1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* Copyright (c) 1988 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/cred_impl.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/file.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/mman.h> 45 #include <sys/acct.h> 46 #include <sys/cpuvar.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/debug.h> 50 #include <sys/pathname.h> 51 #include <sys/vm.h> 52 #include <sys/lgrp.h> 53 #include <sys/vtrace.h> 54 #include <sys/exec.h> 55 #include <sys/exechdr.h> 56 #include <sys/kmem.h> 57 #include <sys/prsystm.h> 58 #include <sys/modctl.h> 59 #include <sys/vmparam.h> 60 #include <sys/schedctl.h> 61 #include <sys/utrap.h> 62 #include <sys/systeminfo.h> 63 #include <sys/stack.h> 64 #include <sys/rctl.h> 65 #include <sys/dtrace.h> 66 #include <sys/lwpchan_impl.h> 67 #include <sys/pool.h> 68 #include <sys/sdt.h> 69 #include <sys/brand.h> 70 71 #include <c2/audit.h> 72 73 #include <vm/hat.h> 74 #include <vm/anon.h> 75 #include <vm/as.h> 76 #include <vm/seg.h> 77 #include <vm/seg_vn.h> 78 79 #define PRIV_RESET 0x01 /* needs to reset privs */ 80 #define PRIV_SETID 0x02 /* needs to change uids */ 81 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 82 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 83 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 84 85 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *); 86 static int hold_execsw(struct execsw *); 87 88 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 89 #if defined(_SYSCALL32_IMPL) 90 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 91 #endif 92 93 #define PSUIDFLAGS (SNOCD|SUGID) 94 95 /* 96 * exec() - wrapper around exece providing NULL environment pointer 97 */ 98 int 99 exec(const char *fname, const char **argp) 100 { 101 return (exece(fname, argp, NULL)); 102 } 103 104 /* 105 * exece() - system call wrapper around exec_common() 106 */ 107 int 108 exece(const char *fname, const char **argp, const char **envp) 109 { 110 int error; 111 112 error = exec_common(fname, argp, envp, EBA_NONE); 113 return (error ? (set_errno(error)) : 0); 114 } 115 116 int 117 exec_common(const char *fname, const char **argp, const char **envp, 118 int brand_action) 119 { 120 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 121 proc_t *p = ttoproc(curthread); 122 klwp_t *lwp = ttolwp(curthread); 123 struct user *up = PTOU(p); 124 long execsz; /* temporary count of exec size */ 125 int i; 126 int error; 127 char exec_file[MAXCOMLEN+1]; 128 struct pathname pn; 129 struct pathname resolvepn; 130 struct uarg args; 131 struct execa ua; 132 k_sigset_t savedmask; 133 lwpdir_t *lwpdir = NULL; 134 lwpdir_t **tidhash; 135 lwpdir_t *old_lwpdir = NULL; 136 uint_t old_lwpdir_sz; 137 lwpdir_t **old_tidhash; 138 uint_t old_tidhash_sz; 139 lwpent_t *lep; 140 int brandme = 0; 141 142 /* 143 * exec() is not supported for the /proc agent lwp. 144 */ 145 if (curthread == p->p_agenttp) 146 return (ENOTSUP); 147 148 if ((error = secpolicy_basic_exec(CRED())) != 0) 149 return (error); 150 151 if (brand_action != EBA_NONE) { 152 /* 153 * Brand actions are not supported for processes that are not 154 * running in a branded zone. 155 */ 156 if (!ZONE_IS_BRANDED(p->p_zone)) 157 return (ENOTSUP); 158 159 if (brand_action == EBA_NATIVE) { 160 /* Only branded processes can be unbranded */ 161 if (!PROC_IS_BRANDED(p)) 162 return (ENOTSUP); 163 } else { 164 /* Only unbranded processes can be branded */ 165 if (PROC_IS_BRANDED(p)) 166 return (ENOTSUP); 167 brandme = 1; 168 } 169 } else { 170 /* 171 * If this is a native zone, or if the process is already 172 * branded, then we don't need to do anything. If this is 173 * a native process in a branded zone, we need to brand the 174 * process as it exec()s the new binary. 175 */ 176 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 177 brandme = 1; 178 } 179 180 /* 181 * Inform /proc that an exec() has started. 182 * Hold signals that are ignored by default so that we will 183 * not be interrupted by a signal that will be ignored after 184 * successful completion of gexec(). 185 */ 186 mutex_enter(&p->p_lock); 187 prexecstart(); 188 schedctl_finish_sigblock(curthread); 189 savedmask = curthread->t_hold; 190 sigorset(&curthread->t_hold, &ignoredefault); 191 mutex_exit(&p->p_lock); 192 193 /* 194 * Look up path name and remember last component for later. 195 * To help coreadm expand its %d token, we attempt to save 196 * the directory containing the executable in p_execdir. The 197 * first call to lookuppn() may fail and return EINVAL because 198 * dirvpp is non-NULL. In that case, we make a second call to 199 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 200 * but coreadm is allowed to expand %d to the empty string and 201 * there are other cases in which that failure may occur. 202 */ 203 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 204 goto out; 205 pn_alloc(&resolvepn); 206 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 207 pn_free(&resolvepn); 208 pn_free(&pn); 209 if (error != EINVAL) 210 goto out; 211 212 dir = NULL; 213 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 214 goto out; 215 pn_alloc(&resolvepn); 216 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 217 &vp)) != 0) { 218 pn_free(&resolvepn); 219 pn_free(&pn); 220 goto out; 221 } 222 } 223 if (vp == NULL) { 224 if (dir != NULL) 225 VN_RELE(dir); 226 error = ENOENT; 227 pn_free(&resolvepn); 228 pn_free(&pn); 229 goto out; 230 } 231 232 /* 233 * We do not allow executing files in attribute directories. 234 * We test this by determining whether the resolved path 235 * contains a "/" when we're in an attribute directory; 236 * only if the pathname does not contain a "/" the resolved path 237 * points to a file in the current working (attribute) directory. 238 */ 239 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 240 strchr(resolvepn.pn_path, '/') == NULL) { 241 if (dir != NULL) 242 VN_RELE(dir); 243 error = EACCES; 244 pn_free(&resolvepn); 245 pn_free(&pn); 246 VN_RELE(vp); 247 goto out; 248 } 249 250 bzero(exec_file, MAXCOMLEN+1); 251 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 252 bzero(&args, sizeof (args)); 253 args.pathname = resolvepn.pn_path; 254 /* don't free resolvepn until we are done with args */ 255 pn_free(&pn); 256 257 /* 258 * Specific exec handlers, or policies determined via 259 * /etc/system may override the historical default. 