1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/note.h> 29 #include <sys/t_lock.h> 30 #include <sys/cmn_err.h> 31 #include <sys/instance.h> 32 #include <sys/conf.h> 33 #include <sys/stat.h> 34 #include <sys/ddi.h> 35 #include <sys/hwconf.h> 36 #include <sys/sunddi.h> 37 #include <sys/sunndi.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/ndi_impldefs.h> 40 #include <sys/modctl.h> 41 #include <sys/dacf.h> 42 #include <sys/promif.h> 43 #include <sys/cpuvar.h> 44 #include <sys/pathname.h> 45 #include <sys/kobj.h> 46 #include <sys/devcache.h> 47 #include <sys/devcache_impl.h> 48 #include <sys/sysmacros.h> 49 #include <sys/varargs.h> 50 #include <sys/callb.h> 51 52 /* 53 * This facility provides interfaces to clients to register, 54 * read and update cache data in persisted backing store files, 55 * usually in /etc/devices. The data persisted through this 56 * mechanism should be stateless data, functioning in the sense 57 * of a cache. Writes are performed by a background daemon 58 * thread, permitting a client to schedule an update without 59 * blocking, then continue updating the data state in 60 * parallel. The data is only locked by the daemon thread 61 * to pack the data in preparation for the write. 62 * 63 * Data persisted through this mechanism should be capable 64 * of being regenerated through normal system operation, 65 * for example attaching all disk devices would cause all 66 * devids to be registered for those devices. By caching 67 * a devid-device tuple, the system can operate in a 68 * more optimal way, directly attaching the device mapped 69 * to a devid, rather than burdensomely driving attach of 70 * the entire device tree to discover a single device. 71 * 72 * Note that a client should only need to include 73 * <sys/devcache.h> for the supported interfaces. 74 * 75 * The data per client is entirely within the control of 76 * the client. When reading, data unpacked from the backing 77 * store should be inserted in the list. The pointer to 78 * the list can be retreived via nvf_list(). When writing, 79 * the data on the list is to be packed and returned to the 80 * nvpdaemon as an nvlist. 81 * 82 * Obvious restrictions are imposed by the limits of the 83 * nvlist format. The data cannot be read or written 84 * piecemeal, and large amounts of data aren't recommended. 85 * However, nvlists do allow that data be named and typed 86 * and can be size-of-int invariant, and the cached data 87 * can be versioned conveniently. 88 * 89 * The registration involves two steps: a handle is 90 * allocated by calling the registration function. 91 * This sets up the data referenced by the handle and 92 * initializes the lock. Following registration, the 93 * client must initialize the data list. The list 94 * interfaces require that the list element with offset 95 * to the node link be provided. The format of the 96 * list element is under the control of the client. 97 * 98 * Locking: the address of the data list r/w lock provided 99 * can be accessed with nvf_lock(). The lock must be held 100 * as reader when traversing the list or checking state, 101 * such as nvf_is_dirty(). The lock must be held as 102 * writer when updating the list or marking it dirty. 103 * The lock must not be held when waking the daemon. 