xref: /titanic_41/usr/src/uts/common/os/dtrace_subr.c (revision 24fe0b3bf671e123467ce1df0b67cadd3614c8e4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/dtrace.h>
28 #include <sys/cmn_err.h>
29 #include <sys/tnf.h>
30 #include <sys/atomic.h>
31 #include <sys/prsystm.h>
32 #include <sys/modctl.h>
33 #include <sys/aio_impl.h>
34 
35 #ifdef __sparc
36 #include <sys/privregs.h>
37 #endif
38 
39 void (*dtrace_cpu_init)(processorid_t);
40 void (*dtrace_modload)(struct modctl *);
41 void (*dtrace_modunload)(struct modctl *);
42 void (*dtrace_helpers_cleanup)(void);
43 void (*dtrace_helpers_fork)(proc_t *, proc_t *);
44 void (*dtrace_cpustart_init)(void);
45 void (*dtrace_cpustart_fini)(void);
46 void (*dtrace_cpc_fire)(uint64_t);
47 
48 void (*dtrace_debugger_init)(void);
49 void (*dtrace_debugger_fini)(void);
50 
51 dtrace_vtime_state_t dtrace_vtime_active = 0;
52 dtrace_cacheid_t dtrace_predcache_id = DTRACE_CACHEIDNONE + 1;
53 
54 /*
55  * dtrace_cpc_in_use usage statement: this global variable is used by the cpc
56  * hardware overflow interrupt handler and the kernel cpc framework to check
57  * whether or not the DTrace cpc provider is currently in use. The variable is
58  * set before counters are enabled with the first enabling and cleared when
59  * the last enabling is disabled. Its value at any given time indicates the
60  * number of active dcpc based enablings. The global 'kcpc_cpuctx_lock' rwlock
61  * is held during initial setting to protect races between kcpc_open() and the
62  * first enabling. The locking provided by the DTrace subsystem, the kernel
63  * cpc framework and the cpu management framework protect consumers from race
64  * conditions on enabling and disabling probes.
65  */
66 uint32_t dtrace_cpc_in_use = 0;
67 
68 typedef struct dtrace_hrestime {
69 	lock_t		dthr_lock;		/* lock for this element */
70 	timestruc_t	dthr_hrestime;		/* hrestime value */
71 	int64_t		dthr_adj;		/* hrestime_adj value */
72 	hrtime_t	dthr_hrtime;		/* hrtime value */
73 } dtrace_hrestime_t;
74 
75 static dtrace_hrestime_t dtrace_hrestime[2];
76 
77 /*
78  * Making available adjustable high-resolution time in DTrace is regrettably
79  * more complicated than one might think it should be.  The problem is that
80  * the variables related to adjusted high-resolution time (hrestime,
81  * hrestime_adj and friends) are adjusted under hres_lock -- and this lock may
82  * be held when we enter probe context.  One might think that we could address
83  * this by having a single snapshot copy that is stored under a different lock
84  * from hres_tick(), using the snapshot iff hres_lock is locked in probe
85  * context.  Unfortunately, this too won't work:  because hres_lock is grabbed
86  * in more than just hres_tick() context, we could enter probe context
87  * concurrently on two different CPUs with both locks (hres_lock and the
88  * snapshot lock) held.  As this implies, the fundamental problem is that we
89  * need to have access to a snapshot of these variables that we _know_ will
90  * not be locked in probe context.  To effect this, we have two snapshots
91  * protected by two different locks, and we mandate that these snapshots are
92  * recorded in succession by a single thread calling dtrace_hres_tick().  (We
93  * assure this by calling it out of the same CY_HIGH_LEVEL cyclic that calls
94  * hres_tick().)  A single thread can't be in two places at once:  one of the
95  * snapshot locks is guaranteed to be unheld at all times.  The
96  * dtrace_gethrestime() algorithm is thus to check first one snapshot and then
97  * the other to find the unlocked snapshot.