260 */ 261 args.stk_prot = PROT_ZFOD; 262 args.dat_prot = PROT_ZFOD; 263 264 CPU_STATS_ADD_K(sys, sysexec, 1); 265 DTRACE_PROC1(exec, char *, args.pathname); 266 267 ua.fname = fname; 268 ua.argp = argp; 269 ua.envp = envp; 270 271 /* If necessary, brand this process before we start the exec. */ 272 if (brandme != 0) 273 brand_setbrand(p); 274 275 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 276 exec_file, p->p_cred, brand_action)) != 0) { 277 if (brandme != 0) 278 BROP(p)->b_proc_exit(p, lwp); 279 VN_RELE(vp); 280 if (dir != NULL) 281 VN_RELE(dir); 282 pn_free(&resolvepn); 283 goto fail; 284 } 285 286 /* 287 * Free floating point registers (sun4u only) 288 */ 289 ASSERT(lwp != NULL); 290 lwp_freeregs(lwp, 1); 291 292 /* 293 * Free thread and process context ops. 294 */ 295 if (curthread->t_ctx) 296 freectx(curthread, 1); 297 if (p->p_pctx) 298 freepctx(p, 1); 299 300 /* 301 * Remember file name for accounting; clear any cached DTrace predicate. 302 */ 303 up->u_acflag &= ~AFORK; 304 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 305 curthread->t_predcache = NULL; 306 307 /* 308 * Clear contract template state 309 */ 310 lwp_ctmpl_clear(lwp); 311 312 /* 313 * Save the directory in which we found the executable for expanding 314 * the %d token used in core file patterns. 315 */ 316 mutex_enter(&p->p_lock); 317 tmpvp = p->p_execdir; 318 p->p_execdir = dir; 319 if (p->p_execdir != NULL) 320 VN_HOLD(p->p_execdir); 321 mutex_exit(&p->p_lock); 322 323 if (tmpvp != NULL) 324 VN_RELE(tmpvp); 325 326 /* 327 * Reset stack state to the user stack, clear set of signals 328 * caught on the signal stack, and reset list of signals that 329 * restart system calls; the new program's environment should 330 * not be affected by detritus from the old program. Any 331 * pending held signals remain held, so don't clear t_hold. 332 */ 333 mutex_enter(&p->p_lock); 334 lwp->lwp_oldcontext = 0; 335 lwp->lwp_ustack = 0; 336 lwp->lwp_old_stk_ctl = 0; 337 sigemptyset(&up->u_signodefer); 338 sigemptyset(&up->u_sigonstack); 339 sigemptyset(&up->u_sigresethand); 340 lwp->lwp_sigaltstack.ss_sp = 0; 341 lwp->lwp_sigaltstack.ss_size = 0; 342 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 343 344 /* 345 * Make saved resource limit == current resource limit. 346 */ 347 for (i = 0; i < RLIM_NLIMITS; i++) { 348 /*CONSTCOND*/ 349 if (RLIM_SAVED(i)) { 350 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 351 &up->u_saved_rlimit[i]); 352 } 353 } 354 355 /* 356 * If the action was to catch the signal, then the action 357 * must be reset to SIG_DFL. 358 */ 359 sigdefault(p); 360 p->p_flag &= ~(SNOWAIT|SJCTL); 361 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 362 up->u_signal[SIGCLD - 1] = SIG_DFL; 363 364 /* 365 * Delete the dot4 sigqueues/signotifies. 366 */ 367 sigqfree(p); 368 369 mutex_exit(&p->p_lock); 370 371 mutex_enter(&p->p_pflock); 372 p->p_prof.pr_base = NULL; 373 p->p_prof.pr_size = 0; 374 p->p_prof.pr_off = 0; 375 p->p_prof.pr_scale = 0; 376 p->p_prof.pr_samples = 0; 377 mutex_exit(&p->p_pflock); 378 379 ASSERT(curthread->t_schedctl == NULL); 380 381 #if defined(__sparc) 382 if (p->p_utraps != NULL) 383 utrap_free(p); 384 #endif /* __sparc */ 385 386 /* 387 * Close all close-on-exec files. 388 */ 389 close_exec(P_FINFO(p)); 390 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 391 392 /* Unbrand ourself if requested. */ 393 if (brand_action == EBA_NATIVE) 394 BROP(p)->b_proc_exit(p, lwp); 395 ASSERT((brand_action != EBA_NATIVE) || !PROC_IS_BRANDED(p)); 396 397 setregs(&args); 398 399 /* Mark this as an executable vnode */ 400 mutex_enter(&vp->v_lock); 401 vp->v_flag |= VVMEXEC; 402 mutex_exit(&vp->v_lock); 403 404 VN_RELE(vp); 405 if (dir != NULL) 406 VN_RELE(dir); 407 pn_free(&resolvepn); 408 409 /* 410 * Allocate a new lwp directory and lwpid hash table if necessary. 411 */ 412 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 413 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 414 lwpdir->ld_next = lwpdir + 1; 415 tidhash = kmem_zalloc(2 * sizeof (lwpdir_t *), KM_SLEEP); 416 if (p->p_lwpdir != NULL) 417 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 418 else 419 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 420 } 421 422 if (PROC_IS_BRANDED(p)) 423 BROP(p)->b_exec(); 424 425 mutex_enter(&p->p_lock); 426 prbarrier(p); 427 428 /* 429 * Reset lwp id to the default value of 1. 430 * This is a single-threaded process now 431 * and lwp #1 is lwp_wait()able by default. 432 * The t_unpark flag should not be inherited. 433 */ 434 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 435 curthread->t_tid = 1; 436 kpreempt_disable(); 437 ASSERT(curthread->t_lpl != NULL); 438 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 439 kpreempt_enable(); 440 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 441 lgrp_update_trthr_migrations(1); 442 } 443 curthread->t_unpark = 0; 444 curthread->t_proc_flag |= TP_TWAIT; 445 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 446 p->p_lwpdaemon = 0; /* but oh well ... */ 447 p->p_lwpid = 1; 448 449 /* 450 * Install the newly-allocated lwp directory and lwpid hash table 451 * and insert the current thread into the new hash table. 452 */ 453 if (lwpdir != NULL) { 454 old_lwpdir = p->p_lwpdir; 455 old_lwpdir_sz = p->p_lwpdir_sz; 456 old_tidhash = p->p_tidhash; 457 old_tidhash_sz = p->p_tidhash_sz; 458 p->p_lwpdir = p->p_lwpfree = lwpdir; 459 p->p_lwpdir_sz = 2; 460 p->p_tidhash = tidhash; 461 p->p_tidhash_sz = 2; 462 lep->le_thread = curthread; 463 lep->le_lwpid = curthread->t_tid; 464 lep->le_start = curthread->t_start; 465 lwp_hash_in(p, lep); 466 } 467 468 /* 469 * Restore the saved signal mask and 470 * inform /proc that the exec() has finished. 471 */ 472 curthread->t_hold = savedmask; 473 prexecend(); 474 mutex_exit(&p->p_lock); 475 if (old_lwpdir) { 476 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 477 kmem_free(old_tidhash, old_tidhash_sz * sizeof (lwpdir_t *)); 478 } 479 480 ASSERT(error == 0); 481 DTRACE_PROC(exec__success); 482 return (0); 483 484 fail: 485 DTRACE_PROC1(exec__failure, int, error); 486 out: /* error return */ 487 mutex_enter(&p->p_lock); 488 curthread->t_hold = savedmask; 489 prexecend(); 490 mutex_exit(&p->p_lock); 491 ASSERT(error != 0); 492 return (error); 493 } 494 495 496 /* 497 * Perform generic exec duties and switchout to object-file specific 498 * handler. 