104 * 105 * The data r/w lock is held as writer when the pack, 106 * unpack and free list handlers are called. The 107 * lock should not be dropped and must be still held 108 * upon return. The client should also hold the lock 109 * as reader when checking if the list is dirty, and 110 * as writer when marking the list dirty or initiating 111 * a read. 112 * 113 * The asynchronous nature of updates allows for the 114 * possibility that the data may continue to be updated 115 * once the daemon has been notified that an update is 116 * desired. The data only needs to be locked against 117 * updates when packing the data into the form to be 118 * written. When the write of the packed data has 119 * completed, the daemon will automatically reschedule 120 * an update if the data was marked dirty after the 121 * point at which it was packed. Before beginning an 122 * update, the daemon attempts to lock the data as 123 * writer; if the writer lock is already held, it 124 * backs off and retries later. The model is to give 125 * priority to the kernel processes generating the 126 * data, and that the nature of the data is that 127 * it does not change often, can be re-generated when 128 * needed, so updates should not happen often and 129 * can be delayed until the data stops changing. 130 * The client may update the list or mark it dirty 131 * any time it is able to acquire the lock as 132 * writer first. 133 * 134 * A failed write will be retried after some delay, 135 * in the hope that the cause of the error will be 136 * transient, for example a filesystem with no space 137 * available. An update on a read-only filesystem 138 * is failed silently and not retried; this would be 139 * the case when booted off install media. 140 * 141 * There is no unregister mechanism as of yet, as it 142 * hasn't been needed so far. 143 */ 144 145 /* 146 * Global list of files registered and updated by the nvpflush 147 * daemon, protected by the nvf_cache_mutex. While an 148 * update is taking place, a file is temporarily moved to 149 * the dirty list to avoid locking the primary list for 150 * the duration of the update. 151 */ 152 list_t nvf_cache_files; 153 list_t nvf_dirty_files; 154 kmutex_t nvf_cache_mutex; 155 156 157 /* 158 * Allow some delay from an update of the data before flushing 159 * to permit simultaneous updates of multiple changes. 160 * Changes in the data are expected to be bursty, ie 161 * reconfig or hot-plug of a new adapter. 162 * 163 * kfio_report_error (default 0) 164 * Set to 1 to enable some error messages related to low-level 165 * kernel file i/o operations. 166 * 167 * nvpflush_delay (default 10) 168 * The number of seconds after data is marked dirty before the 169 * flush daemon is triggered to flush the data. A longer period 170 * of time permits more data updates per write. Note that 171 * every update resets the timer so no repository write will 172 * occur while data is being updated continuously. 173 * 174 * nvpdaemon_idle_time (default 60) 175 * The number of seconds the daemon will sleep idle before exiting. 176 * 177 */ 178 #define NVPFLUSH_DELAY 10 179 #define NVPDAEMON_IDLE_TIME 60 180 181 #define TICKS_PER_SECOND (drv_usectohz(1000000)) 182 183 /* 184 * Tunables 185 */ 186 int kfio_report_error = 0; /* kernel file i/o operations */ 187 int kfio_disable_read = 0; /* disable all reads */ 188 int kfio_disable_write = 0; /* disable all writes */ 189 190 int nvpflush_delay = NVPFLUSH_DELAY; 191 int nvpdaemon_idle_time = NVPDAEMON_IDLE_TIME; 192 193 static timeout_id_t nvpflush_id = 0; 194 static int nvpflush_timer_busy = 0; 195 static int nvpflush_daemon_active = 0; 196 static kthread_t *nvpflush_thr_id = 0; 197 198 static int do_nvpflush = 0; 199 static int nvpbusy = 0; 200 static kmutex_t nvpflush_lock; 201 static kcondvar_t nvpflush_cv; 202 static kthread_id_t nvpflush_thread; 203 static clock_t nvpticks; 204 205 static void nvpflush_daemon(void); 206 207 #ifdef DEBUG 208 int nvpdaemon_debug = 0; 209 int kfio_debug = 0; 210 #endif /* DEBUG */ 211 212 extern int modrootloaded; 213 extern void mdi_read_devices_files(void); 214 extern void mdi_clean_vhcache(void); 215 216 /* 217 * Initialize the overall cache file management 218 */ 219 void 220 i_ddi_devices_init(void) 221 { 222 list_create(&nvf_cache_files, sizeof (nvfd_t), 223 offsetof(nvfd_t, nvf_link)); 224 list_create(&nvf_dirty_files, sizeof (nvfd_t), 225 offsetof(nvfd_t, nvf_link)); 226 mutex_init(&nvf_cache_mutex, NULL, MUTEX_DEFAULT, NULL); 227 devid_cache_init(); 228 } 229 230 /* 231 * Read cache files 232 * The files read here should be restricted to those 233 * that may be required to mount root. 234 */ 235 void 236 i_ddi_read_devices_files(void) 237 { 238 if (!kfio_disable_read) { 239 mdi_read_devices_files(); 240 devid_cache_read(); 241 } 242 } 243 244 void 245 i_ddi_start_flush_daemon(void) 246 { 247 nvfd_t *nvfdp; 248 249 ASSERT(i_ddi_io_initialized()); 250 251 mutex_init(&nvpflush_lock, NULL, MUTEX_DRIVER, NULL); 252 cv_init(&nvpflush_cv, NULL, CV_DRIVER, NULL); 253 254 mutex_enter(&nvf_cache_mutex); 255 for (nvfdp = list_head(&nvf_cache_files); nvfdp; 256 nvfdp = list_next(&nvf_cache_files, nvfdp)) { 257 if (NVF_IS_DIRTY(nvfdp)) { 258 nvf_wake_daemon(); 259 break; 260 } 261 } 262 mutex_exit(&nvf_cache_mutex); 263 } 264 265 void 266 i_ddi_clean_devices_files(void) 267 { 268 devid_cache_cleanup(); 269 mdi_clean_vhcache(); 270 } 271 272 /* 273 * Register a cache file to be managed and updated by the nvpflush daemon. 274 * All operations are performed through the returned handle. 275 * There is no unregister mechanism for now. 276 */ 277 nvf_handle_t 278 nvf_register_file(nvf_ops_t *ops) 279 { 280 nvfd_t *nvfdp; 281 282 nvfdp = kmem_zalloc(sizeof (*nvfdp), KM_SLEEP); 283 284 nvfdp->nvf_ops = ops; 285 nvfdp->nvf_flags = 0; 286 rw_init(&nvfdp->nvf_lock, NULL, RW_DRIVER, NULL); 287 288 mutex_enter(&nvf_cache_mutex); 289 list_insert_tail(&nvf_cache_files, nvfdp); 290 mutex_exit(&nvf_cache_mutex); 291 292 return ((nvf_handle_t)nvfdp); 293 } 294 295 /*PRINTFLIKE1*/ 296 void 297 nvf_error(const char *fmt, ...) 298 { 299 va_list ap; 300 301 if (kfio_report_error) { 302 va_start(ap, fmt); 303 vcmn_err(CE_NOTE, fmt, ap); 304 va_end(ap); 305 } 306 } 307 308 /* 309 * Some operations clients may use to manage the data 310 * to be persisted in a cache file. 311 */ 312 char * 313 nvf_cache_name(nvf_handle_t handle) 314 { 315 return (((nvfd_t *)handle)->nvf_cache_path); 316 } 317 318 krwlock_t * 319 nvf_lock(nvf_handle_t handle) 320 { 321 return (&(((nvfd_t *)handle)->nvf_lock)); 322 } 323 324 list_t * 325 nvf_list(nvf_handle_t handle) 326 { 327 return (&(((nvfd_t *)handle)->nvf_data_list)); 328 } 329 330 void 331 nvf_mark_dirty(nvf_handle_t handle) 332 { 333 ASSERT(RW_WRITE_HELD(&(((nvfd_t *)handle)->nvf_lock))); 334 NVF_MARK_DIRTY((nvfd_t *)handle); 335 } 336 337 int 338 nvf_is_dirty(nvf_handle_t handle) 339 { 340 ASSERT(RW_LOCK_HELD(&(((nvfd_t *)handle)->nvf_lock))); 341 return (NVF_IS_DIRTY((nvfd_t *)handle)); 342 } 343 344 static uint16_t 345 nvp_cksum(uchar_t *buf, int64_t buflen) 346 { 347 uint16_t cksum = 0; 348 uint16_t *p = (uint16_t *)buf; 349 int64_t n; 350 351 if ((buflen & 0x01) != 0) { 352 buflen--; 353 cksum = buf[buflen]; 354 } 355 n = buflen / 2; 356 while (n-- > 0) 357 cksum ^= *p++; 358 return (cksum); 359 } 360 361 int 362 fread_nvlist(char *filename, nvlist_t **ret_nvlist) 363 { 364 struct _buf *file; 365 nvpf_hdr_t hdr; 366 char *buf; 367 nvlist_t *nvl; 368 int rval; 369 uint_t offset; 370 int n; 371 char c; 372 uint16_t cksum, hdrsum; 373 374 *ret_nvlist = NULL; 375 376 file = kobj_open_file(filename); 377 if (file == (struct _buf *)-1) { 378 KFDEBUG((CE_CONT, "cannot open file: %s\n", filename)); 379 return (ENOENT); 380 } 381 382 offset = 0; 383 n = kobj_read_file(file, (char *)&hdr, sizeof (hdr), offset); 384 if (n != sizeof (hdr)) { 385 kobj_close_file(file); 386 if (n < 0) { 387 nvf_error("error reading header: %s\n", filename); 388 return (EIO); 389 } else if (n == 0) { 390 KFDEBUG((CE_CONT, "file