1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/cpu_event.h> 36 #include <sys/kstat.h> 37 #include <sys/uadmin.h> 38 #include <sys/systm.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/procset.h> 42 #include <sys/processor.h> 43 #include <sys/debug.h> 44 #include <sys/cpupart.h> 45 #include <sys/lgrp.h> 46 #include <sys/pset.h> 47 #include <sys/pghw.h> 48 #include <sys/kmem.h> 49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 50 #include <sys/atomic.h> 51 #include <sys/callb.h> 52 #include <sys/vtrace.h> 53 #include <sys/cyclic.h> 54 #include <sys/bitmap.h> 55 #include <sys/nvpair.h> 56 #include <sys/pool_pset.h> 57 #include <sys/msacct.h> 58 #include <sys/time.h> 59 #include <sys/archsystm.h> 60 #include <sys/sdt.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 #include <sys/callo.h> 65 66 extern int mp_cpu_start(cpu_t *); 67 extern int mp_cpu_stop(cpu_t *); 68 extern int mp_cpu_poweron(cpu_t *); 69 extern int mp_cpu_poweroff(cpu_t *); 70 extern int mp_cpu_configure(int); 71 extern int mp_cpu_unconfigure(int); 72 extern void mp_cpu_faulted_enter(cpu_t *); 73 extern void mp_cpu_faulted_exit(cpu_t *); 74 75 extern int cmp_cpu_to_chip(processorid_t cpuid); 76 #ifdef __sparcv9 77 extern char *cpu_fru_fmri(cpu_t *cp); 78 #endif 79 80 static void cpu_add_active_internal(cpu_t *cp); 81 static void cpu_remove_active(cpu_t *cp); 82 static void cpu_info_kstat_create(cpu_t *cp); 83 static void cpu_info_kstat_destroy(cpu_t *cp); 84 static void cpu_stats_kstat_create(cpu_t *cp); 85 static void cpu_stats_kstat_destroy(cpu_t *cp); 86 87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 91 92 /* 93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 94 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 95 * respect to related locks is: 96 * 97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 98 * 99 * Warning: Certain sections of code do not use the cpu_lock when 100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 101 * all cpus are paused during modifications to this list, a solution 102 * to protect the list is too either disable kernel preemption while 103 * walking the list, *or* recheck the cpu_next pointer at each 104 * iteration in the loop. Note that in no cases can any cached 105 * copies of the cpu pointers be kept as they may become invalid. 106 */ 107 kmutex_t cpu_lock; 108 cpu_t *cpu_list; /* list of all CPUs */ 109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 110 cpu_t *cpu_active; /* list of active CPUs */ 111 static cpuset_t cpu_available; /* set of available CPUs */ 112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 113 114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 115 116 /* 117 * max_ncpus keeps the max cpus the system can have. Initially 118 * it's NCPU, but since most archs scan the devtree for cpus 119 * fairly early on during boot, the real max can be known before 120 * ncpus is set (useful for early NCPU based allocations). 121 */ 122 int max_ncpus = NCPU; 123 /* 124 * platforms that set max_ncpus to maxiumum number of cpus that can be 125 * dynamically added will set boot_max_ncpus to the number of cpus found 126 * at device tree scan time during boot. 127 */ 128 int boot_max_ncpus = -1; 129 int boot_ncpus = -1; 130 /* 131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 132 * used to size arrays that are indexed by CPU id. 133 */ 134 processorid_t max_cpuid = NCPU - 1; 135 136 /* 137 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 138 * can be used to optimize NCPU loops to avoid going through CPUs which were 139 * never on-line. 140 */ 141 processorid_t max_cpu_seqid_ever = 0; 142 143 int ncpus = 1; 144 int ncpus_online = 1; 145 146 /* 147 * CPU that we're trying to offline. Protected by cpu_lock. 148 */ 149 cpu_t *cpu_inmotion; 150 151 /* 152 * Can be raised to suppress further weakbinding, which are instead 153 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 154 * while individual thread weakbinding synchronization is done under thread 155 * lock. 156 */ 157 int weakbindingbarrier; 158 159 /* 160 * Variables used in pause_cpus(). 161 */ 162 static volatile char safe_list[NCPU]; 163 164 static struct _cpu_pause_info { 165 int cp_spl; /* spl saved in pause_cpus() */ 166 volatile int cp_go; /* Go signal sent after all ready */ 167 int cp_count; /* # of CPUs to pause */ 168 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 169 kthread_id_t cp_paused; 170 } cpu_pause_info; 171 172 static kmutex_t pause_free_mutex; 173 static kcondvar_t pause_free_cv; 174 175 void *(*cpu_pause_func)(void *) = NULL; 176 177 178 static struct cpu_sys_stats_ks_data { 179 kstat_named_t cpu_ticks_idle; 180 kstat_named_t cpu_ticks_user; 181 kstat_named_t cpu_ticks_kernel; 182 kstat_named_t cpu_ticks_wait; 183 kstat_named_t cpu_nsec_idle; 184 kstat_named_t cpu_nsec_user; 185 kstat_named_t cpu_nsec_kernel; 186 kstat_named_t cpu_nsec_dtrace; 187 kstat_named_t cpu_nsec_intr; 188 kstat_named_t cpu_load_intr; 189 kstat_named_t wait_ticks_io; 190 kstat_named_t dtrace_probes; 191 kstat_named_t bread; 192 kstat_named_t bwrite; 193 kstat_named_t lread; 194 kstat_named_t lwrite; 195 kstat_named_t phread; 196 kstat_named_t phwrite; 197 kstat_named_t pswitch; 198 kstat_named_t trap; 199 kstat_named_t intr; 200 kstat_named_t syscall; 201 kstat_named_t sysread; 202 kstat_named_t syswrite; 203 kstat_named_t sysfork; 204 kstat_named_t sysvfork; 205 kstat_named_t sysexec; 206 kstat_named_t readch; 207 kstat_named_t writech; 208 kstat_named_t rcvint; 209 kstat_named_t xmtint; 210 kstat_named_t mdmint; 211 kstat_named_t rawch; 212 kstat_named_t canch; 213 kstat_named_t outch; 214 kstat_named_t msg; 215 kstat_named_t sema; 216 kstat_named_t namei; 217 kstat_named_t ufsiget; 218 kstat_named_t ufsdirblk; 219 kstat_named_t ufsipage; 220 kstat_named_t ufsinopage; 221 kstat_named_t procovf; 222 kstat_named_t intrthread; 223 kstat_named_t intrblk; 224 kstat_named_t intrunpin; 225 kstat_named_t idlethread; 226 kstat_named_t inv_swtch; 227 kstat_named_t nthreads; 228 kstat_named_t cpumigrate; 229 kstat_named_t xcalls; 230 kstat_named_t mutex_adenters; 231 kstat_named_t rw_rdfails; 232 kstat_named_t rw_wrfails; 233 kstat_named_t modload; 234 kstat_named_t modunload; 235 kstat_named_t bawrite; 236 kstat_named_t iowait; 237 } cpu_sys_stats_ks_data_template = { 238 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 239 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 240 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 241 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 242 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 243 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 244 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 245 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 246 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 247 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 248 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 249 { "dtrace_probes", KSTAT_DATA_UINT64 }, 250 { "bread", KSTAT_DATA_UINT64 }, 251 { "bwrite", KSTAT_DATA_UINT64 }, 252 { "lread", KSTAT_DATA_UINT64 }, 253 { "lwrite", KSTAT_DATA_UINT64 }, 254 { "phread", KSTAT_DATA_UINT64 }, 255 { "phwrite", KSTAT_DATA_UINT64 }, 256 { "pswitch", KSTAT_DATA_UINT64 }, 257 { "trap", KSTAT_DATA_UINT64 }, 258 { "intr", KSTAT_DATA_UINT64 }, 259 { "syscall", KSTAT_DATA_UINT64 }, 260 { "sysread", KSTAT_DATA_UINT64 }, 261 { "syswrite", KSTAT_DATA_UINT64 }, 262 { "sysfork", KSTAT_DATA_UINT64 }, 263 { "sysvfork", KSTAT_DATA_UINT64 }, 264 { "sysexec", KSTAT_DATA_UINT64 }, 265 { "readch", KSTAT_DATA_UINT64 }, 266 { "writech", KSTAT_DATA_UINT64 }, 267 { "rcvint", KSTAT_DATA_UINT64 }, 268 { "xmtint", KSTAT_DATA_UINT64 }, 269 { "mdmint", KSTAT_DATA_UINT64 }, 270 { "rawch", KSTAT_DATA_UINT64 }, 271 { "canch", KSTAT_DATA_UINT64 }, 272 { "outch", KSTAT_DATA_UINT64 }, 273 { "msg", KSTAT_DATA_UINT64 }, 274 { "sema", KSTAT_DATA_UINT64 }, 275 { "namei", KSTAT_DATA_UINT64 }, 276 { "ufsiget", KSTAT_DATA_UINT64 }, 277 { "ufsdirblk", KSTAT_DATA_UINT64 }, 278 { "ufsipage", KSTAT_DATA_UINT64 }, 279 { "ufsinopage", KSTAT_DATA_UINT64 }, 280 { "procovf", KSTAT_DATA_UINT64 }, 281 { "intrthread", KSTAT_DATA_UINT64 }, 282 { "intrblk", KSTAT_DATA_UINT64 }, 283 { "intrunpin", KSTAT_DATA_UINT64 }, 284 { "idlethread", KSTAT_DATA_UINT64 }, 285 { "inv_swtch", KSTAT_DATA_UINT64 }, 286 { "nthreads", KSTAT_DATA_UINT64 }, 287 { "cpumigrate", KSTAT_DATA_UINT64 }, 288 { "xcalls", KSTAT_DATA_UINT64 }, 289 { "mutex_adenters", KSTAT_DATA_UINT64 }, 290 { "rw_rdfails", KSTAT_DATA_UINT64 }, 291 { "rw_wrfails", KSTAT_DATA_UINT64 }, 292 { "modload", KSTAT_DATA_UINT64 }, 293 { "modunload", KSTAT_DATA_UINT64 }, 294 { "bawrite", KSTAT_DATA_UINT64 }, 295 { "iowait", KSTAT_DATA_UINT64 }, 296 }; 297 298 static struct cpu_vm_stats_ks_data { 299 kstat_named_t pgrec; 300 kstat_named_t pgfrec; 301 kstat_named_t pgin; 302 kstat_named_t pgpgin; 303 kstat_named_t pgout; 304 kstat_named_t pgpgout; 305 kstat_named_t swapin; 306 kstat_named_t pgswapin; 307 kstat_named_t swapout; 308 kstat_named_t pgswapout; 309 kstat_named_t zfod; 310 kstat_named_t dfree; 311 kstat_named_t scan; 312 kstat_named_t rev; 313 kstat_named_t hat_fault; 314 kstat_named_t as_fault; 315 kstat_named_t maj_fault; 316 kstat_named_t cow_fault; 317 kstat_named_t prot_fault; 318 kstat_named_t softlock; 319 kstat_named_t kernel_asflt; 320 kstat_named_t pgrrun; 321 kstat_named_t execpgin; 322 kstat_named_t execpgout; 323 kstat_named_t execfree; 324 kstat_named_t anonpgin; 325 kstat_named_t anonpgout; 326 kstat_named_t anonfree; 327 kstat_named_t fspgin; 328 kstat_named_t fspgout; 329 kstat_named_t fsfree; 330 } cpu_vm_stats_ks_data_template = { 331 { "pgrec", KSTAT_DATA_UINT64 }, 332 { "pgfrec", KSTAT_DATA_UINT64 }, 333 { "pgin", KSTAT_DATA_UINT64 }, 334 { "pgpgin", KSTAT_DATA_UINT64 }, 335 { "pgout", KSTAT_DATA_UINT64 }, 336 { "pgpgout", KSTAT_DATA_UINT64 }, 337 { "swapin", KSTAT_DATA_UINT64 }, 338 { "pgswapin", KSTAT_DATA_UINT64 }, 339 { "swapout", KSTAT_DATA_UINT64 }, 340 { "pgswapout", KSTAT_DATA_UINT64 }, 341 { "zfod", KSTAT_DATA_UINT64 }, 342 { "dfree", KSTAT_DATA_UINT64 }, 343 { "scan", KSTAT_DATA_UINT64 }, 344 { "rev", KSTAT_DATA_UINT64 }, 345 { "hat_fault", KSTAT_DATA_UINT64 }, 346 { "as_fault", KSTAT_DATA_UINT64 }, 347 { "maj_fault", KSTAT_DATA_UINT64 }, 348 { "cow_fault", KSTAT_DATA_UINT64 }, 349 { "prot_fault", KSTAT_DATA_UINT64 }, 350 { "softlock", KSTAT_DATA_UINT64 }, 351 { "kernel_asflt", KSTAT_DATA_UINT64 }, 352 { "pgrrun", KSTAT_DATA_UINT64 }, 353 { "execpgin", KSTAT_DATA_UINT64 }, 354 { "execpgout", KSTAT_DATA_UINT64 }, 355 { "execfree", KSTAT_DATA_UINT64 }, 356 { "anonpgin", KSTAT_DATA_UINT64 }, 357 { "anonpgout", KSTAT_DATA_UINT64 }, 358 { "anonfree", KSTAT_DATA_UINT64 }, 359 { "fspgin", KSTAT_DATA_UINT64 }, 360 { "fspgout", KSTAT_DATA_UINT64 }, 361 { "fsfree", KSTAT_DATA_UINT64 }, 362 }; 363 364 /* 365 * Force the specified thread to migrate to the appropriate processor. 366 * Called with thread lock held, returns with it dropped. 367 */ 368 static void 369 force_thread_migrate(kthread_id_t tp) 370 { 371 ASSERT(THREAD_LOCK_HELD(tp)); 372 if (tp == curthread) { 373 THREAD_TRANSITION(tp); 374 CL_SETRUN(tp); 375 thread_unlock_nopreempt(tp); 376 swtch(); 377 } else { 378 if (tp->t_state == TS_ONPROC) { 379 cpu_surrender(tp); 380 } else if (tp->t_state == TS_RUN) { 381 (void) dispdeq(tp); 382 setbackdq(tp); 383 } 384 thread_unlock(tp); 385 } 386 } 387 388 /* 389 * Set affinity for a specified CPU. 390 * A reference count is incremented and the affinity is held until the 391 * reference count is decremented to zero by thread_affinity_clear(). 392 * This is so regions of code requiring affinity can be nested. 393 * Caller needs to ensure that cpu_id remains valid, which can be 394 * done by holding cpu_lock across this call, unless the caller 395 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 396 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 397 */ 398 void 399 thread_affinity_set(kthread_id_t t, int cpu_id) 400 { 401 cpu_t *cp; 402 int c; 403 404 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 405 406 if ((c = cpu_id) == CPU_CURRENT) { 407 mutex_enter(&cpu_lock); 408 cpu_id = CPU->cpu_id; 409 } 410 /* 411 * We should be asserting that cpu_lock is held here, but 412 * the NCA code doesn't acquire it. The following assert 413 * should be uncommented when the NCA code is fixed. 414 * 415 * ASSERT(MUTEX_HELD(&cpu_lock)); 416 */ 417 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 418 cp = cpu[cpu_id]; 419 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 420 /* 421 * If there is already a hard affinity requested, and this affinity 422 * conflicts with that, panic. 