499 */ 500 int 501 gexec( 502 struct vnode **vpp, 503 struct execa *uap, 504 struct uarg *args, 505 struct intpdata *idatap, 506 int level, 507 long *execsz, 508 caddr_t exec_file, 509 struct cred *cred, 510 int brand_action) 511 { 512 struct vnode *vp; 513 proc_t *pp = ttoproc(curthread); 514 struct execsw *eswp; 515 int error = 0; 516 int suidflags = 0; 517 ssize_t resid; 518 uid_t uid, gid; 519 struct vattr vattr; 520 char magbuf[MAGIC_BYTES]; 521 int setid; 522 cred_t *oldcred, *newcred = NULL; 523 int privflags = 0; 524 int setidfl; 525 526 /* 527 * If the SNOCD or SUGID flag is set, turn it off and remember the 528 * previous setting so we can restore it if we encounter an error. 529 */ 530 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 531 mutex_enter(&pp->p_lock); 532 suidflags = pp->p_flag & PSUIDFLAGS; 533 pp->p_flag &= ~PSUIDFLAGS; 534 mutex_exit(&pp->p_lock); 535 } 536 537 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 538 goto bad; 539 540 /* need to open vnode for stateful file systems like rfs */ 541 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 542 goto bad; 543 vp = *vpp; 544 545 /* 546 * Note: to support binary compatibility with SunOS a.out 547 * executables, we read in the first four bytes, as the 548 * magic number is in bytes 2-3. 549 */ 550 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 551 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 552 goto bad; 553 if (resid != 0) 554 goto bad; 555 556 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 557 goto bad; 558 559 if (level == 0 && 560 (privflags = execsetid(vp, &vattr, &uid, &gid)) != 0) { 561 562 newcred = cred = crdup(cred); 563 564 /* If we can, drop the PA bit */ 565 if ((privflags & PRIV_RESET) != 0) 566 priv_adjust_PA(cred); 567 568 if (privflags & PRIV_SETID) { 569 cred->cr_uid = uid; 570 cred->cr_gid = gid; 571 cred->cr_suid = uid; 572 cred->cr_sgid = gid; 573 } 574 575 if (privflags & MAC_FLAGS) { 576 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 577 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 578 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 579 } 580 581 /* 582 * Implement the privilege updates: 583 * 584 * Restrict with L: 585 * 586 * I' = I & L 587 * 588 * E' = P' = (I' + F) & A 589 * 590 * But if running under ptrace, we cap I with P. 591 */ 592 if ((privflags & PRIV_RESET) != 0) { 593 if ((privflags & PRIV_INCREASE) != 0 && 594 (pp->p_proc_flag & P_PR_PTRACE) != 0) 595 priv_intersect(&CR_OPPRIV(cred), 596 &CR_IPRIV(cred)); 597 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 598 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 599 priv_adjust_PA(cred); 600 } 601 } 602 603 /* SunOS 4.x buy-back */ 604 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 605 (vattr.va_mode & (VSUID|VSGID))) { 606 cmn_err(CE_NOTE, 607 "!%s, uid %d: setuid execution not allowed, dev=%lx", 608 exec_file, cred->cr_uid, vp->v_vfsp->vfs_dev); 609 } 610 611 /* 612 * execsetid() told us whether or not we had to change the 613 * credentials of the process. In privflags, it told us 614 * whether we gained any privileges or executed a set-uid executable. 615 */ 616 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE)); 617 618 /* 619 * Use /etc/system variable to determine if the stack 620 * should be marked as executable by default. 621 */ 622 if (noexec_user_stack) 623 args->stk_prot &= ~PROT_EXEC; 624 625 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 626 args->ex_vp = vp; 627 628 /* 629 * Traditionally, the setid flags told the sub processes whether 630 * the file just executed was set-uid or set-gid; this caused 631 * some confusion as the 'setid' flag did not match the SUGID 632 * process flag which is only set when the uids/gids do not match. 633 * A script set-gid/set-uid to the real uid/gid would start with 634 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 635 * Now we flag those cases where the calling process cannot 636 * be trusted to influence the newly exec'ed process, either 637 * because it runs with more privileges or when the uids/gids 638 * do in fact not match. 639 * This also makes the runtime linker agree with the on exec 640 * values of SNOCD and SUGID. 641 */ 642 setidfl = 0; 643 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 644 !supgroupmember(cred->cr_gid, cred))) { 645 setidfl |= EXECSETID_UGIDS; 646 } 647 if (setid & PRIV_SETUGID) 648 setidfl |= EXECSETID_SETID; 649 if (setid & PRIV_INCREASE) 650 setidfl |= EXECSETID_PRIVS; 651 652 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 653 setidfl, exec_file, cred, brand_action); 654 rw_exit(eswp->exec_lock); 655 if (error != 0) { 656 if (newcred != NULL) 657 crfree(newcred); 658 goto bad; 659 } 660 661 if (level == 0) { 662 mutex_enter(&pp->p_crlock); 663 if (newcred != NULL) { 664 /* 665 * Free the old credentials, and set the new ones. 666 * Do this for both the process and the (single) thread. 667 */ 668 crfree(pp->p_cred); 669 pp->p_cred = cred; /* cred already held for proc */ 670 crhold(cred); /* hold new cred for thread */ 671 /* 672 * DTrace accesses t_cred in probe context. t_cred 673 * must always be either NULL, or point to a valid, 674 * allocated cred structure. 675 */ 676 oldcred = curthread->t_cred; 677 curthread->t_cred = cred; 678 crfree(oldcred); 679 } 680 /* 681 * On emerging from a successful exec(), the saved 682 * uid and gid equal the effective uid and gid. 683 */ 684 cred->cr_suid = cred->cr_uid; 685 cred->cr_sgid = cred->cr_gid; 686 687 /* 688 * If the real and effective ids do not match, this 689 * is a setuid process that should not dump core. 690 * The group comparison is tricky; we prevent the code 691 * from flagging SNOCD when executing with an effective gid 692 * which is a supplementary group. 