1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* Copyright (c) 1988 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/cred_impl.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/file.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/mman.h> 45 #include <sys/acct.h> 46 #include <sys/cpuvar.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/debug.h> 50 #include <sys/pathname.h> 51 #include <sys/vm.h> 52 #include <sys/vtrace.h> 53 #include <sys/exec.h> 54 #include <sys/exechdr.h> 55 #include <sys/kmem.h> 56 #include <sys/prsystm.h> 57 #include <sys/modctl.h> 58 #include <sys/vmparam.h> 59 #include <sys/schedctl.h> 60 #include <sys/utrap.h> 61 #include <sys/systeminfo.h> 62 #include <sys/stack.h> 63 #include <sys/rctl.h> 64 #include <sys/dtrace.h> 65 #include <sys/lwpchan_impl.h> 66 #include <sys/pool.h> 67 #include <sys/sdt.h> 68 #include <sys/brand.h> 69 70 #include <c2/audit.h> 71 72 #include <vm/hat.h> 73 #include <vm/anon.h> 74 #include <vm/as.h> 75 #include <vm/seg.h> 76 #include <vm/seg_vn.h> 77 78 #define PRIV_RESET 0x01 /* needs to reset privs */ 79 #define PRIV_SETID 0x02 /* needs to change uids */ 80 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 81 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 82 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 83 84 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *); 85 static int hold_execsw(struct execsw *); 86 87 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 88 #if defined(_SYSCALL32_IMPL) 89 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 90 #endif 91 92 int exec_lpg_disable = 0; 93 #define PSUIDFLAGS (SNOCD|SUGID) 94 95 /* 96 * exec() - wrapper around exece providing NULL environment pointer 97 */ 98 int 99 exec(const char *fname, const char **argp) 100 { 101 return (exece(fname, argp, NULL)); 102 } 103 104 /* 105 * exece() - system call wrapper around exec_common() 106 */ 107 int 108 exece(const char *fname, const char **argp, const char **envp) 109 { 110 int error; 111 112 error = exec_common(fname, argp, envp, EBA_NONE); 113 return (error ? (set_errno(error)) : 0); 114 } 115 116 int 117 exec_common(const char *fname, const char **argp, const char **envp, 118 int brand_action) 119 { 120 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 121 proc_t *p = ttoproc(curthread); 122 klwp_t *lwp = ttolwp(curthread); 123 struct user *up = PTOU(p); 124 long execsz; /* temporary count of exec size */ 125 int i; 126 int error; 127 char exec_file[MAXCOMLEN+1]; 128 struct pathname pn; 129 struct pathname resolvepn; 130 struct uarg args; 131 struct execa ua; 132 k_sigset_t savedmask; 133 lwpdir_t *lwpdir = NULL; 134 lwpdir_t **tidhash; 135 lwpdir_t *old_lwpdir = NULL; 136 uint_t old_lwpdir_sz; 137 lwpdir_t **old_tidhash; 138 uint_t old_tidhash_sz; 139 lwpent_t *lep; 140 int brandme = 0; 141 142 /* 143 * exec() is not supported for the /proc agent lwp. 144 */ 145 if (curthread == p->p_agenttp) 146 return (ENOTSUP); 147 148 if ((error = secpolicy_basic_exec(CRED())) != 0) 149 return (error); 150 151 if (brand_action != EBA_NONE) { 152 /* 153 * Brand actions are not supported for processes that are not 154 * running in a branded zone. 155 */ 156 if (!ZONE_IS_BRANDED(p->p_zone)) 157 return (ENOTSUP); 158 159 if (brand_action == EBA_NATIVE) { 160 /* Only branded processes can be unbranded */ 161 if (!PROC_IS_BRANDED(p)) 162 return (ENOTSUP); 163 } else { 164 /* Only unbranded processes can be branded */ 165 if (PROC_IS_BRANDED(p)) 166 return (ENOTSUP); 167 brandme = 1; 168 } 169 } else { 170 /* 171 * If this is a native zone, or if the process is already 172 * branded, then we don't need to do anything. If this is 173 * a native process in a branded zone, we need to brand the 174 * process as it exec()s the new binary. 175 */ 176 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 177 brandme = 1; 178 } 179 180 /* 181 * Inform /proc that an exec() has started. 182 * Hold signals that are ignored by default so that we will 183 * not be interrupted by a signal that will be ignored after 184 * successful completion of gexec(). 185 */ 186 mutex_enter(&p->p_lock); 187 prexecstart(); 188 schedctl_finish_sigblock(curthread); 189 savedmask = curthread->t_hold; 190 sigorset(&curthread->t_hold, &ignoredefault); 191 mutex_exit(&p->p_lock); 192 193 /* 194 * Look up path name and remember last component for later. 195 * To help coreadm expand its %d token, we attempt to save 196 * the directory containing the executable in p_execdir. The 197 * first call to lookuppn() may fail and return EINVAL because 198 * dirvpp is non-NULL. In that case, we make a second call to 199 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 200 * but coreadm is allowed to expand %d to the empty string and 201 * there are other cases in which that failure may occur. 202 */ 203 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 204 goto out; 205 pn_alloc(&resolvepn); 206 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 207 pn_free(&resolvepn); 208 pn_free(&pn); 209 if (error != EINVAL) 210 goto out; 211 212 dir = NULL; 213 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 214 goto out; 215 pn_alloc(&resolvepn); 216 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 217 &vp)) != 0) { 218 pn_free(&resolvepn); 219 pn_free(&pn); 220 goto out; 221 } 222 } 223 if (vp == NULL) { 224 if (dir != NULL) 225 VN_RELE(dir); 226 error = ENOENT; 227 pn_free(&resolvepn); 228 pn_free(&pn); 229 goto out; 230 } 231 232 /* 233 * We do not allow executing files in attribute directories. 234 * We test this by determining whether the resolved path 235 * contains a "/" when we're in an attribute directory; 236 * only if the pathname does not contain a "/" the resolved path 237 * points to a file in the current working (attribute) directory. 238 */ 239 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 240 strchr(resolvepn.pn_path, '/') == NULL) { 241 if (dir != NULL) 242 VN_RELE(dir); 243 error = EACCES; 244 pn_free(&resolvepn); 245 pn_free(&pn); 246 VN_RELE(vp); 247 goto out; 248 } 249 250 bzero(exec_file, MAXCOMLEN+1); 251 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 252 bzero(&args, sizeof (args)); 253 args.pathname = resolvepn.pn_path; 254 /* don't free resolvepn until we are done with args */ 255 pn_free(&pn); 256 257 /* 258 * Specific exec handlers, or policies determined via 259 * /etc/system may override the historical default. 