1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/chip.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__i386) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *cpu_active; /* list of active CPUs */ 109 static cpuset_t cpu_available; /* set of available CPUs */ 110 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 111 112 /* 113 * max_ncpus keeps the max cpus the system can have. Initially 114 * it's NCPU, but since most archs scan the devtree for cpus 115 * fairly early on during boot, the real max can be known before 116 * ncpus is set (useful for early NCPU based allocations). 117 */ 118 int max_ncpus = NCPU; 119 /* 120 * platforms that set max_ncpus to maxiumum number of cpus that can be 121 * dynamically added will set boot_max_ncpus to the number of cpus found 122 * at device tree scan time during boot. 123 */ 124 int boot_max_ncpus = -1; 125 /* 126 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 127 * used to size arrays that are indexed by CPU id. 128 */ 129 processorid_t max_cpuid = NCPU - 1; 130 131 int ncpus = 1; 132 int ncpus_online = 1; 133 134 /* 135 * CPU that we're trying to offline. Protected by cpu_lock. 136 */ 137 cpu_t *cpu_inmotion; 138 139 /* 140 * Can be raised to suppress further weakbinding, which are instead 141 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 142 * while individual thread weakbinding synchronisation is done under thread 143 * lock. 144 */ 145 int weakbindingbarrier; 146 147 /* 148 * values for safe_list. Pause state that CPUs are in. 149 */ 150 #define PAUSE_IDLE 0 /* normal state */ 151 #define PAUSE_READY 1 /* paused thread ready to spl */ 152 #define PAUSE_WAIT 2 /* paused thread is spl-ed high */ 153 #define PAUSE_DIE 3 /* tell pause thread to leave */ 154 #define PAUSE_DEAD 4 /* pause thread has left */ 155 156 /* 157 * Variables used in pause_cpus(). 158 */ 159 static volatile char safe_list[NCPU]; 160 161 static struct _cpu_pause_info { 162 int cp_spl; /* spl saved in pause_cpus() */ 163 volatile int cp_go; /* Go signal sent after all ready */ 164 int cp_count; /* # of CPUs to pause */ 165 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 166 kthread_id_t cp_paused; 167 } cpu_pause_info; 168 169 static kmutex_t pause_free_mutex; 170 static kcondvar_t pause_free_cv; 171 172 static struct cpu_sys_stats_ks_data { 173 kstat_named_t cpu_ticks_idle; 174 kstat_named_t cpu_ticks_user; 175 kstat_named_t cpu_ticks_kernel; 176 kstat_named_t cpu_ticks_wait; 177 kstat_named_t cpu_nsec_idle; 178 kstat_named_t cpu_nsec_user; 179 kstat_named_t cpu_nsec_kernel; 180 kstat_named_t wait_ticks_io; 181 kstat_named_t bread; 182 kstat_named_t bwrite; 183 kstat_named_t lread; 184 kstat_named_t lwrite; 185 kstat_named_t phread; 186 kstat_named_t phwrite; 187 kstat_named_t pswitch; 188 kstat_named_t trap; 189 kstat_named_t intr; 190 kstat_named_t syscall; 191 kstat_named_t sysread; 192 kstat_named_t syswrite; 193 kstat_named_t sysfork; 194 kstat_named_t sysvfork; 195 kstat_named_t sysexec; 196 kstat_named_t readch; 197 kstat_named_t writech; 198 kstat_named_t rcvint; 199 kstat_named_t xmtint; 200 kstat_named_t mdmint; 201 kstat_named_t rawch; 202 kstat_named_t canch; 203 kstat_named_t outch; 204 kstat_named_t msg; 205 kstat_named_t sema; 206 kstat_named_t namei; 207 kstat_named_t ufsiget; 208 kstat_named_t ufsdirblk; 209 kstat_named_t ufsipage; 210 kstat_named_t ufsinopage; 211 kstat_named_t procovf; 212 kstat_named_t intrthread; 213 kstat_named_t intrblk; 214 kstat_named_t intrunpin; 215 kstat_named_t idlethread; 216 kstat_named_t inv_swtch; 217 kstat_named_t nthreads; 218 kstat_named_t cpumigrate; 219 kstat_named_t xcalls; 220 kstat_named_t mutex_adenters; 221 kstat_named_t rw_rdfails; 222 kstat_named_t rw_wrfails; 223 kstat_named_t modload; 224 kstat_named_t modunload; 225 kstat_named_t bawrite; 226 kstat_named_t iowait; 227 } cpu_sys_stats_ks_data_template = { 228 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 229 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 230 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 231 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 232 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 233 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 234 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 235 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 236 { "bread", KSTAT_DATA_UINT64 }, 237 { "bwrite", KSTAT_DATA_UINT64 }, 238 { "lread", KSTAT_DATA_UINT64 }, 239 { "lwrite", KSTAT_DATA_UINT64 }, 240 { "phread", KSTAT_DATA_UINT64 }, 241 { "phwrite", KSTAT_DATA_UINT64 }, 242 { "pswitch", KSTAT_DATA_UINT64 }, 243 { "trap", KSTAT_DATA_UINT64 }, 244 { "intr", KSTAT_DATA_UINT64 }, 245 { "syscall", KSTAT_DATA_UINT64 }, 246 { "sysread", KSTAT_DATA_UINT64 }, 247 { "syswrite", KSTAT_DATA_UINT64 }, 248 { "sysfork", KSTAT_DATA_UINT64 }, 249 { "sysvfork", KSTAT_DATA_UINT64 }, 250 { "sysexec", KSTAT_DATA_UINT64 }, 251 { "readch", KSTAT_DATA_UINT64 }, 252 { "writech", KSTAT_DATA_UINT64 }, 253 { "rcvint", KSTAT_DATA_UINT64 }, 254 { "xmtint", KSTAT_DATA_UINT64 }, 255 { "mdmint", KSTAT_DATA_UINT64 }, 256 { "rawch", KSTAT_DATA_UINT64 }, 257 { "canch", KSTAT_DATA_UINT64 }, 258 { "outch", KSTAT_DATA_UINT64 }, 259 { "msg", KSTAT_DATA_UINT64 }, 260 { "sema", KSTAT_DATA_UINT64 }, 261 { "namei", KSTAT_DATA_UINT64 }, 262 { "ufsiget", KSTAT_DATA_UINT64 }, 263 { "ufsdirblk", KSTAT_DATA_UINT64 }, 264 { "ufsipage", KSTAT_DATA_UINT64 }, 265 { "ufsinopage", KSTAT_DATA_UINT64 }, 266 { "procovf", KSTAT_DATA_UINT64 }, 267 { "intrthread", KSTAT_DATA_UINT64 }, 268 { "intrblk", KSTAT_DATA_UINT64 }, 269 { "intrunpin", KSTAT_DATA_UINT64 }, 270 { "idlethread", KSTAT_DATA_UINT64 }, 271 { "inv_swtch", KSTAT_DATA_UINT64 }, 272 { "nthreads", KSTAT_DATA_UINT64 }, 273 { "cpumigrate", KSTAT_DATA_UINT64 }, 274 { "xcalls", KSTAT_DATA_UINT64 }, 275 { "mutex_adenters", KSTAT_DATA_UINT64 }, 276 { "rw_rdfails", KSTAT_DATA_UINT64 }, 277 { "rw_wrfails", KSTAT_DATA_UINT64 }, 278 { "modload", KSTAT_DATA_UINT64 }, 279 { "modunload", KSTAT_DATA_UINT64 }, 280 { "bawrite", KSTAT_DATA_UINT64 }, 281 { "iowait", KSTAT_DATA_UINT64 }, 282 }; 283 284 static struct cpu_vm_stats_ks_data { 285 kstat_named_t pgrec; 286 kstat_named_t pgfrec; 287 kstat_named_t pgin; 288 kstat_named_t pgpgin; 289 kstat_named_t pgout; 290 kstat_named_t pgpgout; 291 kstat_named_t swapin; 292 kstat_named_t pgswapin; 293 kstat_named_t swapout; 294 kstat_named_t pgswapout; 295 kstat_named_t zfod; 296 kstat_named_t dfree; 297 kstat_named_t scan; 298 kstat_named_t rev; 299 kstat_named_t hat_fault; 300 kstat_named_t as_fault; 301 kstat_named_t maj_fault; 302 kstat_named_t cow_fault; 303 kstat_named_t prot_fault; 304 kstat_named_t softlock; 305 kstat_named_t kernel_asflt; 306 kstat_named_t pgrrun; 307 kstat_named_t execpgin; 308 kstat_named_t execpgout; 309 kstat_named_t execfree; 310 kstat_named_t anonpgin; 311 kstat_named_t anonpgout; 312 kstat_named_t anonfree; 313 kstat_named_t fspgin; 314 kstat_named_t fspgout; 315 kstat_named_t fsfree; 316 } cpu_vm_stats_ks_data_template = { 317 { "pgrec", KSTAT_DATA_UINT64 }, 318 { "pgfrec", KSTAT_DATA_UINT64 }, 319 { "pgin", KSTAT_DATA_UINT64 }, 320 { "pgpgin", KSTAT_DATA_UINT64 }, 321 { "pgout", KSTAT_DATA_UINT64 }, 322 { "pgpgout", KSTAT_DATA_UINT64 }, 323 { "swapin", KSTAT_DATA_UINT64 }, 324 { "pgswapin", KSTAT_DATA_UINT64 }, 325 { "swapout", KSTAT_DATA_UINT64 }, 326 { "pgswapout", KSTAT_DATA_UINT64 }, 327 { "zfod", KSTAT_DATA_UINT64 }, 328 { "dfree", KSTAT_DATA_UINT64 }, 329 { "scan", KSTAT_DATA_UINT64 }, 330 { "rev", KSTAT_DATA_UINT64 }, 331 { "hat_fault", KSTAT_DATA_UINT64 }, 332 { "as_fault", KSTAT_DATA_UINT64 }, 333 { "maj_fault", KSTAT_DATA_UINT64 }, 334 { "cow_fault", KSTAT_DATA_UINT64 }, 335 { "prot_fault", KSTAT_DATA_UINT64 }, 336 { "softlock", KSTAT_DATA_UINT64 }, 337 { "kernel_asflt", KSTAT_DATA_UINT64 }, 338 { "pgrrun", KSTAT_DATA_UINT64 }, 339 { "execpgin", KSTAT_DATA_UINT64 }, 340 { "execpgout", KSTAT_DATA_UINT64 }, 341 { "execfree", KSTAT_DATA_UINT64 }, 342 { "anonpgin", KSTAT_DATA_UINT64 }, 343 { "anonpgout", KSTAT_DATA_UINT64 }, 344 { "anonfree", KSTAT_DATA_UINT64 }, 345 { "fspgin", KSTAT_DATA_UINT64 }, 346 { "fspgout", KSTAT_DATA_UINT64 }, 347 { "fsfree", KSTAT_DATA_UINT64 }, 348 }; 349 350 /* 351 * Force the specified thread to migrate to the appropriate processor. 352 * Called with thread lock held, returns with it dropped. 353 */ 354 static void 355 force_thread_migrate(kthread_id_t tp) 356 { 357 ASSERT(THREAD_LOCK_HELD(tp)); 358 if (tp == curthread) { 359 THREAD_TRANSITION(tp); 360 CL_SETRUN(tp); 361 thread_unlock_nopreempt(tp); 362 swtch(); 363 } else { 364 if (tp->t_state == TS_ONPROC) { 365 cpu_surrender(tp); 366 } else if (tp->t_state == TS_RUN) { 367 (void) dispdeq(tp); 368 setbackdq(tp); 369 } 370 thread_unlock(tp); 371 } 372 } 373 374 /* 375 * Set affinity for a specified CPU. 376 * A reference count is incremented and the affinity is held until the 377 * reference count is decremented to zero by thread_affinity_clear(). 378 * This is so regions of code requiring affinity can be nested. 379 * Caller needs to ensure that cpu_id remains valid, which can be 380 * done by holding cpu_lock across this call, unless the caller 381 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 382 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 383 */ 384 void 385 thread_affinity_set(kthread_id_t t, int cpu_id) 386 { 387 cpu_t *cp; 388 int c; 389 390 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 391 392 if ((c = cpu_id) == CPU_CURRENT) { 393 mutex_enter(&cpu_lock); 394 cpu_id = CPU->cpu_id; 395 } 396 /* 397 * We should be asserting that cpu_lock is held here, but 398 * the NCA code doesn't acquire it. The following assert 399 * should be uncommented when the NCA code is fixed. 400 * 401 * ASSERT(MUTEX_HELD(&cpu_lock)); 402 */ 403 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 404 cp = cpu[cpu_id]; 405 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 406 /* 407 * If there is already a hard affinity requested, and this affinity 408 * conflicts with that, panic. 409 */ 410 thread_lock(t); 411 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 412 panic("affinity_set: setting %p but already bound to %p", 413 (void *)cp, (void *)t->t_bound_cpu); 414 } 415 t->t_affinitycnt++; 416 t->t_bound_cpu = cp; 417 418 /* 419 * Make sure we're running on the right CPU. 420 */ 421 if (cp != t->t_cpu || t != curthread) { 422 force_thread_migrate(t); /* drops thread lock */ 423 } else { 424 thread_unlock(t); 425 } 426 427 if (c == CPU_CURRENT) 428 mutex_exit(&cpu_lock); 429 } 430 431 /* 432 * Wrapper for backward compatibility. 433 */ 434 void 435 affinity_set(int cpu_id) 436 { 437 thread_affinity_set(curthread, cpu_id); 438 } 439 440 /* 441 * Decrement the affinity reservation count and if it becomes zero, 442 * clear the CPU affinity for the current thread, or set it to the user's 443 * software binding request. 444 */ 445 void 446 thread_affinity_clear(kthread_id_t t) 447 { 448 register processorid_t binding; 449 450 thread_lock(t); 451 if (--t->t_affinitycnt == 0) { 452 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 453 /* 454 * Adjust disp_max_unbound_pri if necessary. 455 */ 456 disp_adjust_unbound_pri(t); 457 t->t_bound_cpu = NULL; 458 if (t->t_cpu->cpu_part != t->t_cpupart) { 459 force_thread_migrate(t); 460 return; 461 } 462 } else { 463 t->t_bound_cpu = cpu[binding]; 464 /* 465 * Make sure the thread is running on the bound CPU. 466 */ 467 if (t->t_cpu != t->t_bound_cpu) { 468 force_thread_migrate(t); 469 return; /* already dropped lock */ 470 } 471 } 472 } 473 thread_unlock(t); 474 } 475 476 /* 477 * Wrapper for backward compatibility. 