693 */ 694 if (cred->cr_ruid != cred->cr_uid || 695 (cred->cr_rgid != cred->cr_gid && 696 !supgroupmember(cred->cr_gid, cred)) || 697 (privflags & PRIV_INCREASE) != 0) 698 suidflags = PSUIDFLAGS; 699 else 700 suidflags = 0; 701 702 mutex_exit(&pp->p_crlock); 703 if (suidflags) { 704 mutex_enter(&pp->p_lock); 705 pp->p_flag |= suidflags; 706 mutex_exit(&pp->p_lock); 707 } 708 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 709 /* 710 * If process is traced via /proc, arrange to 711 * invalidate the associated /proc vnode. 712 */ 713 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 714 args->traceinval = 1; 715 } 716 if (pp->p_proc_flag & P_PR_PTRACE) 717 psignal(pp, SIGTRAP); 718 if (args->traceinval) 719 prinvalidate(&pp->p_user); 720 } 721 722 return (0); 723 bad: 724 if (error == 0) 725 error = ENOEXEC; 726 727 if (suidflags) { 728 mutex_enter(&pp->p_lock); 729 pp->p_flag |= suidflags; 730 mutex_exit(&pp->p_lock); 731 } 732 return (error); 733 } 734 735 extern char *execswnames[]; 736 737 struct execsw * 738 allocate_execsw(char *name, char *magic, size_t magic_size) 739 { 740 int i, j; 741 char *ename; 742 char *magicp; 743 744 mutex_enter(&execsw_lock); 745 for (i = 0; i < nexectype; i++) { 746 if (execswnames[i] == NULL) { 747 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 748 (void) strcpy(ename, name); 749 execswnames[i] = ename; 750 /* 751 * Set the magic number last so that we 752 * don't need to hold the execsw_lock in 753 * findexectype(). 754 */ 755 magicp = kmem_alloc(magic_size, KM_SLEEP); 756 for (j = 0; j < magic_size; j++) 757 magicp[j] = magic[j]; 758 execsw[i].exec_magic = magicp; 759 mutex_exit(&execsw_lock); 760 return (&execsw[i]); 761 } 762 } 763 mutex_exit(&execsw_lock); 764 return (NULL); 765 } 766 767 /* 768 * Find the exec switch table entry with the corresponding magic string. 769 */ 770 struct execsw * 771 findexecsw(char *magic) 772 { 773 struct execsw *eswp; 774 775 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 776 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 777 if (magic && eswp->exec_maglen != 0 && 778 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 779 return (eswp); 780 } 781 return (NULL); 782 } 783 784 /* 785 * Find the execsw[] index for the given exec header string by looking for the 786 * magic string at a specified offset and length for each kind of executable 787 * file format until one matches. If no execsw[] entry is found, try to 788 * autoload a module for this magic string. 789 */ 790 struct execsw * 791 findexec_by_hdr(char *header) 792 { 793 struct execsw *eswp; 794 795 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 796 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 797 if (header && eswp->exec_maglen != 0 && 798 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 799 eswp->exec_maglen) == 0) { 800 if (hold_execsw(eswp) != 0) 801 return (NULL); 802 return (eswp); 803 } 804 } 805 return (NULL); /* couldn't find the type */ 806 } 807 808 /* 809 * Find the execsw[] index for the given magic string. If no execsw[] entry 810 * is found, try to autoload a module for this magic string. 811 */ 812 struct execsw * 813 findexec_by_magic(char *magic) 814 { 815 struct execsw *eswp; 816 817 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 818 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 819 if (magic && eswp->exec_maglen != 0 && 820 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 821 if (hold_execsw(eswp) != 0) 822 return (NULL); 823 return (eswp); 824 } 825 } 826 return (NULL); /* couldn't find the type */ 827 } 828 829 static int 830 hold_execsw(struct execsw *eswp) 831 { 832 char *name; 833 834 rw_enter(eswp->exec_lock, RW_READER); 835 while (!LOADED_EXEC(eswp)) { 836 rw_exit(eswp->exec_lock); 837 name = execswnames[eswp-execsw]; 838 ASSERT(name); 839 if (modload("exec", name) == -1) 840 return (-1); 841 rw_enter(eswp->exec_lock, RW_READER); 842 } 843 return (0); 844 } 845 846 static int 847 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp) 848 { 849 proc_t *pp = ttoproc(curthread); 850 uid_t uid, gid; 851 cred_t *cr = pp->p_cred; 852 int privflags = 0; 853 854 /* 855 * Remember credentials. 856 */ 857 uid = cr->cr_uid; 858 gid = cr->cr_gid; 859 860 /* Will try to reset the PRIV_AWARE bit later. */ 861 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 862 privflags |= PRIV_RESET; 863 864 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 865 /* 866 * Set-uid root execution only allowed if the limit set 867 * holds all unsafe privileges. 868 */ 869 if ((vattrp->va_mode & VSUID) && (vattrp->va_uid != 0 || 870 priv_issubset(&priv_unsafe, &CR_LPRIV(cr)))) { 871 uid = vattrp->va_uid; 872 privflags |= PRIV_SETUGID; 873 } 874 if (vattrp->va_mode & VSGID) { 875 gid = vattrp->va_gid; 876 privflags |= PRIV_SETUGID; 877 } 878 } 879 880 /* 881 * Do we need to change our credential anyway? 882 * This is the case when E != I or P != I, as 883 * we need to do the assignments (with F empty and A full) 884 * Or when I is not a subset of L; in that case we need to 885 * enforce L. 886 * 887 * I' = L & I 888 * 889 * E' = P' = (I' + F) & A 890 * or 891 * E' = P' = I' 892 */ 893 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 894 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 895 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 896 privflags |= PRIV_RESET; 897 898 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 899 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 900 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 901 privflags |= MAC_FLAGS; 902 903 /* 904 * When we introduce the "forced" set then we will need 905 * to set PRIV_INCREASE here if I not a subset of P. 906 * If the "allowed" set is introduced we will need to do 907 * a similar thing; however, it seems more reasonable to 908 * have the allowed set reduce "L": script language interpreters 909 * would typically have an allowed set of "all". 910 */ 911 912 /* 913 * Set setuid/setgid protections if no ptrace() compatibility. 914 * For privileged processes, honor setuid/setgid even in 915 * the presence of ptrace() compatibility. 