1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/cpu_event.h> 36 #include <sys/kstat.h> 37 #include <sys/uadmin.h> 38 #include <sys/systm.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/procset.h> 42 #include <sys/processor.h> 43 #include <sys/debug.h> 44 #include <sys/cpupart.h> 45 #include <sys/lgrp.h> 46 #include <sys/pset.h> 47 #include <sys/pghw.h> 48 #include <sys/kmem.h> 49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 50 #include <sys/atomic.h> 51 #include <sys/callb.h> 52 #include <sys/vtrace.h> 53 #include <sys/cyclic.h> 54 #include <sys/bitmap.h> 55 #include <sys/nvpair.h> 56 #include <sys/pool_pset.h> 57 #include <sys/msacct.h> 58 #include <sys/time.h> 59 #include <sys/archsystm.h> 60 #include <sys/sdt.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 #include <sys/callo.h> 65 66 extern int mp_cpu_start(cpu_t *); 67 extern int mp_cpu_stop(cpu_t *); 68 extern int mp_cpu_poweron(cpu_t *); 69 extern int mp_cpu_poweroff(cpu_t *); 70 extern int mp_cpu_configure(int); 71 extern int mp_cpu_unconfigure(int); 72 extern void mp_cpu_faulted_enter(cpu_t *); 73 extern void mp_cpu_faulted_exit(cpu_t *); 74 75 extern int cmp_cpu_to_chip(processorid_t cpuid); 76 #ifdef __sparcv9 77 extern char *cpu_fru_fmri(cpu_t *cp); 78 #endif 79 80 static void cpu_add_active_internal(cpu_t *cp); 81 static void cpu_remove_active(cpu_t *cp); 82 static void cpu_info_kstat_create(cpu_t *cp); 83 static void cpu_info_kstat_destroy(cpu_t *cp); 84 static void cpu_stats_kstat_create(cpu_t *cp); 85 static void cpu_stats_kstat_destroy(cpu_t *cp); 86 87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 91 92 /* 93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 94 * and dispatch queue reallocations. The lock ordering with respect to 95 * related locks is: 96 * 97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 98 * 99 * Warning: Certain sections of code do not use the cpu_lock when 100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 101 * all cpus are paused during modifications to this list, a solution 102 * to protect the list is too either disable kernel preemption while 103 * walking the list, *or* recheck the cpu_next pointer at each 104 * iteration in the loop. Note that in no cases can any cached 105 * copies of the cpu pointers be kept as they may become invalid. 106 */ 107 kmutex_t cpu_lock; 108 cpu_t *cpu_list; /* list of all CPUs */ 109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 110 cpu_t *cpu_active; /* list of active CPUs */ 111 static cpuset_t cpu_available; /* set of available CPUs */ 112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 113 114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 115 116 /* 117 * max_ncpus keeps the max cpus the system can have. Initially 118 * it's NCPU, but since most archs scan the devtree for cpus 119 * fairly early on during boot, the real max can be known before 120 * ncpus is set (useful for early NCPU based allocations). 121 */ 122 int max_ncpus = NCPU; 123 /* 124 * platforms that set max_ncpus to maxiumum number of cpus that can be 125 * dynamically added will set boot_max_ncpus to the number of cpus found 126 * at device tree scan time during boot. 127 */ 128 int boot_max_ncpus = -1; 129 int boot_ncpus = -1; 130 /* 131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 132 * used to size arrays that are indexed by CPU id. 133 */ 134 processorid_t max_cpuid = NCPU - 1; 135 136 int ncpus = 1; 137 int ncpus_online = 1; 138 139 /* 140 * CPU that we're trying to offline. Protected by cpu_lock. 141 */ 142 cpu_t *cpu_inmotion; 143 144 /* 145 * Can be raised to suppress further weakbinding, which are instead 146 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 147 * while individual thread weakbinding synchronization is done under thread 148 * lock. 149 */ 150 int weakbindingbarrier; 151 152 /* 153 * Variables used in pause_cpus(). 