478 */ 479 void 480 affinity_clear(void) 481 { 482 thread_affinity_clear(curthread); 483 } 484 485 /* 486 * Weak cpu affinity. Bind to the "current" cpu for short periods 487 * of time during which the thread must not block (but may be preempted). 488 * Use this instead of kpreempt_disable() when it is only "no migration" 489 * rather than "no preemption" semantics that are required - disabling 490 * preemption holds higher priority threads off of cpu and if the 491 * operation that is protected is more than momentary this is not good 492 * for realtime etc. 493 * 494 * Weakly bound threads will not prevent a cpu from being offlined - 495 * we'll only run them on the cpu to which they are weakly bound but 496 * (because they do not block) we'll always be able to move them on to 497 * another cpu at offline time if we give them just a short moment to 498 * run during which they will unbind. To give a cpu a chance of offlining, 499 * however, we require a barrier to weak bindings that may be raised for a 500 * given cpu (offline/move code may set this and then wait a short time for 501 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 502 * 503 * There are few restrictions on the calling context of thread_nomigrate. 504 * The caller must not hold the thread lock. Calls may be nested. 505 * 506 * After weakbinding a thread must not perform actions that may block. 507 * In particular it must not call thread_affinity_set; calling that when 508 * already weakbound is nonsensical anyway. 509 * 510 * If curthread is prevented from migrating for other reasons 511 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 512 * then the weak binding will succeed even if this cpu is the target of an 513 * offline/move request. 514 */ 515 void 516 thread_nomigrate(void) 517 { 518 cpu_t *cp; 519 kthread_id_t t = curthread; 520 521 again: 522 kpreempt_disable(); 523 cp = CPU; 524 525 /* 526 * A highlevel interrupt must not modify t_nomigrate or 527 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 528 * interrupt thread cannot migrate and we can avoid the 529 * thread_lock call below by short-circuiting here. In either 530 * case we can just return since no migration is possible and 531 * the condition will persist (ie, when we test for these again 532 * in thread_allowmigrate they can't have changed). Migration 533 * is also impossible if we're at or above DISP_LEVEL pil. 534 */ 535 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 536 getpil() >= DISP_LEVEL) { 537 kpreempt_enable(); 538 return; 539 } 540 541 /* 542 * We must be consistent with existing weak bindings. Since we 543 * may be interrupted between the increment of t_nomigrate and 544 * the store to t_weakbound_cpu below we cannot assume that 545 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 546 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 547 * always the case. 548 */ 549 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 550 if (!panicstr) 551 panic("thread_nomigrate: binding to %p but already " 552 "bound to %p", (void *)cp, 553 (void *)t->t_weakbound_cpu); 554 } 555 556 /* 557 * At this point we have preemption disabled and we don't yet hold 558 * the thread lock. So it's possible that somebody else could 559 * set t_bind_cpu here and not be able to force us across to the 560 * new cpu (since we have preemption disabled). 561 */ 562 thread_lock(curthread); 563 564 /* 565 * If further weak bindings are being (temporarily) suppressed then 566 * we'll settle for disabling kernel preemption (which assures 567 * no migration provided the thread does not block which it is 568 * not allowed to if using thread_nomigrate). We must remember 569 * this disposition so we can take appropriate action in 570 * thread_allowmigrate. If this is a nested call and the 571 * thread is already weakbound then fall through as normal. 572 * We remember the decision to settle for kpreempt_disable through 573 * negative nesting counting in t_nomigrate. Once a thread has had one 574 * weakbinding request satisfied in this way any further (nested) 575 * requests will continue to be satisfied in the same way, 576 * even if weak bindings have recommenced. 577 */ 578 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 579 --t->t_nomigrate; 580 thread_unlock(curthread); 581 return; /* with kpreempt_disable still active */ 582 } 583 584 /* 585 * We hold thread_lock so t_bind_cpu cannot change. We could, 586 * however, be running on a different cpu to which we are t_bound_cpu 587 * to (as explained above). If we grant the weak binding request 588 * in that case then the dispatcher must favour our weak binding 589 * over our strong (in which case, just as when preemption is 590 * disabled, we can continue to run on a cpu other than the one to 591 * which we are strongbound; the difference in this case is that 592 * this thread can be preempted and so can appear on the dispatch 593 * queues of a cpu other than the one it is strongbound to). 594 * 595 * If the cpu we are running on does not appear to be a current 596 * offline target (we check cpu_inmotion to determine this - since 597 * we don't hold cpu_lock we may not see a recent store to that, 598 * so it's possible that we at times can grant a weak binding to a 599 * cpu that is an offline target, but that one request will not 600 * prevent the offline from succeeding) then we will always grant 601 * the weak binding request. This includes the case above where 602 * we grant a weakbinding not commensurate with our strong binding. 603 * 604 * If our cpu does appear to be an offline target then we're inclined 605 * not to grant the weakbinding request just yet - we'd prefer to 606 * migrate to another cpu and grant the request there. The 607 * exceptions are those cases where going through preemption code 608 * will not result in us changing cpu: 609 * 610 * . interrupts have already bypassed this case (see above) 611 * . we are already weakbound to this cpu (dispatcher code will 612 * always return us to the weakbound cpu) 613 * . preemption was disabled even before we disabled it above 614 * . we are strongbound to this cpu (if we're strongbound to 615 * another and not yet running there the trip through the 616 * dispatcher will move us to the strongbound cpu and we 617 * will grant the weak binding there) 618 */ 619 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 620 t->t_bound_cpu == cp) { 621 /* 622 * Don't be tempted to store to t_weakbound_cpu only on 623 * the first nested bind request - if we're interrupted 624 * after the increment of t_nomigrate and before the 625 * store to t_weakbound_cpu and the interrupt calls 626 * thread_nomigrate then the assertion in thread_allowmigrate 627 * would fail. 628 */ 629 t->t_nomigrate++; 630 t->t_weakbound_cpu = cp; 631 membar_producer(); 632 thread_unlock(curthread); 633 /* 634 * Now that we have dropped the thread_lock another thread 635 * can set our t_weakbound_cpu, and will try to migrate us 636 * to the strongbound cpu (which will not be prevented by 637 * preemption being disabled since we're about to enable 638 * preemption). We have granted the weakbinding to the current 639 * cpu, so again we are in the position that is is is possible 640 * that our weak and strong bindings differ. Again this 641 * is catered for by dispatcher code which will favour our 642 * weak binding. 643 */ 644 kpreempt_enable(); 645 } else { 646 /* 647 * Move to another cpu before granting the request by 648 * forcing this thread through preemption code. When we 649 * get to set{front,back}dq called from CL_PREEMPT() 650 * cpu_choose() will be used to select a cpu to queue 651 * us on - that will see cpu_inmotion and take 652 * steps to avoid returning us to this cpu. 653 */ 654 cp->cpu_kprunrun = 1; 655 thread_unlock(curthread); 656 kpreempt_enable(); /* will call preempt() */ 657 goto again; 658 } 659 } 660 661 void 662 thread_allowmigrate(void) 663 { 664 kthread_id_t t = curthread; 665 666 ASSERT(t->t_weakbound_cpu == CPU || 667 (t->t_nomigrate < 0 && t->t_preempt > 0) || 668 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 669 getpil() >= DISP_LEVEL); 670 671 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 672 getpil() >= DISP_LEVEL) 673 return; 674 675 if (t->t_nomigrate < 0) { 676 /* 677 * This thread was granted "weak binding" in the 678 * stronger form of kernel preemption disabling. 679 * Undo a level of nesting for both t_nomigrate 680 * and t_preempt. 681 */ 682 ++t->t_nomigrate; 683 kpreempt_enable(); 684 } else if (--t->t_nomigrate == 0) { 685 /* 686 * Time to drop the weak binding. We need to cater 687 * for the case where we're weakbound to a different 688 * cpu than that to which we're strongbound (a very 689 * temporary arrangement that must only persist until 690 * weak binding drops). We don't acquire thread_lock 691 * here so even as this code executes t_bound_cpu 692 * may be changing. So we disable preemption and 693 * a) in the case that t_bound_cpu changes while we 694 * have preemption disabled kprunrun will be set 695 * asynchronously, and b) if before disabling 696 * preemption we were already on a different cpu to 697 * our t_bound_cpu then we set kprunrun ourselves 698 * to force a trip through the dispatcher when 699 * preemption is enabled. 700 */ 701 kpreempt_disable(); 702 if (t->t_bound_cpu && 703 t->t_weakbound_cpu != t->t_bound_cpu) 704 CPU->cpu_kprunrun = 1; 705 t->t_weakbound_cpu = NULL; 706 membar_producer(); 707 kpreempt_enable(); 708 } 709 } 710 711 /* 712 * weakbinding_stop can be used to temporarily cause weakbindings made 713 * with thread_nomigrate to be satisfied through the stronger action of 714 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 715 */ 716 717 void 718 weakbinding_stop(void) 719 { 720 ASSERT(MUTEX_HELD(&cpu_lock)); 721 weakbindingbarrier = 1; 722 membar_producer(); /* make visible before subsequent thread_lock */ 723 } 724 725 void 726 weakbinding_start(void) 727 { 728 ASSERT(MUTEX_HELD(&cpu_lock)); 729 weakbindingbarrier = 0; 730 } 731 732 /* 733 * This routine is called to place the CPUs in a safe place so that 734 * one of them can be taken off line or placed on line. What we are 735 * trying to do here is prevent a thread from traversing the list 736 * of active CPUs while we are changing it or from getting placed on 737 * the run queue of a CPU that has just gone off line. We do this by 738 * creating a thread with the highest possible prio for each CPU and 739 * having it call this routine. The advantage of this method is that 740 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 741 * This makes disp faster at the expense of making p_online() slower 742 * which is a good trade off. 743 */ 744 static void 745 cpu_pause(volatile char *safe) 746 { 747 int s; 748 struct _cpu_pause_info *cpi = &cpu_pause_info; 749 750 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 751 752 while (*safe != PAUSE_DIE) { 753 *safe = PAUSE_READY; 754 membar_enter(); /* make sure stores are flushed */ 755 sema_v(&cpi->cp_sem); /* signal requesting thread */ 756 757 /* 758 * Wait here until all pause threads are running. That 759 * indicates that it's safe to do the spl. Until 760 * cpu_pause_info.cp_go is set, we don't want to spl 761 * because that might block clock interrupts needed 762 * to preempt threads on other CPUs. 763 */ 764 while (cpi->cp_go == 0) 765 ; 766 /* 767 * Even though we are at the highest disp prio, we need 768 * to block out all interrupts below LOCK_LEVEL so that 769 * an intr doesn't come in, wake up a thread, and call 770 * setbackdq/setfrontdq. 