916 */ 917 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 918 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 919 (cr->cr_uid != uid || 920 cr->cr_gid != gid || 921 cr->cr_suid != uid || 922 cr->cr_sgid != gid)) { 923 *uidp = uid; 924 *gidp = gid; 925 privflags |= PRIV_SETID; 926 } 927 return (privflags); 928 } 929 930 int 931 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 932 { 933 int error; 934 proc_t *p = ttoproc(curthread); 935 936 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 937 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 938 return (error); 939 /* 940 * Check the access mode. 941 * If VPROC, ask /proc if the file is an object file. 942 */ 943 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 944 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 945 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 946 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 947 if (error == 0) 948 error = EACCES; 949 return (error); 950 } 951 952 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 953 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 954 /* 955 * If process is under ptrace(2) compatibility, 956 * fail the exec(2). 957 */ 958 if (p->p_proc_flag & P_PR_PTRACE) 959 goto bad; 960 /* 961 * Process is traced via /proc. 962 * Arrange to invalidate the /proc vnode. 963 */ 964 args->traceinval = 1; 965 } 966 return (0); 967 bad: 968 if (error == 0) 969 error = ENOEXEC; 970 return (error); 971 } 972 973 /* 974 * Map a section of an executable file into the user's 975 * address space. 976 */ 977 int 978 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 979 off_t offset, int prot, int page, uint_t szc) 980 { 981 int error = 0; 982 off_t oldoffset; 983 caddr_t zfodbase, oldaddr; 984 size_t end, oldlen; 985 size_t zfoddiff; 986 label_t ljb; 987 proc_t *p = ttoproc(curthread); 988 989 oldaddr = addr; 990 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 991 if (len) { 992 oldlen = len; 993 len += ((size_t)oldaddr - (size_t)addr); 994 oldoffset = offset; 995 offset = (off_t)((uintptr_t)offset & PAGEMASK); 996 if (page) { 997 spgcnt_t prefltmem, availm, npages; 998 int preread; 999 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1000 1001 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1002 mflag |= MAP_TEXT; 1003 } else { 1004 mflag |= MAP_INITDATA; 1005 } 1006 1007 if (valid_usr_range(addr, len, prot, p->p_as, 1008 p->p_as->a_userlimit) != RANGE_OKAY) { 1009 error = ENOMEM; 1010 goto bad; 1011 } 1012 if (error = VOP_MAP(vp, (offset_t)offset, 1013 p->p_as, &addr, len, prot, PROT_ALL, 1014 mflag, CRED(), NULL)) 1015 goto bad; 1016 1017 /* 1018 * If the segment can fit, then we prefault 1019 * the entire segment in. This is based on the 1020 * model that says the best working set of a 1021 * small program is all of its pages. 1022 */ 1023 npages = (spgcnt_t)btopr(len); 1024 prefltmem = freemem - desfree; 1025 preread = 1026 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1027 1028 /* 1029 * If we aren't prefaulting the segment, 1030 * increment "deficit", if necessary to ensure 1031 * that pages will become available when this 1032 * process starts executing. 1033 */ 1034 availm = freemem - lotsfree; 1035 if (preread == 0 && npages > availm && 1036 deficit < lotsfree) { 1037 deficit += MIN((pgcnt_t)(npages - availm), 1038 lotsfree - deficit); 1039 } 1040 1041 if (preread) { 1042 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1043 "execmap preread:freemem %d size %lu", 1044 freemem, len); 1045 (void) as_fault(p->p_as->a_hat, p->p_as, 1046 (caddr_t)addr, len, F_INVAL, S_READ); 1047 } 1048 } else { 1049 if (valid_usr_range(addr, len, prot, p->p_as, 1050 p->p_as->a_userlimit) != RANGE_OKAY) { 1051 error = ENOMEM; 1052 goto bad; 1053 } 1054 1055 if (error = as_map(p->p_as, addr, len, 1056 segvn_create, zfod_argsp)) 1057 goto bad; 1058 /* 1059 * Read in the segment in one big chunk. 1060 */ 1061 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1062 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1063 (rlim64_t)0, CRED(), (ssize_t *)0)) 1064 goto bad; 1065 /* 1066 * Now set protections. 1067 */ 1068 if (prot != PROT_ZFOD) { 1069 (void) as_setprot(p->p_as, (caddr_t)addr, 1070 len, prot); 1071 } 1072 } 1073 } 1074 1075 if (zfodlen) { 1076 struct as *as = curproc->p_as; 1077 struct seg *seg; 1078 uint_t zprot = 0; 1079 1080 end = (size_t)addr + len; 1081 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1082 zfoddiff = (uintptr_t)zfodbase - end; 1083 if (zfoddiff) { 1084 /* 1085 * Before we go to zero the remaining space on the last 1086 * page, make sure we have write permission. 1087 */ 1088 1089 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1090 seg = as_segat(curproc->p_as, (caddr_t)end); 1091 if (seg != NULL) 1092 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1093 &zprot); 1094 AS_LOCK_EXIT(as, &as->a_lock); 1095 1096 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1097 (void) as_setprot(as, (caddr_t)end, 1098 zfoddiff - 1, zprot | PROT_WRITE); 1099 } 1100 1101 if (on_fault(&ljb)) { 1102 no_fault(); 1103 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1104 (void) as_setprot(as, (caddr_t)end, 1105 zfoddiff - 1, zprot); 1106 error = EFAULT; 1107 goto bad; 1108 } 1109 uzero((void *)end, zfoddiff); 1110 no_fault(); 1111 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1112 (void) as_setprot(as, (caddr_t)end, 1113 zfoddiff - 1, zprot); 1114 } 1115 if (zfodlen > zfoddiff) { 1116 struct segvn_crargs crargs = 1117 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1118 1119 zfodlen -= zfoddiff; 1120 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1121 p->p_as->a_userlimit) != RANGE_OKAY) { 1122 error = ENOMEM; 1123 goto bad; 1124 } 1125 if (szc > 0) { 1126 /* 1127 * ASSERT alignment because the mapelfexec() 1128 * caller for the szc > 0 case extended zfod 1129 * so it's end is pgsz aligned. 