423 */ 424 thread_lock(t); 425 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 426 panic("affinity_set: setting %p but already bound to %p", 427 (void *)cp, (void *)t->t_bound_cpu); 428 } 429 t->t_affinitycnt++; 430 t->t_bound_cpu = cp; 431 432 /* 433 * Make sure we're running on the right CPU. 434 */ 435 if (cp != t->t_cpu || t != curthread) { 436 force_thread_migrate(t); /* drops thread lock */ 437 } else { 438 thread_unlock(t); 439 } 440 441 if (c == CPU_CURRENT) 442 mutex_exit(&cpu_lock); 443 } 444 445 /* 446 * Wrapper for backward compatibility. 447 */ 448 void 449 affinity_set(int cpu_id) 450 { 451 thread_affinity_set(curthread, cpu_id); 452 } 453 454 /* 455 * Decrement the affinity reservation count and if it becomes zero, 456 * clear the CPU affinity for the current thread, or set it to the user's 457 * software binding request. 458 */ 459 void 460 thread_affinity_clear(kthread_id_t t) 461 { 462 register processorid_t binding; 463 464 thread_lock(t); 465 if (--t->t_affinitycnt == 0) { 466 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 467 /* 468 * Adjust disp_max_unbound_pri if necessary. 469 */ 470 disp_adjust_unbound_pri(t); 471 t->t_bound_cpu = NULL; 472 if (t->t_cpu->cpu_part != t->t_cpupart) { 473 force_thread_migrate(t); 474 return; 475 } 476 } else { 477 t->t_bound_cpu = cpu[binding]; 478 /* 479 * Make sure the thread is running on the bound CPU. 480 */ 481 if (t->t_cpu != t->t_bound_cpu) { 482 force_thread_migrate(t); 483 return; /* already dropped lock */ 484 } 485 } 486 } 487 thread_unlock(t); 488 } 489 490 /* 491 * Wrapper for backward compatibility. 492 */ 493 void 494 affinity_clear(void) 495 { 496 thread_affinity_clear(curthread); 497 } 498 499 /* 500 * Weak cpu affinity. Bind to the "current" cpu for short periods 501 * of time during which the thread must not block (but may be preempted). 502 * Use this instead of kpreempt_disable() when it is only "no migration" 503 * rather than "no preemption" semantics that are required - disabling 504 * preemption holds higher priority threads off of cpu and if the 505 * operation that is protected is more than momentary this is not good 506 * for realtime etc. 507 * 508 * Weakly bound threads will not prevent a cpu from being offlined - 509 * we'll only run them on the cpu to which they are weakly bound but 510 * (because they do not block) we'll always be able to move them on to 511 * another cpu at offline time if we give them just a short moment to 512 * run during which they will unbind. To give a cpu a chance of offlining, 513 * however, we require a barrier to weak bindings that may be raised for a 514 * given cpu (offline/move code may set this and then wait a short time for 515 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 516 * 517 * There are few restrictions on the calling context of thread_nomigrate. 518 * The caller must not hold the thread lock. Calls may be nested. 519 * 520 * After weakbinding a thread must not perform actions that may block. 521 * In particular it must not call thread_affinity_set; calling that when 522 * already weakbound is nonsensical anyway. 523 * 524 * If curthread is prevented from migrating for other reasons 525 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 526 * then the weak binding will succeed even if this cpu is the target of an 527 * offline/move request. 528 */ 529 void 530 thread_nomigrate(void) 531 { 532 cpu_t *cp; 533 kthread_id_t t = curthread; 534 535 again: 536 kpreempt_disable(); 537 cp = CPU; 538 539 /* 540 * A highlevel interrupt must not modify t_nomigrate or 541 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 542 * interrupt thread cannot migrate and we can avoid the 543 * thread_lock call below by short-circuiting here. In either 544 * case we can just return since no migration is possible and 545 * the condition will persist (ie, when we test for these again 546 * in thread_allowmigrate they can't have changed). Migration 547 * is also impossible if we're at or above DISP_LEVEL pil. 548 */ 549 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 550 getpil() >= DISP_LEVEL) { 551 kpreempt_enable(); 552 return; 553 } 554 555 /* 556 * We must be consistent with existing weak bindings. Since we 557 * may be interrupted between the increment of t_nomigrate and 558 * the store to t_weakbound_cpu below we cannot assume that 559 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 560 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 561 * always the case. 562 */ 563 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 564 if (!panicstr) 565 panic("thread_nomigrate: binding to %p but already " 566 "bound to %p", (void *)cp, 567 (void *)t->t_weakbound_cpu); 568 } 569 570 /* 571 * At this point we have preemption disabled and we don't yet hold 572 * the thread lock. So it's possible that somebody else could 573 * set t_bind_cpu here and not be able to force us across to the 574 * new cpu (since we have preemption disabled). 575 */ 576 thread_lock(curthread); 577 578 /* 579 * If further weak bindings are being (temporarily) suppressed then 580 * we'll settle for disabling kernel preemption (which assures 581 * no migration provided the thread does not block which it is 582 * not allowed to if using thread_nomigrate). We must remember 583 * this disposition so we can take appropriate action in 584 * thread_allowmigrate. If this is a nested call and the 585 * thread is already weakbound then fall through as normal. 586 * We remember the decision to settle for kpreempt_disable through 587 * negative nesting counting in t_nomigrate. Once a thread has had one 588 * weakbinding request satisfied in this way any further (nested) 589 * requests will continue to be satisfied in the same way, 590 * even if weak bindings have recommenced. 591 */ 592 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 593 --t->t_nomigrate; 594 thread_unlock(curthread); 595 return; /* with kpreempt_disable still active */ 596 } 597 598 /* 599 * We hold thread_lock so t_bind_cpu cannot change. We could, 600 * however, be running on a different cpu to which we are t_bound_cpu 601 * to (as explained above). If we grant the weak binding request 602 * in that case then the dispatcher must favour our weak binding 603 * over our strong (in which case, just as when preemption is 604 * disabled, we can continue to run on a cpu other than the one to 605 * which we are strongbound; the difference in this case is that 606 * this thread can be preempted and so can appear on the dispatch 607 * queues of a cpu other than the one it is strongbound to). 608 * 609 * If the cpu we are running on does not appear to be a current 610 * offline target (we check cpu_inmotion to determine this - since 611 * we don't hold cpu_lock we may not see a recent store to that, 612 * so it's possible that we at times can grant a weak binding to a 613 * cpu that is an offline target, but that one request will not 614 * prevent the offline from succeeding) then we will always grant 615 * the weak binding request. This includes the case above where 616 * we grant a weakbinding not commensurate with our strong binding. 617 * 618 * If our cpu does appear to be an offline target then we're inclined 619 * not to grant the weakbinding request just yet - we'd prefer to 620 * migrate to another cpu and grant the request there. The 621 * exceptions are those cases where going through preemption code 622 * will not result in us changing cpu: 623 * 624 * . interrupts have already bypassed this case (see above) 625 * . we are already weakbound to this cpu (dispatcher code will 626 * always return us to the weakbound cpu) 627 * . preemption was disabled even before we disabled it above 628 * . we are strongbound to this cpu (if we're strongbound to 629 * another and not yet running there the trip through the 630 * dispatcher will move us to the strongbound cpu and we 631 * will grant the weak binding there) 632 */ 633 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 634 t->t_bound_cpu == cp) { 635 /* 636 * Don't be tempted to store to t_weakbound_cpu only on 637 * the first nested bind request - if we're interrupted 638 * after the increment of t_nomigrate and before the 639 * store to t_weakbound_cpu and the interrupt calls 640 * thread_nomigrate then the assertion in thread_allowmigrate 641 * would fail. 642 */ 643 t->t_nomigrate++; 644 t->t_weakbound_cpu = cp; 645 membar_producer(); 646 thread_unlock(curthread); 647 /* 648 * Now that we have dropped the thread_lock another thread 649 * can set our t_weakbound_cpu, and will try to migrate us 650 * to the strongbound cpu (which will not be prevented by 651 * preemption being disabled since we're about to enable 652 * preemption). We have granted the weakbinding to the current 653 * cpu, so again we are in the position that is is is possible 654 * that our weak and strong bindings differ. Again this 655 * is catered for by dispatcher code which will favour our 656 * weak binding. 657 */ 658 kpreempt_enable(); 659 } else { 660 /* 661 * Move to another cpu before granting the request by 662 * forcing this thread through preemption code. When we 663 * get to set{front,back}dq called from CL_PREEMPT() 664 * cpu_choose() will be used to select a cpu to queue 665 * us on - that will see cpu_inmotion and take 666 * steps to avoid returning us to this cpu. 667 */ 668 cp->cpu_kprunrun = 1; 669 thread_unlock(curthread); 670 kpreempt_enable(); /* will call preempt() */ 671 goto again; 672 } 673 } 674 675 void 676 thread_allowmigrate(void) 677 { 678 kthread_id_t t = curthread; 679 680 ASSERT(t->t_weakbound_cpu == CPU || 681 (t->t_nomigrate < 0 && t->t_preempt > 0) || 682 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 683 getpil() >= DISP_LEVEL); 684 685 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 686 getpil() >= DISP_LEVEL) 687 return; 688 689 if (t->t_nomigrate < 0) { 690 /* 691 * This thread was granted "weak binding" in the 692 * stronger form of kernel preemption disabling. 693 * Undo a level of nesting for both t_nomigrate 694 * and t_preempt. 695 */ 696 ++t->t_nomigrate; 697 kpreempt_enable(); 698 } else if (--t->t_nomigrate == 0) { 699 /* 700 * Time to drop the weak binding. We need to cater 701 * for the case where we're weakbound to a different 702 * cpu than that to which we're strongbound (a very 703 * temporary arrangement that must only persist until 704 * weak binding drops). We don't acquire thread_lock 705 * here so even as this code executes t_bound_cpu 706 * may be changing. So we disable preemption and 707 * a) in the case that t_bound_cpu changes while we 708 * have preemption disabled kprunrun will be set 709 * asynchronously, and b) if before disabling 710 * preemption we were already on a different cpu to 711 * our t_bound_cpu then we set kprunrun ourselves 712 * to force a trip through the dispatcher when 713 * preemption is enabled. 714 */ 715 kpreempt_disable(); 716 if (t->t_bound_cpu && 717 t->t_weakbound_cpu != t->t_bound_cpu) 718 CPU->cpu_kprunrun = 1; 719 t->t_weakbound_cpu = NULL; 720 membar_producer(); 721 kpreempt_enable(); 722 } 723 } 724 725 /* 726 * weakbinding_stop can be used to temporarily cause weakbindings made 727 * with thread_nomigrate to be satisfied through the stronger action of 728 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 729 */ 730 731 void 732 weakbinding_stop(void) 733 { 734 ASSERT(MUTEX_HELD(&cpu_lock)); 735 weakbindingbarrier = 1; 736 membar_producer(); /* make visible before subsequent thread_lock */ 737 } 738 739 void 740 weakbinding_start(void) 741 { 742 ASSERT(MUTEX_HELD(&cpu_lock)); 743 weakbindingbarrier = 0; 744 } 745 746 void 747 null_xcall(void) 748 { 749 } 750 751 /* 752 * This routine is called to place the CPUs in a safe place so that 753 * one of them can be taken off line or placed on line. What we are 754 * trying to do here is prevent a thread from traversing the list 755 * of active CPUs while we are changing it or from getting placed on 756 * the run queue of a CPU that has just gone off line. We do this by 757 * creating a thread with the highest possible prio for each CPU and 758 * having it call this routine. The advantage of this method is that 759 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 760 * This makes disp faster at the expense of making p_online() slower 761 * which is a good trade off. 762 */ 763 static void 764 cpu_pause(int index) 765 { 766 int s; 767 struct _cpu_pause_info *cpi = &cpu_pause_info; 768 volatile char *safe = &safe_list[index]; 769 long lindex = index; 770 771 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 772 773 while (*safe != PAUSE_DIE) { 774 *safe = PAUSE_READY; 775 membar_enter(); /* make sure stores are flushed */ 776 sema_v(&cpi->cp_sem); /* signal requesting thread */ 777 778 /* 779 * Wait here until all pause threads are running. That 780 * indicates that it's safe to do the spl. Until 781 * cpu_pause_info.cp_go is set, we don't want to spl 782 * because that might block clock interrupts needed 783 * to preempt threads on other CPUs. 784 */ 785 while (cpi->cp_go == 0) 786 ; 787 /* 788 * Even though we are at the highest disp prio, we need 789 * to block out all interrupts below LOCK_LEVEL so that 790 * an intr doesn't come in, wake up a thread, and call 791 * setbackdq/setfrontdq. 