260 */ 261 args.stk_prot = PROT_ZFOD; 262 args.dat_prot = PROT_ZFOD; 263 264 CPU_STATS_ADD_K(sys, sysexec, 1); 265 DTRACE_PROC1(exec, char *, args.pathname); 266 267 ua.fname = fname; 268 ua.argp = argp; 269 ua.envp = envp; 270 271 /* If necessary, brand this process before we start the exec. */ 272 if (brandme != 0) 273 brand_setbrand(p); 274 275 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 276 exec_file, p->p_cred, brand_action)) != 0) { 277 if (brandme != 0) 278 BROP(p)->b_proc_exit(p, lwp); 279 VN_RELE(vp); 280 if (dir != NULL) 281 VN_RELE(dir); 282 pn_free(&resolvepn); 283 goto fail; 284 } 285 286 /* 287 * Free floating point registers (sun4u only) 288 */ 289 ASSERT(lwp != NULL); 290 lwp_freeregs(lwp, 1); 291 292 /* 293 * Free thread and process context ops. 294 */ 295 if (curthread->t_ctx) 296 freectx(curthread, 1); 297 if (p->p_pctx) 298 freepctx(p, 1); 299 300 /* 301 * Remember file name for accounting; clear any cached DTrace predicate. 302 */ 303 up->u_acflag &= ~AFORK; 304 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 305 curthread->t_predcache = NULL; 306 307 /* 308 * Clear contract template state 309 */ 310 lwp_ctmpl_clear(lwp); 311 312 /* 313 * Save the directory in which we found the executable for expanding 314 * the %d token used in core file patterns. 315 */ 316 mutex_enter(&p->p_lock); 317 tmpvp = p->p_execdir; 318 p->p_execdir = dir; 319 if (p->p_execdir != NULL) 320 VN_HOLD(p->p_execdir); 321 mutex_exit(&p->p_lock); 322 323 if (tmpvp != NULL) 324 VN_RELE(tmpvp); 325 326 /* 327 * Reset stack state to the user stack, clear set of signals 328 * caught on the signal stack, and reset list of signals that 329 * restart system calls; the new program's environment should 330 * not be affected by detritus from the old program. Any 331 * pending held signals remain held, so don't clear t_hold. 332 */ 333 mutex_enter(&p->p_lock); 334 lwp->lwp_oldcontext = 0; 335 lwp->lwp_ustack = 0; 336 lwp->lwp_old_stk_ctl = 0; 337 sigemptyset(&up->u_signodefer); 338 sigemptyset(&up->u_sigonstack); 339 sigemptyset(&up->u_sigresethand); 340 lwp->lwp_sigaltstack.ss_sp = 0; 341 lwp->lwp_sigaltstack.ss_size = 0; 342 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 343 344 /* 345 * Make saved resource limit == current resource limit. 346 */ 347 for (i = 0; i < RLIM_NLIMITS; i++) { 348 /*CONSTCOND*/ 349 if (RLIM_SAVED(i)) { 350 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 351 &up->u_saved_rlimit[i]); 352 } 353 } 354 355 /* 356 * If the action was to catch the signal, then the action 357 * must be reset to SIG_DFL. 358 */ 359 sigdefault(p); 360 p->p_flag &= ~(SNOWAIT|SJCTL); 361 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 362 up->u_signal[SIGCLD - 1] = SIG_DFL; 363 364 /* 365 * Delete the dot4 sigqueues/signotifies. 366 */ 367 sigqfree(p); 368 369 mutex_exit(&p->p_lock); 370 371 mutex_enter(&p->p_pflock); 372 p->p_prof.pr_base = NULL; 373 p->p_prof.pr_size = 0; 374 p->p_prof.pr_off = 0; 375 p->p_prof.pr_scale = 0; 376 p->p_prof.pr_samples = 0; 377 mutex_exit(&p->p_pflock); 378 379 ASSERT(curthread->t_schedctl == NULL); 380 381 #if defined(__sparc) 382 if (p->p_utraps != NULL) 383 utrap_free(p); 384 #endif /* __sparc */ 385 386 /* 387 * Close all close-on-exec files. 388 */ 389 close_exec(P_FINFO(p)); 390 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 391 392 /* Unbrand ourself if requested. */ 393 if (brand_action == EBA_NATIVE) 394 BROP(p)->b_proc_exit(p, lwp); 395 ASSERT((brand_action != EBA_NATIVE) || !PROC_IS_BRANDED(p)); 396 397 setregs(&args); 398 399 /* Mark this as an executable vnode */ 400 mutex_enter(&vp->v_lock); 401 vp->v_flag |= VVMEXEC; 402 mutex_exit(&vp->v_lock); 403 404 VN_RELE(vp); 405 if (dir != NULL) 406 VN_RELE(dir); 407 pn_free(&resolvepn); 408 409 /* 410 * Allocate a new lwp directory and lwpid hash table if necessary. 411 */ 412 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 413 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 414 lwpdir->ld_next = lwpdir + 1; 415 tidhash = kmem_zalloc(2 * sizeof (lwpdir_t *), KM_SLEEP); 416 if (p->p_lwpdir != NULL) 417 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 418 else 419 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 420 } 421 422 if (PROC_IS_BRANDED(p)) 423 BROP(p)->b_exec(); 424 425 mutex_enter(&p->p_lock); 426 prbarrier(p); 427 428 /* 429 * Reset lwp id to the default value of 1. 430 * This is a single-threaded process now 431 * and lwp #1 is lwp_wait()able by default. 432 * The t_unpark flag should not be inherited. 433 */ 434 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 435 curthread->t_tid = 1; 436 curthread->t_unpark = 0; 437 curthread->t_proc_flag |= TP_TWAIT; 438 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 439 p->p_lwpdaemon = 0; /* but oh well ... */ 440 p->p_lwpid = 1; 441 442 /* 443 * Install the newly-allocated lwp directory and lwpid hash table 444 * and insert the current thread into the new hash table. 445 */ 446 if (lwpdir != NULL) { 447 old_lwpdir = p->p_lwpdir; 448 old_lwpdir_sz = p->p_lwpdir_sz; 449 old_tidhash = p->p_tidhash; 450 old_tidhash_sz = p->p_tidhash_sz; 451 p->p_lwpdir = p->p_lwpfree = lwpdir; 452 p->p_lwpdir_sz = 2; 453 p->p_tidhash = tidhash; 454 p->p_tidhash_sz = 2; 455 lep->le_thread = curthread; 456 lep->le_lwpid = curthread->t_tid; 457 lep->le_start = curthread->t_start; 458 lwp_hash_in(p, lep); 459 } 460 461 /* 462 * Restore the saved signal mask and 463 * inform /proc that the exec() has finished. 464 */ 465 curthread->t_hold = savedmask; 466 prexecend(); 467 mutex_exit(&p->p_lock); 468 if (old_lwpdir) { 469 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 470 kmem_free(old_tidhash, old_tidhash_sz * sizeof (lwpdir_t *)); 471 } 472 473 ASSERT(error == 0); 474 DTRACE_PROC(exec__success); 475 return (0); 476 477 fail: 478 DTRACE_PROC1(exec__failure, int, error); 479 out: /* error return */ 480 mutex_enter(&p->p_lock); 481 curthread->t_hold = savedmask; 482 prexecend(); 483 mutex_exit(&p->p_lock); 484 ASSERT(error != 0); 485 return (error); 486 } 487 488 489 /* 490 * Perform generic exec duties and switchout to object-file specific 491 * handler. 