empty: %s\n", filename)); 391 } else { 392 nvf_error("header size incorrect: %s\n", filename); 393 } 394 return (EINVAL); 395 } 396 offset += n; 397 398 KFDEBUG2((CE_CONT, "nvpf_magic: 0x%x\n", hdr.nvpf_magic)); 399 KFDEBUG2((CE_CONT, "nvpf_version: %d\n", hdr.nvpf_version)); 400 KFDEBUG2((CE_CONT, "nvpf_size: %lld\n", 401 (longlong_t)hdr.nvpf_size)); 402 KFDEBUG2((CE_CONT, "nvpf_hdr_chksum: 0x%x\n", 403 hdr.nvpf_hdr_chksum)); 404 KFDEBUG2((CE_CONT, "nvpf_chksum: 0x%x\n", hdr.nvpf_chksum)); 405 406 cksum = hdr.nvpf_hdr_chksum; 407 hdr.nvpf_hdr_chksum = 0; 408 hdrsum = nvp_cksum((uchar_t *)&hdr, sizeof (hdr)); 409 410 if (hdr.nvpf_magic != NVPF_HDR_MAGIC || 411 hdr.nvpf_version != NVPF_HDR_VERSION || hdrsum != cksum) { 412 kobj_close_file(file); 413 if (hdrsum != cksum) { 414 nvf_error("%s: checksum error " 415 "(actual 0x%x, expected 0x%x)\n", 416 filename, hdrsum, cksum); 417 } 418 nvf_error("%s: header information incorrect", filename); 419 return (EINVAL); 420 } 421 422 ASSERT(hdr.nvpf_size >= 0); 423 424 buf = kmem_alloc(hdr.nvpf_size, KM_SLEEP); 425 n = kobj_read_file(file, buf, hdr.nvpf_size, offset); 426 if (n != hdr.nvpf_size) { 427 kmem_free(buf, hdr.nvpf_size); 428 kobj_close_file(file); 429 if (n < 0) { 430 nvf_error("%s: read error %d", filename, n); 431 } else { 432 nvf_error("%s: incomplete read %d/%lld", 433 filename, n, (longlong_t)hdr.nvpf_size); 434 } 435 return (EINVAL); 436 } 437 offset += n; 438 439 rval = kobj_read_file(file, &c, 1, offset); 440 kobj_close_file(file); 441 if (rval > 0) { 442 nvf_error("%s is larger than %lld\n", 443 filename, (longlong_t)hdr.nvpf_size); 444 kmem_free(buf, hdr.nvpf_size); 445 return (EINVAL); 446 } 447 448 cksum = nvp_cksum((uchar_t *)buf, hdr.nvpf_size); 449 if (hdr.nvpf_chksum != cksum) { 450 nvf_error("%s: checksum error (actual 0x%x, expected 0x%x)\n", 451 filename, hdr.nvpf_chksum, cksum); 452 kmem_free(buf, hdr.nvpf_size); 453 return (EINVAL); 454 } 455 456 nvl = NULL; 457 rval = nvlist_unpack(buf, hdr.nvpf_size, &nvl, 0); 458 if (rval != 0) { 459 nvf_error("%s: error %d unpacking nvlist\n", 460 filename, rval); 461 kmem_free(buf, hdr.nvpf_size); 462 return (EINVAL); 463 } 464 465 kmem_free(buf, hdr.nvpf_size); 466 *ret_nvlist = nvl; 467 return (0); 468 } 469 470 static int 471 kfcreate(char *filename, kfile_t **kfilep) 472 { 473 kfile_t *fp; 474 int rval; 475 476 ASSERT(modrootloaded); 477 478 fp = kmem_alloc(sizeof (kfile_t), KM_SLEEP); 479 480 fp->kf_vnflags = FCREAT | FWRITE | FTRUNC; 481 fp->kf_fname = filename; 482 fp->kf_fpos = 0; 483 fp->kf_state = 0; 484 485 KFDEBUG((CE_CONT, "create: %s flags 0x%x\n", 486 filename, fp->kf_vnflags)); 487 rval = vn_open(filename, UIO_SYSSPACE, fp->kf_vnflags, 488 0444, &fp->kf_vp, CRCREAT, 0); 489 if (rval != 0) { 490 kmem_free(fp, sizeof (kfile_t)); 491 KFDEBUG((CE_CONT, "%s: create error %d\n", 492 filename, rval)); 493 return (rval); 494 } 495 496 *kfilep = fp; 497 return (0); 498 } 499 500 static int 501 kfremove(char *filename) 502 { 503 int rval; 504 505 KFDEBUG((CE_CONT, "remove: %s\n", filename)); 506 rval = vn_remove(filename, UIO_SYSSPACE, RMFILE); 507 if (rval != 0) { 508 KFDEBUG((CE_CONT, "%s: remove error %d\n", 509 filename, rval)); 510 } 511 return (rval); 512 } 513 514 static int 515 kfread(kfile_t *fp, char *buf, ssize_t bufsiz, ssize_t *ret_n) 516 { 517 ssize_t resid; 518 int err; 519 ssize_t n; 520 521 ASSERT(modrootloaded); 522 523 if (fp->kf_state != 0) 524 return (fp->kf_state); 525 526 err = vn_rdwr(UIO_READ, fp->kf_vp, buf, bufsiz, fp->kf_fpos, 527 UIO_SYSSPACE, 0, (rlim64_t)0, kcred, &resid); 528 if (err != 0) { 529 KFDEBUG((CE_CONT, "%s: read error %d\n", 530 fp->kf_fname, err)); 531 fp->kf_state = err; 532 return (err); 533 } 534 535 ASSERT(resid >= 0 && resid <= bufsiz); 536 n = bufsiz - resid; 537 538 KFDEBUG1((CE_CONT, "%s: read %ld bytes ok %ld bufsiz, %ld resid\n", 539 fp->kf_fname, n, bufsiz, resid)); 540 541 fp->kf_fpos += n; 542 *ret_n = n; 543 return (0); 544 } 545 546 static int 547 kfwrite(kfile_t *fp, char *buf, ssize_t bufsiz, ssize_t *ret_n) 548 { 549 rlim64_t rlimit; 550 ssize_t resid; 551 int err; 552 ssize_t len; 553 ssize_t n = 0; 554 555 ASSERT(modrootloaded); 556 557 if (fp->kf_state != 0) 558 return (fp->kf_state); 559 560 len = bufsiz; 561 rlimit = bufsiz + 1; 562 for (;;) { 563 err = vn_rdwr(UIO_WRITE, fp->kf_vp, buf, len, fp->kf_fpos, 564 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 565 if (err) { 566 KFDEBUG((CE_CONT, "%s: write error %d\n", 567 fp->kf_fname, err)); 568 fp->kf_state = err; 569 return (err); 570 } 571 572 KFDEBUG1((CE_CONT, "%s: write %ld bytes ok %ld resid\n", 573 fp->kf_fname, len-resid, resid)); 574 575 ASSERT(resid >= 0 && resid <= len); 576 577 n += (len - resid); 578 if (resid == 0) 579 break; 580 581 if (resid == len) { 582 KFDEBUG((CE_CONT, "%s: filesystem full?\n", 583 fp->kf_fname)); 584 fp->kf_state = ENOSPC; 585 return (ENOSPC); 586 } 587 588 len -= resid; 589 buf += len; 590 fp->kf_fpos += len; 591 len = resid; 592 } 593 594 ASSERT(n == bufsiz); 595 KFDEBUG1((CE_CONT, "%s: wrote %ld bytes ok\n", fp->kf_fname, n)); 596 597 *ret_n = n; 598 return (0); 599 } 600 601 602 static int 603 kfclose(kfile_t *fp) 604 { 605 int rval; 606 607 KFDEBUG((CE_CONT, "close: %s\n", fp->kf_fname)); 608 609 if ((fp->kf_vnflags & FWRITE) && fp->kf_state == 0) { 610 rval = VOP_FSYNC(fp->kf_vp, FSYNC, kcred); 611 if (rval != 0) { 612 nvf_error("%s: sync error %d\n", 613 fp->kf_fname, rval); 614 } 615 KFDEBUG((CE_CONT, "%s: sync ok\n", fp->kf_fname)); 616 } 617 618 rval = VOP_CLOSE(fp->kf_vp, fp->kf_vnflags, 1, (offset_t)0, kcred); 619 if (rval != 0) { 620 if (fp->kf_state == 0) { 621 nvf_error("%s: close error %d\n", 622 fp->kf_fname, rval); 623 } 624 } else { 625 if (fp->kf_state == 0) 626 KFDEBUG((CE_CONT, "%s: close ok\n", fp->kf_fname)); 627 } 628 629 VN_RELE(fp->kf_vp); 630 kmem_free(fp, sizeof (kfile_t)); 631 return (rval); 632 } 633 634 static int 635 kfrename(char *oldname, char *newname) 636 { 637 int rval; 638 639 ASSERT(modrootloaded); 640 641 KFDEBUG((CE_CONT, "renaming %s to %s\n", oldname, newname)); 642 643 if ((rval = vn_rename(oldname, newname, UIO_SYSSPACE)) != 0) { 644 KFDEBUG((CE_CONT, "rename %s to %s: %d\n", 645 oldname, newname, rval)); 646 } 647 648 return (rval); 649 } 650 651 int 652 fwrite_nvlist(char *filename, nvlist_t *nvl) 653 { 654 char *buf; 655 char *nvbuf; 656 kfile_t *fp; 657 char *newname; 658 int len, err, err1; 659 size_t buflen; 660 ssize_t n; 661 662 ASSERT(modrootloaded); 663 664 nvbuf = NULL; 665 err = nvlist_pack(nvl, &nvbuf, &buflen, NV_ENCODE_NATIVE, 0); 666 if (err != 0) { 667 nvf_error("%s: error %d packing nvlist\n", 668 filename, err); 669 return (err); 670 } 671 672 buf = kmem_alloc(sizeof (nvpf_hdr_t) + buflen, KM_SLEEP); 673 bzero(buf, sizeof (nvpf_hdr_t)); 674 675 ((nvpf_hdr_t *)buf)->nvpf_magic = NVPF_HDR_MAGIC; 676 ((nvpf_hdr_t *)buf)->nvpf_version = NVPF_HDR_VERSION; 677 ((nvpf_hdr_t *)buf)->nvpf_size = buflen; 678 ((nvpf_hdr_t *)buf)->nvpf_chksum = nvp_cksum((uchar_t *)nvbuf, buflen); 679 ((nvpf_hdr_t *)buf)->nvpf_hdr_chksum = 680 nvp_cksum((uchar_t *)buf, sizeof (nvpf_hdr_t)); 681 682 bcopy(nvbuf, buf + sizeof (nvpf_hdr_t), buflen); 683 kmem_free(nvbuf, buflen); 684 buflen += sizeof (nvpf_hdr_t); 685 686 len = strlen(filename) + MAX_SUFFIX_LEN + 2; 687 newname = kmem_alloc(len, KM_SLEEP); 688 689 690 (void) sprintf(newname, "%s.%s", 691 filename, NEW_FILENAME_SUFFIX); 692 693 /* 694 * To make it unlikely we suffer data loss, write 695 * data to the new temporary file. Once successful 696 * complete the transaction by renaming the new file 697 * to replace the previous. 