792 */ 793 s = splhigh(); 794 /* 795 * if cpu_pause_func() has been set then call it using 796 * index as the argument, currently only used by 797 * cpr_suspend_cpus(). This function is used as the 798 * code to execute on the "paused" cpu's when a machine 799 * comes out of a sleep state and CPU's were powered off. 800 * (could also be used for hotplugging CPU's). 801 */ 802 if (cpu_pause_func != NULL) 803 (*cpu_pause_func)((void *)lindex); 804 805 mach_cpu_pause(safe); 806 807 splx(s); 808 /* 809 * Waiting is at an end. Switch out of cpu_pause 810 * loop and resume useful work. 811 */ 812 swtch(); 813 } 814 815 mutex_enter(&pause_free_mutex); 816 *safe = PAUSE_DEAD; 817 cv_broadcast(&pause_free_cv); 818 mutex_exit(&pause_free_mutex); 819 } 820 821 /* 822 * Allow the cpus to start running again. 823 */ 824 void 825 start_cpus() 826 { 827 int i; 828 829 ASSERT(MUTEX_HELD(&cpu_lock)); 830 ASSERT(cpu_pause_info.cp_paused); 831 cpu_pause_info.cp_paused = NULL; 832 for (i = 0; i < NCPU; i++) 833 safe_list[i] = PAUSE_IDLE; 834 membar_enter(); /* make sure stores are flushed */ 835 affinity_clear(); 836 splx(cpu_pause_info.cp_spl); 837 kpreempt_enable(); 838 } 839 840 /* 841 * Allocate a pause thread for a CPU. 842 */ 843 static void 844 cpu_pause_alloc(cpu_t *cp) 845 { 846 kthread_id_t t; 847 long cpun = cp->cpu_id; 848 849 /* 850 * Note, v.v_nglobpris will not change value as long as I hold 851 * cpu_lock. 852 */ 853 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 854 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 855 thread_lock(t); 856 t->t_bound_cpu = cp; 857 t->t_disp_queue = cp->cpu_disp; 858 t->t_affinitycnt = 1; 859 t->t_preempt = 1; 860 thread_unlock(t); 861 cp->cpu_pause_thread = t; 862 /* 863 * Registering a thread in the callback table is usually done 864 * in the initialization code of the thread. In this 865 * case, we do it right after thread creation because the 866 * thread itself may never run, and we need to register the 867 * fact that it is safe for cpr suspend. 868 */ 869 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 870 } 871 872 /* 873 * Free a pause thread for a CPU. 874 */ 875 static void 876 cpu_pause_free(cpu_t *cp) 877 { 878 kthread_id_t t; 879 int cpun = cp->cpu_id; 880 881 ASSERT(MUTEX_HELD(&cpu_lock)); 882 /* 883 * We have to get the thread and tell him to die. 884 */ 885 if ((t = cp->cpu_pause_thread) == NULL) { 886 ASSERT(safe_list[cpun] == PAUSE_IDLE); 887 return; 888 } 889 thread_lock(t); 890 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 891 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 892 t->t_pri = v.v_nglobpris - 1; 893 ASSERT(safe_list[cpun] == PAUSE_IDLE); 894 safe_list[cpun] = PAUSE_DIE; 895 THREAD_TRANSITION(t); 896 setbackdq(t); 897 thread_unlock_nopreempt(t); 898 899 /* 900 * If we don't wait for the thread to actually die, it may try to 901 * run on the wrong cpu as part of an actual call to pause_cpus(). 902 */ 903 mutex_enter(&pause_free_mutex); 904 while (safe_list[cpun] != PAUSE_DEAD) { 905 cv_wait(&pause_free_cv, &pause_free_mutex); 906 } 907 mutex_exit(&pause_free_mutex); 908 safe_list[cpun] = PAUSE_IDLE; 909 910 cp->cpu_pause_thread = NULL; 911 } 912 913 /* 914 * Initialize basic structures for pausing CPUs. 915 */ 916 void 917 cpu_pause_init() 918 { 919 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 920 /* 921 * Create initial CPU pause thread. 922 */ 923 cpu_pause_alloc(CPU); 924 } 925 926 /* 927 * Start the threads used to pause another CPU. 928 */ 929 static int 930 cpu_pause_start(processorid_t cpu_id) 931 { 932 int i; 933 int cpu_count = 0; 934 935 for (i = 0; i < NCPU; i++) { 936 cpu_t *cp; 937 kthread_id_t t; 938 939 cp = cpu[i]; 940 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 941 safe_list[i] = PAUSE_WAIT; 942 continue; 943 } 944 945 /* 946 * Skip CPU if it is quiesced or not yet started. 947 */ 948 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 949 safe_list[i] = PAUSE_WAIT; 950 continue; 951 } 952 953 /* 954 * Start this CPU's pause thread. 955 */ 956 t = cp->cpu_pause_thread; 957 thread_lock(t); 958 /* 959 * Reset the priority, since nglobpris may have 960 * changed since the thread was created, if someone 961 * has loaded the RT (or some other) scheduling 962 * class. 963 */ 964 t->t_pri = v.v_nglobpris - 1; 965 THREAD_TRANSITION(t); 966 setbackdq(t); 967 thread_unlock_nopreempt(t); 968 ++cpu_count; 969 } 970 return (cpu_count); 971 } 972 973 974 /* 975 * Pause all of the CPUs except the one we are on by creating a high 976 * priority thread bound to those CPUs. 977 * 978 * Note that one must be extremely careful regarding code 979 * executed while CPUs are paused. Since a CPU may be paused 980 * while a thread scheduling on that CPU is holding an adaptive 981 * lock, code executed with CPUs paused must not acquire adaptive 982 * (or low-level spin) locks. Also, such code must not block, 983 * since the thread that is supposed to initiate the wakeup may 984 * never run. 985 * 986 * With a few exceptions, the restrictions on code executed with CPUs 987 * paused match those for code executed at high-level interrupt 988 * context. 989 */ 990 void 991 pause_cpus(cpu_t *off_cp) 992 { 993 processorid_t cpu_id; 994 int i; 995 struct _cpu_pause_info *cpi = &cpu_pause_info; 996 997 ASSERT(MUTEX_HELD(&cpu_lock)); 998 ASSERT(cpi->cp_paused == NULL); 999 cpi->cp_count = 0; 1000 cpi->cp_go = 0; 1001 for (i = 0; i < NCPU; i++) 1002 safe_list[i] = PAUSE_IDLE; 1003 kpreempt_disable(); 1004 1005 /* 1006 * If running on the cpu that is going offline, get off it. 1007 * This is so that it won't be necessary to rechoose a CPU 1008 * when done. 1009 */ 1010 if (CPU == off_cp) 1011 cpu_id = off_cp->cpu_next_part->cpu_id; 1012 else 1013 cpu_id = CPU->cpu_id; 1014 affinity_set(cpu_id); 1015 1016 /* 1017 * Start the pause threads and record how many were started 1018 */ 1019 cpi->cp_count = cpu_pause_start(cpu_id); 1020 1021 /* 1022 * Now wait for all CPUs to be running the pause thread. 1023 */ 1024 while (cpi->cp_count > 0) { 1025 /* 1026 * Spin reading the count without grabbing the disp 1027 * lock to make sure we don't prevent the pause 1028 * threads from getting the lock. 1029 */ 1030 while (sema_held(&cpi->cp_sem)) 1031 ; 1032 if (sema_tryp(&cpi->cp_sem)) 1033 --cpi->cp_count; 1034 } 1035 cpi->cp_go = 1; /* all have reached cpu_pause */ 1036 1037 /* 1038 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1039 * to PAUSE_WAIT.) 1040 */ 1041 for (i = 0; i < NCPU; i++) { 1042 while (safe_list[i] != PAUSE_WAIT) 1043 ; 1044 } 1045 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1046 cpi->cp_paused = curthread; 1047 } 1048 1049 /* 1050 * Check whether the current thread has CPUs paused 1051 */ 1052 int 1053 cpus_paused(void) 1054 { 1055 if (cpu_pause_info.cp_paused != NULL) { 1056 ASSERT(cpu_pause_info.cp_paused == curthread); 1057 return (1); 1058 } 1059 return (0); 1060 } 1061 1062 static cpu_t * 1063 cpu_get_all(processorid_t cpun) 1064 { 1065 ASSERT(MUTEX_HELD(&cpu_lock)); 1066 1067 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1068 return (NULL); 1069 return (cpu[cpun]); 1070 } 1071 1072 /* 1073 * Check whether cpun is a valid processor id and whether it should be 1074 * visible from the current zone. If it is, return a pointer to the 1075 * associated CPU structure. 1076 */ 1077 cpu_t * 1078 cpu_get(processorid_t cpun) 1079 { 1080 cpu_t *c; 1081 1082 ASSERT(MUTEX_HELD(&cpu_lock)); 1083 c = cpu_get_all(cpun); 1084 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1085 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1086 return (NULL); 1087 return (c); 1088 } 1089 1090 /* 1091 * The following functions should be used to check CPU states in the kernel. 1092 * They should be invoked with cpu_lock held. Kernel subsystems interested 1093 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1094 * states. Those are for user-land (and system call) use only. 1095 */ 1096 1097 /* 1098 * Determine whether the CPU is online and handling interrupts. 1099 */ 1100 int 1101 cpu_is_online(cpu_t *cpu) 1102 { 1103 ASSERT(MUTEX_HELD(&cpu_lock)); 1104 return (cpu_flagged_online(cpu->cpu_flags)); 1105 } 1106 1107 /* 1108 * Determine whether the CPU is offline (this includes spare and faulted). 1109 */ 1110 int 1111 cpu_is_offline(cpu_t *cpu) 1112 { 1113 ASSERT(MUTEX_HELD(&cpu_lock)); 1114 return (cpu_flagged_offline(cpu->cpu_flags)); 1115 } 1116 1117 /* 1118 * Determine whether the CPU is powered off. 1119 */ 1120 int 1121 cpu_is_poweredoff(cpu_t *cpu) 1122 { 1123 ASSERT(MUTEX_HELD(&cpu_lock)); 1124 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1125 } 1126 1127 /* 1128 * Determine whether the CPU is handling interrupts. 1129 */ 1130 int 1131 cpu_is_nointr(cpu_t *cpu) 1132 { 1133 ASSERT(MUTEX_HELD(&cpu_lock)); 1134 return (cpu_flagged_nointr(cpu->cpu_flags)); 1135 } 1136 1137 /* 1138 * Determine whether the CPU is active (scheduling threads). 1139 */ 1140 int 1141 cpu_is_active(cpu_t *cpu) 1142 { 1143 ASSERT(MUTEX_HELD(&cpu_lock)); 1144 return (cpu_flagged_active(cpu->cpu_flags)); 1145 } 1146 1147 /* 1148 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1149 */ 1150 int 1151 cpu_flagged_online(cpu_flag_t cpu_flags) 1152 { 1153 return (cpu_flagged_active(cpu_flags) && 1154 (cpu_flags & CPU_ENABLE)); 1155 } 1156 1157 int 1158 cpu_flagged_offline(cpu_flag_t cpu_flags) 1159 { 1160 return (((cpu_flags & CPU_POWEROFF) == 0) && 1161 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1162 } 1163 1164 int 1165 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1166 { 1167 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1168 } 1169 1170 int 1171 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1172 { 1173 return (cpu_flagged_active(cpu_flags) && 1174 (cpu_flags & CPU_ENABLE) == 0); 1175 } 1176 1177 int 1178 cpu_flagged_active(cpu_flag_t cpu_flags) 1179 { 1180 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1181 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1182 } 1183 1184 /* 1185 * Bring the indicated CPU online. 1186 */ 1187 int 1188 cpu_online(cpu_t *cp) 1189 { 1190 int error = 0; 1191 1192 /* 1193 * Handle on-line request. 1194 * This code must put the new CPU on the active list before 1195 * starting it because it will not be paused, and will start 1196 * using the active list immediately. The real start occurs 1197 * when the CPU_QUIESCED flag is turned off. 1198 */ 1199 1200 ASSERT(MUTEX_HELD(&cpu_lock)); 1201 1202 /* 1203 * Put all the cpus into a known safe place. 1204 * No mutexes can be entered while CPUs are paused. 1205 */ 1206 error = mp_cpu_start(cp); /* arch-dep hook */ 1207 if (error == 0) { 1208 pg_cpupart_in(cp, cp->cpu_part); 1209 pause_cpus(NULL); 1210 cpu_add_active_internal(cp); 1211 if (cp->cpu_flags & CPU_FAULTED) { 1212 cp->cpu_flags &= ~CPU_FAULTED; 1213 mp_cpu_faulted_exit(cp); 1214 } 1215 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1216 CPU_SPARE); 1217 CPU_NEW_GENERATION(cp); 1218 start_cpus(); 1219 cpu_stats_kstat_create(cp); 1220 cpu_create_intrstat(cp); 1221 lgrp_kstat_create(cp); 1222 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1223 cpu_intr_enable(cp); /* arch-dep hook */ 1224 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1225 cpu_set_state(cp); 1226 cyclic_online(cp); 1227 /* 1228 * This has to be called only after cyclic_online(). This 1229 * function uses cyclics. 1230 */ 1231 callout_cpu_online(cp); 1232 poke_cpu(cp->cpu_id); 1233 } 1234 1235 return (error); 1236 } 1237 1238 /* 1239 * Take the indicated CPU offline. 1240 */ 1241 int 1242 cpu_offline(cpu_t *cp, int flags) 1243 { 1244 cpupart_t *pp; 1245 int error = 0; 1246 cpu_t *ncp; 1247 int intr_enable; 1248 int cyclic_off = 0; 1249 int callout_off = 0; 1250 int loop_count; 1251 int no_quiesce = 0; 1252 int (*bound_func)(struct cpu *, int); 1253 kthread_t *t; 1254 lpl_t *cpu_lpl; 1255 proc_t *p; 1256 int lgrp_diff_lpl; 1257 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1258 1259 ASSERT(MUTEX_HELD(&cpu_lock)); 1260 1261 /* 1262 * If we're going from faulted or spare to offline, just 1263 * clear these flags and update CPU state. 1264 */ 1265 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1266 if (cp->cpu_flags & CPU_FAULTED) { 1267 cp->cpu_flags &= ~CPU_FAULTED; 1268 mp_cpu_faulted_exit(cp); 1269 } 1270 cp->cpu_flags &= ~CPU_SPARE; 1271 cpu_set_state(cp); 1272 return (0); 1273 } 1274 1275 /* 1276 * Handle off-line request. 1277 */ 1278 pp = cp->cpu_part; 1279 /* 1280 * Don't offline last online CPU in partition 1281 */ 1282 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1283 return (EBUSY); 1284 /* 1285 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1286 * if we were asked to. 1287 */ 1288 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1289 if (error != 0) 1290 return (error); 1291 /* 1292 * We shouldn't be bound to this CPU ourselves. 