492 */ 493 int 494 gexec( 495 struct vnode **vpp, 496 struct execa *uap, 497 struct uarg *args, 498 struct intpdata *idatap, 499 int level, 500 long *execsz, 501 caddr_t exec_file, 502 struct cred *cred, 503 int brand_action) 504 { 505 struct vnode *vp; 506 proc_t *pp = ttoproc(curthread); 507 struct execsw *eswp; 508 int error = 0; 509 int suidflags = 0; 510 ssize_t resid; 511 uid_t uid, gid; 512 struct vattr vattr; 513 char magbuf[MAGIC_BYTES]; 514 int setid; 515 cred_t *oldcred, *newcred = NULL; 516 int privflags = 0; 517 int setidfl; 518 519 /* 520 * If the SNOCD or SUGID flag is set, turn it off and remember the 521 * previous setting so we can restore it if we encounter an error. 522 */ 523 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 524 mutex_enter(&pp->p_lock); 525 suidflags = pp->p_flag & PSUIDFLAGS; 526 pp->p_flag &= ~PSUIDFLAGS; 527 mutex_exit(&pp->p_lock); 528 } 529 530 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 531 goto bad; 532 533 /* need to open vnode for stateful file systems like rfs */ 534 if ((error = VOP_OPEN(vpp, FREAD, CRED())) != 0) 535 goto bad; 536 vp = *vpp; 537 538 /* 539 * Note: to support binary compatibility with SunOS a.out 540 * executables, we read in the first four bytes, as the 541 * magic number is in bytes 2-3. 542 */ 543 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 544 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 545 goto bad; 546 if (resid != 0) 547 goto bad; 548 549 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 550 goto bad; 551 552 if (level == 0 && 553 (privflags = execsetid(vp, &vattr, &uid, &gid)) != 0) { 554 555 newcred = cred = crdup(cred); 556 557 /* If we can, drop the PA bit */ 558 if ((privflags & PRIV_RESET) != 0) 559 priv_adjust_PA(cred); 560 561 if (privflags & PRIV_SETID) { 562 cred->cr_uid = uid; 563 cred->cr_gid = gid; 564 cred->cr_suid = uid; 565 cred->cr_sgid = gid; 566 } 567 568 if (privflags & MAC_FLAGS) { 569 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 570 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 571 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 572 } 573 574 /* 575 * Implement the privilege updates: 576 * 577 * Restrict with L: 578 * 579 * I' = I & L 580 * 581 * E' = P' = (I' + F) & A 582 * 583 * But if running under ptrace, we cap I with P. 584 */ 585 if ((privflags & PRIV_RESET) != 0) { 586 if ((privflags & PRIV_INCREASE) != 0 && 587 (pp->p_proc_flag & P_PR_PTRACE) != 0) 588 priv_intersect(&CR_OPPRIV(cred), 589 &CR_IPRIV(cred)); 590 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 591 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 592 priv_adjust_PA(cred); 593 } 594 } 595 596 /* SunOS 4.x buy-back */ 597 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 598 (vattr.va_mode & (VSUID|VSGID))) { 599 cmn_err(CE_NOTE, 600 "!%s, uid %d: setuid execution not allowed, dev=%lx", 601 exec_file, cred->cr_uid, vp->v_vfsp->vfs_dev); 602 } 603 604 /* 605 * execsetid() told us whether or not we had to change the 606 * credentials of the process. In privflags, it told us 607 * whether we gained any privileges or executed a set-uid executable. 608 */ 609 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE)); 610 611 /* 612 * Use /etc/system variable to determine if the stack 613 * should be marked as executable by default. 614 */ 615 if (noexec_user_stack) 616 args->stk_prot &= ~PROT_EXEC; 617 618 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 619 620 /* 621 * Traditionally, the setid flags told the sub processes whether 622 * the file just executed was set-uid or set-gid; this caused 623 * some confusion as the 'setid' flag did not match the SUGID 624 * process flag which is only set when the uids/gids do not match. 625 * A script set-gid/set-uid to the real uid/gid would start with 626 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 627 * Now we flag those cases where the calling process cannot 628 * be trusted to influence the newly exec'ed process, either 629 * because it runs with more privileges or when the uids/gids 630 * do in fact not match. 631 * This also makes the runtime linker agree with the on exec 632 * values of SNOCD and SUGID. 633 */ 634 setidfl = 0; 635 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 636 !supgroupmember(cred->cr_gid, cred))) { 637 setidfl |= EXECSETID_UGIDS; 638 } 639 if (setid & PRIV_SETUGID) 640 setidfl |= EXECSETID_SETID; 641 if (setid & PRIV_INCREASE) 642 setidfl |= EXECSETID_PRIVS; 643 644 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 645 setidfl, exec_file, cred, brand_action); 646 rw_exit(eswp->exec_lock); 647 if (error != 0) { 648 if (newcred != NULL) 649 crfree(newcred); 650 goto bad; 651 } 652 653 if (level == 0) { 654 mutex_enter(&pp->p_crlock); 655 if (newcred != NULL) { 656 /* 657 * Free the old credentials, and set the new ones. 658 * Do this for both the process and the (single) thread. 659 */ 660 crfree(pp->p_cred); 661 pp->p_cred = cred; /* cred already held for proc */ 662 crhold(cred); /* hold new cred for thread */ 663 /* 664 * DTrace accesses t_cred in probe context. t_cred 665 * must always be either NULL, or point to a valid, 666 * allocated cred structure. 667 */ 668 oldcred = curthread->t_cred; 669 curthread->t_cred = cred; 670 crfree(oldcred); 671 } 672 /* 673 * On emerging from a successful exec(), the saved 674 * uid and gid equal the effective uid and gid. 675 */ 676 cred->cr_suid = cred->cr_uid; 677 cred->cr_sgid = cred->cr_gid; 678 679 /* 680 * If the real and effective ids do not match, this 681 * is a setuid process that should not dump core. 682 * The group comparison is tricky; we prevent the code 683 * from flagging SNOCD when executing with an effective gid 684 * which is a supplementary group. 