154 */ 155 static volatile char safe_list[NCPU]; 156 157 static struct _cpu_pause_info { 158 int cp_spl; /* spl saved in pause_cpus() */ 159 volatile int cp_go; /* Go signal sent after all ready */ 160 int cp_count; /* # of CPUs to pause */ 161 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 162 kthread_id_t cp_paused; 163 } cpu_pause_info; 164 165 static kmutex_t pause_free_mutex; 166 static kcondvar_t pause_free_cv; 167 168 void *(*cpu_pause_func)(void *) = NULL; 169 170 171 static struct cpu_sys_stats_ks_data { 172 kstat_named_t cpu_ticks_idle; 173 kstat_named_t cpu_ticks_user; 174 kstat_named_t cpu_ticks_kernel; 175 kstat_named_t cpu_ticks_wait; 176 kstat_named_t cpu_nsec_idle; 177 kstat_named_t cpu_nsec_user; 178 kstat_named_t cpu_nsec_kernel; 179 kstat_named_t cpu_nsec_intr; 180 kstat_named_t cpu_load_intr; 181 kstat_named_t wait_ticks_io; 182 kstat_named_t bread; 183 kstat_named_t bwrite; 184 kstat_named_t lread; 185 kstat_named_t lwrite; 186 kstat_named_t phread; 187 kstat_named_t phwrite; 188 kstat_named_t pswitch; 189 kstat_named_t trap; 190 kstat_named_t intr; 191 kstat_named_t syscall; 192 kstat_named_t sysread; 193 kstat_named_t syswrite; 194 kstat_named_t sysfork; 195 kstat_named_t sysvfork; 196 kstat_named_t sysexec; 197 kstat_named_t readch; 198 kstat_named_t writech; 199 kstat_named_t rcvint; 200 kstat_named_t xmtint; 201 kstat_named_t mdmint; 202 kstat_named_t rawch; 203 kstat_named_t canch; 204 kstat_named_t outch; 205 kstat_named_t msg; 206 kstat_named_t sema; 207 kstat_named_t namei; 208 kstat_named_t ufsiget; 209 kstat_named_t ufsdirblk; 210 kstat_named_t ufsipage; 211 kstat_named_t ufsinopage; 212 kstat_named_t procovf; 213 kstat_named_t intrthread; 214 kstat_named_t intrblk; 215 kstat_named_t intrunpin; 216 kstat_named_t idlethread; 217 kstat_named_t inv_swtch; 218 kstat_named_t nthreads; 219 kstat_named_t cpumigrate; 220 kstat_named_t xcalls; 221 kstat_named_t mutex_adenters; 222 kstat_named_t rw_rdfails; 223 kstat_named_t rw_wrfails; 224 kstat_named_t modload; 225 kstat_named_t modunload; 226 kstat_named_t bawrite; 227 kstat_named_t iowait; 228 } cpu_sys_stats_ks_data_template = { 229 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 230 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 231 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 232 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 233 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 234 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 235 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 236 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 237 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 238 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 239 { "bread", KSTAT_DATA_UINT64 }, 240 { "bwrite", KSTAT_DATA_UINT64 }, 241 { "lread", KSTAT_DATA_UINT64 }, 242 { "lwrite", KSTAT_DATA_UINT64 }, 243 { "phread", KSTAT_DATA_UINT64 }, 244 { "phwrite", KSTAT_DATA_UINT64 }, 245 { "pswitch", KSTAT_DATA_UINT64 }, 246 { "trap", KSTAT_DATA_UINT64 }, 247 { "intr", KSTAT_DATA_UINT64 }, 248 { "syscall", KSTAT_DATA_UINT64 }, 249 { "sysread", KSTAT_DATA_UINT64 }, 250 { "syswrite", KSTAT_DATA_UINT64 }, 251 { "sysfork", KSTAT_DATA_UINT64 }, 252 { "sysvfork", KSTAT_DATA_UINT64 }, 253 { "sysexec", KSTAT_DATA_UINT64 }, 254 { "readch", KSTAT_DATA_UINT64 }, 255 { "writech", KSTAT_DATA_UINT64 }, 256 { "rcvint", KSTAT_DATA_UINT64 }, 257 { "xmtint", KSTAT_DATA_UINT64 }, 258 { "mdmint", KSTAT_DATA_UINT64 }, 259 { "rawch", KSTAT_DATA_UINT64 }, 260 { "canch", KSTAT_DATA_UINT64 }, 261 { "outch", KSTAT_DATA_UINT64 }, 262 { "msg", KSTAT_DATA_UINT64 }, 263 { "sema", KSTAT_DATA_UINT64 }, 264 { "namei", KSTAT_DATA_UINT64 }, 265 { "ufsiget", KSTAT_DATA_UINT64 }, 266 { "ufsdirblk", KSTAT_DATA_UINT64 }, 267 { "ufsipage", KSTAT_DATA_UINT64 }, 268 { "ufsinopage", KSTAT_DATA_UINT64 }, 269 { "procovf", KSTAT_DATA_UINT64 }, 270 { "intrthread", KSTAT_DATA_UINT64 }, 271 { "intrblk", KSTAT_DATA_UINT64 }, 272 { "intrunpin", KSTAT_DATA_UINT64 }, 273 { "idlethread", KSTAT_DATA_UINT64 }, 274 { "inv_swtch", KSTAT_DATA_UINT64 }, 275 { "nthreads", KSTAT_DATA_UINT64 }, 276 { "cpumigrate", KSTAT_DATA_UINT64 }, 277 { "xcalls", KSTAT_DATA_UINT64 }, 278 { "mutex_adenters", KSTAT_DATA_UINT64 }, 279 { "rw_rdfails", KSTAT_DATA_UINT64 }, 280 { "rw_wrfails", KSTAT_DATA_UINT64 }, 281 { "modload", KSTAT_DATA_UINT64 }, 282 { "modunload", KSTAT_DATA_UINT64 }, 283 { "bawrite", KSTAT_DATA_UINT64 }, 284 { "iowait", KSTAT_DATA_UINT64 }, 285 }; 286 287 static struct cpu_vm_stats_ks_data { 288 kstat_named_t pgrec; 289 kstat_named_t pgfrec; 290 kstat_named_t pgin; 291 kstat_named_t pgpgin; 292 kstat_named_t pgout; 293 kstat_named_t pgpgout; 294 kstat_named_t swapin; 295 kstat_named_t pgswapin; 296 kstat_named_t swapout; 297 kstat_named_t pgswapout; 298 kstat_named_t zfod; 299 kstat_named_t dfree; 300 kstat_named_t scan; 301 kstat_named_t rev; 302 kstat_named_t hat_fault; 303 kstat_named_t as_fault; 304 kstat_named_t maj_fault; 305 kstat_named_t cow_fault; 306 kstat_named_t prot_fault; 307 kstat_named_t softlock; 308 kstat_named_t kernel_asflt; 309 kstat_named_t pgrrun; 310 kstat_named_t execpgin; 311 kstat_named_t execpgout; 312 kstat_named_t execfree; 313 kstat_named_t anonpgin; 314 kstat_named_t anonpgout; 315 kstat_named_t anonfree; 316 kstat_named_t fspgin; 317 kstat_named_t fspgout; 318 kstat_named_t fsfree; 319 } cpu_vm_stats_ks_data_template = { 320 { "pgrec", KSTAT_DATA_UINT64 }, 321 { "pgfrec", KSTAT_DATA_UINT64 }, 322 { "pgin", KSTAT_DATA_UINT64 }, 323 { "pgpgin", KSTAT_DATA_UINT64 }, 324 { "pgout", KSTAT_DATA_UINT64 }, 325 { "pgpgout", KSTAT_DATA_UINT64 }, 326 { "swapin", KSTAT_DATA_UINT64 }, 327 { "pgswapin", KSTAT_DATA_UINT64 }, 328 { "swapout", KSTAT_DATA_UINT64 }, 329 { "pgswapout", KSTAT_DATA_UINT64 }, 330 { "zfod", KSTAT_DATA_UINT64 }, 331 { "dfree", KSTAT_DATA_UINT64 }, 332 { "scan", KSTAT_DATA_UINT64 }, 333 { "rev", KSTAT_DATA_UINT64 }, 334 { "hat_fault", KSTAT_DATA_UINT64 }, 335 { "as_fault", KSTAT_DATA_UINT64 }, 336 { "maj_fault", KSTAT_DATA_UINT64 }, 337 { "cow_fault", KSTAT_DATA_UINT64 }, 338 { "prot_fault", KSTAT_DATA_UINT64 }, 339 { "softlock", KSTAT_DATA_UINT64 }, 340 { "kernel_asflt", KSTAT_DATA_UINT64 }, 341 { "pgrrun", KSTAT_DATA_UINT64 }, 342 { "execpgin", KSTAT_DATA_UINT64 }, 343 { "execpgout", KSTAT_DATA_UINT64 }, 344 { "execfree", KSTAT_DATA_UINT64 }, 345 { "anonpgin", KSTAT_DATA_UINT64 }, 346 { "anonpgout", KSTAT_DATA_UINT64 }, 347 { "anonfree", KSTAT_DATA_UINT64 }, 348 { "fspgin", KSTAT_DATA_UINT64 }, 349 { "fspgout", KSTAT_DATA_UINT64 }, 350 { "fsfree", KSTAT_DATA_UINT64 }, 351 }; 352 353 /* 354 * Force the specified thread to migrate to the appropriate processor. 