698 */ 699 700 if ((err = kfcreate(newname, &fp)) == 0) { 701 err = kfwrite(fp, buf, buflen, &n); 702 if (err) { 703 nvf_error("%s: write error - %d\n", 704 newname, err); 705 } else { 706 if (n != buflen) { 707 nvf_error( 708 "%s: partial write %ld of %ld bytes\n", 709 newname, n, buflen); 710 nvf_error("%s: filesystem may be full?\n", 711 newname); 712 err = EIO; 713 } 714 } 715 if ((err1 = kfclose(fp)) != 0) { 716 nvf_error("%s: close error\n", newname); 717 if (err == 0) 718 err = err1; 719 } 720 if (err != 0) { 721 if (kfremove(newname) != 0) { 722 nvf_error("%s: remove failed\n", 723 newname); 724 } 725 } 726 } else { 727 nvf_error("%s: create failed - %d\n", filename, err); 728 } 729 730 if (err == 0) { 731 if ((err = kfrename(newname, filename)) != 0) { 732 nvf_error("%s: rename from %s failed\n", 733 newname, filename); 734 } 735 } 736 737 kmem_free(newname, len); 738 kmem_free(buf, buflen); 739 740 return (err); 741 } 742 743 static int 744 e_fwrite_nvlist(nvfd_t *nvfd, nvlist_t *nvl) 745 { 746 int err; 747 748 if ((err = fwrite_nvlist(nvfd->nvf_cache_path, nvl)) == 0) 749 return (DDI_SUCCESS); 750 else { 751 if (err == EROFS) 752 NVF_MARK_READONLY(nvfd); 753 return (DDI_FAILURE); 754 } 755 } 756 757 static void 758 nvp_list_free(nvfd_t *nvf) 759 { 760 ASSERT(RW_WRITE_HELD(&nvf->nvf_lock)); 761 (nvf->nvf_list_free)((nvf_handle_t)nvf); 762 ASSERT(RW_WRITE_HELD(&nvf->nvf_lock)); 763 } 764 765 /* 766 * Read a file in the nvlist format 767 * EIO - i/o error during read 768 * ENOENT - file not found 769 * EINVAL - file contents corrupted 770 */ 771 static int 772 fread_nvp_list(nvfd_t *nvfd) 773 { 774 nvlist_t *nvl; 775 nvpair_t *nvp; 776 char *name; 777 nvlist_t *sublist; 778 int rval; 779 int rv; 780 781 ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock))); 782 783 rval = fread_nvlist(nvfd->nvf_cache_path, &nvl); 784 if (rval != 0) 785 return (rval); 786 ASSERT(nvl != NULL); 787 788 nvp = NULL; 789 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 790 name = nvpair_name(nvp); 791 ASSERT(strlen(name) > 0); 792 793 switch (nvpair_type(nvp)) { 794 case DATA_TYPE_NVLIST: 795 rval = nvpair_value_nvlist(nvp, &sublist); 796 if (rval != 0) { 797 nvf_error( 798 "nvpair_value_nvlist error %s %d\n", 799 name, rval); 800 goto error; 801 } 802 803 /* 804 * unpack nvlist for this device and 805 * add elements to data list. 806 */ 807 ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock))); 808 rv = (nvfd->nvf_unpack_nvlist) 809 ((nvf_handle_t)nvfd, sublist, name); 810 ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock))); 811 if (rv != 0) { 812 nvf_error( 813 "%s: %s invalid list element\n", 814 nvfd->nvf_cache_path, name); 815 rval = EINVAL; 816 goto error; 817 } 818 break; 819 820 default: 821 nvf_error("%s: %s unsupported data type %d\n", 822 nvfd->nvf_cache_path, name, nvpair_type(nvp)); 823 rval = EINVAL; 824 goto error; 825 } 826 } 827 828 nvlist_free(nvl); 829 830 return (0); 831 832 error: 833 nvlist_free(nvl); 834 nvp_list_free(nvfd); 835 return (rval); 836 } 837 838 839 int 840 nvf_read_file(nvf_handle_t nvf_handle) 841 { 842 nvfd_t *nvfd = (nvfd_t *)nvf_handle; 843 int rval; 844 845 ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock)); 846 847 if (kfio_disable_read) 848 return (0); 849 850 KFDEBUG((CE_CONT, "reading %s\n", nvfd->nvf_cache_path)); 851 852 rval = fread_nvp_list(nvfd); 853 if (rval) { 854 switch (rval) { 855 case EIO: 856 nvfd->nvf_flags |= NVF_F_REBUILD_MSG; 857 cmn_err(CE_WARN, "%s: I/O error", 858 nvfd->nvf_cache_path); 859 break; 860 case ENOENT: 861 nvfd->nvf_flags |= NVF_F_CREATE_MSG; 862 nvf_error("%s: not found\n", 863 nvfd->nvf_cache_path); 864 break; 865 case EINVAL: 866 