685 */ 686 if (cred->cr_ruid != cred->cr_uid || 687 (cred->cr_rgid != cred->cr_gid && 688 !supgroupmember(cred->cr_gid, cred)) || 689 (privflags & PRIV_INCREASE) != 0) 690 suidflags = PSUIDFLAGS; 691 else 692 suidflags = 0; 693 694 mutex_exit(&pp->p_crlock); 695 if (suidflags) { 696 mutex_enter(&pp->p_lock); 697 pp->p_flag |= suidflags; 698 mutex_exit(&pp->p_lock); 699 } 700 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 701 /* 702 * If process is traced via /proc, arrange to 703 * invalidate the associated /proc vnode. 704 */ 705 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 706 args->traceinval = 1; 707 } 708 if (pp->p_proc_flag & P_PR_PTRACE) 709 psignal(pp, SIGTRAP); 710 if (args->traceinval) 711 prinvalidate(&pp->p_user); 712 } 713 714 return (0); 715 bad: 716 if (error == 0) 717 error = ENOEXEC; 718 719 if (suidflags) { 720 mutex_enter(&pp->p_lock); 721 pp->p_flag |= suidflags; 722 mutex_exit(&pp->p_lock); 723 } 724 return (error); 725 } 726 727 extern char *execswnames[]; 728 729 struct execsw * 730 allocate_execsw(char *name, char *magic, size_t magic_size) 731 { 732 int i, j; 733 char *ename; 734 char *magicp; 735 736 mutex_enter(&execsw_lock); 737 for (i = 0; i < nexectype; i++) { 738 if (execswnames[i] == NULL) { 739 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 740 (void) strcpy(ename, name); 741 execswnames[i] = ename; 742 /* 743 * Set the magic number last so that we 744 * don't need to hold the execsw_lock in 745 * findexectype(). 746 */ 747 magicp = kmem_alloc(magic_size, KM_SLEEP); 748 for (j = 0; j < magic_size; j++) 749 magicp[j] = magic[j]; 750 execsw[i].exec_magic = magicp; 751 mutex_exit(&execsw_lock); 752 return (&execsw[i]); 753 } 754 } 755 mutex_exit(&execsw_lock); 756 return (NULL); 757 } 758 759 /* 760 * Find the exec switch table entry with the corresponding magic string. 761 */ 762 struct execsw * 763 findexecsw(char *magic) 764 { 765 struct execsw *eswp; 766 767 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 768 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 769 if (magic && eswp->exec_maglen != 0 && 770 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 771 return (eswp); 772 } 773 return (NULL); 774 } 775 776 /* 777 * Find the execsw[] index for the given exec header string by looking for the 778 * magic string at a specified offset and length for each kind of executable 779 * file format until one matches. If no execsw[] entry is found, try to 780 * autoload a module for this magic string. 781 */ 782 struct execsw * 783 findexec_by_hdr(char *header) 784 { 785 struct execsw *eswp; 786 787 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 788 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 789 if (header && eswp->exec_maglen != 0 && 790 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 791 eswp->exec_maglen) == 0) { 792 if (hold_execsw(eswp) != 0) 793 return (NULL); 794 return (eswp); 795 } 796 } 797 return (NULL); /* couldn't find the type */ 798 } 799 800 /* 801 * Find the execsw[] index for the given magic string. If no execsw[] entry 802 * is found, try to autoload a module for this magic string. 803 */ 804 struct execsw * 805 findexec_by_magic(char *magic) 806 { 807 struct execsw *eswp; 808 809 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 810 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 811 if (magic && eswp->exec_maglen != 0 && 812 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 813 if (hold_execsw(eswp) != 0) 814 return (NULL); 815 return (eswp); 816 } 817 } 818 return (NULL); /* couldn't find the type */ 819 } 820 821 static int 822 hold_execsw(struct execsw *eswp) 823 { 824 char *name; 825 826 rw_enter(eswp->exec_lock, RW_READER); 827 while (!LOADED_EXEC(eswp)) { 828 rw_exit(eswp->exec_lock); 829 name = execswnames[eswp-execsw]; 830 ASSERT(name); 831 if (modload("exec", name) == -1) 832 return (-1); 833 rw_enter(eswp->exec_lock, RW_READER); 834 } 835 return (0); 836 } 837 838 static int 839 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp) 840 { 841 proc_t *pp = ttoproc(curthread); 842 uid_t uid, gid; 843 cred_t *cr = pp->p_cred; 844 int privflags = 0; 845 846 /* 847 * Remember credentials. 848 */ 849 uid = cr->cr_uid; 850 gid = cr->cr_gid; 851 852 /* Will try to reset the PRIV_AWARE bit later. */ 853 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 854 privflags |= PRIV_RESET; 855 856 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 857 /* 858 * Set-uid root execution only allowed if the limit set 859 * holds all unsafe privileges. 860 */ 861 if ((vattrp->va_mode & VSUID) && (vattrp->va_uid != 0 || 862 priv_issubset(&priv_unsafe, &CR_LPRIV(cr)))) { 863 uid = vattrp->va_uid; 864 privflags |= PRIV_SETUGID; 865 } 866 if (vattrp->va_mode & VSGID) { 867 gid = vattrp->va_gid; 868 privflags |= PRIV_SETUGID; 869 } 870 } 871 872 /* 873 * Do we need to change our credential anyway? 874 * This is the case when E != I or P != I, as 875 * we need to do the assignments (with F empty and A full) 876 * Or when I is not a subset of L; in that case we need to 877 * enforce L. 878 * 879 * I' = L & I 880 * 881 * E' = P' = (I' + F) & A 882 * or 883 * E' = P' = I' 884 */ 885 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 886 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 887 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 888 privflags |= PRIV_RESET; 889 890 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 891 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 892 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 893 privflags |= MAC_FLAGS; 894 895 /* 896 * When we introduce the "forced" set then we will need 897 * to set PRIV_INCREASE here if I not a subset of P. 898 * If the "allowed" set is introduced we will need to do 899 * a similar thing; however, it seems more reasonable to 900 * have the allowed set reduce "L": script language interpreters 901 * would typically have an allowed set of "all". 902 */ 903 904 /* 905 * Set setuid/setgid protections if no ptrace() compatibility. 906 * For privileged processes, honor setuid/setgid even in 907 * the presence of ptrace() compatibility. 