1130 */ 1131 size_t pgsz = page_get_pagesize(szc); 1132 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1133 1134 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1135 crargs.szc = szc; 1136 } else { 1137 crargs.szc = AS_MAP_HEAP; 1138 } 1139 } else { 1140 crargs.szc = AS_MAP_NO_LPOOB; 1141 } 1142 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1143 zfodlen, segvn_create, &crargs)) 1144 goto bad; 1145 if (prot != PROT_ZFOD) { 1146 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1147 zfodlen, prot); 1148 } 1149 } 1150 } 1151 return (0); 1152 bad: 1153 return (error); 1154 } 1155 1156 void 1157 setexecenv(struct execenv *ep) 1158 { 1159 proc_t *p = ttoproc(curthread); 1160 klwp_t *lwp = ttolwp(curthread); 1161 struct vnode *vp; 1162 1163 p->p_bssbase = ep->ex_bssbase; 1164 p->p_brkbase = ep->ex_brkbase; 1165 p->p_brksize = ep->ex_brksize; 1166 if (p->p_exec) 1167 VN_RELE(p->p_exec); /* out with the old */ 1168 vp = p->p_exec = ep->ex_vp; 1169 if (vp != NULL) 1170 VN_HOLD(vp); /* in with the new */ 1171 1172 lwp->lwp_sigaltstack.ss_sp = 0; 1173 lwp->lwp_sigaltstack.ss_size = 0; 1174 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1175 } 1176 1177 int 1178 execopen(struct vnode **vpp, int *fdp) 1179 { 1180 struct vnode *vp = *vpp; 1181 file_t *fp; 1182 int error = 0; 1183 int filemode = FREAD; 1184 1185 VN_HOLD(vp); /* open reference */ 1186 if (error = falloc(NULL, filemode, &fp, fdp)) { 1187 VN_RELE(vp); 1188 *fdp = -1; /* just in case falloc changed value */ 1189 return (error); 1190 } 1191 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1192 VN_RELE(vp); 1193 setf(*fdp, NULL); 1194 unfalloc(fp); 1195 *fdp = -1; 1196 return (error); 1197 } 1198 *vpp = vp; /* vnode should not have changed */ 1199 fp->f_vnode = vp; 1200 mutex_exit(&fp->f_tlock); 1201 setf(*fdp, fp); 1202 return (0); 1203 } 1204 1205 int 1206 execclose(int fd) 1207 { 1208 return (closeandsetf(fd, NULL)); 1209 } 1210 1211 1212 /* 1213 * noexec stub function. 1214 */ 1215 /*ARGSUSED*/ 1216 int 1217 noexec( 1218 struct vnode *vp, 1219 struct execa *uap, 1220 struct uarg *args, 1221 struct intpdata *idatap, 1222 int level, 1223 long *execsz, 1224 int setid, 1225 caddr_t exec_file, 1226 struct cred *cred) 1227 { 1228 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1229 return (ENOEXEC); 1230 } 1231 1232 /* 1233 * Support routines for building a user stack. 1234 * 1235 * execve(path, argv, envp) must construct a new stack with the specified 1236 * arguments and environment variables (see exec_args() for a description 1237 * of the user stack layout). To do this, we copy the arguments and 1238 * environment variables from the old user address space into the kernel, 1239 * free the old as, create the new as, and copy our buffered information 1240 * to the new stack. Our kernel buffer has the following structure: 1241 * 1242 * +-----------------------+ <--- stk_base + stk_size 1243 * | string offsets | 1244 * +-----------------------+ <--- stk_offp 1245 * | | 1246 * | STK_AVAIL() space | 1247 * | | 1248 * +-----------------------+ <--- stk_strp 1249 * | strings | 1250 * +-----------------------+ <--- stk_base 1251 * 1252 * When we add a string, we store the string's contents (including the null 1253 * terminator) at stk_strp, and we store the offset of the string relative to 1254 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1255 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1256 * the difference between these pointers. If we run out of space, we return 1257 * an error and exec_args() starts all over again with a buffer twice as large. 1258 * When we're all done, the kernel buffer looks like this: 1259 * 1260 * +-----------------------+ <--- stk_base + stk_size 1261 * | argv[0] offset | 1262 * +-----------------------+ 1263 * | ... | 1264 * +-----------------------+ 1265 * | argv[argc-1] offset | 1266 * +-----------------------+ 1267 * | envp[0] offset | 1268 * +-----------------------+ 1269 * | ... | 1270 * +-----------------------+ 1271 * | envp[envc-1] offset | 1272 * +-----------------------+ 1273 * | AT_SUN_PLATFORM offset| 1274 * +-----------------------+ 1275 * | AT_SUN_EXECNAME offset| 1276 * +-----------------------+ <--- stk_offp 1277 * | | 1278 * | STK_AVAIL() space | 1279 * | | 1280 * +-----------------------+ <--- stk_strp 1281 * | AT_SUN_EXECNAME offset| 1282 * +-----------------------+ 1283 * | AT_SUN_PLATFORM offset| 1284 * +-----------------------+ 1285 * | envp[envc-1] string | 1286 * +-----------------------+ 1287 * | ... | 1288 * +-----------------------+ 1289 * | envp[0] string | 1290 * +-----------------------+ 1291 * | argv[argc-1] string | 1292 * +-----------------------+ 1293 * | ... | 1294 * +-----------------------+ 1295 * | argv[0] string | 1296 * +-----------------------+ <--- stk_base 1297 */ 1298 1299 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1300 1301 /* 1302 * Add a string to the stack. 1303 */ 1304 static int 1305 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1306 { 1307 int error; 1308 size_t len; 1309 1310 if (STK_AVAIL(args) < sizeof (int)) 1311 return (E2BIG); 1312 *--args->stk_offp = args->stk_strp - args->stk_base; 1313 1314 if (segflg == UIO_USERSPACE) { 1315 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1316 if (error != 0) 1317 return (error); 1318 } else { 1319 len = strlen(sp) + 1; 1320 if (len > STK_AVAIL(args)) 1321 return (E2BIG); 1322 bcopy(sp, args->stk_strp, len); 1323 } 1324 1325 args->stk_strp += len; 1326 1327 return (0); 1328 } 1329 1330 static int 1331 stk_getptr(uarg_t *args, char *src, char **dst) 1332 { 1333 int error; 1334 1335 if (args->from_model == DATAMODEL_NATIVE) { 1336 ulong_t ptr; 1337 error = fulword(src, &ptr); 1338 *dst = (caddr_t)ptr; 1339 } else { 1340 uint32_t ptr; 1341 error = fuword32(src, &ptr); 1342 *dst = (caddr_t)(uintptr_t)ptr; 1343 } 1344 return (error); 1345 } 1346 1347 static int 1348 stk_putptr(uarg_t *args, char *addr, char *value) 1349 { 1350 if (args->to_model == DATAMODEL_NATIVE) 1351 return (sulword(addr, (ulong_t)value)); 1352 else 1353 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1354 } 1355 1356 static int 1357 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1358 { 1359 char *sp; 1360 int argc, error; 1361 int argv_empty = 0; 1362 size_t ptrsize = args->from_ptrsize; 1363 size_t size, pad; 1364 char *argv = (char *)uap->argp; 1365 char *envp = (char *)uap->envp; 1366 1367 /* 1368 * Copy interpreter's name and argument to argv[0] and argv[1]. 1369 */ 1370 if (intp != NULL && intp->intp_name != NULL) { 1371 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1372 return (error); 1373 if (intp->intp_arg != NULL && 1374 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1375 return (error); 1376 if (args->fname != NULL) 1377 error = stk_add(args, args->fname, UIO_SYSSPACE); 1378 else 1379 error = stk_add(args, uap->fname, UIO_USERSPACE); 1380 if (error) 1381 return (error); 1382 1383 /* 1384 * Check for an empty argv[]. 