355 * Called with thread lock held, returns with it dropped. 356 */ 357 static void 358 force_thread_migrate(kthread_id_t tp) 359 { 360 ASSERT(THREAD_LOCK_HELD(tp)); 361 if (tp == curthread) { 362 THREAD_TRANSITION(tp); 363 CL_SETRUN(tp); 364 thread_unlock_nopreempt(tp); 365 swtch(); 366 } else { 367 if (tp->t_state == TS_ONPROC) { 368 cpu_surrender(tp); 369 } else if (tp->t_state == TS_RUN) { 370 (void) dispdeq(tp); 371 setbackdq(tp); 372 } 373 thread_unlock(tp); 374 } 375 } 376 377 /* 378 * Set affinity for a specified CPU. 379 * A reference count is incremented and the affinity is held until the 380 * reference count is decremented to zero by thread_affinity_clear(). 381 * This is so regions of code requiring affinity can be nested. 382 * Caller needs to ensure that cpu_id remains valid, which can be 383 * done by holding cpu_lock across this call, unless the caller 384 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 385 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 386 */ 387 void 388 thread_affinity_set(kthread_id_t t, int cpu_id) 389 { 390 cpu_t *cp; 391 int c; 392 393 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 394 395 if ((c = cpu_id) == CPU_CURRENT) { 396 mutex_enter(&cpu_lock); 397 cpu_id = CPU->cpu_id; 398 } 399 /* 400 * We should be asserting that cpu_lock is held here, but 401 * the NCA code doesn't acquire it. The following assert 402 * should be uncommented when the NCA code is fixed. 403 * 404 * ASSERT(MUTEX_HELD(&cpu_lock)); 405 */ 406 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 407 cp = cpu[cpu_id]; 408 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 409 /* 410 * If there is already a hard affinity requested, and this affinity 411 * conflicts with that, panic. 412 */ 413 thread_lock(t); 414 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 415 panic("affinity_set: setting %p but already bound to %p", 416 (void *)cp, (void *)t->t_bound_cpu); 417 } 418 t->t_affinitycnt++; 419 t->t_bound_cpu = cp; 420 421 /* 422 * Make sure we're running on the right CPU. 423 */ 424 if (cp != t->t_cpu || t != curthread) { 425 force_thread_migrate(t); /* drops thread lock */ 426 } else { 427 thread_unlock(t); 428 } 429 430 if (c == CPU_CURRENT) 431 mutex_exit(&cpu_lock); 432 } 433 434 /* 435 * Wrapper for backward compatibility. 436 */ 437 void 438 affinity_set(int cpu_id) 439 { 440 thread_affinity_set(curthread, cpu_id); 441 } 442 443 /* 444 * Decrement the affinity reservation count and if it becomes zero, 445 * clear the CPU affinity for the current thread, or set it to the user's 446 * software binding request. 447 */ 448 void 449 thread_affinity_clear(kthread_id_t t) 450 { 451 register processorid_t binding; 452 453 thread_lock(t); 454 if (--t->t_affinitycnt == 0) { 455 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 456 /* 457 * Adjust disp_max_unbound_pri if necessary. 458 */ 459 disp_adjust_unbound_pri(t); 460 t->t_bound_cpu = NULL; 461 if (t->t_cpu->cpu_part != t->t_cpupart) { 462 force_thread_migrate(t); 463 return; 464 } 465 } else { 466 t->t_bound_cpu = cpu[binding]; 467 /* 468 * Make sure the thread is running on the bound CPU. 469 */ 470 if (t->t_cpu != t->t_bound_cpu) { 471 force_thread_migrate(t); 472 return; /* already dropped lock */ 473 } 474 } 475 } 476 thread_unlock(t); 477 } 478 479 /* 480 * Wrapper for backward compatibility. 