908 */ 909 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 910 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 911 (cr->cr_uid != uid || 912 cr->cr_gid != gid || 913 cr->cr_suid != uid || 914 cr->cr_sgid != gid)) { 915 *uidp = uid; 916 *gidp = gid; 917 privflags |= PRIV_SETID; 918 } 919 return (privflags); 920 } 921 922 int 923 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 924 { 925 int error; 926 proc_t *p = ttoproc(curthread); 927 928 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 929 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred)) 930 return (error); 931 /* 932 * Check the access mode. 933 * If VPROC, ask /proc if the file is an object file. 934 */ 935 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred)) != 0 || 936 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 937 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 938 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 939 if (error == 0) 940 error = EACCES; 941 return (error); 942 } 943 944 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 945 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred))) { 946 /* 947 * If process is under ptrace(2) compatibility, 948 * fail the exec(2). 949 */ 950 if (p->p_proc_flag & P_PR_PTRACE) 951 goto bad; 952 /* 953 * Process is traced via /proc. 954 * Arrange to invalidate the /proc vnode. 955 */ 956 args->traceinval = 1; 957 } 958 return (0); 959 bad: 960 if (error == 0) 961 error = ENOEXEC; 962 return (error); 963 } 964 965 /* 966 * Map a section of an executable file into the user's 967 * address space. 968 */ 969 int 970 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 971 off_t offset, int prot, int page, uint_t szc) 972 { 973 int error = 0; 974 off_t oldoffset; 975 caddr_t zfodbase, oldaddr; 976 size_t end, oldlen; 977 size_t zfoddiff; 978 label_t ljb; 979 proc_t *p = ttoproc(curthread); 980 981 oldaddr = addr; 982 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 983 if (len) { 984 oldlen = len; 985 len += ((size_t)oldaddr - (size_t)addr); 986 oldoffset = offset; 987 offset = (off_t)((uintptr_t)offset & PAGEMASK); 988 if (page) { 989 spgcnt_t prefltmem, availm, npages; 990 int preread; 991 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 992 993 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 994 mflag |= MAP_TEXT; 995 } else { 996 mflag |= MAP_INITDATA; 997 } 998 999 if (valid_usr_range(addr, len, prot, p->p_as, 1000 p->p_as->a_userlimit) != RANGE_OKAY) { 1001 error = ENOMEM; 1002 goto bad; 1003 } 1004 if (error = VOP_MAP(vp, (offset_t)offset, 1005 p->p_as, &addr, len, prot, PROT_ALL, 1006 mflag, CRED())) 1007 goto bad; 1008 1009 /* 1010 * If the segment can fit, then we prefault 1011 * the entire segment in. This is based on the 1012 * model that says the best working set of a 1013 * small program is all of its pages. 1014 */ 1015 npages = (spgcnt_t)btopr(len); 1016 prefltmem = freemem - desfree; 1017 preread = 1018 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1019 1020 /* 1021 * If we aren't prefaulting the segment, 1022 * increment "deficit", if necessary to ensure 1023 * that pages will become available when this 1024 * process starts executing. 1025 */ 1026 availm = freemem - lotsfree; 1027 if (preread == 0 && npages > availm && 1028 deficit < lotsfree) { 1029 deficit += MIN((pgcnt_t)(npages - availm), 1030 lotsfree - deficit); 1031 } 1032 1033 if (preread) { 1034 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1035 "execmap preread:freemem %d size %lu", 1036 freemem, len); 1037 (void) as_fault(p->p_as->a_hat, p->p_as, 1038 (caddr_t)addr, len, F_INVAL, S_READ); 1039 } 1040 } else { 1041 if (valid_usr_range(addr, len, prot, p->p_as, 1042 p->p_as->a_userlimit) != RANGE_OKAY) { 1043 error = ENOMEM; 1044 goto bad; 1045 } 1046 1047 if (error = as_map(p->p_as, addr, len, 1048 segvn_create, zfod_argsp)) 1049 goto bad; 1050 /* 1051 * Read in the segment in one big chunk. 1052 */ 1053 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1054 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1055 (rlim64_t)0, CRED(), (ssize_t *)0)) 1056 goto bad; 1057 /* 1058 * Now set protections. 1059 */ 1060 if (prot != PROT_ZFOD) { 1061 (void) as_setprot(p->p_as, (caddr_t)addr, 1062 len, prot); 1063 } 1064 } 1065 } 1066 1067 if (zfodlen) { 1068 struct as *as = curproc->p_as; 1069 struct seg *seg; 1070 uint_t zprot = 0; 1071 1072 end = (size_t)addr + len; 1073 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1074 zfoddiff = (uintptr_t)zfodbase - end; 1075 if (zfoddiff) { 1076 /* 1077 * Before we go to zero the remaining space on the last 1078 * page, make sure we have write permission. 1079 */ 1080 1081 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1082 seg = as_segat(curproc->p_as, (caddr_t)end); 1083 if (seg != NULL) 1084 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1085 &zprot); 1086 AS_LOCK_EXIT(as, &as->a_lock); 1087 1088 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1089 (void) as_setprot(as, (caddr_t)end, 1090 zfoddiff - 1, zprot | PROT_WRITE); 1091 } 1092 1093 if (on_fault(&ljb)) { 1094 no_fault(); 1095 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1096 (void) as_setprot(as, (caddr_t)end, 1097 zfoddiff - 1, zprot); 1098 error = EFAULT; 1099 goto bad; 1100 } 1101 uzero((void *)end, zfoddiff); 1102 no_fault(); 1103 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1104 (void) as_setprot(as, (caddr_t)end, 1105 zfoddiff - 1, zprot); 1106 } 1107 if (zfodlen > zfoddiff) { 1108 struct segvn_crargs crargs = 1109 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1110 1111 zfodlen -= zfoddiff; 1112 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1113 p->p_as->a_userlimit) != RANGE_OKAY) { 1114 error = ENOMEM; 1115 goto bad; 1116 } 1117 crargs.szc = szc; 1118 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1119 zfodlen, segvn_create, &crargs)) 1120 goto bad; 1121 if (prot != PROT_ZFOD) { 1122 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1123 zfodlen, prot); 1124 } 1125 } 1126 } 1127 return (0); 1128 bad: 1129 return (error); 1130 } 1131 1132 void 1133 setexecenv(struct execenv *ep) 1134 { 1135 proc_t *p = ttoproc(curthread); 1136 klwp_t *lwp = ttolwp(curthread); 1137 struct vnode *vp; 1138 1139 p->p_bssbase = ep->ex_bssbase; 1140 p->p_brkbase = ep->ex_brkbase; 1141 p->p_brksize = ep->ex_brksize; 1142 if (p->p_exec) 1143 VN_RELE(p->p_exec); /* out