98  */
99 void
100 dtrace_hres_tick(void)
101 {
102 	int i;
103 	ushort_t spl;
104 
105 	for (i = 0; i < 2; i++) {
106 		dtrace_hrestime_t tmp;
107 
108 		spl = hr_clock_lock();
109 		tmp.dthr_hrestime = hrestime;
110 		tmp.dthr_adj = hrestime_adj;
111 		tmp.dthr_hrtime = dtrace_gethrtime();
112 		hr_clock_unlock(spl);
113 
114 		lock_set(&dtrace_hrestime[i].dthr_lock);
115 		dtrace_hrestime[i].dthr_hrestime = tmp.dthr_hrestime;
116 		dtrace_hrestime[i].dthr_adj = tmp.dthr_adj;
117 		dtrace_hrestime[i].dthr_hrtime = tmp.dthr_hrtime;
118 		dtrace_membar_producer();
119 
120 		/*
121 		 * To allow for lock-free examination of this lock, we use
122 		 * the same trick that is used hres_lock; for more details,
123 		 * see the description of this technique in sun4u/sys/clock.h.
124 		 */
125 		dtrace_hrestime[i].dthr_lock++;
126 	}
127 }
128 
129 hrtime_t
130 dtrace_gethrestime(void)
131 {
132 	dtrace_hrestime_t snap;
133 	hrtime_t now;
134 	int i = 0, adj, nslt;
135 
136 	for (;;) {
137 		snap.dthr_lock = dtrace_hrestime[i].dthr_lock;
138 		dtrace_membar_consumer();
139 		snap.dthr_hrestime = dtrace_hrestime[i].dthr_hrestime;
140 		snap.dthr_hrtime = dtrace_hrestime[i].dthr_hrtime;
141 		snap.dthr_adj = dtrace_hrestime[i].dthr_adj;
142 		dtrace_membar_consumer();
143 
144 		if ((snap.dthr_lock & ~1) == dtrace_hrestime[i].dthr_lock)
145 			break;
146 
147 		/*
148 		 * If we're here, the lock was either locked, or it
149 		 * transitioned while we were taking the snapshot.  Either
150 		 * way, we're going to try the other dtrace_hrestime element;
151 		 * we know that it isn't possible for both to be locked
152 		 * simultaneously, so we will ultimately get a good snapshot.
153 		 */
154 		i ^= 1;
155 	}
156 
157 	/*
158 	 * We have a good snapshot.  Now perform any necessary adjustments.
159 	 */
160 	nslt = dtrace_gethrtime() - snap.dthr_hrtime;
161 	ASSERT(nslt >= 0);
162 
163 	now = ((hrtime_t)snap.dthr_hrestime.tv_sec * (hrtime_t)NANOSEC) +
164 	    snap.dthr_hrestime.tv_nsec;
165 
166 	if (snap.dthr_adj != 0) {
167 		if (snap.dthr_adj > 0) {
168 			adj = (nslt >> adj_shift);
169 			if (adj > snap.dthr_adj)
170 				adj = (int)snap.dthr_adj;
171 		} else {
172 			adj = -(nslt >> adj_shift);
173 			if (adj < snap.dthr_adj)
174 				adj = (int)snap.dthr_adj;
175 		}
176 		now += adj;
177 	}
178 
179 	return (now);
180 }
181 
182 void
183 dtrace_vtime_enable(void)
184 {
185 	dtrace_vtime_state_t state, nstate;
186 
187 	do {
188 		state = dtrace_vtime_active;
189 
190 		switch (state) {
191 		case DTRACE_VTIME_INACTIVE:
192 			nstate = DTRACE_VTIME_ACTIVE;
193 			break;
194 
195 		case DTRACE_VTIME_INACTIVE_TNF:
196 			nstate = DTRACE_VTIME_ACTIVE_TNF;
197 			break;
198 
199 		case DTRACE_VTIME_ACTIVE:
200 		case DTRACE_VTIME_ACTIVE_TNF:
201 			panic("DTrace virtual time already enabled");
202 			/*NOTREACHED*/
203 		}
204 
205 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
206 	    state, nstate) != state);
207 }
208 
209 void
210 dtrace_vtime_disable(void)
211 {
212 	dtrace_vtime_state_t state, nstate;
213 
214 	do {
215 		state = dtrace_vtime_active;
216 
217 		switch (state) {