771 */ 772 s = splhigh(); 773 /* 774 * This cpu is now safe. 775 */ 776 *safe = PAUSE_WAIT; 777 membar_enter(); /* make sure stores are flushed */ 778 779 /* 780 * Now we wait. When we are allowed to continue, safe will 781 * be set to PAUSE_IDLE. 782 */ 783 while (*safe != PAUSE_IDLE) 784 ; 785 786 splx(s); 787 /* 788 * Waiting is at an end. Switch out of cpu_pause 789 * loop and resume useful work. 790 */ 791 swtch(); 792 } 793 794 mutex_enter(&pause_free_mutex); 795 *safe = PAUSE_DEAD; 796 cv_broadcast(&pause_free_cv); 797 mutex_exit(&pause_free_mutex); 798 } 799 800 /* 801 * Allow the cpus to start running again. 802 */ 803 void 804 start_cpus() 805 { 806 int i; 807 808 ASSERT(MUTEX_HELD(&cpu_lock)); 809 ASSERT(cpu_pause_info.cp_paused); 810 cpu_pause_info.cp_paused = NULL; 811 for (i = 0; i < NCPU; i++) 812 safe_list[i] = PAUSE_IDLE; 813 membar_enter(); /* make sure stores are flushed */ 814 affinity_clear(); 815 splx(cpu_pause_info.cp_spl); 816 kpreempt_enable(); 817 } 818 819 /* 820 * Allocate a pause thread for a CPU. 821 */ 822 static void 823 cpu_pause_alloc(cpu_t *cp) 824 { 825 kthread_id_t t; 826 int cpun = cp->cpu_id; 827 828 /* 829 * Note, v.v_nglobpris will not change value as long as I hold 830 * cpu_lock. 831 */ 832 t = thread_create(NULL, 0, cpu_pause, (caddr_t)&safe_list[cpun], 833 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 834 thread_lock(t); 835 t->t_bound_cpu = cp; 836 t->t_disp_queue = cp->cpu_disp; 837 t->t_affinitycnt = 1; 838 t->t_preempt = 1; 839 thread_unlock(t); 840 cp->cpu_pause_thread = t; 841 /* 842 * Registering a thread in the callback table is usually done 843 * in the initialization code of the thread. In this 844 * case, we do it right after thread creation because the 845 * thread itself may never run, and we need to register the 846 * fact that it is safe for cpr suspend. 847 */ 848 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 849 } 850 851 /* 852 * Free a pause thread for a CPU. 853 */ 854 static void 855 cpu_pause_free(cpu_t *cp) 856 { 857 kthread_id_t t; 858 int cpun = cp->cpu_id; 859 860 ASSERT(MUTEX_HELD(&cpu_lock)); 861 /* 862 * We have to get the thread and tell him to die. 863 */ 864 if ((t = cp->cpu_pause_thread) == NULL) { 865 ASSERT(safe_list[cpun] == PAUSE_IDLE); 866 return; 867 } 868 thread_lock(t); 869 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 870 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 871 t->t_pri = v.v_nglobpris - 1; 872 ASSERT(safe_list[cpun] == PAUSE_IDLE); 873 safe_list[cpun] = PAUSE_DIE; 874 THREAD_TRANSITION(t); 875 setbackdq(t); 876 thread_unlock_nopreempt(t); 877 878 /* 879 * If we don't wait for the thread to actually die, it may try to 880 * run on the wrong cpu as part of an actual call to pause_cpus(). 881 */ 882 mutex_enter(&pause_free_mutex); 883 while (safe_list[cpun] != PAUSE_DEAD) { 884 cv_wait(&pause_free_cv, &pause_free_mutex); 885 } 886 mutex_exit(&pause_free_mutex); 887 safe_list[cpun] = PAUSE_IDLE; 888 889 cp->cpu_pause_thread = NULL; 890 } 891 892 /* 893 * Initialize basic structures for pausing CPUs. 894 */ 895 void 896 cpu_pause_init() 897 { 898 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 899 /* 900 * Create initial CPU pause thread. 901 */ 902 cpu_pause_alloc(CPU); 903 } 904 905 /* 906 * Start the threads used to pause another CPU. 907 */ 908 static int 909 cpu_pause_start(processorid_t cpu_id) 910 { 911 int i; 912 int cpu_count = 0; 913 914 for (i = 0; i < NCPU; i++) { 915 cpu_t *cp; 916 kthread_id_t t; 917 918 cp = cpu[i]; 919 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 920 safe_list[i] = PAUSE_WAIT; 921 continue; 922 } 923 924 /* 925 * Skip CPU if it is quiesced or not yet started. 926 */ 927 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 928 safe_list[i] = PAUSE_WAIT; 929 continue; 930 } 931 932 /* 933 * Start this CPU's pause thread. 934 */ 935 t = cp->cpu_pause_thread; 936 thread_lock(t); 937 /* 938 * Reset the priority, since nglobpris may have 939 * changed since the thread was created, if someone 940 * has loaded the RT (or some other) scheduling 941 * class. 942 */ 943 t->t_pri = v.v_nglobpris - 1; 944 THREAD_TRANSITION(t); 945 setbackdq(t); 946 thread_unlock_nopreempt(t); 947 ++cpu_count; 948 } 949 return (cpu_count); 950 } 951 952 953 /* 954 * Pause all of the CPUs except the one we are on by creating a high 955 * priority thread bound to those CPUs. 956 * 957 * Note that one must be extremely careful regarding code 958 * executed while CPUs are paused. Since a CPU may be paused 959 * while a thread scheduling on that CPU is holding an adaptive 960 * lock, code executed with CPUs paused must not acquire adaptive 961 * (or low-level spin) locks. Also, such code must not block, 962 * since the thread that is supposed to initiate the wakeup may 963 * never run. 964 * 965 * With a few exceptions, the restrictions on code executed with CPUs 966 * paused match those for code executed at high-level interrupt 967 * context. 968 */ 969 void 970 pause_cpus(cpu_t *off_cp) 971 { 972 processorid_t cpu_id; 973 int i; 974 struct _cpu_pause_info *cpi = &cpu_pause_info; 975 976 ASSERT(MUTEX_HELD(&cpu_lock)); 977 ASSERT(cpi->cp_paused == NULL); 978 cpi->cp_count = 0; 979 cpi->cp_go = 0; 980 for (i = 0; i < NCPU; i++) 981 safe_list[i] = PAUSE_IDLE; 982 kpreempt_disable(); 983 984 /* 985 * If running on the cpu that is going offline, get off it. 986 * This is so that it won't be necessary to rechoose a CPU 987 * when done. 988 */ 989 if (CPU == off_cp) 990 cpu_id = off_cp->cpu_next_part->cpu_id; 991 else 992 cpu_id = CPU->cpu_id; 993 affinity_set(cpu_id); 994 995 /* 996 * Start the pause threads and record how many were started 997 */ 998 cpi->cp_count = cpu_pause_start(cpu_id); 999 1000 /* 1001 * Now wait for all CPUs to be running the pause thread. 1002 */ 1003 while (cpi->cp_count > 0) { 1004 /* 1005 * Spin reading the count without grabbing the disp 1006 * lock to make sure we don't prevent the pause 1007 * threads from getting the lock. 1008 */ 1009 while (sema_held(&cpi->cp_sem)) 1010 ; 1011 if (sema_tryp(&cpi->cp_sem)) 1012 --cpi->cp_count; 1013 } 1014 cpi->cp_go = 1; /* all have reached cpu_pause */ 1015 1016 /* 1017 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1018 * to PAUSE_WAIT.) 1019 */ 1020 for (i = 0; i < NCPU; i++) { 1021 while (safe_list[i] != PAUSE_WAIT) 1022 ; 1023 } 1024 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1025 cpi->cp_paused = curthread; 1026 } 1027 1028 /* 1029 * Check whether the current thread has CPUs paused 1030 */ 1031 int 1032 cpus_paused(void) 1033 { 1034 if (cpu_pause_info.cp_paused != NULL) { 1035 ASSERT(cpu_pause_info.cp_paused == curthread); 1036 return (1); 1037 } 1038 return (0); 1039 } 1040 1041 static cpu_t * 1042 cpu_get_all(processorid_t cpun) 1043 { 1044 ASSERT(MUTEX_HELD(&cpu_lock)); 1045 1046 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1047 return (NULL); 1048 return (cpu[cpun]); 1049 } 1050 1051 /* 1052 * Check whether cpun is a valid processor id and whether it should be 1053 * visible from the current zone. If it is, return a pointer to the 1054 * associated CPU structure. 1055 */ 1056 cpu_t * 1057 cpu_get(processorid_t cpun) 1058 { 1059 cpu_t *c; 1060 1061 ASSERT(MUTEX_HELD(&cpu_lock)); 1062 c = cpu_get_all(cpun); 1063 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1064 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1065 return (NULL); 1066 return (c); 1067 } 1068 1069 /* 1070 * The following functions should be used to check CPU states in the kernel. 1071 * They should be invoked with cpu_lock held. Kernel subsystems interested 1072 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1073 * states. Those are for user-land (and system call) use only. 1074 */ 1075 1076 /* 1077 * Determine whether the CPU is online and handling interrupts. 1078 */ 1079 int 1080 cpu_is_online(cpu_t *cpu) 1081 { 1082 ASSERT(MUTEX_HELD(&cpu_lock)); 1083 return (cpu_flagged_online(cpu->cpu_flags)); 1084 } 1085 1086 /* 1087 * Determine whether the CPU is offline (this includes spare and faulted). 1088 */ 1089 int 1090 cpu_is_offline(cpu_t *cpu) 1091 { 1092 ASSERT(MUTEX_HELD(&cpu_lock)); 1093 return (cpu_flagged_offline(cpu->cpu_flags)); 1094 } 1095 1096 /* 1097 * Determine whether the CPU is powered off. 1098 */ 1099 int 1100 cpu_is_poweredoff(cpu_t *cpu) 1101 { 1102 ASSERT(MUTEX_HELD(&cpu_lock)); 1103 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1104 } 1105 1106 /* 1107 * Determine whether the CPU is handling interrupts. 1108 */ 1109 int 1110 cpu_is_nointr(cpu_t *cpu) 1111 { 1112 ASSERT(MUTEX_HELD(&cpu_lock)); 1113 return (cpu_flagged_nointr(cpu->cpu_flags)); 1114 } 1115 1116 /* 1117 * Determine whether the CPU is active (scheduling threads). 1118 */ 1119 int 1120 cpu_is_active(cpu_t *cpu) 1121 { 1122 ASSERT(MUTEX_HELD(&cpu_lock)); 1123 return (cpu_flagged_active(cpu->cpu_flags)); 1124 } 1125 1126 /* 1127 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1128 */ 1129 int 1130 cpu_flagged_online(cpu_flag_t cpu_flags) 1131 { 1132 return (cpu_flagged_active(cpu_flags) && 1133 (cpu_flags & CPU_ENABLE)); 1134 } 1135 1136 int 1137 cpu_flagged_offline(cpu_flag_t cpu_flags) 1138 { 1139 return (((cpu_flags & CPU_POWEROFF) == 0) && 1140 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1141 } 1142 1143 int 1144 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1145 { 1146 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1147 } 1148 1149 int 1150 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1151 { 1152 return (cpu_flagged_active(cpu_flags) && 1153 (cpu_flags & CPU_ENABLE) == 0); 1154 } 1155 1156 int 1157 cpu_flagged_active(cpu_flag_t cpu_flags) 1158 { 1159 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1160 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1161 } 1162 1163 /* 1164 * Bring the indicated CPU online. 1165 */ 1166 int 1167 cpu_online(cpu_t *cp) 1168 { 1169 int error = 0; 1170 1171 /* 1172 * Handle on-line request. 1173 * This code must put the new CPU on the active list before 1174 * starting it because it will not be paused, and will start 1175 * using the active list immediately. The real start occurs 1176 * when the CPU_QUIESCED flag is turned off. 1177 */ 1178 1179 ASSERT(MUTEX_HELD(&cpu_lock)); 1180 1181 /* 1182 * Put all the cpus into a known safe place. 1183 * No mutexes can be entered while CPUs are paused. 1184 */ 1185 error = mp_cpu_start(cp); /* arch-dep hook */ 1186 if (error == 0) { 1187 pause_cpus(NULL); 1188 cpu_add_active_internal(cp); 1189 if (cp->cpu_flags & CPU_FAULTED) { 1190 cp->cpu_flags &= ~CPU_FAULTED; 1191 mp_cpu_faulted_exit(cp); 1192 } 1193 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1194 CPU_SPARE); 1195 start_cpus(); 1196 cpu_stats_kstat_create(cp); 1197 cpu_create_intrstat(cp); 1198 lgrp_kstat_create(cp); 1199 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1200 cpu_intr_enable(cp); /* arch-dep hook */ 1201 cyclic_online(cp); 1202 poke_cpu(cp->cpu_id); 1203 } 1204 1205 return (error); 1206 } 1207 1208 /* 1209 * Take the indicated CPU offline. 