSOCK) 1216 flag |= sock_getfasync(vp); 1217 *flagp = flag; 1218 error = 0; 1219 } 1220 UF_EXIT(ufp); 1221 } 1222 1223 return (error); 1224 } 1225 1226 /* 1227 * Given a file descriptor, return the user's file flags. 1228 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1229 * getf() may or may not have been called before calling f_getfd_error(). 1230 */ 1231 int 1232 f_getfd_error(int fd, int *flagp) 1233 { 1234 uf_info_t *fip = P_FINFO(curproc); 1235 uf_entry_t *ufp; 1236 file_t *fp; 1237 int flag; 1238 int error; 1239 1240 if ((uint_t)fd >= fip->fi_nfiles) 1241 error = EBADF; 1242 else { 1243 UF_ENTER(ufp, fip, fd); 1244 if ((fp = ufp->uf_file) == NULL) 1245 error = EBADF; 1246 else { 1247 flag = ufp->uf_flag; 1248 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1249 flag |= FD_CLOEXEC; 1250 *flagp = flag; 1251 error = 0; 1252 } 1253 UF_EXIT(ufp); 1254 } 1255 1256 return (error); 1257 } 1258 1259 /* 1260 * getf() must have been called before calling f_getfd(). 1261 */ 1262 char 1263 f_getfd(int fd) 1264 { 1265 int flag = 0; 1266 (void) f_getfd_error(fd, &flag); 1267 return ((char)flag); 1268 } 1269 1270 /* 1271 * Given a file descriptor and file flags, set the user's file flags. 1272 * At present, the only valid flag is FD_CLOEXEC. 1273 * getf() may or may not have been called before calling f_setfd_error(). 1274 */ 1275 int 1276 f_setfd_error(int fd, int flags) 1277 { 1278 uf_info_t *fip = P_FINFO(curproc); 1279 uf_entry_t *ufp; 1280 int error; 1281 1282 if ((uint_t)fd >= fip->fi_nfiles) 1283 error = EBADF; 1284 else { 1285 UF_ENTER(ufp, fip, fd); 1286 if (ufp->uf_file == NULL) 1287 error = EBADF; 1288 else { 1289 ufp->uf_flag = flags & FD_CLOEXEC; 1290 error = 0; 1291 } 1292 UF_EXIT(ufp); 1293 } 1294 return (error); 1295 } 1296 1297 void 1298 f_setfd(int fd, char flags) 1299 { 1300 (void) f_setfd_error(fd, flags); 1301 } 1302 1303 #define BADFD_MIN 3 1304 #define BADFD_MAX 255 1305 1306 /* 1307 * Attempt to allocate a file descriptor which is bad and which 1308 * is "poison" to the application. It cannot be closed (except 1309 * on exec), allocated for a different use, etc. 1310 */ 1311 int 1312 f_badfd(int start, int *fdp, int action) 1313 { 1314 int fdr; 1315 int badfd; 1316 uf_info_t *fip = P_FINFO(curproc); 1317 1318 #ifdef _LP64 1319 /* No restrictions on 64 bit _file */ 1320 if (get_udatamodel() != DATAMODEL_ILP32) 1321 return (EINVAL); 1322 #endif 1323 1324 if (start > BADFD_MAX || start < BADFD_MIN) 1325 return (EINVAL); 1326 1327 if (action >= NSIG || action < 0) 1328 return (EINVAL); 1329 1330 mutex_enter(&fip->fi_lock); 1331 badfd = fip->fi_badfd; 1332 mutex_exit(&fip->fi_lock); 1333 1334 if (badfd != -1) 1335 return (EAGAIN); 1336 1337 fdr = ufalloc(start); 1338 1339 if (fdr > BADFD_MAX) { 1340 setf(fdr, NULL); 1341 return (EMFILE); 1342 } 1343 if (fdr < 0) 1344 return (EMFILE); 1345 1346 mutex_enter(&fip->fi_lock); 1347 if (fip->fi_badfd != -1) { 1348 /* Lost race */ 1349 mutex_exit(&fip->fi_lock); 1350 setf(fdr, NULL); 1351 return (EAGAIN); 1352 } 1353 fip->fi_action = action; 1354 fip->fi_badfd = fdr; 1355 mutex_exit(&fip->fi_lock); 1356 setf(fdr, NULL); 1357 1358 *fdp = fdr; 1359 1360 return (0); 1361 } 1362 1363 /* 1364 * Allocate a file descriptor and assign it to the vnode "*vpp", 1365 * performing the usual open protocol upon it and returning the 1366 * file descriptor allocated. It is the responsibility of the 1367 * caller to dispose of "*vpp" if any error occurs. 