default: 867 nvfd->nvf_flags |= NVF_F_REBUILD_MSG; 868 cmn_err(CE_WARN, "%s: data file corrupted", 869 nvfd->nvf_cache_path); 870 break; 871 } 872 } 873 return (rval); 874 } 875 876 static void 877 nvf_write_is_complete(nvfd_t *fd) 878 { 879 if (fd->nvf_write_complete) { 880 (fd->nvf_write_complete)((nvf_handle_t)fd); 881 } 882 } 883 884 /*ARGSUSED*/ 885 static void 886 nvpflush_timeout(void *arg) 887 { 888 clock_t nticks; 889 890 mutex_enter(&nvpflush_lock); 891 nticks = nvpticks - ddi_get_lbolt(); 892 if (nticks > 4) { 893 nvpflush_timer_busy = 1; 894 mutex_exit(&nvpflush_lock); 895 nvpflush_id = timeout(nvpflush_timeout, NULL, nticks); 896 } else { 897 do_nvpflush = 1; 898 NVPDAEMON_DEBUG((CE_CONT, "signal nvpdaemon\n")); 899 cv_signal(&nvpflush_cv); 900 nvpflush_id = 0; 901 nvpflush_timer_busy = 0; 902 mutex_exit(&nvpflush_lock); 903 } 904 } 905 906 /* 907 * After marking a list as dirty, wake the nvpflush daemon 908 * to perform the update. 909 */ 910 void 911 nvf_wake_daemon(void) 912 { 913 clock_t nticks; 914 915 /* 916 * If the system isn't up yet 917 * don't even think about starting a flush. 918 */ 919 if (!i_ddi_io_initialized()) 920 return; 921 922 mutex_enter(&nvpflush_lock); 923 924 if (nvpflush_daemon_active == 0) { 925 nvpflush_daemon_active = 1; 926 mutex_exit(&nvpflush_lock); 927 NVPDAEMON_DEBUG((CE_CONT, "starting nvpdaemon thread\n")); 928 nvpflush_thr_id = thread_create(NULL, 0, 929 (void (*)())nvpflush_daemon, 930 NULL, 0, &p0, TS_RUN, minclsyspri); 931 mutex_enter(&nvpflush_lock); 932 } 933 934 nticks = nvpflush_delay * TICKS_PER_SECOND; 935 nvpticks = ddi_get_lbolt() + nticks; 936 if (nvpflush_timer_busy == 0) { 937 nvpflush_timer_busy = 1; 938 mutex_exit(&nvpflush_lock); 939 nvpflush_id = timeout(nvpflush_timeout, NULL, nticks + 4); 940 } else 941 mutex_exit(&nvpflush_lock); 942 } 943 944 static int 945 nvpflush_one(nvfd_t *nvfd) 946 { 947 int rval = DDI_SUCCESS; 948 nvlist_t *nvl; 949 950 rw_enter(&nvfd->nvf_lock, RW_READER); 951 952 ASSERT((nvfd->nvf_flags & NVF_F_FLUSHING) == 0); 953 954 if (!NVF_IS_DIRTY(nvfd) || 955 NVF_IS_READONLY(nvfd) || kfio_disable_write) { 956 NVF_CLEAR_DIRTY(nvfd); 957 rw_exit(&nvfd->nvf_lock); 958 return (DDI_SUCCESS); 959 } 960 961 if (rw_tryupgrade(&nvfd->nvf_lock) == 0) { 962 nvf_error("nvpflush: " 963 "%s rw upgrade failed\n", nvfd->nvf_cache_path); 964 rw_exit(&nvfd->nvf_lock); 965 return (DDI_FAILURE); 966 } 967 if (((nvfd->nvf_pack_list) 968 ((nvf_handle_t)nvfd, &nvl)) != DDI_SUCCESS) { 969 nvf_error("nvpflush: " 970 "%s nvlist construction failed\n", nvfd->nvf_cache_path); 971 ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock)); 972 rw_exit(&nvfd->nvf_lock); 973 return (DDI_FAILURE); 974 } 975 ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock)); 976 977 NVF_CLEAR_DIRTY(nvfd); 978 nvfd->nvf_flags |= NVF_F_FLUSHING; 979 rw_exit(&nvfd->nvf_lock); 980 981 rval = e_fwrite_nvlist(nvfd, nvl); 982 nvlist_free(nvl); 983 984 rw_enter(&nvfd->nvf_lock, RW_WRITER); 985 nvfd->nvf_flags &= ~NVF_F_FLUSHING; 986 if (rval == DDI_FAILURE) { 987 if (NVF_IS_READONLY(nvfd)) { 988 rval = DDI_SUCCESS; 989 nvfd->nvf_flags &= ~(NVF_F_ERROR | NVF_F_DIRTY); 990 } else if ((nvfd->nvf_flags & NVF_F_ERROR) == 0) { 991 cmn_err(CE_CONT, 992 "%s: updated failed\n", nvfd->nvf_cache_path); 993 nvfd->nvf_flags |= NVF_F_ERROR | NVF_F_DIRTY; 994 } 995 } else { 996 if (nvfd->nvf_flags & NVF_F_CREATE_MSG) { 997 cmn_err(CE_CONT, 998 "!Creating %s\n", nvfd->nvf_cache_path); 999 nvfd->nvf_flags &= ~NVF_F_CREATE_MSG; 1000 } 1001 if (nvfd->nvf_flags & NVF_F_REBUILD_MSG) { 1002 cmn_err(CE_CONT, 1003 "!Rebuilding %s\n", nvfd->nvf_cache_path); 1004 nvfd->nvf_flags &= ~NVF_F_REBUILD_MSG; 1005 } 1006 if (nvfd->nvf_flags & NVF_F_ERROR) { 1007 cmn_err(CE_CONT, 1008 "%s: update now ok\n", nvfd->nvf_cache_path); 1009 nvfd->nvf_flags &= ~NVF_F_ERROR; 1010 } 1011 /* 1012 * The file may need to be flushed again if the cached 1013 * data was touched while writing the earlier contents. 