1293 */ 1294 if (curthread->t_bound_cpu == cp) 1295 return (EBUSY); 1296 1297 /* 1298 * Tell interested parties that this CPU is going offline. 1299 */ 1300 CPU_NEW_GENERATION(cp); 1301 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1302 1303 /* 1304 * Tell the PG subsystem that the CPU is leaving the partition 1305 */ 1306 pg_cpupart_out(cp, pp); 1307 1308 /* 1309 * Take the CPU out of interrupt participation so we won't find 1310 * bound kernel threads. If the architecture cannot completely 1311 * shut off interrupts on the CPU, don't quiesce it, but don't 1312 * run anything but interrupt thread... this is indicated by 1313 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1314 * off. 1315 */ 1316 intr_enable = cp->cpu_flags & CPU_ENABLE; 1317 if (intr_enable) 1318 no_quiesce = cpu_intr_disable(cp); 1319 1320 /* 1321 * Record that we are aiming to offline this cpu. This acts as 1322 * a barrier to further weak binding requests in thread_nomigrate 1323 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1324 * lean away from this cpu. Further strong bindings are already 1325 * avoided since we hold cpu_lock. Since threads that are set 1326 * runnable around now and others coming off the target cpu are 1327 * directed away from the target, existing strong and weak bindings 1328 * (especially the latter) to the target cpu stand maximum chance of 1329 * being able to unbind during the short delay loop below (if other 1330 * unbound threads compete they may not see cpu in time to unbind 1331 * even if they would do so immediately. 1332 */ 1333 cpu_inmotion = cp; 1334 membar_enter(); 1335 1336 /* 1337 * Check for kernel threads (strong or weak) bound to that CPU. 1338 * Strongly bound threads may not unbind, and we'll have to return 1339 * EBUSY. Weakly bound threads should always disappear - we've 1340 * stopped more weak binding with cpu_inmotion and existing 1341 * bindings will drain imminently (they may not block). Nonetheless 1342 * we will wait for a fixed period for all bound threads to disappear. 1343 * Inactive interrupt threads are OK (they'll be in TS_FREE 1344 * state). If test finds some bound threads, wait a few ticks 1345 * to give short-lived threads (such as interrupts) chance to 1346 * complete. Note that if no_quiesce is set, i.e. this cpu 1347 * is required to service interrupts, then we take the route 1348 * that permits interrupt threads to be active (or bypassed). 1349 */ 1350 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1351 1352 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1353 if (loop_count >= 5) { 1354 error = EBUSY; /* some threads still bound */ 1355 break; 1356 } 1357 1358 /* 1359 * If some threads were assigned, give them 1360 * a chance to complete or move. 1361 * 1362 * This assumes that the clock_thread is not bound 1363 * to any CPU, because the clock_thread is needed to 1364 * do the delay(hz/100). 1365 * 1366 * Note: we still hold the cpu_lock while waiting for 1367 * the next clock tick. This is OK since it isn't 1368 * needed for anything else except processor_bind(2), 1369 * and system initialization. If we drop the lock, 1370 * we would risk another p_online disabling the last 1371 * processor. 1372 */ 1373 delay(hz/100); 1374 } 1375 1376 if (error == 0 && callout_off == 0) { 1377 callout_cpu_offline(cp); 1378 callout_off = 1; 1379 } 1380 1381 if (error == 0 && cyclic_off == 0) { 1382 if (!cyclic_offline(cp)) { 1383 /* 1384 * We must have bound cyclics... 1385 */ 1386 error = EBUSY; 1387 goto out; 1388 } 1389 cyclic_off = 1; 1390 } 1391 1392 /* 1393 * Call mp_cpu_stop() to perform any special operations 1394 * needed for this machine architecture to offline a CPU. 1395 */ 1396 if (error == 0) 1397 error = mp_cpu_stop(cp); /* arch-dep hook */ 1398 1399 /* 1400 * If that all worked, take the CPU offline and decrement 1401 * ncpus_online. 1402 */ 1403 if (error == 0) { 1404 /* 1405 * Put all the cpus into a known safe place. 1406 * No mutexes can be entered while CPUs are paused. 1407 */ 1408 pause_cpus(cp); 1409 /* 1410 * Repeat the operation, if necessary, to make sure that 1411 * all outstanding low-level interrupts run to completion 1412 * before we set the CPU_QUIESCED flag. It's also possible 1413 * that a thread has weak bound to the cpu despite our raising 1414 * cpu_inmotion above since it may have loaded that 1415 * value before the barrier became visible (this would have 1416 * to be the thread that was on the target cpu at the time 1417 * we raised the barrier). 1418 */ 1419 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1420 (*bound_func)(cp, 1)) { 1421 start_cpus(); 1422 (void) mp_cpu_start(cp); 1423 goto again; 1424 } 1425 ncp = cp->cpu_next_part; 1426 cpu_lpl = cp->cpu_lpl; 1427 ASSERT(cpu_lpl != NULL); 1428 1429 /* 1430 * Remove the CPU from the list of active CPUs. 1431 */ 1432 cpu_remove_active(cp); 1433 1434 /* 1435 * Walk the active process list and look for threads 1436 * whose home lgroup needs to be updated, or 1437 * the last CPU they run on is the one being offlined now. 1438 */ 1439 1440 ASSERT(curthread->t_cpu != cp); 1441 for (p = practive; p != NULL; p = p->p_next) { 1442 1443 t = p->p_tlist; 1444 1445 if (t == NULL) 1446 continue; 1447 1448 lgrp_diff_lpl = 0; 1449 1450 do { 1451 ASSERT(t->t_lpl != NULL); 1452 /* 1453 * Taking last CPU in lpl offline 1454 * Rehome thread if it is in this lpl 1455 * Otherwise, update the count of how many 1456 * threads are in this CPU's lgroup but have 1457 * a different lpl. 1458 */ 1459 1460 if (cpu_lpl->lpl_ncpu == 0) { 1461 if (t->t_lpl == cpu_lpl) 1462 lgrp_move_thread(t, 1463 lgrp_choose(t, 1464 t->t_cpupart), 0); 1465 else if (t->t_lpl->lpl_lgrpid == 1466 cpu_lpl->lpl_lgrpid) 1467 lgrp_diff_lpl++; 1468 } 1469 ASSERT(t->t_lpl->lpl_ncpu > 0); 1470 1471 /* 1472 * Update CPU last ran on if it was this CPU 1473 */ 1474 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1475 t->t_cpu = disp_lowpri_cpu(ncp, 1476 t->t_lpl, t->t_pri, NULL); 1477 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1478 t->t_weakbound_cpu == cp); 1479 1480 t = t->t_forw; 1481 } while (t != p->p_tlist); 1482 1483 /* 1484 * Didn't find any threads in the same lgroup as this 1485 * CPU with a different lpl, so remove the lgroup from 1486 * the process lgroup bitmask. 1487 */ 1488 1489 if (lgrp_diff_lpl == 0) 1490 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1491 } 1492 1493 /* 1494 * Walk thread list looking for threads that need to be 1495 * rehomed, since there are some threads that are not in 1496 * their process's p_tlist. 1497 */ 1498 1499 t = curthread; 1500 do { 1501 ASSERT(t != NULL && t->t_lpl != NULL); 1502 1503 /* 1504 * Rehome threads with same lpl as this CPU when this 1505 * is the last CPU in the lpl. 1506 */ 1507 1508 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1509 lgrp_move_thread(t, 1510 lgrp_choose(t, t->t_cpupart), 1); 1511 1512 ASSERT(t->t_lpl->lpl_ncpu > 0); 1513 1514 /* 1515 * Update CPU last ran on if it was this CPU 1516 */ 1517 1518 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1519 t->t_cpu = disp_lowpri_cpu(ncp, 1520 t->t_lpl, t->t_pri, NULL); 1521 } 1522 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1523 t->t_weakbound_cpu == cp); 1524 t = t->t_next; 1525 1526 } while (t != curthread); 1527 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1528 cp->cpu_flags |= CPU_OFFLINE; 1529 disp_cpu_inactive(cp); 1530 if (!no_quiesce) 1531 cp->cpu_flags |= CPU_QUIESCED; 1532 ncpus_online--; 1533 cpu_set_state(cp); 1534 cpu_inmotion = NULL; 1535 start_cpus(); 1536 cpu_stats_kstat_destroy(cp); 1537 cpu_delete_intrstat(cp); 1538 lgrp_kstat_destroy(cp); 1539 } 1540 1541 out: 1542 cpu_inmotion = NULL; 1543 1544 /* 1545 * If we failed, re-enable interrupts. 1546 * Do this even if cpu_intr_disable returned an error, because 1547 * it may have partially disabled interrupts. 1548 */ 1549 if (error && intr_enable) 1550 cpu_intr_enable(cp); 1551 1552 /* 1553 * If we failed, but managed to offline the cyclic subsystem on this 1554 * CPU, bring it back online. 1555 */ 1556 if (error && cyclic_off) 1557 cyclic_online(cp); 1558 1559 /* 1560 * If we failed, but managed to offline callouts on this CPU, 1561 * bring it back online. 1562 */ 1563 if (error && callout_off) 1564 callout_cpu_online(cp); 1565 1566 /* 1567 * If we failed, tell the PG subsystem that the CPU is back 1568 */ 1569 pg_cpupart_in(cp, pp); 1570 1571 /* 1572 * If we failed, we need to notify everyone that this CPU is back on. 1573 */ 1574 if (error != 0) { 1575 CPU_NEW_GENERATION(cp); 1576 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1577 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1578 } 1579 1580 return (error); 1581 } 1582 1583 /* 1584 * Mark the indicated CPU as faulted, taking it offline. 1585 */ 1586 int 1587 cpu_faulted(cpu_t *cp, int flags) 1588 { 1589 int error = 0; 1590 1591 ASSERT(MUTEX_HELD(&cpu_lock)); 1592 ASSERT(!cpu_is_poweredoff(cp)); 1593 1594 if (cpu_is_offline(cp)) { 1595 cp->cpu_flags &= ~CPU_SPARE; 1596 cp->cpu_flags |= CPU_FAULTED; 1597 mp_cpu_faulted_enter(cp); 1598 cpu_set_state(cp); 1599 return (0); 1600 } 1601 1602 if ((error = cpu_offline(cp, flags)) == 0) { 1603 cp->cpu_flags |= CPU_FAULTED; 1604 mp_cpu_faulted_enter(cp); 1605 cpu_set_state(cp); 1606 } 1607 1608 return (error); 1609 } 1610 1611 /* 1612 * Mark the indicated CPU as a spare, taking it offline. 1613 */ 1614 int 1615 cpu_spare(cpu_t *cp, int flags) 1616 { 1617 int error = 0; 1618 1619 ASSERT(MUTEX_HELD(&cpu_lock)); 1620 ASSERT(!cpu_is_poweredoff(cp)); 1621 1622 if (cpu_is_offline(cp)) { 1623 if (cp->cpu_flags & CPU_FAULTED) { 1624 cp->cpu_flags &= ~CPU_FAULTED; 1625 mp_cpu_faulted_exit(cp); 1626 } 1627 cp->cpu_flags |= CPU_SPARE; 1628 cpu_set_state(cp); 1629 return (0); 1630 } 1631 1632 if ((error = cpu_offline(cp, flags)) == 0) { 1633 cp->cpu_flags |= CPU_SPARE; 1634 cpu_set_state(cp); 1635 } 1636 1637 return (error); 1638 } 1639 1640 /* 1641 * Take the indicated CPU from poweroff to offline. 1642 */ 1643 int 1644 cpu_poweron(cpu_t *cp) 1645 { 1646 int error = ENOTSUP; 1647 1648 ASSERT(MUTEX_HELD(&cpu_lock)); 1649 ASSERT(cpu_is_poweredoff(cp)); 1650 1651 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1652 if (error == 0) 1653 cpu_set_state(cp); 1654 1655 return (error); 1656 } 1657 1658 /* 1659 * Take the indicated CPU from any inactive state to powered off. 1660 */ 1661 int 1662 cpu_poweroff(cpu_t *cp) 1663 { 1664 int error = ENOTSUP; 1665 1666 ASSERT(MUTEX_HELD(&cpu_lock)); 1667 ASSERT(cpu_is_offline(cp)); 1668 1669 if (!(cp->cpu_flags & CPU_QUIESCED)) 1670 return (EBUSY); /* not completely idle */ 1671 1672 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1673 if (error == 0) 1674 cpu_set_state(cp); 1675 1676 return (error); 1677 } 1678 1679 /* 1680 * Initialize the Sequential CPU id lookup table 1681 */ 1682 void 1683 cpu_seq_tbl_init() 1684 { 1685 cpu_t **tbl; 1686 1687 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1688 tbl[0] = CPU; 1689 1690 cpu_seq = tbl; 1691 } 1692 1693 /* 1694 * Initialize the CPU lists for the first CPU. 1695 */ 1696 void 1697 cpu_list_init(cpu_t *cp) 1698 { 1699 cp->cpu_next = cp; 1700 cp->cpu_prev = cp; 1701 cpu_list = cp; 1702 clock_cpu_list = cp; 1703 1704 cp->cpu_next_onln = cp; 1705 cp->cpu_prev_onln = cp; 1706 cpu_active = cp; 1707 1708 cp->cpu_seqid = 0; 1709 CPUSET_ADD(cpu_seqid_inuse, 0); 1710 1711 /* 1712 * Bootstrap cpu_seq using cpu_list 1713 * The cpu_seq[] table will be dynamically allocated 1714 * when kmem later becomes available (but before going MP) 1715 */ 1716 cpu_seq = &cpu_list; 1717 1718 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1719 cp_default.cp_cpulist = cp; 1720 cp_default.cp_ncpus = 1; 1721 cp->cpu_next_part = cp; 1722 cp->cpu_prev_part = cp; 1723 cp->cpu_part = &cp_default; 1724 1725 CPUSET_ADD(cpu_available, cp->cpu_id); 1726 } 1727 1728 /* 1729 * Insert a CPU into the list of available CPUs. 1730 */ 1731 void 1732 cpu_add_unit(cpu_t *cp) 1733 { 1734 int seqid; 1735 1736 ASSERT(MUTEX_HELD(&cpu_lock)); 1737 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1738 1739 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1740 1741 /* 1742 * Note: most users of the cpu_list will grab the 1743 * cpu_lock to insure that it isn't modified. However, 1744 * certain users can't or won't do that. To allow this 1745 * we pause the other cpus. Users who walk the list 1746 * without cpu_lock, must disable kernel preemption 1747 * to insure that the list isn't modified underneath 1748 * them. Also, any cached pointers to cpu structures 1749 * must be revalidated by checking to see if the 1750 * cpu_next pointer points to itself. This check must 1751 * be done with the cpu_lock held or kernel preemption 1752 * disabled. This check relies upon the fact that 1753 * old cpu structures are not free'ed or cleared after 1754 * then are removed from the cpu_list. 1755 * 1756 * Note that the clock code walks the cpu list dereferencing 1757 * the cpu_part pointer, so we need to initialize it before 1758 * adding the cpu to the list. 1759 */ 1760 cp->cpu_part = &cp_default; 1761 (void) pause_cpus(NULL); 1762 cp->cpu_next = cpu_list; 1763 cp->cpu_prev = cpu_list->cpu_prev; 1764 cpu_list->cpu_prev->cpu_next = cp; 1765 cpu_list->cpu_prev = cp; 1766 start_cpus(); 1767 1768 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1769 continue; 1770 CPUSET_ADD(cpu_seqid_inuse, seqid); 1771 cp->cpu_seqid = seqid; 1772 1773 if (seqid > max_cpu_seqid_ever) 1774 max_cpu_seqid_ever = seqid; 1775 1776 ASSERT(ncpus < max_ncpus); 1777 ncpus++; 1778 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1779 cpu[cp->cpu_id] = cp; 1780 CPUSET_ADD(cpu_available, cp->cpu_id); 1781 cpu_seq[cp->cpu_seqid] = cp; 1782 1783 /* 1784 * allocate a pause thread for this CPU. 1785 */ 1786 cpu_pause_alloc(cp); 1787 1788 /* 1789 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1790 * link them into a list of just that CPU. 1791 * This is so that disp_lowpri_cpu will work for thread_create in 1792 * pause_cpus() when called from the startup thread in a new CPU. 1793 */ 1794 cp->cpu_next_onln = cp; 1795 cp->cpu_prev_onln = cp; 1796 cpu_info_kstat_create(cp); 1797 cp->cpu_next_part = cp; 1798 cp->cpu_prev_part = cp; 1799 1800 init_cpu_mstate(cp, CMS_SYSTEM); 1801 1802 pool_pset_mod = gethrtime(); 1803 } 1804 1805 /* 1806 * Do the opposite of cpu_add_unit(). 