481 */ 482 void 483 affinity_clear(void) 484 { 485 thread_affinity_clear(curthread); 486 } 487 488 /* 489 * Weak cpu affinity. Bind to the "current" cpu for short periods 490 * of time during which the thread must not block (but may be preempted). 491 * Use this instead of kpreempt_disable() when it is only "no migration" 492 * rather than "no preemption" semantics that are required - disabling 493 * preemption holds higher priority threads off of cpu and if the 494 * operation that is protected is more than momentary this is not good 495 * for realtime etc. 496 * 497 * Weakly bound threads will not prevent a cpu from being offlined - 498 * we'll only run them on the cpu to which they are weakly bound but 499 * (because they do not block) we'll always be able to move them on to 500 * another cpu at offline time if we give them just a short moment to 501 * run during which they will unbind. To give a cpu a chance of offlining, 502 * however, we require a barrier to weak bindings that may be raised for a 503 * given cpu (offline/move code may set this and then wait a short time for 504 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 505 * 506 * There are few restrictions on the calling context of thread_nomigrate. 507 * The caller must not hold the thread lock. Calls may be nested. 508 * 509 * After weakbinding a thread must not perform actions that may block. 510 * In particular it must not call thread_affinity_set; calling that when 511 * already weakbound is nonsensical anyway. 512 * 513 * If curthread is prevented from migrating for other reasons 514 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 515 * then the weak binding will succeed even if this cpu is the target of an 516 * offline/move request. 517 */ 518 void 519 thread_nomigrate(void) 520 { 521 cpu_t *cp; 522 kthread_id_t t = curthread; 523 524 again: 525 kpreempt_disable(); 526 cp = CPU; 527 528 /* 529 * A highlevel interrupt must not modify t_nomigrate or 530 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 531 * interrupt thread cannot migrate and we can avoid the 532 * thread_lock call below by short-circuiting here. In either 533 * case we can just return since no migration is possible and 534 * the condition will persist (ie, when we test for these again 535 * in thread_allowmigrate they can't have changed). Migration 536 * is also impossible if we're at or above DISP_LEVEL pil. 537 */ 538 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 539 getpil() >= DISP_LEVEL) { 540 kpreempt_enable(); 541 return; 542 } 543 544 /* 545 * We must be consistent with existing weak bindings. Since we 546 * may be interrupted between the increment of t_nomigrate and 547 * the store to t_weakbound_cpu below we cannot assume that 548 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 549 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 550 * always the case. 551 */ 552 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 553 if (!panicstr) 554 panic("thread_nomigrate: binding to %p but already " 555 "bound to %p", (void *)cp, 556 (void *)t->t_weakbound_cpu); 557 } 558 559 /* 560 * At this point we have preemption disabled and we don't yet hold 561 * the thread lock. So it's possible that somebody else could 562 * set t_bind_cpu here and not be able to force us across to the 563 * new cpu (since we have preemption disabled). 