1385 */ 1386 if (stk_getptr(args, argv, &sp)) 1387 return (EFAULT); 1388 if (sp == NULL) 1389 argv_empty = 1; 1390 1391 argv += ptrsize; /* ignore original argv[0] */ 1392 } 1393 1394 if (argv_empty == 0) { 1395 /* 1396 * Add argv[] strings to the stack. 1397 */ 1398 for (;;) { 1399 if (stk_getptr(args, argv, &sp)) 1400 return (EFAULT); 1401 if (sp == NULL) 1402 break; 1403 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1404 return (error); 1405 argv += ptrsize; 1406 } 1407 } 1408 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1409 args->arglen = args->stk_strp - args->stk_base; 1410 1411 /* 1412 * Add environ[] strings to the stack. 1413 */ 1414 if (envp != NULL) { 1415 for (;;) { 1416 if (stk_getptr(args, envp, &sp)) 1417 return (EFAULT); 1418 if (sp == NULL) 1419 break; 1420 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1421 return (error); 1422 envp += ptrsize; 1423 } 1424 } 1425 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1426 args->ne = args->na - argc; 1427 1428 /* 1429 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1430 * AT_SUN_EMULATOR strings to the stack. 1431 */ 1432 if (auxvpp != NULL && *auxvpp != NULL) { 1433 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1434 return (error); 1435 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1436 return (error); 1437 if (args->brandname != NULL && 1438 (error = stk_add(args, args->brandname, 1439 UIO_SYSSPACE)) != 0) 1440 return (error); 1441 if (args->emulator != NULL && 1442 (error = stk_add(args, args->emulator, 1443 UIO_SYSSPACE)) != 0) 1444 return (error); 1445 } 1446 1447 /* 1448 * Compute the size of the stack. This includes all the pointers, 1449 * the space reserved for the aux vector, and all the strings. 1450 * The total number of pointers is args->na (which is argc + envc) 1451 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1452 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1453 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1454 * all the strings, at the very top of the stack. 1455 */ 1456 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1457 (args->stk_strp - args->stk_base); 1458 1459 /* 1460 * Pad the string section with zeroes to align the stack size. 1461 */ 1462 pad = P2NPHASE(size, args->stk_align); 1463 1464 if (STK_AVAIL(args) < pad) 1465 return (E2BIG); 1466 1467 args->usrstack_size = size + pad; 1468 1469 while (pad-- != 0) 1470 *args->stk_strp++ = 0; 1471 1472 args->nc = args->stk_strp - args->stk_base; 1473 1474 return (0); 1475 } 1476 1477 static int 1478 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1479 { 1480 size_t ptrsize = args->to_ptrsize; 1481 ssize_t pslen; 1482 char *kstrp = args->stk_base; 1483 char *ustrp = usrstack - args->nc - ptrsize; 1484 char *usp = usrstack - args->usrstack_size; 1485 int *offp = (int *)(args->stk_base + args->stk_size); 1486 int envc = args->ne; 1487 int argc = args->na - envc; 1488 int i; 1489 1490 /* 1491 * Record argc for /proc. 1492 */ 1493 up->u_argc = argc; 1494 1495 /* 1496 * Put argc on the stack. Note that even though it's an int, 1497 * it always consumes ptrsize bytes (for alignment). 1498 */ 1499 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1500 return (-1); 1501 1502 /* 1503 * Add argc space (ptrsize) to usp and record argv for /proc. 1504 */ 1505 up->u_argv = (uintptr_t)(usp += ptrsize); 1506 1507 /* 1508 * Put the argv[] pointers on the stack. 1509 */ 1510 for (i = 0; i < argc; i++, usp += ptrsize) 1511 if (stk_putptr(args, usp, &ustrp[*--offp])) 1512 return (-1); 1513 1514 /* 1515 * Copy arguments to u_psargs. 1516 */ 1517 pslen = MIN(args->arglen, PSARGSZ) - 1; 1518 for (i = 0; i < pslen; i++) 1519 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1520 while (i < PSARGSZ) 1521 up->u_psargs[i++] = '\0'; 1522 1523 /* 1524 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1525 * record envp for /proc. 1526 */ 1527 up->u_envp = (uintptr_t)(usp += ptrsize); 1528 1529 /* 1530 * Put the envp[] pointers on the stack. 1531 */ 1532 for (i = 0; i < envc; i++, usp += ptrsize) 1533 if (stk_putptr(args, usp, &ustrp[*--offp])) 1534 return (-1); 1535 1536 /* 1537 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1538 * remember where the stack ends, which is also where auxv begins. 1539 */ 1540 args->stackend = usp += ptrsize; 1541 1542 /* 1543 * Put all the argv[], envp[], and auxv strings on the stack. 1544 */ 1545 if (copyout(args->stk_base, ustrp, args->nc)) 1546 return (-1); 1547 1548 /* 1549 * Fill in the aux vector now that we know the user stack addresses 1550 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1551 * AT_SUN_EMULATOR strings. 1552 */ 1553 if (auxvpp != NULL && *auxvpp != NULL) { 1554 if (args->to_model == DATAMODEL_NATIVE) { 1555 auxv_t **a = (auxv_t **)auxvpp; 1556 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1557 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1558 if (args->brandname != NULL) 1559 ADDAUX(*a, 1560 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1561 if (args->emulator != NULL) 1562 ADDAUX(*a, 1563 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1564 } else { 1565 auxv32_t **a = (auxv32_t **)auxvpp; 1566 ADDAUX(*a, 1567 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1568 ADDAUX(*a, 1569 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1570 if (args->brandname != NULL) 1571 ADDAUX(*a, AT_SUN_BRANDNAME, 1572 (int)(uintptr_t)&ustrp[*--offp]) 1573 if (args->emulator != NULL) 1574 ADDAUX(*a, AT_SUN_EMULATOR, 1575 (int)(uintptr_t)&ustrp[*--offp]) 1576 } 1577 } 1578 1579 return (0); 1580 } 1581 1582 /* 1583 * Initialize a new user stack with the specified arguments and environment. 