1807 */ 1808 void 1809 cpu_del_unit(int cpuid) 1810 { 1811 struct cpu *cp, *cpnext; 1812 1813 ASSERT(MUTEX_HELD(&cpu_lock)); 1814 cp = cpu[cpuid]; 1815 ASSERT(cp != NULL); 1816 1817 ASSERT(cp->cpu_next_onln == cp); 1818 ASSERT(cp->cpu_prev_onln == cp); 1819 ASSERT(cp->cpu_next_part == cp); 1820 ASSERT(cp->cpu_prev_part == cp); 1821 1822 /* 1823 * Tear down the CPU's physical ID cache, and update any 1824 * processor groups 1825 */ 1826 pg_cpu_fini(cp, NULL); 1827 pghw_physid_destroy(cp); 1828 1829 /* 1830 * Destroy kstat stuff. 1831 */ 1832 cpu_info_kstat_destroy(cp); 1833 term_cpu_mstate(cp); 1834 /* 1835 * Free up pause thread. 1836 */ 1837 cpu_pause_free(cp); 1838 CPUSET_DEL(cpu_available, cp->cpu_id); 1839 cpu[cp->cpu_id] = NULL; 1840 cpu_seq[cp->cpu_seqid] = NULL; 1841 1842 /* 1843 * The clock thread and mutex_vector_enter cannot hold the 1844 * cpu_lock while traversing the cpu list, therefore we pause 1845 * all other threads by pausing the other cpus. These, and any 1846 * other routines holding cpu pointers while possibly sleeping 1847 * must be sure to call kpreempt_disable before processing the 1848 * list and be sure to check that the cpu has not been deleted 1849 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1850 * to keep the deleted cpu structure around. 1851 * 1852 * Note that this MUST be done AFTER cpu_available 1853 * has been updated so that we don't waste time 1854 * trying to pause the cpu we're trying to delete. 1855 */ 1856 (void) pause_cpus(NULL); 1857 1858 cpnext = cp->cpu_next; 1859 cp->cpu_prev->cpu_next = cp->cpu_next; 1860 cp->cpu_next->cpu_prev = cp->cpu_prev; 1861 if (cp == cpu_list) 1862 cpu_list = cpnext; 1863 1864 /* 1865 * Signals that the cpu has been deleted (see above). 1866 */ 1867 cp->cpu_next = NULL; 1868 cp->cpu_prev = NULL; 1869 1870 start_cpus(); 1871 1872 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1873 ncpus--; 1874 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1875 1876 pool_pset_mod = gethrtime(); 1877 } 1878 1879 /* 1880 * Add a CPU to the list of active CPUs. 1881 * This routine must not get any locks, because other CPUs are paused. 1882 */ 1883 static void 1884 cpu_add_active_internal(cpu_t *cp) 1885 { 1886 cpupart_t *pp = cp->cpu_part; 1887 1888 ASSERT(MUTEX_HELD(&cpu_lock)); 1889 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1890 1891 ncpus_online++; 1892 cpu_set_state(cp); 1893 cp->cpu_next_onln = cpu_active; 1894 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1895 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1896 cpu_active->cpu_prev_onln = cp; 1897 1898 if (pp->cp_cpulist) { 1899 cp->cpu_next_part = pp->cp_cpulist; 1900 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1901 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1902 pp->cp_cpulist->cpu_prev_part = cp; 1903 } else { 1904 ASSERT(pp->cp_ncpus == 0); 1905 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1906 } 1907 pp->cp_ncpus++; 1908 if (pp->cp_ncpus == 1) { 1909 cp_numparts_nonempty++; 1910 ASSERT(cp_numparts_nonempty != 0); 1911 } 1912 1913 pg_cpu_active(cp); 1914 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1915 1916 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1917 } 1918 1919 /* 1920 * Add a CPU to the list of active CPUs. 1921 * This is called from machine-dependent layers when a new CPU is started. 1922 */ 1923 void 1924 cpu_add_active(cpu_t *cp) 1925 { 1926 pg_cpupart_in(cp, cp->cpu_part); 1927 1928 pause_cpus(NULL); 1929 cpu_add_active_internal(cp); 1930 start_cpus(); 1931 1932 cpu_stats_kstat_create(cp); 1933 cpu_create_intrstat(cp); 1934 lgrp_kstat_create(cp); 1935 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1936 } 1937 1938 1939 /* 1940 * Remove a CPU from the list of active CPUs. 1941 * This routine must not get any locks, because other CPUs are paused. 1942 */ 1943 /* ARGSUSED */ 1944 static void 1945 cpu_remove_active(cpu_t *cp) 1946 { 1947 cpupart_t *pp = cp->cpu_part; 1948 1949 ASSERT(MUTEX_HELD(&cpu_lock)); 1950 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1951 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1952 1953 pg_cpu_inactive(cp); 1954 1955 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1956 1957 if (cp == clock_cpu_list) 1958 clock_cpu_list = cp->cpu_next_onln; 1959 1960 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1961 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1962 if (cpu_active == cp) { 1963 cpu_active = cp->cpu_next_onln; 1964 } 1965 cp->cpu_next_onln = cp; 1966 cp->cpu_prev_onln = cp; 1967 1968 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1969 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1970 if (pp->cp_cpulist == cp) { 1971 pp->cp_cpulist = cp->cpu_next_part; 1972 ASSERT(pp->cp_cpulist != cp); 1973 } 1974 cp->cpu_next_part = cp; 1975 cp->cpu_prev_part = cp; 1976 pp->cp_ncpus--; 1977 if (pp->cp_ncpus == 0) { 1978 cp_numparts_nonempty--; 1979 ASSERT(cp_numparts_nonempty != 0); 1980 } 1981 } 1982 1983 /* 1984 * Routine used to setup a newly inserted CPU in preparation for starting 1985 * it running code. 1986 */ 1987 int 1988 cpu_configure(int cpuid) 1989 { 1990 int retval = 0; 1991 1992 ASSERT(MUTEX_HELD(&cpu_lock)); 1993 1994 /* 1995 * Some structures are statically allocated based upon 1996 * the maximum number of cpus the system supports. Do not 1997 * try to add anything beyond this limit. 1998 */ 1999 if (cpuid < 0 || cpuid >= NCPU) { 2000 return (EINVAL); 2001 } 2002 2003 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2004 return (EALREADY); 2005 } 2006 2007 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2008 return (retval); 2009 } 2010 2011 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2012 cpu_set_state(cpu[cpuid]); 2013 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2014 if (retval != 0) 2015 (void) mp_cpu_unconfigure(cpuid); 2016 2017 return (retval); 2018 } 2019 2020 /* 2021 * Routine used to cleanup a CPU that has been powered off. This will 2022 * destroy all per-cpu information related to this cpu. 2023 */ 2024 int 2025 cpu_unconfigure(int cpuid) 2026 { 2027 int error; 2028 2029 ASSERT(MUTEX_HELD(&cpu_lock)); 2030 2031 if (cpu[cpuid] == NULL) { 2032 return (ENODEV); 2033 } 2034 2035 if (cpu[cpuid]->cpu_flags == 0) { 2036 return (EALREADY); 2037 } 2038 2039 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2040 return (EBUSY); 2041 } 2042 2043 if (cpu[cpuid]->cpu_props != NULL) { 2044 (void) nvlist_free(cpu[cpuid]->cpu_props); 2045 cpu[cpuid]->cpu_props = NULL; 2046 } 2047 2048 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2049 2050 if (error != 0) 2051 return (error); 2052 2053 return (mp_cpu_unconfigure(cpuid)); 2054 } 2055 2056 /* 2057 * Routines for registering and de-registering cpu_setup callback functions. 2058 * 2059 * Caller's context 2060 * These routines must not be called from a driver's attach(9E) or 2061 * detach(9E) entry point. 2062 * 2063 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2064 */ 2065 2066 /* 2067 * Ideally, these would be dynamically allocated and put into a linked 2068 * list; however that is not feasible because the registration routine 2069 * has to be available before the kmem allocator is working (in fact, 2070 * it is called by the kmem allocator init code). In any case, there 2071 * are quite a few extra entries for future users. 2072 */ 2073 #define NCPU_SETUPS 20 2074 2075 struct cpu_setup { 2076 cpu_setup_func_t *func; 2077 void *arg; 2078 } cpu_setups[NCPU_SETUPS]; 2079 2080 void 2081 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2082 { 2083 int i; 2084 2085 ASSERT(MUTEX_HELD(&cpu_lock)); 2086 2087 for (i = 0; i < NCPU_SETUPS; i++) 2088 if (cpu_setups[i].func == NULL) 2089 break; 2090 if (i >= NCPU_SETUPS) 2091 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2092 2093 cpu_setups[i].func = func; 2094 cpu_setups[i].arg = arg; 2095 } 2096 2097 void 2098 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2099 { 2100 int i; 2101 2102 ASSERT(MUTEX_HELD(&cpu_lock)); 2103 2104 for (i = 0; i < NCPU_SETUPS; i++) 2105 if ((cpu_setups[i].func == func) && 2106 (cpu_setups[i].arg == arg)) 2107 break; 2108 if (i >= NCPU_SETUPS) 2109 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2110 "deregister"); 2111 2112 cpu_setups[i].func = NULL; 2113 cpu_setups[i].arg = 0; 2114 } 2115 2116 /* 2117 * Call any state change hooks for this CPU, ignore any errors. 2118 */ 2119 void 2120 cpu_state_change_notify(int id, cpu_setup_t what) 2121 { 2122 int i; 2123 2124 ASSERT(MUTEX_HELD(&cpu_lock)); 2125 2126 for (i = 0; i < NCPU_SETUPS; i++) { 2127 if (cpu_setups[i].func != NULL) { 2128 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2129 } 2130 } 2131 } 2132 2133 /* 2134 * Call any state change hooks for this CPU, undo it if error found. 2135 */ 2136 static int 2137 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2138 { 2139 int i; 2140 int retval = 0; 2141 2142 ASSERT(MUTEX_HELD(&cpu_lock)); 2143 2144 for (i = 0; i < NCPU_SETUPS; i++) { 2145 if (cpu_setups[i].func != NULL) { 2146 retval = cpu_setups[i].func(what, id, 2147 cpu_setups[i].arg); 2148 if (retval) { 2149 for (i--; i >= 0; i--) { 2150 if (cpu_setups[i].func != NULL) 2151 cpu_setups[i].func(undo, 2152 id, cpu_setups[i].arg); 2153 } 2154 break; 2155 } 2156 } 2157 } 2158 return (retval); 2159 } 2160 2161 /* 2162 * Export information about this CPU via the kstat mechanism. 