with the old */ 1144 vp = p->p_exec = ep->ex_vp; 1145 if (vp != NULL) 1146 VN_HOLD(vp); /* in with the new */ 1147 1148 lwp->lwp_sigaltstack.ss_sp = 0; 1149 lwp->lwp_sigaltstack.ss_size = 0; 1150 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1151 } 1152 1153 int 1154 execopen(struct vnode **vpp, int *fdp) 1155 { 1156 struct vnode *vp = *vpp; 1157 file_t *fp; 1158 int error = 0; 1159 int filemode = FREAD; 1160 1161 VN_HOLD(vp); /* open reference */ 1162 if (error = falloc(NULL, filemode, &fp, fdp)) { 1163 VN_RELE(vp); 1164 *fdp = -1; /* just in case falloc changed value */ 1165 return (error); 1166 } 1167 if (error = VOP_OPEN(&vp, filemode, CRED())) { 1168 VN_RELE(vp); 1169 setf(*fdp, NULL); 1170 unfalloc(fp); 1171 *fdp = -1; 1172 return (error); 1173 } 1174 *vpp = vp; /* vnode should not have changed */ 1175 fp->f_vnode = vp; 1176 mutex_exit(&fp->f_tlock); 1177 setf(*fdp, fp); 1178 return (0); 1179 } 1180 1181 int 1182 execclose(int fd) 1183 { 1184 return (closeandsetf(fd, NULL)); 1185 } 1186 1187 1188 /* 1189 * noexec stub function. 1190 */ 1191 /*ARGSUSED*/ 1192 int 1193 noexec( 1194 struct vnode *vp, 1195 struct execa *uap, 1196 struct uarg *args, 1197 struct intpdata *idatap, 1198 int level, 1199 long *execsz, 1200 int setid, 1201 caddr_t exec_file, 1202 struct cred *cred) 1203 { 1204 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1205 return (ENOEXEC); 1206 } 1207 1208 /* 1209 * Support routines for building a user stack. 1210 * 1211 * execve(path, argv, envp) must construct a new stack with the specified 1212 * arguments and environment variables (see exec_args() for a description 1213 * of the user stack layout). To do this, we copy the arguments and 1214 * environment variables from the old user address space into the kernel, 1215 * free the old as, create the new as, and copy our buffered information 1216 * to the new stack. Our kernel buffer has the following structure: 1217 * 1218 * +-----------------------+ <--- stk_base + stk_size 1219 * | string offsets | 1220 * +-----------------------+ <--- stk_offp 1221 * | | 1222 * | STK_AVAIL() space | 1223 * | | 1224 * +-----------------------+ <--- stk_strp 1225 * | strings | 1226 * +-----------------------+ <--- stk_base 1227 * 1228 * When we add a string, we store the string's contents (including the null 1229 * terminator) at stk_strp, and we store the offset of the string relative to 1230 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1231 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1232 * the difference between these pointers. If we run out of space, we return 1233 * an error and exec_args() starts all over again with a buffer twice as large. 1234 * When we're all done, the kernel buffer looks like this: 1235 * 1236 * +-----------------------+ <--- stk_base + stk_size 1237 * | argv[0] offset | 1238 * +-----------------------+ 1239 * | ... | 1240 * +-----------------------+ 1241 * | argv[argc-1] offset | 1242 * +-----------------------+ 1243 * | envp[0] offset | 1244 * +-----------------------+ 1245 * | ... | 1246 * +-----------------------+ 1247 * | envp[envc-1] offset | 1248 * +-----------------------+ 1249 * | AT_SUN_PLATFORM offset| 1250 * +-----------------------+ 1251 * | AT_SUN_EXECNAME offset| 1252 * +-----------------------+ <--- stk_offp 1253 * | | 1254 * | STK_AVAIL() space | 1255 * | | 1256 * +-----------------------+ <--- stk_strp 1257 * | AT_SUN_EXECNAME offset| 1258 * +-----------------------+ 1259 * | AT_SUN_PLATFORM offset| 1260 * +-----------------------+ 1261 * | envp[envc-1] string | 1262 * +-----------------------+ 1263 * | ... | 1264 * +-----------------------+ 1265 * | envp[0] string | 1266 * +-----------------------+ 1267 * | argv[argc-1] string | 1268 * +-----------------------+ 1269 * | ... | 1270 * +-----------------------+ 1271 * | argv[0] string | 1272 * +-----------------------+ <--- stk_base 1273 */ 1274 1275 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1276 1277 /* 1278 * Add a string to the stack. 1279 */ 1280 static int 1281 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1282 { 1283 int error; 1284 size_t len; 1285 1286 if (STK_AVAIL(args) < sizeof (int)) 1287 return (E2BIG); 1288 *--args->stk_offp = args->stk_strp - args->stk_base; 1289 1290 if (segflg == UIO_USERSPACE) { 1291 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1292 if (error != 0) 1293 return (error); 1294 } else { 1295 len = strlen(sp) + 1; 1296 if (len > STK_AVAIL(args)) 1297 return (E2BIG); 1298 bcopy(sp, args->stk_strp, len); 1299 } 1300 1301 args->stk_strp += len; 1302 1303 return (0); 1304 } 1305 1306 static int 1307 stk_getptr(uarg_t *args, char *src, char **dst) 1308 { 1309 int error; 1310 1311 if (args->from_model == DATAMODEL_NATIVE) { 1312 ulong_t ptr; 1313 error = fulword(src, &ptr); 1314 *dst = (caddr_t)ptr; 1315 } else { 1316 uint32_t ptr; 1317 error = fuword32(src, &ptr); 1318 *dst = (caddr_t)(uintptr_t)ptr; 1319 } 1320 return (error); 1321 } 1322 1323 static int 1324 stk_putptr(uarg_t *args, char *addr, char *value) 1325 { 1326 if (args->to_model == DATAMODEL_NATIVE) 1327 return (sulword(addr, (ulong_t)value)); 1328 else 1329 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1330 } 1331 1332 static int 1333 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1334 { 1335 char *sp; 1336 int argc, error; 1337 int argv_empty = 0; 1338 size_t ptrsize = args->from_ptrsize; 1339 size_t size, pad; 1340 char *argv = (char *)uap->argp; 1341 char *envp = (char *)uap->envp; 1342 1343 /* 1344 * Copy interpreter's name and argument to argv[0] and argv[1]. 1345 */ 1346 if (intp != NULL && intp->intp_name != NULL) { 1347 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1348 return (error); 1349 if (intp->intp_arg != NULL && 1350 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1351 return (error); 1352 if (args->fname != NULL) 1353 error = stk_add(args, args->fname, UIO_SYSSPACE); 1354 else 1355 error = stk_add(args, uap->fname, UIO_USERSPACE); 1356 if (error) 1357 return (error); 1358 1359 /* 1360 * Check for an empty argv[]. 