1584 * The initial user stack layout is as follows: 1585 * 1586 * User Stack 1587 * +---------------+ <--- curproc->p_usrstack 1588 * | | 1589 * | slew | 1590 * | | 1591 * +---------------+ 1592 * | NULL | 1593 * +---------------+ 1594 * | | 1595 * | auxv strings | 1596 * | | 1597 * +---------------+ 1598 * | | 1599 * | envp strings | 1600 * | | 1601 * +---------------+ 1602 * | | 1603 * | argv strings | 1604 * | | 1605 * +---------------+ <--- ustrp 1606 * | | 1607 * | aux vector | 1608 * | | 1609 * +---------------+ <--- auxv 1610 * | NULL | 1611 * +---------------+ 1612 * | envp[envc-1] | 1613 * +---------------+ 1614 * | ... | 1615 * +---------------+ 1616 * | envp[0] | 1617 * +---------------+ <--- envp[] 1618 * | NULL | 1619 * +---------------+ 1620 * | argv[argc-1] | 1621 * +---------------+ 1622 * | ... | 1623 * +---------------+ 1624 * | argv[0] | 1625 * +---------------+ <--- argv[] 1626 * | argc | 1627 * +---------------+ <--- stack base 1628 */ 1629 int 1630 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1631 { 1632 size_t size; 1633 int error; 1634 proc_t *p = ttoproc(curthread); 1635 user_t *up = PTOU(p); 1636 char *usrstack; 1637 rctl_entity_p_t e; 1638 struct as *as; 1639 extern int use_stk_lpg; 1640 size_t sp_slew; 1641 1642 args->from_model = p->p_model; 1643 if (p->p_model == DATAMODEL_NATIVE) { 1644 args->from_ptrsize = sizeof (long); 1645 } else { 1646 args->from_ptrsize = sizeof (int32_t); 1647 } 1648 1649 if (args->to_model == DATAMODEL_NATIVE) { 1650 args->to_ptrsize = sizeof (long); 1651 args->ncargs = NCARGS; 1652 args->stk_align = STACK_ALIGN; 1653 usrstack = (char *)USRSTACK; 1654 } else { 1655 args->to_ptrsize = sizeof (int32_t); 1656 args->ncargs = NCARGS32; 1657 args->stk_align = STACK_ALIGN32; 1658 usrstack = (char *)USRSTACK32; 1659 } 1660 1661 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1662 1663 #if defined(__sparc) 1664 /* 1665 * Make sure user register windows are empty before 1666 * attempting to make a new stack. 1667 */ 1668 (void) flush_user_windows_to_stack(NULL); 1669 #endif 1670 1671 for (size = PAGESIZE; ; size *= 2) { 1672 args->stk_size = size; 1673 args->stk_base = kmem_alloc(size, KM_SLEEP); 1674 args->stk_strp = args->stk_base; 1675 args->stk_offp = (int *)(args->stk_base + size); 1676 error = stk_copyin(uap, args, intp, auxvpp); 1677 if (error == 0) 1678 break; 1679 kmem_free(args->stk_base, size); 1680 if (error != E2BIG && error != ENAMETOOLONG) 1681 return (error); 1682 if (size >= args->ncargs) 1683 return (E2BIG); 1684 } 1685 1686 size = args->usrstack_size; 1687 1688 ASSERT(error == 0); 1689 ASSERT(P2PHASE(size, args->stk_align) == 0); 1690 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1691 1692 if (size > args->ncargs) { 1693 kmem_free(args->stk_base, args->stk_size); 1694 return (E2BIG); 1695 } 1696 1697 /* 1698 * Leave only the current lwp and force the other lwps to exit. 1699 * If another lwp beat us to the punch by calling exit(), bail out. 1700 */ 1701 if ((error = exitlwps(0)) != 0) { 1702 kmem_free(args->stk_base, args->stk_size); 1703 return (error); 1704 } 1705 1706 /* 1707 * Revoke any doors created by the process. 1708 */ 1709 if (p->p_door_list) 1710 door_exit(); 1711 1712 /* 1713 * Release schedctl data structures. 1714 */ 1715 if (p->p_pagep) 1716 schedctl_proc_cleanup(); 1717 1718 /* 1719 * Clean up any DTrace helpers for the process. 1720 */ 1721 if (p->p_dtrace_helpers != NULL) { 1722 ASSERT(dtrace_helpers_cleanup != NULL); 1723 (*dtrace_helpers_cleanup)(); 1724 } 1725 1726 mutex_enter(&p->p_lock); 1727 /* 1728 * Cleanup the DTrace provider associated with this process. 1729 */ 1730 if (p->p_dtrace_probes) { 1731 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1732 dtrace_fasttrap_exec_ptr(p); 1733 } 1734 mutex_exit(&p->p_lock); 1735 1736 /* 1737 * discard the lwpchan cache. 1738 */ 1739 if (p->p_lcp != NULL) 1740 lwpchan_destroy_cache(1); 1741 1742 /* 1743 * Delete the POSIX timers. 1744 */ 1745 if (p->p_itimer != NULL) 1746 timer_exit(); 1747 1748 if (audit_active) 1749 audit_exec(args->stk_base, args->stk_base + args->arglen, 1750 args->na - args->ne, args->ne); 1751 1752 /* 1753 * Ensure that we don't change resource associations while we 1754 * change address spaces. 1755 */ 1756 mutex_enter(&p->p_lock); 1757 pool_barrier_enter(); 1758 mutex_exit(&p->p_lock); 1759 1760 /* 1761 * Destroy the old address space and create a new one. 1762 * From here on, any errors are fatal to the exec()ing process. 1763 * On error we return -1, which means the caller must SIGKILL 1764 * the process. 1765 */ 1766 relvm(); 1767 1768 mutex_enter(&p->p_lock); 1769 pool_barrier_exit(); 1770 mutex_exit(&p->p_lock); 1771 1772 up->u_execsw = args->execswp; 1773 1774 p->p_brkbase = NULL; 1775 p->p_brksize = 0; 1776 p->p_brkpageszc = 0; 1777 p->p_stksize = 0; 1778 p->p_stkpageszc = 0; 1779 p->p_model = args->to_model; 1780 p->p_usrstack = usrstack; 1781 p->p_stkprot = args->stk_prot; 1782 p->p_datprot = args->dat_prot; 1783 1784 /* 1785 * Reset resource controls such that all controls are again active as 1786 * well as appropriate to the potentially new address model for the 1787 * process. 1788 */ 1789 e.rcep_p.proc = p; 1790 e.rcep_t = RCENTITY_PROCESS; 1791 rctl_set_reset(p->p_rctls, p, &e); 1792 1793 /* Too early to call map_pgsz for the heap */ 1794 if (use_stk_lpg) { 1795 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 1796 } 1797 1798 mutex_enter(&p->p_lock); 1799 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 1800 mutex_exit(&p->p_lock); 1801 1802 /* 1803 * Some platforms may choose to randomize real stack start by adding a 1804 * small slew (not more than a few hundred bytes) to the top of the 1805 * stack. This helps avoid cache thrashing when identical processes 1806 * simultaneously share caches that don't provide enough associativity 1807 * (e.g. sun4v systems). In this case stack slewing makes the same hot 1808 * stack variables in different processes to live in different cache 1809 * sets increasing effective associativity. 1810 */ 1811 sp_slew = exec_get_spslew(); 1812 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 1813 exec_set_sp(size + sp_slew); 1814 1815 as = as_alloc(); 1816 p->p_as = as; 1817 as->a_proc = p; 1818 if (p->p_model == DATAMODEL_ILP32) 1819 as->a_userlimit = (caddr_t)USERLIMIT32; 1820 (void) hat_setup(as->a_hat, HAT_ALLOC); 1821 hat_join_srd(as->a_hat, args->ex_vp); 1822 1823 /* 1824 * Finally, write out the contents of the new stack. 1825 */ 1826 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 1827 kmem_free(args->stk_base, args->stk_size); 1828 return (error); 1829 } 1830