1210 */ 1211 int 1212 cpu_offline(cpu_t *cp, int flags) 1213 { 1214 cpupart_t *pp; 1215 int error = 0; 1216 cpu_t *ncp; 1217 int intr_enable; 1218 int cyclic_off = 0; 1219 int loop_count; 1220 int no_quiesce = 0; 1221 int (*bound_func)(struct cpu *, int); 1222 kthread_t *t; 1223 lpl_t *cpu_lpl; 1224 proc_t *p; 1225 int lgrp_diff_lpl; 1226 1227 ASSERT(MUTEX_HELD(&cpu_lock)); 1228 1229 /* 1230 * If we're going from faulted or spare to offline, just 1231 * clear these flags and update CPU state. 1232 */ 1233 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1234 if (cp->cpu_flags & CPU_FAULTED) { 1235 cp->cpu_flags &= ~CPU_FAULTED; 1236 mp_cpu_faulted_exit(cp); 1237 } 1238 cp->cpu_flags &= ~CPU_SPARE; 1239 cpu_set_state(cp); 1240 return (0); 1241 } 1242 1243 /* 1244 * Handle off-line request. 1245 */ 1246 pp = cp->cpu_part; 1247 /* 1248 * Don't offline last online CPU in partition 1249 */ 1250 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1251 return (EBUSY); 1252 /* 1253 * Unbind all thread bound to our CPU if we were asked to. 1254 */ 1255 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1256 return (error); 1257 /* 1258 * We shouldn't be bound to this CPU ourselves. 1259 */ 1260 if (curthread->t_bound_cpu == cp) 1261 return (EBUSY); 1262 1263 /* 1264 * Tell interested parties that this CPU is going offline. 1265 */ 1266 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1267 1268 /* 1269 * Take the CPU out of interrupt participation so we won't find 1270 * bound kernel threads. If the architecture cannot completely 1271 * shut off interrupts on the CPU, don't quiesce it, but don't 1272 * run anything but interrupt thread... this is indicated by 1273 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1274 * off. 1275 */ 1276 intr_enable = cp->cpu_flags & CPU_ENABLE; 1277 if (intr_enable) 1278 no_quiesce = cpu_intr_disable(cp); 1279 1280 /* 1281 * Record that we are aiming to offline this cpu. This acts as 1282 * a barrier to further weak binding requests in thread_nomigrate 1283 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1284 * lean away from this cpu. Further strong bindings are already 1285 * avoided since we hold cpu_lock. Since threads that are set 1286 * runnable around now and others coming off the target cpu are 1287 * directed away from the target, existing strong and weak bindings 1288 * (especially the latter) to the target cpu stand maximum chance of 1289 * being able to unbind during the short delay loop below (if other 1290 * unbound threads compete they may not see cpu in time to unbind 1291 * even if they would do so immediately. 1292 */ 1293 cpu_inmotion = cp; 1294 membar_enter(); 1295 1296 /* 1297 * Check for kernel threads (strong or weak) bound to that CPU. 1298 * Strongly bound threads may not unbind, and we'll have to return 1299 * EBUSY. Weakly bound threads should always disappear - we've 1300 * stopped more weak binding with cpu_inmotion and existing 1301 * bindings will drain imminently (they may not block). Nonetheless 1302 * we will wait for a fixed period for all bound threads to disappear. 1303 * Inactive interrupt threads are OK (they'll be in TS_FREE 1304 * state). If test finds some bound threads, wait a few ticks 1305 * to give short-lived threads (such as interrupts) chance to 1306 * complete. Note that if no_quiesce is set, i.e. this cpu 1307 * is required to service interrupts, then we take the route 1308 * that permits interrupt threads to be active (or bypassed). 1309 */ 1310 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1311 1312 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1313 if (loop_count >= 5) { 1314 error = EBUSY; /* some threads still bound */ 1315 break; 1316 } 1317 1318 /* 1319 * If some threads were assigned, give them 1320 * a chance to complete or move. 1321 * 1322 * This assumes that the clock_thread is not bound 1323 * to any CPU, because the clock_thread is needed to 1324 * do the delay(hz/100). 1325 * 1326 * Note: we still hold the cpu_lock while waiting for 1327 * the next clock tick. This is OK since it isn't 1328 * needed for anything else except processor_bind(2), 1329 * and system initialization. If we drop the lock, 1330 * we would risk another p_online disabling the last 1331 * processor. 1332 */ 1333 delay(hz/100); 1334 } 1335 1336 if (error == 0 && cyclic_off == 0) { 1337 if (!cyclic_offline(cp)) { 1338 /* 1339 * We must have bound cyclics... 1340 */ 1341 error = EBUSY; 1342 goto out; 1343 } 1344 cyclic_off = 1; 1345 } 1346 1347 /* 1348 * Call mp_cpu_stop() to perform any special operations 1349 * needed for this machine architecture to offline a CPU. 1350 */ 1351 if (error == 0) 1352 error = mp_cpu_stop(cp); /* arch-dep hook */ 1353 1354 /* 1355 * If that all worked, take the CPU offline and decrement 1356 * ncpus_online. 1357 */ 1358 if (error == 0) { 1359 /* 1360 * Put all the cpus into a known safe place. 1361 * No mutexes can be entered while CPUs are paused. 1362 */ 1363 pause_cpus(cp); 1364 /* 1365 * Repeat the operation, if necessary, to make sure that 1366 * all outstanding low-level interrupts run to completion 1367 * before we set the CPU_QUIESCED flag. It's also possible 1368 * that a thread has weak bound to the cpu despite our raising 1369 * cpu_inmotion above since it may have loaded that 1370 * value before the barrier became visible (this would have 1371 * to be the thread that was on the target cpu at the time 1372 * we raised the barrier). 1373 */ 1374 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1375 (*bound_func)(cp, 1)) { 1376 start_cpus(); 1377 (void) mp_cpu_start(cp); 1378 goto again; 1379 } 1380 ncp = cp->cpu_next_part; 1381 cpu_lpl = cp->cpu_lpl; 1382 ASSERT(cpu_lpl != NULL); 1383 1384 /* 1385 * Remove the CPU from the list of active CPUs. 1386 */ 1387 cpu_remove_active(cp); 1388 1389 /* 1390 * Walk the active process list and look for threads 1391 * whose home lgroup needs to be updated, or 1392 * the last CPU they run on is the one being offlined now. 1393 */ 1394 1395 ASSERT(curthread->t_cpu != cp); 1396 for (p = practive; p != NULL; p = p->p_next) { 1397 1398 t = p->p_tlist; 1399 1400 if (t == NULL) 1401 continue; 1402 1403 lgrp_diff_lpl = 0; 1404 1405 do { 1406 ASSERT(t->t_lpl != NULL); 1407 /* 1408 * Taking last CPU in lpl offline 1409 * Rehome thread if it is in this lpl 1410 * Otherwise, update the count of how many 1411 * threads are in this CPU's lgroup but have 1412 * a different lpl. 1413 */ 1414 1415 if (cpu_lpl->lpl_ncpu == 0) { 1416 if (t->t_lpl == cpu_lpl) 1417 lgrp_move_thread(t, 1418 lgrp_choose(t, 1419 t->t_cpupart), 0); 1420 else if (t->t_lpl->lpl_lgrpid == 1421 cpu_lpl->lpl_lgrpid) 1422 lgrp_diff_lpl++; 1423 } 1424 ASSERT(t->t_lpl->lpl_ncpu > 0); 1425 1426 /* 1427 * Update CPU last ran on if it was this CPU 1428 */ 1429 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1430 t->t_cpu = disp_lowpri_cpu(ncp, t->t_lpl, 1431 t->t_pri, NULL); 1432 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1433 t->t_weakbound_cpu == cp); 1434 1435 t = t->t_forw; 1436 } while (t != p->p_tlist); 1437 1438 /* 1439 * Didn't find any threads in the same lgroup as this 1440 * CPU with a different lpl, so remove the lgroup from 1441 * the process lgroup bitmask. 1442 */ 1443 1444 if (lgrp_diff_lpl == 0) 1445 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1446 } 1447 1448 /* 1449 * Walk thread list looking for threads that need to be 1450 * rehomed, since there are some threads that are not in 1451 * their process's p_tlist. 1452 */ 1453 1454 t = curthread; 1455 do { 1456 ASSERT(t != NULL && t->t_lpl != NULL); 1457 1458 /* 1459 * Rehome threads with same lpl as this CPU when this 1460 * is the last CPU in the lpl. 1461 */ 1462 1463 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1464 lgrp_move_thread(t, 1465 lgrp_choose(t, t->t_cpupart), 1); 1466 1467 ASSERT(t->t_lpl->lpl_ncpu > 0); 1468 1469 /* 1470 * Update CPU last ran on if it was this CPU 1471 */ 1472 1473 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1474 t->t_cpu = disp_lowpri_cpu(ncp, 1475 t->t_lpl, t->t_pri, NULL); 1476 } 1477 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1478 t->t_weakbound_cpu == cp); 1479 t = t->t_next; 1480 1481 } while (t != curthread); 1482 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1483 cp->cpu_flags |= CPU_OFFLINE; 1484 disp_cpu_inactive(cp); 1485 if (!no_quiesce) 1486 cp->cpu_flags |= CPU_QUIESCED; 1487 ncpus_online--; 1488 cpu_set_state(cp); 1489 cpu_inmotion = NULL; 1490 start_cpus(); 1491 cpu_stats_kstat_destroy(cp); 1492 cpu_delete_intrstat(cp); 1493 lgrp_kstat_destroy(cp); 1494 } 1495 1496 out: 1497 cpu_inmotion = NULL; 1498 1499 /* 1500 * If we failed, re-enable interrupts. 1501 * Do this even if cpu_intr_disable returned an error, because 1502 * it may have partially disabled interrupts. 1503 */ 1504 if (error && intr_enable) 1505 cpu_intr_enable(cp); 1506 1507 /* 1508 * If we failed, but managed to offline the cyclic subsystem on this 1509 * CPU, bring it back online. 1510 */ 1511 if (error && cyclic_off) 1512 cyclic_online(cp); 1513 1514 /* 1515 * If we failed, we need to notify everyone that this CPU is back on. 1516 */ 1517 if (error != 0) 1518 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1519 1520 return (error); 1521 } 1522 1523 /* 1524 * Mark the indicated CPU as faulted, taking it offline. 1525 */ 1526 int 1527 cpu_faulted(cpu_t *cp, int flags) 1528 { 1529 int error = 0; 1530 1531 ASSERT(MUTEX_HELD(&cpu_lock)); 1532 ASSERT(!cpu_is_poweredoff(cp)); 1533 1534 if (cpu_is_offline(cp)) { 1535 cp->cpu_flags &= ~CPU_SPARE; 1536 cp->cpu_flags |= CPU_FAULTED; 1537 mp_cpu_faulted_enter(cp); 1538 cpu_set_state(cp); 1539 return (0); 1540 } 1541 1542 if ((error = cpu_offline(cp, flags)) == 0) { 1543 cp->cpu_flags |= CPU_FAULTED; 1544 mp_cpu_faulted_enter(cp); 1545 cpu_set_state(cp); 1546 } 1547 1548 return (error); 1549 } 1550 1551 /* 1552 * Mark the indicated CPU as a spare, taking it offline. 1553 */ 1554 int 1555 cpu_spare(cpu_t *cp, int flags) 1556 { 1557 int error = 0; 1558 1559 ASSERT(MUTEX_HELD(&cpu_lock)); 1560 ASSERT(!cpu_is_poweredoff(cp)); 1561 1562 if (cpu_is_offline(cp)) { 1563 if (cp->cpu_flags & CPU_FAULTED) { 1564 cp->cpu_flags &= ~CPU_FAULTED; 1565 mp_cpu_faulted_exit(cp); 1566 } 1567 cp->cpu_flags |= CPU_SPARE; 1568 cpu_set_state(cp); 1569 return (0); 1570 } 1571 1572 if ((error = cpu_offline(cp, flags)) == 0) { 1573 cp->cpu_flags |= CPU_SPARE; 1574 cpu_set_state(cp); 1575 } 1576 1577 return (error); 1578 } 1579 1580 /* 1581 * Take the indicated CPU from poweroff to offline. 1582 */ 1583 int 1584 cpu_poweron(cpu_t *cp) 1585 { 1586 int error = ENOTSUP; 1587 1588 ASSERT(MUTEX_HELD(&cpu_lock)); 1589 ASSERT(cpu_is_poweredoff(cp)); 1590 1591 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1592 if (error == 0) 1593 cpu_set_state(cp); 1594 1595 return (error); 1596 } 1597 1598 /* 1599 * Take the indicated CPU from any inactive state to powered off. 1600 */ 1601 int 1602 cpu_poweroff(cpu_t *cp) 1603 { 1604 int error = ENOTSUP; 1605 1606 ASSERT(MUTEX_HELD(&cpu_lock)); 1607 ASSERT(cpu_is_offline(cp)); 1608 1609 if (!