1368 */ 1369 int 1370 fassign(vnode_t **vpp, int mode, int *fdp) 1371 { 1372 file_t *fp; 1373 int error; 1374 int fd; 1375 1376 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1377 return (error); 1378 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1379 setf(fd, NULL); 1380 unfalloc(fp); 1381 return (error); 1382 } 1383 fp->f_vnode = *vpp; 1384 mutex_exit(&fp->f_tlock); 1385 /* 1386 * Fill in the slot falloc reserved. 1387 */ 1388 setf(fd, fp); 1389 *fdp = fd; 1390 return (0); 1391 } 1392 1393 /* 1394 * When a process forks it must increment the f_count of all file pointers 1395 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1396 * Since we are called when there is only 1 active lwp we don't need to 1397 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1398 * fcnt_add(fip, -1) to restore the counts. 1399 */ 1400 void 1401 fcnt_add(uf_info_t *fip, int incr) 1402 { 1403 int i; 1404 uf_entry_t *ufp; 1405 file_t *fp; 1406 1407 ufp = fip->fi_list; 1408 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1409 if ((fp = ufp->uf_file) != NULL) { 1410 mutex_enter(&fp->f_tlock); 1411 ASSERT((incr == 1 && fp->f_count >= 1) || 1412 (incr == -1 && fp->f_count >= 2)); 1413 fp->f_count += incr; 1414 mutex_exit(&fp->f_tlock); 1415 } 1416 } 1417 } 1418 1419 /* 1420 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1421 * set and also to close all self-open for write /proc file descriptors. 1422 */ 1423 void 1424 close_exec(uf_info_t *fip) 1425 { 1426 int fd; 1427 file_t *fp; 1428 fpollinfo_t *fpip; 1429 uf_entry_t *ufp; 1430 portfd_t *pfd; 1431 1432 ufp = fip->fi_list; 1433 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1434 if ((fp = ufp->uf_file) != NULL && 1435 ((ufp->uf_flag & FD_CLOEXEC) || 1436 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1437 fpip = ufp->uf_fpollinfo; 1438 mutex_enter(&fip->fi_lock); 1439 mutex_enter(&ufp->uf_lock); 1440 fd_reserve(fip, fd, -1); 1441 mutex_exit(&fip->fi_lock); 1442 ufp->uf_file = NULL; 1443 ufp->uf_fpollinfo = NULL; 1444 ufp->uf_flag = 0; 1445 /* 1446 * We may need to cleanup some cached poll states 1447 * in t_pollstate before the fd can be reused. It 1448 * is important that we don't access a stale thread 1449 * structure. We will do the cleanup in two 1450 * phases to avoid deadlock and holding uf_lock for 1451 * too long. In phase 1, hold the uf_lock and call 1452 * pollblockexit() to set state in t_pollstate struct 1453 * so that a thread does not exit on us. In phase 2, 1454 * we drop the uf_lock and call pollcacheclean(). 1455 */ 1456 pfd = ufp->uf_portfd; 1457 ufp->uf_portfd = NULL; 1458 if (fpip != NULL) 1459 pollblockexit(fpip); 1460 mutex_exit(&ufp->uf_lock); 1461 if (fpip != NULL) 1462 pollcacheclean(fpip, fd); 1463 if (pfd) 1464 port_close_fd(pfd); 1465 (void) closef(fp); 1466 } 1467 } 1468 1469 /* Reset bad fd */ 1470 fip->fi_badfd = -1; 1471 fip->fi_action = -1; 1472 } 1473 1474 /* 1475 * Common routine for modifying attributes of named files. 1476 */ 1477 int 1478 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1479 { 1480 vnode_t *vp; 1481 int error = 0; 1482 1483 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1484 return (set_errno(error)); 1485 if (error = vpsetattr(vp, vap, flags)) 1486 (void) set_errno(error); 1487 VN_RELE(vp); 1488 return (error); 1489 } 1490 1491 /* 1492 * Common routine for modifying attributes of files referenced 1493 * by descriptor. 1494 */ 1495 int 1496 fdsetattr(int fd, vattr_t *vap) 1497 { 1498 file_t *fp; 1499 vnode_t *vp; 1500 int error = 0; 1501 1502 if ((fp = getf(fd)) != NULL) { 1503 vp = fp->f_vnode; 1504 if (error = vpsetattr(vp, vap, 0)) { 1505 (void) set_errno(error); 1506 } 1507 releasef(fd); 1508 } else 1509 error = set_errno(EBADF); 1510 return (error); 1511 } 1512 1513 /* 1514 * Common routine to set the attributes for the given vnode. 