218 		case DTRACE_VTIME_ACTIVE:
219 			nstate = DTRACE_VTIME_INACTIVE;
220 			break;
221 
222 		case DTRACE_VTIME_ACTIVE_TNF:
223 			nstate = DTRACE_VTIME_INACTIVE_TNF;
224 			break;
225 
226 		case DTRACE_VTIME_INACTIVE:
227 		case DTRACE_VTIME_INACTIVE_TNF:
228 			panic("DTrace virtual time already disabled");
229 			/*NOTREACHED*/
230 		}
231 
232 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
233 	    state, nstate) != state);
234 }
235 
236 void
237 dtrace_vtime_enable_tnf(void)
238 {
239 	dtrace_vtime_state_t state, nstate;
240 
241 	do {
242 		state = dtrace_vtime_active;
243 
244 		switch (state) {
245 		case DTRACE_VTIME_ACTIVE:
246 			nstate = DTRACE_VTIME_ACTIVE_TNF;
247 			break;
248 
249 		case DTRACE_VTIME_INACTIVE:
250 			nstate = DTRACE_VTIME_INACTIVE_TNF;
251 			break;
252 
253 		case DTRACE_VTIME_ACTIVE_TNF:
254 		case DTRACE_VTIME_INACTIVE_TNF:
255 			panic("TNF already active");
256 			/*NOTREACHED*/
257 		}
258 
259 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
260 	    state, nstate) != state);
261 }
262 
263 void
264 dtrace_vtime_disable_tnf(void)
265 {
266 	dtrace_vtime_state_t state, nstate;
267 
268 	do {
269 		state = dtrace_vtime_active;
270 
271 		switch (state) {
272 		case DTRACE_VTIME_ACTIVE_TNF:
273 			nstate = DTRACE_VTIME_ACTIVE;
274 			break;
275 
276 		case DTRACE_VTIME_INACTIVE_TNF:
277 			nstate = DTRACE_VTIME_INACTIVE;
278 			break;
279 
280 		case DTRACE_VTIME_ACTIVE:
281 		case DTRACE_VTIME_INACTIVE:
282 			panic("TNF already inactive");
283 			/*NOTREACHED*/
284 		}
285 
286 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
287 	    state, nstate) != state);
288 }
289 
290 void
291 dtrace_vtime_switch(kthread_t *next)
292 {
293 	dtrace_icookie_t cookie;
294 	hrtime_t ts;
295 
296 	if (tnf_tracing_active) {
297 		tnf_thread_switch(next);
298 
299 		if (dtrace_vtime_active == DTRACE_VTIME_INACTIVE_TNF)
300 			return;
301 	}
302 
303 	cookie = dtrace_interrupt_disable();
304 	ts = dtrace_gethrtime();
305 
306 	if (curthread->t_dtrace_start != 0) {
307 		curthread->t_dtrace_vtime += ts - curthread->t_dtrace_start;
308 		curthread->t_dtrace_start = 0;
309 	}
310 
311 	next->t_dtrace_start = ts;
312 
313 	dtrace_interrupt_enable(cookie);
314 }
315 
316 void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
317 void (*dtrace_fasttrap_exec_ptr)(proc_t *);
318 void (*dtrace_fasttrap_exit_ptr)(proc_t *);
319 
320 /*
321  * This function is called by cfork() in the event that it appears that
322  * there may be dtrace tracepoints active in the parent process's address
323  * space. This first confirms the existence of dtrace tracepoints in the
324  * parent process and calls into the fasttrap module to remove the
325  * corresponding tracepoints from the child. By knowing that there are
326  * existing tracepoints, and ensuring they can't be removed, we can rely
327  * on the fasttrap module remaining loaded.
328  */
329 void
330 dtrace_fasttrap_fork(proc_t *p, proc_t *cp)
331 {
332 	ASSERT(p->p_proc_flag & P_PR_LOCK);
333 	ASSERT(p->p_dtrace_count > 0);
334 	ASSERT(dtrace_fasttrap_fork_ptr != NULL);
335 
336 	dtrace_fasttrap_fork_ptr(p, cp);
337 }
338