1014 */ 1015 if (NVF_IS_DIRTY(nvfd)) 1016 rval = DDI_FAILURE; 1017 } 1018 1019 rw_exit(&nvfd->nvf_lock); 1020 return (rval); 1021 } 1022 1023 1024 static void 1025 nvpflush_daemon(void) 1026 { 1027 callb_cpr_t cprinfo; 1028 nvfd_t *nvfdp, *nextfdp; 1029 clock_t clk; 1030 int rval; 1031 int want_wakeup; 1032 int is_now_clean; 1033 1034 ASSERT(modrootloaded); 1035 1036 nvpflush_thread = curthread; 1037 NVPDAEMON_DEBUG((CE_CONT, "nvpdaemon: init\n")); 1038 1039 CALLB_CPR_INIT(&cprinfo, &nvpflush_lock, callb_generic_cpr, "nvp"); 1040 mutex_enter(&nvpflush_lock); 1041 for (;;) { 1042 1043 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1044 while (do_nvpflush == 0) { 1045 clk = cv_timedwait(&nvpflush_cv, &nvpflush_lock, 1046 ddi_get_lbolt() + 1047 (nvpdaemon_idle_time * TICKS_PER_SECOND)); 1048 if (clk == -1 && 1049 do_nvpflush == 0 && nvpflush_timer_busy == 0) { 1050 /* 1051 * Note that CALLB_CPR_EXIT calls mutex_exit() 1052 * on the lock passed in to CALLB_CPR_INIT, 1053 * so the lock must be held when invoking it. 1054 */ 1055 CALLB_CPR_SAFE_END(&cprinfo, &nvpflush_lock); 1056 NVPDAEMON_DEBUG((CE_CONT, "nvpdaemon: exit\n")); 1057 ASSERT(mutex_owned(&nvpflush_lock)); 1058 nvpflush_thr_id = NULL; 1059 nvpflush_daemon_active = 0; 1060 CALLB_CPR_EXIT(&cprinfo); 1061 thread_exit(); 1062 } 1063 } 1064 CALLB_CPR_SAFE_END(&cprinfo, &nvpflush_lock); 1065 1066 nvpbusy = 1; 1067 want_wakeup = 0; 1068 do_nvpflush = 0; 1069 mutex_exit(&nvpflush_lock); 1070 1071 /* 1072 * Try flushing what's dirty, reschedule if there's 1073 * a failure or data gets marked as dirty again. 1074 * First move each file marked dirty to the dirty 1075 * list to avoid locking the list across the write. 1076 */ 1077 mutex_enter(&nvf_cache_mutex); 1078 for (nvfdp = list_head(&nvf_cache_files); 1079 nvfdp; nvfdp = nextfdp) { 1080 nextfdp = list_next(&nvf_cache_files, nvfdp); 1081 rw_enter(&nvfdp->nvf_lock, RW_READER); 1082 if (NVF_IS_DIRTY(nvfdp)) { 1083 list_remove(&nvf_cache_files, nvfdp); 1084 list_insert_tail(&nvf_dirty_files, nvfdp); 1085 rw_exit(&nvfdp->nvf_lock); 1086 } else { 1087 NVPDAEMON_DEBUG((CE_CONT, 1088 "nvpdaemon: not dirty %s\n", 1089 nvfdp->nvf_cache_path)); 1090 rw_exit(&nvfdp->nvf_lock); 1091 } 1092 } 1093 mutex_exit(&nvf_cache_mutex); 1094 1095 /* 1096 * Now go through the dirty list 1097 */ 1098 for (nvfdp = list_head(&nvf_dirty_files); 1099 nvfdp; nvfdp = nextfdp) { 1100 nextfdp = list_next(&nvf_dirty_files, nvfdp); 1101 1102 is_now_clean = 0; 1103 rw_enter(&nvfdp->nvf_lock, RW_READER); 1104 if (NVF_IS_DIRTY(nvfdp)) { 1105 NVPDAEMON_DEBUG((CE_CONT, 1106 "nvpdaemon: flush %s\n", 1107 nvfdp->nvf_cache_path)); 1108 rw_exit(&nvfdp->nvf_lock); 1109 rval = nvpflush_one(nvfdp); 1110 rw_enter(&nvfdp->nvf_lock, RW_READER); 1111 if (rval != DDI_SUCCESS || 1112 NVF_IS_DIRTY(nvfdp)) { 1113 rw_exit(&nvfdp->nvf_lock); 1114 NVPDAEMON_DEBUG((CE_CONT, 1115 "nvpdaemon: %s dirty again\n", 1116 nvfdp->nvf_cache_path)); 1117 want_wakeup = 1; 1118 } else { 1119 rw_exit(&nvfdp->nvf_lock); 1120 nvf_write_is_complete(nvfdp); 1121 is_now_clean = 1; 1122 } 1123 } else { 1124 NVPDAEMON_DEBUG((CE_CONT, 1125 "nvpdaemon: not dirty %s\n", 1126 nvfdp->nvf_cache_path)); 1127 rw_exit(&nvfdp->nvf_lock); 1128 is_now_clean = 1; 1129 } 1130 1131 if (is_now_clean) { 1132 mutex_enter(&nvf_cache_mutex); 1133 list_remove(&nvf_dirty_files, nvfdp); 1134 list_insert_tail(&nvf_cache_files, 1135 nvfdp); 1136 mutex_exit(&nvf_cache_mutex); 1137 } 1138 } 1139 1140 if (want_wakeup) 1141 nvf_wake_daemon(); 1142 1143 mutex_enter(&nvpflush_lock); 1144 nvpbusy = 0; 1145 } 1146 } 1147