1361 */ 1362 if (stk_getptr(args, argv, &sp)) 1363 return (EFAULT); 1364 if (sp == NULL) 1365 argv_empty = 1; 1366 1367 argv += ptrsize; /* ignore original argv[0] */ 1368 } 1369 1370 if (argv_empty == 0) { 1371 /* 1372 * Add argv[] strings to the stack. 1373 */ 1374 for (;;) { 1375 if (stk_getptr(args, argv, &sp)) 1376 return (EFAULT); 1377 if (sp == NULL) 1378 break; 1379 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1380 return (error); 1381 argv += ptrsize; 1382 } 1383 } 1384 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1385 args->arglen = args->stk_strp - args->stk_base; 1386 1387 /* 1388 * Add environ[] strings to the stack. 1389 */ 1390 if (envp != NULL) { 1391 for (;;) { 1392 if (stk_getptr(args, envp, &sp)) 1393 return (EFAULT); 1394 if (sp == NULL) 1395 break; 1396 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1397 return (error); 1398 envp += ptrsize; 1399 } 1400 } 1401 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1402 args->ne = args->na - argc; 1403 1404 /* 1405 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1406 * AT_SUN_EMULATOR strings to the stack. 1407 */ 1408 if (auxvpp != NULL && *auxvpp != NULL) { 1409 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1410 return (error); 1411 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1412 return (error); 1413 if (args->brandname != NULL && 1414 (error = stk_add(args, args->brandname, 1415 UIO_SYSSPACE)) != 0) 1416 return (error); 1417 if (args->emulator != NULL && 1418 (error = stk_add(args, args->emulator, 1419 UIO_SYSSPACE)) != 0) 1420 return (error); 1421 } 1422 1423 /* 1424 * Compute the size of the stack. This includes all the pointers, 1425 * the space reserved for the aux vector, and all the strings. 1426 * The total number of pointers is args->na (which is argc + envc) 1427 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1428 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1429 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1430 * all the strings, at the very top of the stack. 1431 */ 1432 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1433 (args->stk_strp - args->stk_base); 1434 1435 /* 1436 * Pad the string section with zeroes to align the stack size. 1437 */ 1438 pad = P2NPHASE(size, args->stk_align); 1439 1440 if (STK_AVAIL(args) < pad) 1441 return (E2BIG); 1442 1443 args->usrstack_size = size + pad; 1444 1445 while (pad-- != 0) 1446 *args->stk_strp++ = 0; 1447 1448 args->nc = args->stk_strp - args->stk_base; 1449 1450 return (0); 1451 } 1452 1453 static int 1454 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1455 { 1456 size_t ptrsize = args->to_ptrsize; 1457 ssize_t pslen; 1458 char *kstrp = args->stk_base; 1459 char *ustrp = usrstack - args->nc - ptrsize; 1460 char *usp = usrstack - args->usrstack_size; 1461 int *offp = (int *)(args->stk_base + args->stk_size); 1462 int envc = args->ne; 1463 int argc = args->na - envc; 1464 int i; 1465 1466 /* 1467 * Record argc for /proc. 1468 */ 1469 up->u_argc = argc; 1470 1471 /* 1472 * Put argc on the stack. Note that even though it's an int, 1473 * it always consumes ptrsize bytes (for alignment). 1474 */ 1475 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1476 return (-1); 1477 1478 /* 1479 * Add argc space (ptrsize) to usp and record argv for /proc. 1480 */ 1481 up->u_argv = (uintptr_t)(usp += ptrsize); 1482 1483 /* 1484 * Put the argv[] pointers on the stack. 1485 */ 1486 for (i = 0; i < argc; i++, usp += ptrsize) 1487 if (stk_putptr(args, usp, &ustrp[*--offp])) 1488 return (-1); 1489 1490 /* 1491 * Copy arguments to u_psargs. 1492 */ 1493 pslen = MIN(args->arglen, PSARGSZ) - 1; 1494 for (i = 0; i < pslen; i++) 1495 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1496 while (i < PSARGSZ) 1497 up->u_psargs[i++] = '\0'; 1498 1499 /* 1500 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1501 * record envp for /proc. 1502 */ 1503 up->u_envp = (uintptr_t)(usp += ptrsize); 1504 1505 /* 1506 * Put the envp[] pointers on the stack. 1507 */ 1508 for (i = 0; i < envc; i++, usp += ptrsize) 1509 if (stk_putptr(args, usp, &ustrp[*--offp])) 1510 return (-1); 1511 1512 /* 1513 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1514 * remember where the stack ends, which is also where auxv begins. 1515 */ 1516 args->stackend = usp += ptrsize; 1517 1518 /* 1519 * Put all the argv[], envp[], and auxv strings on the stack. 1520 */ 1521 if (copyout(args->stk_base, ustrp, args->nc)) 1522 return (-1); 1523 1524 /* 1525 * Fill in the aux vector now that we know the user stack addresses 1526 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1527 * AT_SUN_EMULATOR strings. 1528 */ 1529 if (auxvpp != NULL && *auxvpp != NULL) { 1530 if (args->to_model == DATAMODEL_NATIVE) { 1531 auxv_t **a = (auxv_t **)auxvpp; 1532 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1533 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1534 if (args->brandname != NULL) 1535 ADDAUX(*a, 1536 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1537 if (args->emulator != NULL) 1538 ADDAUX(*a, 1539 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1540 } else { 1541 auxv32_t **a = (auxv32_t **)auxvpp; 1542 ADDAUX(*a, 1543 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1544 ADDAUX(*a, 1545 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1546 if (args->brandname != NULL) 1547 ADDAUX(*a, AT_SUN_BRANDNAME, 1548 (int)(uintptr_t)&ustrp[*--offp]) 1549 if (args->emulator != NULL) 1550 ADDAUX(*a, AT_SUN_EMULATOR, 1551 (int)(uintptr_t)&ustrp[*--offp]) 1552 } 1553 } 1554 1555 return (0); 1556 } 1557 1558 #ifdef DEBUG 1559 int mpss_brkpgszsel = 0; 1560 int mpss_stkpgszsel = 0; 1561 #endif 1562 1563 /* 1564 * Initialize a new user stack with the specified arguments and environment. 