2163 */ 2164 static struct { 2165 kstat_named_t ci_state; 2166 kstat_named_t ci_state_begin; 2167 kstat_named_t ci_cpu_type; 2168 kstat_named_t ci_fpu_type; 2169 kstat_named_t ci_clock_MHz; 2170 kstat_named_t ci_chip_id; 2171 kstat_named_t ci_implementation; 2172 kstat_named_t ci_brandstr; 2173 kstat_named_t ci_core_id; 2174 kstat_named_t ci_curr_clock_Hz; 2175 kstat_named_t ci_supp_freq_Hz; 2176 kstat_named_t ci_pg_id; 2177 #if defined(__sparcv9) 2178 kstat_named_t ci_device_ID; 2179 kstat_named_t ci_cpu_fru; 2180 #endif 2181 #if defined(__x86) 2182 kstat_named_t ci_vendorstr; 2183 kstat_named_t ci_family; 2184 kstat_named_t ci_model; 2185 kstat_named_t ci_step; 2186 kstat_named_t ci_clogid; 2187 kstat_named_t ci_pkg_core_id; 2188 kstat_named_t ci_ncpuperchip; 2189 kstat_named_t ci_ncoreperchip; 2190 kstat_named_t ci_max_cstates; 2191 kstat_named_t ci_curr_cstate; 2192 kstat_named_t ci_cacheid; 2193 kstat_named_t ci_sktstr; 2194 #endif 2195 } cpu_info_template = { 2196 { "state", KSTAT_DATA_CHAR }, 2197 { "state_begin", KSTAT_DATA_LONG }, 2198 { "cpu_type", KSTAT_DATA_CHAR }, 2199 { "fpu_type", KSTAT_DATA_CHAR }, 2200 { "clock_MHz", KSTAT_DATA_LONG }, 2201 { "chip_id", KSTAT_DATA_LONG }, 2202 { "implementation", KSTAT_DATA_STRING }, 2203 { "brand", KSTAT_DATA_STRING }, 2204 { "core_id", KSTAT_DATA_LONG }, 2205 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2206 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2207 { "pg_id", KSTAT_DATA_LONG }, 2208 #if defined(__sparcv9) 2209 { "device_ID", KSTAT_DATA_UINT64 }, 2210 { "cpu_fru", KSTAT_DATA_STRING }, 2211 #endif 2212 #if defined(__x86) 2213 { "vendor_id", KSTAT_DATA_STRING }, 2214 { "family", KSTAT_DATA_INT32 }, 2215 { "model", KSTAT_DATA_INT32 }, 2216 { "stepping", KSTAT_DATA_INT32 }, 2217 { "clog_id", KSTAT_DATA_INT32 }, 2218 { "pkg_core_id", KSTAT_DATA_LONG }, 2219 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2220 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2221 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2222 { "current_cstate", KSTAT_DATA_INT32 }, 2223 { "cache_id", KSTAT_DATA_INT32 }, 2224 { "socket_type", KSTAT_DATA_STRING }, 2225 #endif 2226 }; 2227 2228 static kmutex_t cpu_info_template_lock; 2229 2230 static int 2231 cpu_info_kstat_update(kstat_t *ksp, int rw) 2232 { 2233 cpu_t *cp = ksp->ks_private; 2234 const char *pi_state; 2235 2236 if (rw == KSTAT_WRITE) 2237 return (EACCES); 2238 2239 #if defined(__x86) 2240 /* Is the cpu still initialising itself? */ 2241 if (cpuid_checkpass(cp, 1) == 0) 2242 return (ENXIO); 2243 #endif 2244 switch (cp->cpu_type_info.pi_state) { 2245 case P_ONLINE: 2246 pi_state = PS_ONLINE; 2247 break; 2248 case P_POWEROFF: 2249 pi_state = PS_POWEROFF; 2250 break; 2251 case P_NOINTR: 2252 pi_state = PS_NOINTR; 2253 break; 2254 case P_FAULTED: 2255 pi_state = PS_FAULTED; 2256 break; 2257 case P_SPARE: 2258 pi_state = PS_SPARE; 2259 break; 2260 case P_OFFLINE: 2261 pi_state = PS_OFFLINE; 2262 break; 2263 default: 2264 pi_state = "unknown"; 2265 } 2266 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2267 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2268 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2269 cp->cpu_type_info.pi_processor_type, 15); 2270 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2271 cp->cpu_type_info.pi_fputypes, 15); 2272 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2273 cpu_info_template.ci_chip_id.value.l = 2274 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2275 kstat_named_setstr(&cpu_info_template.ci_implementation, 2276 cp->cpu_idstr); 2277 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2278 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2279 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2280 cp->cpu_curr_clock; 2281 cpu_info_template.ci_pg_id.value.l = 2282 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2283 cp->cpu_pg->cmt_lineage->pg_id : -1; 2284 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2285 cp->cpu_supp_freqs); 2286 #if defined(__sparcv9) 2287 cpu_info_template.ci_device_ID.value.ui64 = 2288 cpunodes[cp->cpu_id].device_id; 2289 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2290 #endif 2291 #if defined(__x86) 2292 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2293 cpuid_getvendorstr(cp)); 2294 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2295 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2296 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2297 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2298 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2299 cpu_info_template.ci_ncoreperchip.value.l = 2300 cpuid_get_ncore_per_chip(cp); 2301 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2302 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2303 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2304 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2305 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2306 cpuid_getsocketstr(cp)); 2307 #endif 2308 2309 return (0); 2310 } 2311 2312 static void 2313 cpu_info_kstat_create(cpu_t *cp) 2314 { 2315 zoneid_t zoneid; 2316 2317 ASSERT(MUTEX_HELD(&cpu_lock)); 2318 2319 if (pool_pset_enabled()) 2320 zoneid = GLOBAL_ZONEID; 2321 else 2322 zoneid = ALL_ZONES; 2323 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2324 NULL, "misc", KSTAT_TYPE_NAMED, 2325 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2326 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2327 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2328 #if defined(__sparcv9) 2329 cp->cpu_info_kstat->ks_data_size += 2330 strlen(cpu_fru_fmri(cp)) + 1; 2331 #endif 2332 #if defined(__x86) 2333 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2334 #endif 2335 if (cp->cpu_supp_freqs != NULL) 2336 cp->cpu_info_kstat->ks_data_size += 2337 strlen(cp->cpu_supp_freqs) + 1; 2338 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2339 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2340 cp->cpu_info_kstat->ks_private = cp; 2341 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2342 kstat_install(cp->cpu_info_kstat); 2343 } 2344 } 2345 2346 static void 2347 cpu_info_kstat_destroy(cpu_t *cp) 2348 { 2349 ASSERT(MUTEX_HELD(&cpu_lock)); 2350 2351 kstat_delete(cp->cpu_info_kstat); 2352 cp->cpu_info_kstat = NULL; 2353 } 2354 2355 /* 2356 * Create and install kstats for the boot CPU. 2357 */ 2358 void 2359 cpu_kstat_init(cpu_t *cp) 2360 { 2361 mutex_enter(&cpu_lock); 2362 cpu_info_kstat_create(cp); 2363 cpu_stats_kstat_create(cp); 2364 cpu_create_intrstat(cp); 2365 cpu_set_state(cp); 2366 mutex_exit(&cpu_lock); 2367 } 2368 2369 /* 2370 * Make visible to the zone that subset of the cpu information that would be 2371 * initialized when a cpu is configured (but still offline). 2372 */ 2373 void 2374 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2375 { 2376 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2377 2378 ASSERT(MUTEX_HELD(&cpu_lock)); 2379 ASSERT(pool_pset_enabled()); 2380 ASSERT(cp != NULL); 2381 2382 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2383 zone->zone_ncpus++; 2384 ASSERT(zone->zone_ncpus <= ncpus); 2385 } 2386 if (cp->cpu_info_kstat != NULL) 2387 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2388 } 2389 2390 /* 2391 * Make visible to the zone that subset of the cpu information that would be 2392 * initialized when a previously configured cpu is onlined. 2393 */ 2394 void 2395 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2396 { 2397 kstat_t *ksp; 2398 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2399 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2400 processorid_t cpun; 2401 2402 ASSERT(MUTEX_HELD(&cpu_lock)); 2403 ASSERT(pool_pset_enabled()); 2404 ASSERT(cp != NULL); 2405 ASSERT(cpu_is_active(cp)); 2406 2407 cpun = cp->cpu_id; 2408 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2409 zone->zone_ncpus_online++; 2410 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2411 } 2412 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2413 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2414 != NULL) { 2415 kstat_zone_add(ksp, zoneid); 2416 kstat_rele(ksp); 2417 } 2418 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2419 kstat_zone_add(ksp, zoneid); 2420 kstat_rele(ksp); 2421 } 2422 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2423 kstat_zone_add(ksp, zoneid); 2424 kstat_rele(ksp); 2425 } 2426 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2427 NULL) { 2428 kstat_zone_add(ksp, zoneid); 2429 kstat_rele(ksp); 2430 } 2431 } 2432 2433 /* 2434 * Update relevant kstats such that cpu is now visible to processes 2435 * executing in specified zone. 2436 */ 2437 void 2438 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2439 { 2440 cpu_visibility_configure(cp, zone); 2441 if (cpu_is_active(cp)) 2442 cpu_visibility_online(cp, zone); 2443 } 2444 2445 /* 2446 * Make invisible to the zone that subset of the cpu information that would be 2447 * torn down when a previously offlined cpu is unconfigured. 2448 */ 2449 void 2450 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2451 { 2452 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2453 2454 ASSERT(MUTEX_HELD(&cpu_lock)); 2455 ASSERT(pool_pset_enabled()); 2456 ASSERT(cp != NULL); 2457 2458 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2459 ASSERT(zone->zone_ncpus != 0); 2460 zone->zone_ncpus--; 2461 } 2462 if (cp->cpu_info_kstat) 2463 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2464 } 2465 2466 /* 2467 * Make invisible to the zone that subset of the cpu information that would be 2468 * torn down when a cpu is offlined (but still configured). 2469 */ 2470 void 2471 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2472 { 2473 kstat_t *ksp; 2474 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2475 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2476 processorid_t cpun; 2477 2478 ASSERT(MUTEX_HELD(&cpu_lock)); 2479 ASSERT(pool_pset_enabled()); 2480 ASSERT(cp != NULL); 2481 ASSERT(cpu_is_active(cp)); 2482 2483 cpun = cp->cpu_id; 2484 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2485 ASSERT(zone->zone_ncpus_online != 0); 2486 zone->zone_ncpus_online--; 2487 } 2488 2489 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2490 NULL) { 2491 kstat_zone_remove(ksp, zoneid); 2492 kstat_rele(ksp); 2493 } 2494 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2495 kstat_zone_remove(ksp, zoneid); 2496 kstat_rele(ksp); 2497 } 2498 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2499 kstat_zone_remove(ksp, zoneid); 2500 kstat_rele(ksp); 2501 } 2502 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2503 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2504 != NULL) { 2505 kstat_zone_remove(ksp, zoneid); 2506 kstat_rele(ksp); 2507 } 2508 } 2509 2510 /* 2511 * Update relevant kstats such that cpu is no longer visible to processes 2512 * executing in specified zone. 2513 */ 2514 void 2515 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2516 { 2517 if (cpu_is_active(cp)) 2518 cpu_visibility_offline(cp, zone); 2519 cpu_visibility_unconfigure(cp, zone); 2520 } 2521 2522 /* 2523 * Bind a thread to a CPU as requested. 2524 */ 2525 int 2526 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2527 int *error) 2528 { 2529 processorid_t binding; 2530 cpu_t *cp = NULL; 2531 2532 ASSERT(MUTEX_HELD(&cpu_lock)); 2533 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2534 2535 thread_lock(tp); 2536 2537 /* 2538 * Record old binding, but change the obind, which was initialized 2539 * to PBIND_NONE, only if this thread has a binding. This avoids 2540 * reporting PBIND_NONE for a process when some LWPs are bound. 2541 */ 2542 binding = tp->t_bind_cpu; 2543 if (binding != PBIND_NONE) 2544 *obind = binding; /* record old binding */ 2545 2546 switch (bind) { 2547 case PBIND_QUERY: 2548 /* Just return the old binding */ 2549 thread_unlock(tp); 2550 return (0); 2551 2552 case PBIND_QUERY_TYPE: 2553 /* Return the binding type */ 2554 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2555 thread_unlock(tp); 2556 return (0); 2557 2558 case PBIND_SOFT: 2559 /* 2560 * Set soft binding for this thread and return the actual 2561 * binding 2562 */ 2563 TB_CPU_SOFT_SET(tp); 2564 thread_unlock(tp); 2565 return (0); 2566 2567 case PBIND_HARD: 2568 /* 2569 * Set hard binding for this thread and return the actual 2570 * binding 2571 */ 2572 TB_CPU_HARD_SET(tp); 2573 thread_unlock(tp); 2574 return (0); 2575 2576 default: 2577 break; 2578 } 2579 2580 /* 2581 * If this thread/LWP cannot be bound because of permission 2582 * problems, just note that and return success so that the 2583 * other threads/LWPs will be bound. This is the way 2584 * processor_bind() is defined to work. 2585 * 2586 * Binding will get EPERM if the thread is of system class 2587 * or hasprocperm() fails. 2588 */ 2589 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2590 *error = EPERM; 2591 thread_unlock(tp); 2592 return (0); 2593 } 2594 2595 binding = bind; 2596 if (binding != PBIND_NONE) { 2597 cp = cpu_get((processorid_t)binding); 2598 /* 2599 * Make sure binding is valid and is in right partition. 2600 */ 2601 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2602 *error = EINVAL; 2603 thread_unlock(tp); 2604 return (0); 2605 } 2606 } 2607 tp->t_bind_cpu = binding; /* set new binding */ 2608 2609 /* 2610 * If there is no system-set reason for affinity, set 2611 * the t_bound_cpu field to reflect the binding. 2612 */ 2613 if (tp->t_affinitycnt == 0) { 2614 if (binding == PBIND_NONE) { 2615 /* 2616 * We may need to adjust disp_max_unbound_pri 2617 * since we're becoming unbound. 2618 */ 2619 disp_adjust_unbound_pri(tp); 2620 2621 tp->t_bound_cpu = NULL; /* set new binding */ 2622 2623 /* 2624 * Move thread to lgroup with strongest affinity 2625 * after unbinding 2626 */ 2627 if (tp->t_lgrp_affinity) 2628 lgrp_move_thread(tp, 2629 lgrp_choose(tp, tp->t_cpupart), 1); 2630 2631 if (tp->t_state == TS_ONPROC && 2632 tp->t_cpu->cpu_part != tp->t_cpupart) 2633 cpu_surrender(tp); 2634 } else { 2635 lpl_t *lpl; 2636 2637 tp->t_bound_cpu = cp; 2638 ASSERT(cp->cpu_lpl != NULL); 2639 2640 /* 2641 * Set home to lgroup with most affinity containing CPU 2642 * that thread is being bound or minimum bounding 2643 * lgroup if no affinities set 2644 */ 2645 if (tp->t_lgrp_affinity) 2646 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2647 LGRP_NONE, B_FALSE); 2648 else 2649 lpl = cp->cpu_lpl; 2650 2651 if (tp->t_lpl != lpl) { 2652 /* can't grab cpu_lock */ 2653 lgrp_move_thread(tp, lpl, 1); 2654 } 2655 2656 /* 2657 * Make the thread switch to the bound CPU. 2658 * If the thread is runnable, we need to 2659 * requeue it even if t_cpu is already set 2660 * to the right CPU, since it may be on a 2661 * kpreempt queue and need to move to a local 2662 * queue. We could check t_disp_queue to 2663 * avoid unnecessary overhead if it's already 2664 * on the right queue, but since this isn't 2665 * a performance-critical operation it doesn't 2666 * seem worth the extra code and complexity. 