(cp->cpu_flags & CPU_QUIESCED)) 1610 return (EBUSY); /* not completely idle */ 1611 1612 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1613 if (error == 0) 1614 cpu_set_state(cp); 1615 1616 return (error); 1617 } 1618 1619 /* 1620 * Initialize the CPU lists for the first CPU. 1621 */ 1622 void 1623 cpu_list_init(cpu_t *cp) 1624 { 1625 cp->cpu_next = cp; 1626 cp->cpu_prev = cp; 1627 cpu_list = cp; 1628 1629 cp->cpu_next_onln = cp; 1630 cp->cpu_prev_onln = cp; 1631 cpu_active = cp; 1632 1633 cp->cpu_seqid = 0; 1634 CPUSET_ADD(cpu_seqid_inuse, 0); 1635 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1636 cp_default.cp_cpulist = cp; 1637 cp_default.cp_ncpus = 1; 1638 cp->cpu_next_part = cp; 1639 cp->cpu_prev_part = cp; 1640 cp->cpu_part = &cp_default; 1641 1642 CPUSET_ADD(cpu_available, cp->cpu_id); 1643 } 1644 1645 /* 1646 * Insert a CPU into the list of available CPUs. 1647 */ 1648 void 1649 cpu_add_unit(cpu_t *cp) 1650 { 1651 int seqid; 1652 1653 ASSERT(MUTEX_HELD(&cpu_lock)); 1654 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1655 1656 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1657 1658 /* 1659 * Note: most users of the cpu_list will grab the 1660 * cpu_lock to insure that it isn't modified. However, 1661 * certain users can't or won't do that. To allow this 1662 * we pause the other cpus. Users who walk the list 1663 * without cpu_lock, must disable kernel preemption 1664 * to insure that the list isn't modified underneath 1665 * them. Also, any cached pointers to cpu structures 1666 * must be revalidated by checking to see if the 1667 * cpu_next pointer points to itself. This check must 1668 * be done with the cpu_lock held or kernel preemption 1669 * disabled. This check relies upon the fact that 1670 * old cpu structures are not free'ed or cleared after 1671 * then are removed from the cpu_list. 1672 * 1673 * Note that the clock code walks the cpu list dereferencing 1674 * the cpu_part pointer, so we need to initialize it before 1675 * adding the cpu to the list. 1676 */ 1677 cp->cpu_part = &cp_default; 1678 (void) pause_cpus(NULL); 1679 cp->cpu_next = cpu_list; 1680 cp->cpu_prev = cpu_list->cpu_prev; 1681 cpu_list->cpu_prev->cpu_next = cp; 1682 cpu_list->cpu_prev = cp; 1683 start_cpus(); 1684 1685 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1686 continue; 1687 CPUSET_ADD(cpu_seqid_inuse, seqid); 1688 cp->cpu_seqid = seqid; 1689 ASSERT(ncpus < max_ncpus); 1690 ncpus++; 1691 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1692 cpu[cp->cpu_id] = cp; 1693 CPUSET_ADD(cpu_available, cp->cpu_id); 1694 1695 /* 1696 * allocate a pause thread for this CPU. 1697 */ 1698 cpu_pause_alloc(cp); 1699 1700 /* 1701 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1702 * link them into a list of just that CPU. 1703 * This is so that disp_lowpri_cpu will work for thread_create in 1704 * pause_cpus() when called from the startup thread in a new CPU. 1705 */ 1706 cp->cpu_next_onln = cp; 1707 cp->cpu_prev_onln = cp; 1708 cpu_info_kstat_create(cp); 1709 cp->cpu_next_part = cp; 1710 cp->cpu_prev_part = cp; 1711 1712 init_cpu_mstate(cp, CMS_SYSTEM); 1713 1714 pool_pset_mod = gethrtime(); 1715 } 1716 1717 /* 1718 * Do the opposite of cpu_add_unit(). 1719 */ 1720 void 1721 cpu_del_unit(int cpuid) 1722 { 1723 struct cpu *cp, *cpnext; 1724 1725 ASSERT(MUTEX_HELD(&cpu_lock)); 1726 cp = cpu[cpuid]; 1727 ASSERT(cp != NULL); 1728 1729 ASSERT(cp->cpu_next_onln == cp); 1730 ASSERT(cp->cpu_prev_onln == cp); 1731 ASSERT(cp->cpu_next_part == cp); 1732 ASSERT(cp->cpu_prev_part == cp); 1733 1734 chip_cpu_fini(cp); 1735 1736 /* 1737 * Destroy kstat stuff. 1738 */ 1739 cpu_info_kstat_destroy(cp); 1740 term_cpu_mstate(cp); 1741 /* 1742 * Free up pause thread. 1743 */ 1744 cpu_pause_free(cp); 1745 CPUSET_DEL(cpu_available, cp->cpu_id); 1746 cpu[cp->cpu_id] = NULL; 1747 /* 1748 * The clock thread and mutex_vector_enter cannot hold the 1749 * cpu_lock while traversing the cpu list, therefore we pause 1750 * all other threads by pausing the other cpus. These, and any 1751 * other routines holding cpu pointers while possibly sleeping 1752 * must be sure to call kpreempt_disable before processing the 1753 * list and be sure to check that the cpu has not been deleted 1754 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1755 * to keep the deleted cpu structure around. 1756 * 1757 * Note that this MUST be done AFTER cpu_available 1758 * has been updated so that we don't waste time 1759 * trying to pause the cpu we're trying to delete. 1760 */ 1761 (void) pause_cpus(NULL); 1762 1763 cpnext = cp->cpu_next; 1764 cp->cpu_prev->cpu_next = cp->cpu_next; 1765 cp->cpu_next->cpu_prev = cp->cpu_prev; 1766 if (cp == cpu_list) 1767 cpu_list = cpnext; 1768 1769 /* 1770 * Signals that the cpu has been deleted (see above). 1771 */ 1772 cp->cpu_next = NULL; 1773 cp->cpu_prev = NULL; 1774 1775 start_cpus(); 1776 1777 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1778 ncpus--; 1779 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1780 1781 pool_pset_mod = gethrtime(); 1782 } 1783 1784 /* 1785 * Add a CPU to the list of active CPUs. 1786 * This routine must not get any locks, because other CPUs are paused. 1787 */ 1788 static void 1789 cpu_add_active_internal(cpu_t *cp) 1790 { 1791 cpupart_t *pp = cp->cpu_part; 1792 1793 ASSERT(MUTEX_HELD(&cpu_lock)); 1794 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1795 1796 ncpus_online++; 1797 cpu_set_state(cp); 1798 cp->cpu_next_onln = cpu_active; 1799 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1800 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1801 cpu_active->cpu_prev_onln = cp; 1802 1803 if (pp->cp_cpulist) { 1804 cp->cpu_next_part = pp->cp_cpulist; 1805 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1806 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1807 pp->cp_cpulist->cpu_prev_part = cp; 1808 } else { 1809 ASSERT(pp->cp_ncpus == 0); 1810 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1811 } 1812 pp->cp_ncpus++; 1813 if (pp->cp_ncpus == 1) { 1814 cp_numparts_nonempty++; 1815 ASSERT(cp_numparts_nonempty != 0); 1816 } 1817 1818 chip_cpu_assign(cp); 1819 1820 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1821 1822 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1823 } 1824 1825 /* 1826 * Add a CPU to the list of active CPUs. 1827 * This is called from machine-dependent layers when a new CPU is started. 1828 */ 1829 void 1830 cpu_add_active(cpu_t *cp) 1831 { 1832 pause_cpus(NULL); 1833 cpu_add_active_internal(cp); 1834 start_cpus(); 1835 cpu_stats_kstat_create(cp); 1836 cpu_create_intrstat(cp); 1837 lgrp_kstat_create(cp); 1838 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1839 } 1840 1841 1842 /* 1843 * Remove a CPU from the list of active CPUs. 1844 * This routine must not get any locks, because other CPUs are paused. 1845 */ 1846 /* ARGSUSED */ 1847 static void 1848 cpu_remove_active(cpu_t *cp) 1849 { 1850 cpupart_t *pp = cp->cpu_part; 1851 1852 ASSERT(MUTEX_HELD(&cpu_lock)); 1853 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1854 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1855 1856 chip_cpu_unassign(cp); 1857 1858 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1859 1860 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1861 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1862 if (cpu_active == cp) { 1863 cpu_active = cp->cpu_next_onln; 1864 } 1865 cp->cpu_next_onln = cp; 1866 cp->cpu_prev_onln = cp; 1867 1868 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1869 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1870 if (pp->cp_cpulist == cp) { 1871 pp->cp_cpulist = cp->cpu_next_part; 1872 ASSERT(pp->cp_cpulist != cp); 1873 } 1874 cp->cpu_next_part = cp; 1875 cp->cpu_prev_part = cp; 1876 pp->cp_ncpus--; 1877 if (pp->cp_ncpus == 0) { 1878 cp_numparts_nonempty--; 1879 ASSERT(cp_numparts_nonempty != 0); 1880 } 1881 } 1882 1883 /* 1884 * Routine used to setup a newly inserted CPU in preparation for starting 1885 * it running code. 1886 */ 1887 int 1888 cpu_configure(int cpuid) 1889 { 1890 int retval = 0; 1891 1892 ASSERT(MUTEX_HELD(&cpu_lock)); 1893 1894 /* 1895 * Some structures are statically allocated based upon 1896 * the maximum number of cpus the system supports. Do not 1897 * try to add anything beyond this limit. 1898 */ 1899 if (cpuid < 0 || cpuid >= NCPU) { 1900 return (EINVAL); 1901 } 1902 1903 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1904 return (EALREADY); 1905 } 1906 1907 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1908 return (retval); 1909 } 1910 1911 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1912 cpu_set_state(cpu[cpuid]); 1913 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1914 if (retval != 0) 1915 (void) mp_cpu_unconfigure(cpuid); 1916 1917 return (retval); 1918 } 1919 1920 /* 1921 * Routine used to cleanup a CPU that has been powered off. This will 1922 * destroy all per-cpu information related to this cpu. 1923 */ 1924 int 1925 cpu_unconfigure(int cpuid) 1926 { 1927 int error; 1928 1929 ASSERT(MUTEX_HELD(&cpu_lock)); 1930 1931 if (cpu[cpuid] == NULL) { 1932 return (ENODEV); 1933 } 1934 1935 if (cpu[cpuid]->cpu_flags == 0) { 1936 return (EALREADY); 1937 } 1938 1939 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1940 return (EBUSY); 1941 } 1942 1943 if (cpu[cpuid]->cpu_props != NULL) { 1944 (void) nvlist_free(cpu[cpuid]->cpu_props); 1945 cpu[cpuid]->cpu_props = NULL; 1946 } 1947 1948 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1949 1950 if (error != 0) 1951 return (error); 1952 1953 return (mp_cpu_unconfigure(cpuid)); 1954 } 1955 1956 /* 1957 * Routines for registering and de-registering cpu_setup callback functions. 1958 * 1959 * Caller's context 1960 * These routines must not be called from a driver's attach(9E) or 1961 * detach(9E) entry point. 1962 * 1963 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1964 */ 1965 1966 /* 1967 * Ideally, these would be dynamically allocated and put into a linked 1968 * list; however that is not feasible because the registration routine 1969 * has to be available before the kmem allocator is working (in fact, 1970 * it is called by the kmem allocator init code). In any case, there 1971 * are quite a few extra entries for future users. 1972 */ 1973 #define NCPU_SETUPS 20 1974 1975 struct cpu_setup { 1976 cpu_setup_func_t *func; 1977 void *arg; 1978 } cpu_setups[NCPU_SETUPS]; 1979 1980 void 1981 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1982 { 1983 int i; 1984 1985 ASSERT(MUTEX_HELD(&cpu_lock)); 1986 1987 for (i = 0; i < NCPU_SETUPS; i++) 1988 if (cpu_setups[i].func == NULL) 1989 break; 1990 if (i >= NCPU_SETUPS) 1991 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 1992 1993 cpu_setups[i].func = func; 1994 cpu_setups[i].arg = arg; 1995 } 1996 1997 void 1998 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1999 { 2000 int i; 2001 2002 ASSERT(MUTEX_HELD(&cpu_lock)); 2003 2004 for (i = 0; i < NCPU_SETUPS; i++) 2005 if ((cpu_setups[i].func == func) && 2006 (cpu_setups[i].arg == arg)) 2007 break; 2008 if (i >= NCPU_SETUPS) 2009 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2010 "deregister"); 2011 2012 cpu_setups[i].func = NULL; 2013 cpu_setups[i].arg = 0; 2014 } 2015 2016 /* 2017 * Call any state change hooks for this CPU, ignore any errors. 2018 */ 2019 void 2020 cpu_state_change_notify(int id, cpu_setup_t what) 2021 { 2022 int i; 2023 2024 ASSERT(MUTEX_HELD(&cpu_lock)); 2025 2026 for (i = 0; i < NCPU_SETUPS; i++) { 2027 if (cpu_setups[i].func != NULL) { 2028 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2029 } 2030 } 2031 } 2032 2033 /* 2034 * Call any state change hooks for this CPU, undo it if error found. 