1515 * If the vnode is a file and the filesize is being manipulated, 1516 * this makes sure that there are no conflicting non-blocking 1517 * mandatory locks in that region. 1518 */ 1519 static int 1520 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1521 { 1522 int error = 0; 1523 int in_crit = 0; 1524 u_offset_t begin; 1525 vattr_t vattr; 1526 ssize_t length; 1527 1528 if (vn_is_readonly(vp)) { 1529 error = EROFS; 1530 } 1531 if (!error && (vap->va_mask & AT_SIZE) && 1532 nbl_need_check(vp)) { 1533 nbl_start_crit(vp, RW_READER); 1534 in_crit = 1; 1535 vattr.va_mask = AT_SIZE; 1536 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1537 begin = vap->va_size > vattr.va_size ? 1538 vattr.va_size : vap->va_size; 1539 length = vattr.va_size > vap->va_size ? 1540 vattr.va_size - vap->va_size : 1541 vap->va_size - vattr.va_size; 1542 1543 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0, 1544 NULL)) { 1545 error = EACCES; 1546 } 1547 } 1548 } 1549 if (!error) 1550 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1551 1552 if (in_crit) 1553 nbl_end_crit(vp); 1554 1555 return (error); 1556 } 1557 1558 /* 1559 * Return true if the given vnode is referenced by any 1560 * entry in the current process's file descriptor table. 1561 */ 1562 int 1563 fisopen(vnode_t *vp) 1564 { 1565 int fd; 1566 file_t *fp; 1567 vnode_t *ovp; 1568 uf_info_t *fip = P_FINFO(curproc); 1569 uf_entry_t *ufp; 1570 1571 mutex_enter(&fip->fi_lock); 1572 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1573 UF_ENTER(ufp, fip, fd); 1574 if ((fp = ufp->uf_file) != NULL && 1575 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1576 UF_EXIT(ufp); 1577 mutex_exit(&fip->fi_lock); 1578 return (1); 1579 } 1580 UF_EXIT(ufp); 1581 } 1582 mutex_exit(&fip->fi_lock); 1583 return (0); 1584 } 1585 1586 /* 1587 * Return zero if at least one file currently open (by curproc) shouldn't be 1588 * allowed to change zones. 1589 */ 1590 int 1591 files_can_change_zones(void) 1592 { 1593 int fd; 1594 file_t *fp; 1595 uf_info_t *fip = P_FINFO(curproc); 1596 uf_entry_t *ufp; 1597 1598 mutex_enter(&fip->fi_lock); 1599 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1600 UF_ENTER(ufp, fip, fd); 1601 if ((fp = ufp->uf_file) != NULL && 1602 !vn_can_change_zones(fp->f_vnode)) { 1603 UF_EXIT(ufp); 1604 mutex_exit(&fip->fi_lock); 1605 return (0); 1606 } 1607 UF_EXIT(ufp); 1608 } 1609 mutex_exit(&fip->fi_lock); 1610 return (1); 1611 } 1612 1613 #ifdef DEBUG 1614 1615 /* 1616 * The following functions are only used in ASSERT()s elsewhere. 1617 * They do not modify the state of the system. 1618 */ 1619 1620 /* 1621 * Return true (1) if the current thread is in the fpollinfo 1622 * list for this file descriptor, else false (0). 1623 */ 1624 static int 1625 curthread_in_plist(uf_entry_t *ufp) 1626 { 1627 fpollinfo_t *fpip; 1628 1629 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1630 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1631 if (fpip->fp_thread == curthread) 1632 return (1); 1633 return (0); 1634 } 1635 1636 /* 1637 * Sanity check to make sure that after lwp_exit(), 1638 * curthread does not appear on any fd's fpollinfo list. 1639 */ 1640 void 1641 checkfpollinfo(void) 1642 { 1643 int fd; 1644 uf_info_t *fip = P_FINFO(curproc); 1645 uf_entry_t *ufp; 1646 1647 mutex_enter(&fip->fi_lock); 1648 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1649 UF_ENTER(ufp, fip, fd); 1650 ASSERT(!curthread_in_plist(ufp)); 1651 UF_EXIT(ufp); 1652 } 1653 mutex_exit(&fip->fi_lock); 1654 } 1655 1656 /* 1657 * Return true (1) if the current thread is in the fpollinfo 1658 * list for this file descriptor, else false (0). 