2667 * 2668 * If the thread is weakbound to the cpu then it will 2669 * resist the new binding request until the weak 2670 * binding drops. The cpu_surrender or requeueing 2671 * below could be skipped in such cases (since it 2672 * will have no effect), but that would require 2673 * thread_allowmigrate to acquire thread_lock so 2674 * we'll take the very occasional hit here instead. 2675 */ 2676 if (tp->t_state == TS_ONPROC) { 2677 cpu_surrender(tp); 2678 } else if (tp->t_state == TS_RUN) { 2679 cpu_t *ocp = tp->t_cpu; 2680 2681 (void) dispdeq(tp); 2682 setbackdq(tp); 2683 /* 2684 * Either on the bound CPU's disp queue now, 2685 * or swapped out or on the swap queue. 2686 */ 2687 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2688 tp->t_weakbound_cpu == ocp || 2689 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2690 != TS_LOAD); 2691 } 2692 } 2693 } 2694 2695 /* 2696 * Our binding has changed; set TP_CHANGEBIND. 2697 */ 2698 tp->t_proc_flag |= TP_CHANGEBIND; 2699 aston(tp); 2700 2701 thread_unlock(tp); 2702 2703 return (0); 2704 } 2705 2706 #if CPUSET_WORDS > 1 2707 2708 /* 2709 * Functions for implementing cpuset operations when a cpuset is more 2710 * than one word. On platforms where a cpuset is a single word these 2711 * are implemented as macros in cpuvar.h. 2712 */ 2713 2714 void 2715 cpuset_all(cpuset_t *s) 2716 { 2717 int i; 2718 2719 for (i = 0; i < CPUSET_WORDS; i++) 2720 s->cpub[i] = ~0UL; 2721 } 2722 2723 void 2724 cpuset_all_but(cpuset_t *s, uint_t cpu) 2725 { 2726 cpuset_all(s); 2727 CPUSET_DEL(*s, cpu); 2728 } 2729 2730 void 2731 cpuset_only(cpuset_t *s, uint_t cpu) 2732 { 2733 CPUSET_ZERO(*s); 2734 CPUSET_ADD(*s, cpu); 2735 } 2736 2737 int 2738 cpuset_isnull(cpuset_t *s) 2739 { 2740 int i; 2741 2742 for (i = 0; i < CPUSET_WORDS; i++) 2743 if (s->cpub[i] != 0) 2744 return (0); 2745 return (1); 2746 } 2747 2748 int 2749 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2750 { 2751 int i; 2752 2753 for (i = 0; i < CPUSET_WORDS; i++) 2754 if (s1->cpub[i] != s2->cpub[i]) 2755 return (0); 2756 return (1); 2757 } 2758 2759 uint_t 2760 cpuset_find(cpuset_t *s) 2761 { 2762 2763 uint_t i; 2764 uint_t cpu = (uint_t)-1; 2765 2766 /* 2767 * Find a cpu in the cpuset 2768 */ 2769 for (i = 0; i < CPUSET_WORDS; i++) { 2770 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2771 if (cpu != (uint_t)-1) { 2772 cpu += i * BT_NBIPUL; 2773 break; 2774 } 2775 } 2776 return (cpu); 2777 } 2778 2779 void 2780 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2781 { 2782 int i, j; 2783 uint_t bit; 2784 2785 /* 2786 * First, find the smallest cpu id in the set. 2787 */ 2788 for (i = 0; i < CPUSET_WORDS; i++) { 2789 if (s->cpub[i] != 0) { 2790 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2791 ASSERT(bit != (uint_t)-1); 2792 *smallestid = bit + (i * BT_NBIPUL); 2793 2794 /* 2795 * Now find the largest cpu id in 2796 * the set and return immediately. 2797 * Done in an inner loop to avoid 2798 * having to break out of the first 2799 * loop. 2800 */ 2801 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2802 if (s->cpub[j] != 0) { 2803 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2804 ASSERT(bit != (uint_t)-1); 2805 *largestid = bit + (j * BT_NBIPUL); 2806 ASSERT(*largestid >= *smallestid); 2807 return; 2808 } 2809 } 2810 2811 /* 2812 * If this code is reached, a 2813 * smallestid was found, but not a 2814 * largestid. The cpuset must have 2815 * been changed during the course 2816 * of this function call. 2817 */ 2818 ASSERT(0); 2819 } 2820 } 2821 *smallestid = *largestid = CPUSET_NOTINSET; 2822 } 2823 2824 #endif /* CPUSET_WORDS */ 2825 2826 /* 2827 * Unbind threads bound to specified CPU. 2828 * 2829 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2830 * CPU. Otherwise unbind all soft-bound user threads. 2831 */ 2832 int 2833 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2834 { 2835 processorid_t obind; 2836 kthread_t *tp; 2837 int ret = 0; 2838 proc_t *pp; 2839 int err, berr = 0; 2840 2841 ASSERT(MUTEX_HELD(&cpu_lock)); 2842 2843 mutex_enter(&pidlock); 2844 for (pp = practive; pp != NULL; pp = pp->p_next) { 2845 mutex_enter(&pp->p_lock); 2846 tp = pp->p_tlist; 2847 /* 2848 * Skip zombies, kernel processes, and processes in 2849 * other zones, if called from a non-global zone. 2850 */ 2851 if (tp == NULL || (pp->p_flag & SSYS) || 2852 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2853 mutex_exit(&pp->p_lock); 2854 continue; 2855 } 2856 do { 2857 if (tp->t_bind_cpu != cpu) 2858 continue; 2859 /* 2860 * Skip threads with hard binding when 2861 * `unbind_all_threads' is not specified. 2862 */ 2863 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2864 continue; 2865 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2866 if (ret == 0) 2867 ret = err; 2868 } while ((tp = tp->t_forw) != pp->p_tlist); 2869 mutex_exit(&pp->p_lock); 2870 } 2871 mutex_exit(&pidlock); 2872 if (ret == 0) 2873 ret = berr; 2874 return (ret); 2875 } 2876 2877 2878 /* 2879 * Destroy all remaining bound threads on a cpu. 2880 */ 2881 void 2882 cpu_destroy_bound_threads(cpu_t *cp) 2883 { 2884 extern id_t syscid; 2885 register kthread_id_t t, tlist, tnext; 2886 2887 /* 2888 * Destroy all remaining bound threads on the cpu. This 2889 * should include both the interrupt threads and the idle thread. 2890 * This requires some care, since we need to traverse the 2891 * thread list with the pidlock mutex locked, but thread_free 2892 * also locks the pidlock mutex. So, we collect the threads 2893 * we're going to reap in a list headed by "tlist", then we 2894 * unlock the pidlock mutex and traverse the tlist list, 2895 * doing thread_free's on the thread's. Simple, n'est pas? 2896 * Also, this depends on thread_free not mucking with the 2897 * t_next and t_prev links of the thread. 2898 */ 2899 2900 if ((t = curthread) != NULL) { 2901 2902 tlist = NULL; 2903 mutex_enter(&pidlock); 2904 do { 2905 tnext = t->t_next; 2906 if (t->t_bound_cpu == cp) { 2907 2908 /* 2909 * We've found a bound thread, carefully unlink 2910 * it out of the thread list, and add it to 2911 * our "tlist". We "know" we don't have to 2912 * worry about unlinking curthread (the thread 2913 * that is executing this code). 2914 */ 2915 t->t_next->t_prev = t->t_prev; 2916 t->t_prev->t_next = t->t_next; 2917 t->t_next = tlist; 2918 tlist = t; 2919 ASSERT(t->t_cid == syscid); 2920 /* wake up anyone blocked in thread_join */ 2921 cv_broadcast(&t->t_joincv); 2922 /* 2923 * t_lwp set by interrupt threads and not 2924 * cleared. 2925 */ 2926 t->t_lwp = NULL; 2927 /* 2928 * Pause and idle threads always have 2929 * t_state set to TS_ONPROC. 2930 */ 2931 t->t_state = TS_FREE; 2932 t->t_prev = NULL; /* Just in case */ 2933 } 2934 2935 } while ((t = tnext) != curthread); 2936 2937 mutex_exit(&pidlock); 2938 2939 mutex_sync(); 2940 for (t = tlist; t != NULL; t = tnext) { 2941 tnext = t->t_next; 2942 thread_free(t); 2943 } 2944 } 2945 } 2946 2947 /* 2948 * Update the cpu_supp_freqs of this cpu. This information is returned 2949 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2950 * maintain the kstat data size. 2951 */ 2952 void 2953 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2954 { 2955 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2956 const char *lfreqs = clkstr; 2957 boolean_t kstat_exists = B_FALSE; 2958 kstat_t *ksp; 2959 size_t len; 2960 2961 /* 2962 * A NULL pointer means we only support one speed. 2963 */ 2964 if (freqs == NULL) 2965 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2966 cp->cpu_curr_clock); 2967 else 2968 lfreqs = freqs; 2969 2970 /* 2971 * Make sure the frequency doesn't change while a snapshot is 2972 * going on. Of course, we only need to worry about this if 2973 * the kstat exists. 2974 */ 2975 if ((ksp = cp->cpu_info_kstat) != NULL) { 2976 mutex_enter(ksp->ks_lock); 2977 kstat_exists = B_TRUE; 2978 } 2979 2980 /* 2981 * Free any previously allocated string and if the kstat 2982 * already exists, then update its data size. 2983 */ 2984 if (cp->cpu_supp_freqs != NULL) { 2985 len = strlen(cp->cpu_supp_freqs) + 1; 2986 kmem_free(cp->cpu_supp_freqs, len); 2987 if (kstat_exists) 2988 ksp->ks_data_size -= len; 2989 } 2990 2991 /* 2992 * Allocate the new string and set the pointer. 2993 */ 2994 len = strlen(lfreqs) + 1; 2995 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2996 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2997 2998 /* 2999 * If the kstat already exists then update the data size and 3000 * free the lock. 3001 */ 3002 if (kstat_exists) { 3003 ksp->ks_data_size += len; 3004 mutex_exit(ksp->ks_lock); 3005 } 3006 } 3007 3008 /* 3009 * Indicate the current CPU's clock freqency (in Hz). 3010 * The calling context must be such that CPU references are safe. 3011 */ 3012 void 3013 cpu_set_curr_clock(uint64_t new_clk) 3014 { 3015 uint64_t old_clk; 3016 3017 old_clk = CPU->cpu_curr_clock; 3018 CPU->cpu_curr_clock = new_clk; 3019 3020 /* 3021 * The cpu-change-speed DTrace probe exports the frequency in Hz 3022 */ 3023 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3024 uint64_t, old_clk, uint64_t, new_clk); 3025 } 3026 3027 /* 3028 * processor_info(2) and p_online(2) status support functions 3029 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3030 * for use in communicating processor state information to userland. Kernel 3031 * subsystems should only be using the cpu_flags value directly. Subsystems 3032 * modifying cpu_flags should record the state change via a call to the 3033 * cpu_set_state(). 3034 */ 3035 3036 /* 3037 * Update the pi_state of this CPU. This function provides the CPU status for 3038 * the information returned by processor_info(2). 3039 */ 3040 void 3041 cpu_set_state(cpu_t *cpu) 3042 { 3043 ASSERT(MUTEX_HELD(&cpu_lock)); 3044 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3045 cpu->cpu_state_begin = gethrestime_sec(); 3046 pool_cpu_mod = gethrtime(); 3047 } 3048 3049 /* 3050 * Return offline/online/other status for the indicated CPU. Use only for 3051 * communication with user applications; cpu_flags provides the in-kernel 3052 * interface. 3053 */ 3054 int 3055 cpu_get_state(cpu_t *cpu) 3056 { 3057 ASSERT(MUTEX_HELD(&cpu_lock)); 3058 if (cpu->cpu_flags & CPU_POWEROFF) 3059 return (P_POWEROFF); 3060 else if (cpu->cpu_flags & CPU_FAULTED) 3061 return (P_FAULTED); 3062 else if (cpu->cpu_flags & CPU_SPARE) 3063 return (P_SPARE); 3064 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3065 return (P_OFFLINE); 3066 else if (cpu->cpu_flags & CPU_ENABLE) 3067 return (P_ONLINE); 3068 else 3069 return (P_NOINTR); 3070 } 3071 3072 /* 3073 * Return processor_info(2) state as a string. 3074 */ 3075 const char * 3076 cpu_get_state_str(cpu_t *cpu) 3077 { 3078 const char *string; 3079 3080 switch (cpu_get_state(cpu)) { 3081 case P_ONLINE: 3082 string = PS_ONLINE; 3083 break; 3084 case P_POWEROFF: 3085 string = PS_POWEROFF; 3086 break; 3087 case P_NOINTR: 3088 string = PS_NOINTR; 3089 break; 3090 case P_SPARE: 3091 string = PS_SPARE; 3092 break; 3093 case P_FAULTED: 3094 string = PS_FAULTED; 3095 break; 3096 case P_OFFLINE: 3097 string = PS_OFFLINE; 3098 break; 3099 default: 3100 string = "unknown"; 3101 break; 3102 } 3103 return (string); 3104 } 3105 3106 /* 3107 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3108 * kstats, respectively. This is done when a CPU is initialized or placed 3109 * online via p_online(2). 3110 */ 3111 static void 3112 cpu_stats_kstat_create(cpu_t *cp) 3113 { 3114 int instance = cp->cpu_id; 3115 char *module = "cpu"; 3116 char *class = "misc"; 3117 kstat_t *ksp; 3118 zoneid_t zoneid; 3119 3120 ASSERT(MUTEX_HELD(&cpu_lock)); 3121 3122 if (pool_pset_enabled()) 3123 zoneid = GLOBAL_ZONEID; 3124 else 3125 zoneid = ALL_ZONES; 3126 /* 3127 * Create named kstats 3128 */ 3129 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3130 ksp = kstat_create_zone(module, instance, (name), class, \ 3131 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3132 zoneid); \ 3133 if (ksp != NULL) { \ 3134 ksp->ks_private = cp; \ 3135 ksp->ks_update = (update_func); \ 3136 kstat_install(ksp); \ 3137 } else \ 3138 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3139 module, instance, (name)); 3140 3141 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3142 cpu_sys_stats_ks_update); 3143 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3144 cpu_vm_stats_ks_update); 3145 3146 /* 3147 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3148 */ 3149 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3150 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3151 if (ksp != NULL) { 3152 ksp->ks_update = cpu_stat_ks_update; 3153 ksp->ks_private = cp; 3154 kstat_install(ksp); 3155 } 3156 } 3157 3158 static void 3159 cpu_stats_kstat_destroy(cpu_t *cp) 3160 { 3161 char ks_name[KSTAT_STRLEN]; 3162 3163 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3164 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3165 3166 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3167 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3168 } 3169 3170 static int 3171 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3172 { 3173 cpu_t *cp = (cpu_t *)ksp->ks_private; 3174 struct cpu_sys_stats_ks_data *csskd; 3175 cpu_sys_stats_t *css; 3176 hrtime_t msnsecs[NCMSTATES]; 3177 int i; 3178 3179 if (rw == KSTAT_WRITE) 3180 return (EACCES); 3181 3182 csskd = ksp->ks_data; 3183 css = &cp->cpu_stats.sys; 3184 3185 /* 3186 * Read CPU mstate, but compare with the last values we 3187 * received to make sure that the returned kstats never 3188 * decrease. 