2035 */ 2036 static int 2037 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2038 { 2039 int i; 2040 int retval = 0; 2041 2042 ASSERT(MUTEX_HELD(&cpu_lock)); 2043 2044 for (i = 0; i < NCPU_SETUPS; i++) { 2045 if (cpu_setups[i].func != NULL) { 2046 retval = cpu_setups[i].func(what, id, 2047 cpu_setups[i].arg); 2048 if (retval) { 2049 for (i--; i >= 0; i--) { 2050 if (cpu_setups[i].func != NULL) 2051 cpu_setups[i].func(undo, 2052 id, cpu_setups[i].arg); 2053 } 2054 break; 2055 } 2056 } 2057 } 2058 return (retval); 2059 } 2060 2061 /* 2062 * Export information about this CPU via the kstat mechanism. 2063 */ 2064 static struct { 2065 kstat_named_t ci_state; 2066 kstat_named_t ci_state_begin; 2067 kstat_named_t ci_cpu_type; 2068 kstat_named_t ci_fpu_type; 2069 kstat_named_t ci_clock_MHz; 2070 kstat_named_t ci_chip_id; 2071 kstat_named_t ci_implementation; 2072 kstat_named_t ci_brandstr; 2073 kstat_named_t ci_core_id; 2074 #if defined(__sparcv9) 2075 kstat_named_t ci_device_ID; 2076 kstat_named_t ci_cpu_fru; 2077 #endif 2078 #if defined(__i386) || defined(__amd64) 2079 kstat_named_t ci_vendorstr; 2080 kstat_named_t ci_family; 2081 kstat_named_t ci_model; 2082 kstat_named_t ci_step; 2083 kstat_named_t ci_clogid; 2084 #endif 2085 } cpu_info_template = { 2086 { "state", KSTAT_DATA_CHAR }, 2087 { "state_begin", KSTAT_DATA_LONG }, 2088 { "cpu_type", KSTAT_DATA_CHAR }, 2089 { "fpu_type", KSTAT_DATA_CHAR }, 2090 { "clock_MHz", KSTAT_DATA_LONG }, 2091 { "chip_id", KSTAT_DATA_LONG }, 2092 { "implementation", KSTAT_DATA_STRING }, 2093 { "brand", KSTAT_DATA_STRING }, 2094 { "core_id", KSTAT_DATA_LONG }, 2095 #if defined(__sparcv9) 2096 { "device_ID", KSTAT_DATA_UINT64 }, 2097 { "cpu_fru", KSTAT_DATA_STRING }, 2098 #endif 2099 #if defined(__i386) || defined(__amd64) 2100 { "vendor_id", KSTAT_DATA_STRING }, 2101 { "family", KSTAT_DATA_INT32 }, 2102 { "model", KSTAT_DATA_INT32 }, 2103 { "stepping", KSTAT_DATA_INT32 }, 2104 { "clog_id", KSTAT_DATA_INT32 }, 2105 #endif 2106 }; 2107 2108 static kmutex_t cpu_info_template_lock; 2109 2110 static int 2111 cpu_info_kstat_update(kstat_t *ksp, int rw) 2112 { 2113 cpu_t *cp = ksp->ks_private; 2114 const char *pi_state; 2115 2116 if (rw == KSTAT_WRITE) 2117 return (EACCES); 2118 2119 switch (cp->cpu_type_info.pi_state) { 2120 case P_ONLINE: 2121 pi_state = PS_ONLINE; 2122 break; 2123 case P_POWEROFF: 2124 pi_state = PS_POWEROFF; 2125 break; 2126 case P_NOINTR: 2127 pi_state = PS_NOINTR; 2128 break; 2129 case P_FAULTED: 2130 pi_state = PS_FAULTED; 2131 break; 2132 case P_SPARE: 2133 pi_state = PS_SPARE; 2134 break; 2135 case P_OFFLINE: 2136 pi_state = PS_OFFLINE; 2137 break; 2138 default: 2139 pi_state = "unknown"; 2140 } 2141 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2142 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2143 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2144 cp->cpu_type_info.pi_processor_type, 15); 2145 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2146 cp->cpu_type_info.pi_fputypes, 15); 2147 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2148 cpu_info_template.ci_chip_id.value.l = chip_plat_get_chipid(cp); 2149 kstat_named_setstr(&cpu_info_template.ci_implementation, 2150 cp->cpu_idstr); 2151 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2152 cpu_info_template.ci_core_id.value.l = chip_plat_get_coreid(cp); 2153 2154 #if defined(__sparcv9) 2155 cpu_info_template.ci_device_ID.value.ui64 = 2156 cpunodes[cp->cpu_id].device_id; 2157 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2158 #endif 2159 #if defined(__i386) || defined(__amd64) 2160 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2161 cpuid_getvendorstr(cp)); 2162 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2163 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2164 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2165 cpu_info_template.ci_clogid.value.l = chip_plat_get_clogid(cp); 2166 #endif 2167 2168 return (0); 2169 } 2170 2171 static void 2172 cpu_info_kstat_create(cpu_t *cp) 2173 { 2174 zoneid_t zoneid; 2175 2176 ASSERT(MUTEX_HELD(&cpu_lock)); 2177 2178 if (pool_pset_enabled()) 2179 zoneid = GLOBAL_ZONEID; 2180 else 2181 zoneid = ALL_ZONES; 2182 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2183 NULL, "misc", KSTAT_TYPE_NAMED, 2184 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2185 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2186 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2187 #if defined(__sparcv9) 2188 cp->cpu_info_kstat->ks_data_size += 2189 strlen(cpu_fru_fmri(cp)) + 1; 2190 #endif 2191 #if defined(__i386) || defined(__amd64) 2192 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2193 #endif 2194 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2195 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2196 cp->cpu_info_kstat->ks_private = cp; 2197 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2198 kstat_install(cp->cpu_info_kstat); 2199 } 2200 } 2201 2202 static void 2203 cpu_info_kstat_destroy(cpu_t *cp) 2204 { 2205 ASSERT(MUTEX_HELD(&cpu_lock)); 2206 2207 kstat_delete(cp->cpu_info_kstat); 2208 cp->cpu_info_kstat = NULL; 2209 } 2210 2211 /* 2212 * Create and install kstats for the boot CPU. 2213 */ 2214 void 2215 cpu_kstat_init(cpu_t *cp) 2216 { 2217 mutex_enter(&cpu_lock); 2218 cpu_info_kstat_create(cp); 2219 cpu_stats_kstat_create(cp); 2220 cpu_create_intrstat(cp); 2221 chip_kstat_create(cp->cpu_chip); 2222 cpu_set_state(cp); 2223 mutex_exit(&cpu_lock); 2224 } 2225 2226 /* 2227 * Make visible to the zone that subset of the cpu information that would be 2228 * initialized when a cpu is configured (but still offline). 2229 */ 2230 void 2231 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2232 { 2233 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2234 2235 ASSERT(MUTEX_HELD(&cpu_lock)); 2236 ASSERT(pool_pset_enabled()); 2237 ASSERT(cp != NULL); 2238 2239 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2240 zone->zone_ncpus++; 2241 ASSERT(zone->zone_ncpus <= ncpus); 2242 } 2243 if (cp->cpu_info_kstat != NULL) 2244 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2245 } 2246 2247 /* 2248 * Make visible to the zone that subset of the cpu information that would be 2249 * initialized when a previously configured cpu is onlined. 2250 */ 2251 void 2252 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2253 { 2254 kstat_t *ksp; 2255 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2256 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2257 processorid_t cpun; 2258 2259 ASSERT(MUTEX_HELD(&cpu_lock)); 2260 ASSERT(pool_pset_enabled()); 2261 ASSERT(cp != NULL); 2262 ASSERT(cpu_is_active(cp)); 2263 2264 cpun = cp->cpu_id; 2265 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2266 zone->zone_ncpus_online++; 2267 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2268 } 2269 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2270 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2271 != NULL) { 2272 kstat_zone_add(ksp, zoneid); 2273 kstat_rele(ksp); 2274 } 2275 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2276 kstat_zone_add(ksp, zoneid); 2277 kstat_rele(ksp); 2278 } 2279 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2280 kstat_zone_add(ksp, zoneid); 2281 kstat_rele(ksp); 2282 } 2283 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2284 NULL) { 2285 kstat_zone_add(ksp, zoneid); 2286 kstat_rele(ksp); 2287 } 2288 } 2289 2290 /* 2291 * Update relevant kstats such that cpu is now visible to processes 2292 * executing in specified zone. 2293 */ 2294 void 2295 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2296 { 2297 cpu_visibility_configure(cp, zone); 2298 if (cpu_is_active(cp)) 2299 cpu_visibility_online(cp, zone); 2300 } 2301 2302 /* 2303 * Make invisible to the zone that subset of the cpu information that would be 2304 * torn down when a previously offlined cpu is unconfigured. 2305 */ 2306 void 2307 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2308 { 2309 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2310 2311 ASSERT(MUTEX_HELD(&cpu_lock)); 2312 ASSERT(pool_pset_enabled()); 2313 ASSERT(cp != NULL); 2314 2315 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2316 ASSERT(zone->zone_ncpus != 0); 2317 zone->zone_ncpus--; 2318 } 2319 if (cp->cpu_info_kstat) 2320 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2321 } 2322 2323 /* 2324 * Make invisible to the zone that subset of the cpu information that would be 2325 * torn down when a cpu is offlined (but still configured). 2326 */ 2327 void 2328 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2329 { 2330 kstat_t *ksp; 2331 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2332 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2333 processorid_t cpun; 2334 2335 ASSERT(MUTEX_HELD(&cpu_lock)); 2336 ASSERT(pool_pset_enabled()); 2337 ASSERT(cp != NULL); 2338 ASSERT(cpu_is_active(cp)); 2339 2340 cpun = cp->cpu_id; 2341 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2342 ASSERT(zone->zone_ncpus_online != 0); 2343 zone->zone_ncpus_online--; 2344 } 2345 2346 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2347 NULL) { 2348 kstat_zone_remove(ksp, zoneid); 2349 kstat_rele(ksp); 2350 } 2351 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2352 kstat_zone_remove(ksp, zoneid); 2353 kstat_rele(ksp); 2354 } 2355 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2356 kstat_zone_remove(ksp, zoneid); 2357 kstat_rele(ksp); 2358 } 2359 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2360 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2361 != NULL) { 2362 kstat_zone_remove(ksp, zoneid); 2363 kstat_rele(ksp); 2364 } 2365 } 2366 2367 /* 2368 * Update relevant kstats such that cpu is no longer visible to processes 2369 * executing in specified zone. 2370 */ 2371 void 2372 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2373 { 2374 if (cpu_is_active(cp)) 2375 cpu_visibility_offline(cp, zone); 2376 cpu_visibility_unconfigure(cp, zone); 2377 } 2378 2379 /* 2380 * Bind a thread to a CPU as requested. 2381 */ 2382 int 2383 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2384 int *error) 2385 { 2386 processorid_t binding; 2387 cpu_t *cp; 2388 2389 ASSERT(MUTEX_HELD(&cpu_lock)); 2390 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2391 2392 thread_lock(tp); 2393 2394 /* 2395 * Record old binding, but change the obind, which was initialized 2396 * to PBIND_NONE, only if this thread has a binding. This avoids 2397 * reporting PBIND_NONE for a process when some LWPs are bound. 2398 */ 2399 binding = tp->t_bind_cpu; 2400 if (binding != PBIND_NONE) 2401 *obind = binding; /* record old binding */ 2402 2403 if (bind == PBIND_QUERY) { 2404 thread_unlock(tp); 2405 return (0); 2406 } 2407 2408 /* 2409 * If this thread/LWP cannot be bound because of permission 2410 * problems, just note that and return success so that the 2411 * other threads/LWPs will be bound. This is the way 2412 * processor_bind() is defined to work. 2413 * 2414 * Binding will get EPERM if the thread is of system class 2415 * or hasprocperm() fails. 2416 */ 2417 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2418 *error = EPERM; 2419 thread_unlock(tp); 2420 return (0); 2421 } 2422 2423 binding = bind; 2424 if (binding != PBIND_NONE) { 2425 cp = cpu[binding]; 2426 /* 2427 * Make sure binding is in right partition. 2428 */ 2429 if (tp->t_cpupart != cp->cpu_part) { 2430 *error = EINVAL; 2431 thread_unlock(tp); 2432 return (0); 2433 } 2434 } 2435 tp->t_bind_cpu = binding; /* set new binding */ 2436 2437 /* 2438 * If there is no system-set reason for affinity, set 2439 * the t_bound_cpu field to reflect the binding. 