1565 * The initial user stack layout is as follows: 1566 * 1567 * User Stack 1568 * +---------------+ <--- curproc->p_usrstack 1569 * | NULL | 1570 * +---------------+ 1571 * | | 1572 * | auxv strings | 1573 * | | 1574 * +---------------+ 1575 * | | 1576 * | envp strings | 1577 * | | 1578 * +---------------+ 1579 * | | 1580 * | argv strings | 1581 * | | 1582 * +---------------+ <--- ustrp 1583 * | | 1584 * | aux vector | 1585 * | | 1586 * +---------------+ <--- auxv 1587 * | NULL | 1588 * +---------------+ 1589 * | envp[envc-1] | 1590 * +---------------+ 1591 * | ... | 1592 * +---------------+ 1593 * | envp[0] | 1594 * +---------------+ <--- envp[] 1595 * | NULL | 1596 * +---------------+ 1597 * | argv[argc-1] | 1598 * +---------------+ 1599 * | ... | 1600 * +---------------+ 1601 * | argv[0] | 1602 * +---------------+ <--- argv[] 1603 * | argc | 1604 * +---------------+ <--- stack base 1605 */ 1606 int 1607 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1608 { 1609 size_t size; 1610 int error; 1611 proc_t *p = ttoproc(curthread); 1612 user_t *up = PTOU(p); 1613 char *usrstack; 1614 rctl_entity_p_t e; 1615 1616 struct as *as; 1617 1618 args->from_model = p->p_model; 1619 if (p->p_model == DATAMODEL_NATIVE) { 1620 args->from_ptrsize = sizeof (long); 1621 } else { 1622 args->from_ptrsize = sizeof (int32_t); 1623 } 1624 1625 if (args->to_model == DATAMODEL_NATIVE) { 1626 args->to_ptrsize = sizeof (long); 1627 args->ncargs = NCARGS; 1628 args->stk_align = STACK_ALIGN; 1629 usrstack = (char *)USRSTACK; 1630 } else { 1631 args->to_ptrsize = sizeof (int32_t); 1632 args->ncargs = NCARGS32; 1633 args->stk_align = STACK_ALIGN32; 1634 usrstack = (char *)USRSTACK32; 1635 } 1636 1637 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1638 1639 #if defined(__sparc) 1640 /* 1641 * Make sure user register windows are empty before 1642 * attempting to make a new stack. 1643 */ 1644 (void) flush_user_windows_to_stack(NULL); 1645 #endif 1646 1647 for (size = PAGESIZE; ; size *= 2) { 1648 args->stk_size = size; 1649 args->stk_base = kmem_alloc(size, KM_SLEEP); 1650 args->stk_strp = args->stk_base; 1651 args->stk_offp = (int *)(args->stk_base + size); 1652 error = stk_copyin(uap, args, intp, auxvpp); 1653 if (error == 0) 1654 break; 1655 kmem_free(args->stk_base, size); 1656 if (error != E2BIG && error != ENAMETOOLONG) 1657 return (error); 1658 if (size >= args->ncargs) 1659 return (E2BIG); 1660 } 1661 1662 size = args->usrstack_size; 1663 1664 ASSERT(error == 0); 1665 ASSERT(P2PHASE(size, args->stk_align) == 0); 1666 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1667 1668 if (size > args->ncargs) { 1669 kmem_free(args->stk_base, args->stk_size); 1670 return (E2BIG); 1671 } 1672 1673 /* 1674 * Leave only the current lwp and force the other lwps to exit. 1675 * If another lwp beat us to the punch by calling exit(), bail out. 1676 */ 1677 if ((error = exitlwps(0)) != 0) { 1678 kmem_free(args->stk_base, args->stk_size); 1679 return (error); 1680 } 1681 1682 /* 1683 * Revoke any doors created by the process. 1684 */ 1685 if (p->p_door_list) 1686 door_exit(); 1687 1688 /* 1689 * Release schedctl data structures. 1690 */ 1691 if (p->p_pagep) 1692 schedctl_proc_cleanup(); 1693 1694 /* 1695 * Clean up any DTrace helpers for the process. 1696 */ 1697 if (p->p_dtrace_helpers != NULL) { 1698 ASSERT(dtrace_helpers_cleanup != NULL); 1699 (*dtrace_helpers_cleanup)(); 1700 } 1701 1702 mutex_enter(&p->p_lock); 1703 /* 1704 * Cleanup the DTrace provider associated with this process. 1705 */ 1706 if (p->p_dtrace_probes) { 1707 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1708 dtrace_fasttrap_exec_ptr(p); 1709 } 1710 mutex_exit(&p->p_lock); 1711 1712 /* 1713 * discard the lwpchan cache. 1714 */ 1715 if (p->p_lcp != NULL) 1716 lwpchan_destroy_cache(1); 1717 1718 /* 1719 * Delete the POSIX timers. 1720 */ 1721 if (p->p_itimer != NULL) 1722 timer_exit(); 1723 1724 #ifdef C2_AUDIT 1725 if (audit_active) 1726 audit_exec(args->stk_base, args->stk_base + args->arglen, 1727 args->na - args->ne, args->ne); 1728 #endif 1729 1730 /* 1731 * Ensure that we don't change resource associations while we 1732 * change address spaces. 1733 */ 1734 mutex_enter(&p->p_lock); 1735 pool_barrier_enter(); 1736 mutex_exit(&p->p_lock); 1737 1738 /* 1739 * Destroy the old address space and create a new one. 1740 * From here on, any errors are fatal to the exec()ing process. 1741 * On error we return -1, which means the caller must SIGKILL 1742 * the process. 1743 */ 1744 relvm(); 1745 1746 mutex_enter(&p->p_lock); 1747 pool_barrier_exit(); 1748 mutex_exit(&p->p_lock); 1749 1750 up->u_execsw = args->execswp; 1751 1752 p->p_brkbase = NULL; 1753 p->p_brksize = 0; 1754 p->p_stksize = 0; 1755 p->p_model = args->to_model; 1756 p->p_usrstack = usrstack; 1757 p->p_stkprot = args->stk_prot; 1758 p->p_datprot = args->dat_prot; 1759 1760 /* 1761 * Reset resource controls such that all controls are again active as 1762 * well as appropriate to the potentially new address model for the 1763 * process. 1764 */ 1765 e.rcep_p.proc = p; 1766 e.rcep_t = RCENTITY_PROCESS; 1767 rctl_set_reset(p->p_rctls, p, &e); 1768 1769 if (exec_lpg_disable == 0) { 1770 #ifdef DEBUG 1771 uint_t pgsizes = page_num_pagesizes(); 1772 uint_t szc; 1773 #endif 1774 p->p_brkpageszc = args->brkpageszc; 1775 p->p_stkpageszc = args->stkpageszc; 1776 1777 if (p->p_brkpageszc == 0) { 1778 p->p_brkpageszc = page_szc(map_pgsz(MAPPGSZ_HEAP, 1779 p, 0, 0, NULL)); 1780 } 1781 if (p->p_stkpageszc == 0) { 1782 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, 1783 p, 0, 0, NULL)); 1784 } 1785 1786 #ifdef DEBUG 1787 if (mpss_brkpgszsel != 0) { 1788 if (mpss_brkpgszsel == -1) { 1789 szc = ((uint_t)gethrtime() >> 8) % pgsizes; 1790 } else { 1791 szc = mpss_brkpgszsel % pgsizes; 1792 } 1793 p->p_brkpageszc = szc; 1794 } 1795 1796 if (mpss_stkpgszsel != 0) { 1797 if (mpss_stkpgszsel == -1) { 1798 szc = ((uint_t)gethrtime() >> 7) % pgsizes; 1799 } else { 1800 szc = mpss_stkpgszsel % pgsizes; 1801 } 1802 p->p_stkpageszc = szc; 1803 } 1804 1805 #endif 1806 mutex_enter(&p->p_lock); 1807 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 1808 mutex_exit(&p->p_lock); 1809 1810 } else { 1811 p->p_brkpageszc = 0; 1812 p->p_stkpageszc = 0; 1813 } 1814 1815 exec_set_sp(size); 1816 1817 as = as_alloc(); 1818 p->p_as = as; 1819 as->a_proc = p; 1820 if (p->p_model == DATAMODEL_ILP32) 1821 as->a_userlimit = (caddr_t)USERLIMIT32; 1822 (void) hat_setup(as->a_hat, HAT_ALLOC); 1823 1824 /* 1825 * Finally, write out the contents of the new stack. 1826 */ 1827 error = stk_copyout(args, usrstack, auxvpp, up); 1828 kmem_free(args->stk_base, args->stk_size); 1829 return (error); 1830 } 1831