3189 */ 3190 3191 get_cpu_mstate(cp, msnsecs); 3192 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3193 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3194 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3195 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3196 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3197 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3198 3199 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3200 sizeof (cpu_sys_stats_ks_data_template)); 3201 3202 csskd->cpu_ticks_wait.value.ui64 = 0; 3203 csskd->wait_ticks_io.value.ui64 = 0; 3204 3205 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3206 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3207 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3208 csskd->cpu_ticks_idle.value.ui64 = 3209 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3210 csskd->cpu_ticks_user.value.ui64 = 3211 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3212 csskd->cpu_ticks_kernel.value.ui64 = 3213 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3214 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3215 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3216 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3217 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3218 csskd->bread.value.ui64 = css->bread; 3219 csskd->bwrite.value.ui64 = css->bwrite; 3220 csskd->lread.value.ui64 = css->lread; 3221 csskd->lwrite.value.ui64 = css->lwrite; 3222 csskd->phread.value.ui64 = css->phread; 3223 csskd->phwrite.value.ui64 = css->phwrite; 3224 csskd->pswitch.value.ui64 = css->pswitch; 3225 csskd->trap.value.ui64 = css->trap; 3226 csskd->intr.value.ui64 = 0; 3227 for (i = 0; i < PIL_MAX; i++) 3228 csskd->intr.value.ui64 += css->intr[i]; 3229 csskd->syscall.value.ui64 = css->syscall; 3230 csskd->sysread.value.ui64 = css->sysread; 3231 csskd->syswrite.value.ui64 = css->syswrite; 3232 csskd->sysfork.value.ui64 = css->sysfork; 3233 csskd->sysvfork.value.ui64 = css->sysvfork; 3234 csskd->sysexec.value.ui64 = css->sysexec; 3235 csskd->readch.value.ui64 = css->readch; 3236 csskd->writech.value.ui64 = css->writech; 3237 csskd->rcvint.value.ui64 = css->rcvint; 3238 csskd->xmtint.value.ui64 = css->xmtint; 3239 csskd->mdmint.value.ui64 = css->mdmint; 3240 csskd->rawch.value.ui64 = css->rawch; 3241 csskd->canch.value.ui64 = css->canch; 3242 csskd->outch.value.ui64 = css->outch; 3243 csskd->msg.value.ui64 = css->msg; 3244 csskd->sema.value.ui64 = css->sema; 3245 csskd->namei.value.ui64 = css->namei; 3246 csskd->ufsiget.value.ui64 = css->ufsiget; 3247 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3248 csskd->ufsipage.value.ui64 = css->ufsipage; 3249 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3250 csskd->procovf.value.ui64 = css->procovf; 3251 csskd->intrthread.value.ui64 = 0; 3252 for (i = 0; i < LOCK_LEVEL - 1; i++) 3253 csskd->intrthread.value.ui64 += css->intr[i]; 3254 csskd->intrblk.value.ui64 = css->intrblk; 3255 csskd->intrunpin.value.ui64 = css->intrunpin; 3256 csskd->idlethread.value.ui64 = css->idlethread; 3257 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3258 csskd->nthreads.value.ui64 = css->nthreads; 3259 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3260 csskd->xcalls.value.ui64 = css->xcalls; 3261 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3262 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3263 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3264 csskd->modload.value.ui64 = css->modload; 3265 csskd->modunload.value.ui64 = css->modunload; 3266 csskd->bawrite.value.ui64 = css->bawrite; 3267 csskd->iowait.value.ui64 = css->iowait; 3268 3269 return (0); 3270 } 3271 3272 static int 3273 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3274 { 3275 cpu_t *cp = (cpu_t *)ksp->ks_private; 3276 struct cpu_vm_stats_ks_data *cvskd; 3277 cpu_vm_stats_t *cvs; 3278 3279 if (rw == KSTAT_WRITE) 3280 return (EACCES); 3281 3282 cvs = &cp->cpu_stats.vm; 3283 cvskd = ksp->ks_data; 3284 3285 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3286 sizeof (cpu_vm_stats_ks_data_template)); 3287 cvskd->pgrec.value.ui64 = cvs->pgrec; 3288 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3289 cvskd->pgin.value.ui64 = cvs->pgin; 3290 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3291 cvskd->pgout.value.ui64 = cvs->pgout; 3292 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3293 cvskd->swapin.value.ui64 = cvs->swapin; 3294 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3295 cvskd->swapout.value.ui64 = cvs->swapout; 3296 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3297 cvskd->zfod.value.ui64 = cvs->zfod; 3298 cvskd->dfree.value.ui64 = cvs->dfree; 3299 cvskd->scan.value.ui64 = cvs->scan; 3300 cvskd->rev.value.ui64 = cvs->rev; 3301 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3302 cvskd->as_fault.value.ui64 = cvs->as_fault; 3303 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3304 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3305 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3306 cvskd->softlock.value.ui64 = cvs->softlock; 3307 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3308 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3309 cvskd->execpgin.value.ui64 = cvs->execpgin; 3310 cvskd->execpgout.value.ui64 = cvs->execpgout; 3311 cvskd->execfree.value.ui64 = cvs->execfree; 3312 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3313 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3314 cvskd->anonfree.value.ui64 = cvs->anonfree; 3315 cvskd->fspgin.value.ui64 = cvs->fspgin; 3316 cvskd->fspgout.value.ui64 = cvs->fspgout; 3317 cvskd->fsfree.value.ui64 = cvs->fsfree; 3318 3319 return (0); 3320 } 3321 3322 static int 3323 cpu_stat_ks_update(kstat_t *ksp, int rw) 3324 { 3325 cpu_stat_t *cso; 3326 cpu_t *cp; 3327 int i; 3328 hrtime_t msnsecs[NCMSTATES]; 3329 3330 cso = (cpu_stat_t *)ksp->ks_data; 3331 cp = (cpu_t *)ksp->ks_private; 3332 3333 if (rw == KSTAT_WRITE) 3334 return (EACCES); 3335 3336 /* 3337 * Read CPU mstate, but compare with the last values we 3338 * received to make sure that the returned kstats never 3339 * decrease. 3340 */ 3341 3342 get_cpu_mstate(cp, msnsecs); 3343 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3344 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3345 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3346 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3347 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3348 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3349 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3350 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3351 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3352 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3353 cso->cpu_sysinfo.wait[W_IO] = 0; 3354 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3355 cso->cpu_sysinfo.wait[W_PIO] = 0; 3356 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3357 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3358 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3359 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3360 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3361 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3362 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3363 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3364 cso->cpu_sysinfo.intr = 0; 3365 for (i = 0; i < PIL_MAX; i++) 3366 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3367 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3368 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3369 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3370 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3371 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3372 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3373 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3374 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3375 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3376 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3377 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3378 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3379 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3380 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3381 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3382 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3383 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3384 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3385 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3386 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3387 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3388 cso->cpu_sysinfo.inodeovf = 0; 3389 cso->cpu_sysinfo.fileovf = 0; 3390 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3391 cso->cpu_sysinfo.intrthread = 0; 3392 for (i = 0; i < LOCK_LEVEL - 1; i++) 3393 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3394 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3395 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3396 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3397 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3398 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3399 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3400 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3401 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3402 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3403 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3404 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3405 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3406 cso->cpu_sysinfo.rw_enters = 0; 3407 cso->cpu_sysinfo.win_uo_cnt = 0; 3408 cso->cpu_sysinfo.win_uu_cnt = 0; 3409 cso->cpu_sysinfo.win_so_cnt = 0; 3410 cso->cpu_sysinfo.win_su_cnt = 0; 3411 cso->cpu_sysinfo.win_suo_cnt = 0; 3412 3413 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3414 cso->cpu_syswait.swap = 0; 3415 cso->cpu_syswait.physio = 0; 3416 3417 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3418 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3419 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3420 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3421 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3422 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3423 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3424 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3425 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3426 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3427 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3428 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3429 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3430 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3431 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3432 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3433 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3434 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3435 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3436 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3437 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3438 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3439 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3440 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3441 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3442 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3443 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3444 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3445 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3446 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3447 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3448 3449 return (0); 3450 } 3451