2440 */ 2441 if (tp->t_affinitycnt == 0) { 2442 if (binding == PBIND_NONE) { 2443 /* 2444 * We may need to adjust disp_max_unbound_pri 2445 * since we're becoming unbound. 2446 */ 2447 disp_adjust_unbound_pri(tp); 2448 2449 tp->t_bound_cpu = NULL; /* set new binding */ 2450 2451 /* 2452 * Move thread to lgroup with strongest affinity 2453 * after unbinding 2454 */ 2455 if (tp->t_lgrp_affinity) 2456 lgrp_move_thread(tp, 2457 lgrp_choose(tp, tp->t_cpupart), 1); 2458 2459 if (tp->t_state == TS_ONPROC && 2460 tp->t_cpu->cpu_part != tp->t_cpupart) 2461 cpu_surrender(tp); 2462 } else { 2463 lpl_t *lpl; 2464 2465 tp->t_bound_cpu = cp; 2466 ASSERT(cp->cpu_lpl != NULL); 2467 2468 /* 2469 * Set home to lgroup with most affinity containing CPU 2470 * that thread is being bound or minimum bounding 2471 * lgroup if no affinities set 2472 */ 2473 if (tp->t_lgrp_affinity) 2474 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 0); 2475 else 2476 lpl = cp->cpu_lpl; 2477 2478 if (tp->t_lpl != lpl) { 2479 /* can't grab cpu_lock */ 2480 lgrp_move_thread(tp, lpl, 1); 2481 } 2482 2483 /* 2484 * Make the thread switch to the bound CPU. 2485 * If the thread is runnable, we need to 2486 * requeue it even if t_cpu is already set 2487 * to the right CPU, since it may be on a 2488 * kpreempt queue and need to move to a local 2489 * queue. We could check t_disp_queue to 2490 * avoid unnecessary overhead if it's already 2491 * on the right queue, but since this isn't 2492 * a performance-critical operation it doesn't 2493 * seem worth the extra code and complexity. 2494 * 2495 * If the thread is weakbound to the cpu then it will 2496 * resist the new binding request until the weak 2497 * binding drops. The cpu_surrender or requeueing 2498 * below could be skipped in such cases (since it 2499 * will have no effect), but that would require 2500 * thread_allowmigrate to acquire thread_lock so 2501 * we'll take the very occasional hit here instead. 2502 */ 2503 if (tp->t_state == TS_ONPROC) { 2504 cpu_surrender(tp); 2505 } else if (tp->t_state == TS_RUN) { 2506 cpu_t *ocp = tp->t_cpu; 2507 2508 (void) dispdeq(tp); 2509 setbackdq(tp); 2510 /* 2511 * Either on the bound CPU's disp queue now, 2512 * or swapped out or on the swap queue. 2513 */ 2514 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2515 tp->t_weakbound_cpu == ocp || 2516 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2517 != TS_LOAD); 2518 } 2519 } 2520 } 2521 2522 /* 2523 * Our binding has changed; set TP_CHANGEBIND. 2524 */ 2525 tp->t_proc_flag |= TP_CHANGEBIND; 2526 aston(tp); 2527 2528 thread_unlock(tp); 2529 2530 return (0); 2531 } 2532 2533 #if CPUSET_WORDS > 1 2534 2535 /* 2536 * Functions for implementing cpuset operations when a cpuset is more 2537 * than one word. On platforms where a cpuset is a single word these 2538 * are implemented as macros in cpuvar.h. 2539 */ 2540 2541 void 2542 cpuset_all(cpuset_t *s) 2543 { 2544 int i; 2545 2546 for (i = 0; i < CPUSET_WORDS; i++) 2547 s->cpub[i] = ~0UL; 2548 } 2549 2550 void 2551 cpuset_all_but(cpuset_t *s, uint_t cpu) 2552 { 2553 cpuset_all(s); 2554 CPUSET_DEL(*s, cpu); 2555 } 2556 2557 void 2558 cpuset_only(cpuset_t *s, uint_t cpu) 2559 { 2560 CPUSET_ZERO(*s); 2561 CPUSET_ADD(*s, cpu); 2562 } 2563 2564 int 2565 cpuset_isnull(cpuset_t *s) 2566 { 2567 int i; 2568 2569 for (i = 0; i < CPUSET_WORDS; i++) 2570 if (s->cpub[i] != 0) 2571 return (0); 2572 return (1); 2573 } 2574 2575 int 2576 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2577 { 2578 int i; 2579 2580 for (i = 0; i < CPUSET_WORDS; i++) 2581 if (s1->cpub[i] != s2->cpub[i]) 2582 return (0); 2583 return (1); 2584 } 2585 2586 uint_t 2587 cpuset_find(cpuset_t *s) 2588 { 2589 2590 uint_t i; 2591 uint_t cpu = (uint_t)-1; 2592 2593 /* 2594 * Find a cpu in the cpuset 2595 */ 2596 for (i = 0; (i < CPUSET_WORDS && cpu == (uint_t)-1); i++) 2597 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2598 return (cpu); 2599 } 2600 2601 #endif /* CPUSET_WORDS */ 2602 2603 /* 2604 * Unbind all user threads bound to a given CPU. 2605 */ 2606 int 2607 cpu_unbind(processorid_t cpu) 2608 { 2609 processorid_t obind; 2610 kthread_t *tp; 2611 int ret = 0; 2612 proc_t *pp; 2613 int err, berr = 0; 2614 2615 ASSERT(MUTEX_HELD(&cpu_lock)); 2616 2617 mutex_enter(&pidlock); 2618 for (pp = practive; pp != NULL; pp = pp->p_next) { 2619 mutex_enter(&pp->p_lock); 2620 tp = pp->p_tlist; 2621 /* 2622 * Skip zombies, kernel processes, and processes in 2623 * other zones, if called from a non-global zone. 2624 */ 2625 if (tp == NULL || (pp->p_flag & SSYS) || 2626 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2627 mutex_exit(&pp->p_lock); 2628 continue; 2629 } 2630 do { 2631 if (tp->t_bind_cpu != cpu) 2632 continue; 2633 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2634 if (ret == 0) 2635 ret = err; 2636 } while ((tp = tp->t_forw) != pp->p_tlist); 2637 mutex_exit(&pp->p_lock); 2638 } 2639 mutex_exit(&pidlock); 2640 if (ret == 0) 2641 ret = berr; 2642 return (ret); 2643 } 2644 2645 2646 /* 2647 * Destroy all remaining bound threads on a cpu. 2648 */ 2649 void 2650 cpu_destroy_bound_threads(cpu_t *cp) 2651 { 2652 extern id_t syscid; 2653 register kthread_id_t t, tlist, tnext; 2654 2655 /* 2656 * Destroy all remaining bound threads on the cpu. This 2657 * should include both the interrupt threads and the idle thread. 2658 * This requires some care, since we need to traverse the 2659 * thread list with the pidlock mutex locked, but thread_free 2660 * also locks the pidlock mutex. So, we collect the threads 2661 * we're going to reap in a list headed by "tlist", then we 2662 * unlock the pidlock mutex and traverse the tlist list, 2663 * doing thread_free's on the thread's. Simple, n'est pas? 2664 * Also, this depends on thread_free not mucking with the 2665 * t_next and t_prev links of the thread. 2666 */ 2667 2668 if ((t = curthread) != NULL) { 2669 2670 tlist = NULL; 2671 mutex_enter(&pidlock); 2672 do { 2673 tnext = t->t_next; 2674 if (t->t_bound_cpu == cp) { 2675 2676 /* 2677 * We've found a bound thread, carefully unlink 2678 * it out of the thread list, and add it to 2679 * our "tlist". We "know" we don't have to 2680 * worry about unlinking curthread (the thread 2681 * that is executing this code). 2682 */ 2683 t->t_next->t_prev = t->t_prev; 2684 t->t_prev->t_next = t->t_next; 2685 t->t_next = tlist; 2686 tlist = t; 2687 ASSERT(t->t_cid == syscid); 2688 /* wake up anyone blocked in thread_join */ 2689 cv_broadcast(&t->t_joincv); 2690 /* 2691 * t_lwp set by interrupt threads and not 2692 * cleared. 2693 */ 2694 t->t_lwp = NULL; 2695 /* 2696 * Pause and idle threads always have 2697 * t_state set to TS_ONPROC. 2698 */ 2699 t->t_state = TS_FREE; 2700 t->t_prev = NULL; /* Just in case */ 2701 } 2702 2703 } while ((t = tnext) != curthread); 2704 2705 mutex_exit(&pidlock); 2706 2707 2708 for (t = tlist; t != NULL; t = tnext) { 2709 tnext = t->t_next; 2710 thread_free(t); 2711 } 2712 } 2713 } 2714 2715 /* 2716 * processor_info(2) and p_online(2) status support functions 2717 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2718 * for use in communicating processor state information to userland. Kernel 2719 * subsystems should only be using the cpu_flags value directly. Subsystems 2720 * modifying cpu_flags should record the state change via a call to the 2721 * cpu_set_state(). 2722 */ 2723 2724 /* 2725 * Update the pi_state of this CPU. This function provides the CPU status for 2726 * the information returned by processor_info(2). 2727 */ 2728 void 2729 cpu_set_state(cpu_t *cpu) 2730 { 2731 ASSERT(MUTEX_HELD(&cpu_lock)); 2732 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2733 cpu->cpu_state_begin = gethrestime_sec(); 2734 pool_cpu_mod = gethrtime(); 2735 } 2736 2737 /* 2738 * Return offline/online/other status for the indicated CPU. Use only for 2739 * communication with user applications; cpu_flags provides the in-kernel 2740 * interface. 2741 */ 2742 int 2743 cpu_get_state(cpu_t *cpu) 2744 { 2745 ASSERT(MUTEX_HELD(&cpu_lock)); 2746 if (cpu->cpu_flags & CPU_POWEROFF) 2747 return (P_POWEROFF); 2748 else if (cpu->cpu_flags & CPU_FAULTED) 2749 return (P_FAULTED); 2750 else if (cpu->cpu_flags & CPU_SPARE) 2751 return (P_SPARE); 2752 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2753 return (P_OFFLINE); 2754 else if (cpu->cpu_flags & CPU_ENABLE) 2755 return (P_ONLINE); 2756 else 2757 return (P_NOINTR); 2758 } 2759 2760 /* 2761 * Return processor_info(2) state as a string. 2762 */ 2763 const char * 2764 cpu_get_state_str(cpu_t *cpu) 2765 { 2766 const char *string; 2767 2768 switch (cpu_get_state(cpu)) { 2769 case P_ONLINE: 2770 string = PS_ONLINE; 2771 break; 2772 case P_POWEROFF: 2773 string = PS_POWEROFF; 2774 break; 2775 case P_NOINTR: 2776 string = PS_NOINTR; 2777 break; 2778 case P_SPARE: 2779 string = PS_SPARE; 2780 break; 2781 case P_FAULTED: 2782 string = PS_FAULTED; 2783 break; 2784 case P_OFFLINE: 2785 string = PS_OFFLINE; 2786 break; 2787 default: 2788 string = "unknown"; 2789 break; 2790 } 2791 return (string); 2792 } 2793 2794 /* 2795 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2796 * kstats, respectively. This is done when a CPU is initialized or placed 2797 * online via p_online(2). 2798 */ 2799 static void 2800 cpu_stats_kstat_create(cpu_t *cp) 2801 { 2802 int instance = cp->cpu_id; 2803 char *module = "cpu"; 2804 char *class = "misc"; 2805 kstat_t *ksp; 2806 zoneid_t zoneid; 2807 2808 ASSERT(MUTEX_HELD(&cpu_lock)); 2809 2810 if (pool_pset_enabled()) 2811 zoneid = GLOBAL_ZONEID; 2812 else 2813 zoneid = ALL_ZONES; 2814 /* 2815 * Create named kstats 2816 */ 2817 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2818 ksp = kstat_create_zone(module, instance, (name), class, \ 2819 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2820 zoneid); \ 2821 if (ksp != NULL) { \ 2822 ksp->ks_private = cp; \ 2823 ksp->ks_update = (update_func); \ 2824 kstat_install(ksp); \ 2825 } else \ 2826 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2827 module, instance, (name)); 2828 2829 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2830 cpu_sys_stats_ks_update); 2831 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2832 cpu_vm_stats_ks_update); 2833 2834 /* 2835 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2836 */ 2837 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2838 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2839 if (ksp != NULL) { 2840 ksp->ks_update = cpu_stat_ks_update; 2841 ksp->ks_private = cp; 2842 kstat_install(ksp); 2843 } 2844 } 2845 2846 static void 2847 cpu_stats_kstat_destroy(cpu_t *cp) 2848 { 2849 char ks_name[KSTAT_STRLEN]; 2850 2851 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 2852 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 2853 2854 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 2855 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 2856 } 2857 2858 static int 2859 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 2860 { 2861 cpu_t *cp = (cpu_t *)ksp->ks_private; 2862 struct cpu_sys_stats_ks_data *csskd; 2863 cpu_sys_stats_t *css; 2864 hrtime_t msnsecs[NCMSTATES]; 2865 int i; 2866 2867 if (rw == KSTAT_WRITE) 2868 return (EACCES); 2869 2870 csskd = ksp->ks_data; 2871 css = &cp->cpu_stats.sys; 2872 2873 /* 2874 * Read CPU mstate, but compare with the last values we 2875 * received to make sure that the returned kstats never 2876 * decrease. 