1659 * This is the same as curthread_in_plist(), 1660 * but is called w/o holding uf_lock. 1661 */ 1662 int 1663 infpollinfo(int fd) 1664 { 1665 uf_info_t *fip = P_FINFO(curproc); 1666 uf_entry_t *ufp; 1667 int rc; 1668 1669 UF_ENTER(ufp, fip, fd); 1670 rc = curthread_in_plist(ufp); 1671 UF_EXIT(ufp); 1672 return (rc); 1673 } 1674 1675 #endif /* DEBUG */ 1676 1677 /* 1678 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1679 * thread's poll cache. Each lwp polling this file descriptor should call 1680 * this routine once. 1681 */ 1682 void 1683 addfpollinfo(int fd) 1684 { 1685 struct uf_entry *ufp; 1686 fpollinfo_t *fpip; 1687 uf_info_t *fip = P_FINFO(curproc); 1688 1689 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1690 fpip->fp_thread = curthread; 1691 UF_ENTER(ufp, fip, fd); 1692 /* 1693 * Assert we are not already on the list, that is, that 1694 * this lwp did not call addfpollinfo twice for the same fd. 1695 */ 1696 ASSERT(!curthread_in_plist(ufp)); 1697 /* 1698 * addfpollinfo is always done inside the getf/releasef pair. 1699 */ 1700 ASSERT(ufp->uf_refcnt >= 1); 1701 fpip->fp_next = ufp->uf_fpollinfo; 1702 ufp->uf_fpollinfo = fpip; 1703 UF_EXIT(ufp); 1704 } 1705 1706 /* 1707 * delete curthread from fpollinfo list. 1708 */ 1709 /*ARGSUSED*/ 1710 void 1711 delfpollinfo(int fd) 1712 { 1713 struct uf_entry *ufp; 1714 struct fpollinfo *fpip; 1715 struct fpollinfo **fpipp; 1716 uf_info_t *fip = P_FINFO(curproc); 1717 1718 UF_ENTER(ufp, fip, fd); 1719 if (ufp->uf_fpollinfo == NULL) { 1720 UF_EXIT(ufp); 1721 return; 1722 } 1723 ASSERT(ufp->uf_busy); 1724 /* 1725 * Find and delete curthread from the list. 1726 */ 1727 fpipp = &ufp->uf_fpollinfo; 1728 while ((fpip = *fpipp)->fp_thread != curthread) 1729 fpipp = &fpip->fp_next; 1730 *fpipp = fpip->fp_next; 1731 kmem_free(fpip, sizeof (fpollinfo_t)); 1732 /* 1733 * Assert that we are not still on the list, that is, that 1734 * this lwp did not call addfpollinfo twice for the same fd. 1735 */ 1736 ASSERT(!curthread_in_plist(ufp)); 1737 UF_EXIT(ufp); 1738 } 1739 1740 /* 1741 * fd is associated with a port. pfd is a pointer to the fd entry in the 1742 * cache of the port. 1743 */ 1744 1745 void 1746 addfd_port(int fd, portfd_t *pfd) 1747 { 1748 struct uf_entry *ufp; 1749 uf_info_t *fip = P_FINFO(curproc); 1750 1751 UF_ENTER(ufp, fip, fd); 1752 /* 1753 * addfd_port is always done inside the getf/releasef pair. 1754 */ 1755 ASSERT(ufp->uf_refcnt >= 1); 1756 if (ufp->uf_portfd == NULL) { 1757 /* first entry */ 1758 ufp->uf_portfd = pfd; 1759 pfd->pfd_next = NULL; 1760 } else { 1761 pfd->pfd_next = ufp->uf_portfd; 1762 ufp->uf_portfd = pfd; 1763 pfd->pfd_next->pfd_prev = pfd; 1764 } 1765 UF_EXIT(ufp); 1766 } 1767 1768 void 1769 delfd_port(int fd, portfd_t *pfd) 1770 { 1771 struct uf_entry *ufp; 1772 uf_info_t *fip = P_FINFO(curproc); 1773 1774 UF_ENTER(ufp, fip, fd); 1775 /* 1776 * delfd_port is always done inside the getf/releasef pair. 1777 */ 1778 ASSERT(ufp->uf_refcnt >= 1); 1779 if (ufp->uf_portfd == pfd) { 1780 /* remove first entry */ 1781 ufp->uf_portfd = pfd->pfd_next; 1782 } else { 1783 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1784 if (pfd->pfd_next != NULL) 1785 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1786 } 1787 UF_EXIT(ufp); 1788 } 1789 1790 static void 1791 port_close_fd(portfd_t *pfd) 1792 { 1793 portfd_t *pfdn; 1794 1795 /* 1796 * At this point, no other thread should access 1797 * the portfd_t list for this fd. The uf_file, uf_portfd 1798 * pointers in the uf_entry_t struct for this fd would 1799 * be set to NULL. 1800 */ 1801 for (; pfd != NULL; pfd = pfdn) { 1802 pfdn = pfd->pfd_next; 1803 port_close_pfd(pfd); 1804 } 1805 } 1806