2877 */ 2878 2879 get_cpu_mstate(cp, msnsecs); 2880 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 2881 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 2882 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 2883 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 2884 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 2885 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 2886 2887 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 2888 sizeof (cpu_sys_stats_ks_data_template)); 2889 2890 csskd->cpu_ticks_wait.value.ui64 = 0; 2891 csskd->wait_ticks_io.value.ui64 = 0; 2892 2893 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 2894 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 2895 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 2896 csskd->cpu_ticks_idle.value.ui64 = 2897 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 2898 csskd->cpu_ticks_user.value.ui64 = 2899 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 2900 csskd->cpu_ticks_kernel.value.ui64 = 2901 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 2902 csskd->bread.value.ui64 = css->bread; 2903 csskd->bwrite.value.ui64 = css->bwrite; 2904 csskd->lread.value.ui64 = css->lread; 2905 csskd->lwrite.value.ui64 = css->lwrite; 2906 csskd->phread.value.ui64 = css->phread; 2907 csskd->phwrite.value.ui64 = css->phwrite; 2908 csskd->pswitch.value.ui64 = css->pswitch; 2909 csskd->trap.value.ui64 = css->trap; 2910 csskd->intr.value.ui64 = 0; 2911 for (i = 0; i < PIL_MAX; i++) 2912 csskd->intr.value.ui64 += css->intr[i]; 2913 csskd->syscall.value.ui64 = css->syscall; 2914 csskd->sysread.value.ui64 = css->sysread; 2915 csskd->syswrite.value.ui64 = css->syswrite; 2916 csskd->sysfork.value.ui64 = css->sysfork; 2917 csskd->sysvfork.value.ui64 = css->sysvfork; 2918 csskd->sysexec.value.ui64 = css->sysexec; 2919 csskd->readch.value.ui64 = css->readch; 2920 csskd->writech.value.ui64 = css->writech; 2921 csskd->rcvint.value.ui64 = css->rcvint; 2922 csskd->xmtint.value.ui64 = css->xmtint; 2923 csskd->mdmint.value.ui64 = css->mdmint; 2924 csskd->rawch.value.ui64 = css->rawch; 2925 csskd->canch.value.ui64 = css->canch; 2926 csskd->outch.value.ui64 = css->outch; 2927 csskd->msg.value.ui64 = css->msg; 2928 csskd->sema.value.ui64 = css->sema; 2929 csskd->namei.value.ui64 = css->namei; 2930 csskd->ufsiget.value.ui64 = css->ufsiget; 2931 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 2932 csskd->ufsipage.value.ui64 = css->ufsipage; 2933 csskd->ufsinopage.value.ui64 = css->ufsinopage; 2934 csskd->procovf.value.ui64 = css->procovf; 2935 csskd->intrthread.value.ui64 = 0; 2936 for (i = 0; i < LOCK_LEVEL; i++) 2937 csskd->intrthread.value.ui64 += css->intr[i]; 2938 csskd->intrblk.value.ui64 = css->intrblk; 2939 csskd->intrunpin.value.ui64 = css->intrunpin; 2940 csskd->idlethread.value.ui64 = css->idlethread; 2941 csskd->inv_swtch.value.ui64 = css->inv_swtch; 2942 csskd->nthreads.value.ui64 = css->nthreads; 2943 csskd->cpumigrate.value.ui64 = css->cpumigrate; 2944 csskd->xcalls.value.ui64 = css->xcalls; 2945 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 2946 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 2947 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 2948 csskd->modload.value.ui64 = css->modload; 2949 csskd->modunload.value.ui64 = css->modunload; 2950 csskd->bawrite.value.ui64 = css->bawrite; 2951 csskd->iowait.value.ui64 = 0; 2952 2953 return (0); 2954 } 2955 2956 static int 2957 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 2958 { 2959 cpu_t *cp = (cpu_t *)ksp->ks_private; 2960 struct cpu_vm_stats_ks_data *cvskd; 2961 cpu_vm_stats_t *cvs; 2962 2963 if (rw == KSTAT_WRITE) 2964 return (EACCES); 2965 2966 cvs = &cp->cpu_stats.vm; 2967 cvskd = ksp->ks_data; 2968 2969 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 2970 sizeof (cpu_vm_stats_ks_data_template)); 2971 cvskd->pgrec.value.ui64 = cvs->pgrec; 2972 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 2973 cvskd->pgin.value.ui64 = cvs->pgin; 2974 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 2975 cvskd->pgout.value.ui64 = cvs->pgout; 2976 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 2977 cvskd->swapin.value.ui64 = cvs->swapin; 2978 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 2979 cvskd->swapout.value.ui64 = cvs->swapout; 2980 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 2981 cvskd->zfod.value.ui64 = cvs->zfod; 2982 cvskd->dfree.value.ui64 = cvs->dfree; 2983 cvskd->scan.value.ui64 = cvs->scan; 2984 cvskd->rev.value.ui64 = cvs->rev; 2985 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 2986 cvskd->as_fault.value.ui64 = cvs->as_fault; 2987 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 2988 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 2989 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 2990 cvskd->softlock.value.ui64 = cvs->softlock; 2991 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 2992 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 2993 cvskd->execpgin.value.ui64 = cvs->execpgin; 2994 cvskd->execpgout.value.ui64 = cvs->execpgout; 2995 cvskd->execfree.value.ui64 = cvs->execfree; 2996 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 2997 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 2998 cvskd->anonfree.value.ui64 = cvs->anonfree; 2999 cvskd->fspgin.value.ui64 = cvs->fspgin; 3000 cvskd->fspgout.value.ui64 = cvs->fspgout; 3001 cvskd->fsfree.value.ui64 = cvs->fsfree; 3002 3003 return (0); 3004 } 3005 3006 static int 3007 cpu_stat_ks_update(kstat_t *ksp, int rw) 3008 { 3009 cpu_stat_t *cso; 3010 cpu_t *cp; 3011 int i; 3012 hrtime_t msnsecs[NCMSTATES]; 3013 3014 cso = (cpu_stat_t *)ksp->ks_data; 3015 cp = (cpu_t *)ksp->ks_private; 3016 3017 if (rw == KSTAT_WRITE) 3018 return (EACCES); 3019 3020 /* 3021 * Read CPU mstate, but compare with the last values we 3022 * received to make sure that the returned kstats never 3023 * decrease. 3024 */ 3025 3026 get_cpu_mstate(cp, msnsecs); 3027 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3028 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3029 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3030 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3031 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3032 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3033 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3034 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3035 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3036 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3037 cso->cpu_sysinfo.wait[W_IO] = 0; 3038 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3039 cso->cpu_sysinfo.wait[W_PIO] = 0; 3040 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3041 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3042 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3043 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3044 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3045 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3046 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3047 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3048 cso->cpu_sysinfo.intr = 0; 3049 for (i = 0; i < PIL_MAX; i++) 3050 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3051 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3052 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3053 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3054 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3055 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3056 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3057 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3058 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3059 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3060 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3061 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3062 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3063 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3064 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3065 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3066 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3067 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3068 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3069 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3070 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3071 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3072 cso->cpu_sysinfo.inodeovf = 0; 3073 cso->cpu_sysinfo.fileovf = 0; 3074 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3075 cso->cpu_sysinfo.intrthread = 0; 3076 for (i = 0; i < LOCK_LEVEL; i++) 3077 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3078 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3079 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3080 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3081 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3082 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3083 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3084 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3085 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3086 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3087 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3088 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3089 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3090 cso->cpu_sysinfo.rw_enters = 0; 3091 cso->cpu_sysinfo.win_uo_cnt = 0; 3092 cso->cpu_sysinfo.win_uu_cnt = 0; 3093 cso->cpu_sysinfo.win_so_cnt = 0; 3094 cso->cpu_sysinfo.win_su_cnt = 0; 3095 cso->cpu_sysinfo.win_suo_cnt = 0; 3096 3097 cso->cpu_syswait.iowait = 0; 3098 cso->cpu_syswait.swap = 0; 3099 cso->cpu_syswait.physio = 0; 3100 3101 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3102 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3103 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3104 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3105 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3106 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3107 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3108 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3109 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3110 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3111 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3112 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3113 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3114 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3115 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3116 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3117 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3118 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3119 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3120 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3121 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3122 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3123 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3124 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3125 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3126 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3127 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3128 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3129 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3130 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3131 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3132 3133 return (0); 3134 } 3135