564 */ 565 thread_lock(curthread); 566 567 /* 568 * If further weak bindings are being (temporarily) suppressed then 569 * we'll settle for disabling kernel preemption (which assures 570 * no migration provided the thread does not block which it is 571 * not allowed to if using thread_nomigrate). We must remember 572 * this disposition so we can take appropriate action in 573 * thread_allowmigrate. If this is a nested call and the 574 * thread is already weakbound then fall through as normal. 575 * We remember the decision to settle for kpreempt_disable through 576 * negative nesting counting in t_nomigrate. Once a thread has had one 577 * weakbinding request satisfied in this way any further (nested) 578 * requests will continue to be satisfied in the same way, 579 * even if weak bindings have recommenced. 580 */ 581 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 582 --t->t_nomigrate; 583 thread_unlock(curthread); 584 return; /* with kpreempt_disable still active */ 585 } 586 587 /* 588 * We hold thread_lock so t_bind_cpu cannot change. We could, 589 * however, be running on a different cpu to which we are t_bound_cpu 590 * to (as explained above). If we grant the weak binding request 591 * in that case then the dispatcher must favour our weak binding 592 * over our strong (in which case, just as when preemption is 593 * disabled, we can continue to run on a cpu other than the one to 594 * which we are strongbound; the difference in this case is that 595 * this thread can be preempted and so can appear on the dispatch 596 * queues of a cpu other than the one it is strongbound to). 597 * 598 * If the cpu we are running on does not appear to be a current 599 * offline target (we check cpu_inmotion to determine this - since 600 * we don't hold cpu_lock we may not see a recent store to that, 601 * so it's possible that we at times can grant a weak binding to a 602 * cpu that is an offline target, but that one request will not 603 * prevent the offline from succeeding) then we will always grant 604 * the weak binding request. This includes the case above where 605 * we grant a weakbinding not commensurate with our strong binding. 606 * 607 * If our cpu does appear to be an offline target then we're inclined 608 * not to grant the weakbinding request just yet - we'd prefer to 609 * migrate to another cpu and grant the request there. The 610 * exceptions are those cases where going through preemption code 611 * will not result in us changing cpu: 612 * 613 * . interrupts have already bypassed this case (see above) 614 * . we are already weakbound to this cpu (dispatcher code will 615 * always return us to the weakbound cpu) 616 * . preemption was disabled even before we disabled it above 617 * . we are strongbound to this cpu (if we're strongbound to 618 * another and not yet running there the trip through the 619 * dispatcher will move us to the strongbound cpu and we 620 * will grant the weak binding there) 621 */ 622 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 623 t->t_bound_cpu == cp) { 624 /* 625 * Don't be tempted to store to t_weakbound_cpu only on 626 * the first nested bind request - if we're interrupted 627 * after the increment of t_nomigrate and before the 628 * store to t_weakbound_cpu and the interrupt calls 629 * thread_nomigrate then the assertion in thread_allowmigrate 630 * would fail. 631 */ 632 t->t_nomigrate++; 633 t->t_weakbound_cpu = cp; 634 membar_producer(); 635 thread_unlock(curthread); 636 /* 637 * Now that we have dropped the thread_lock another thread 638 * can set our t_weakbound_cpu, and will try to migrate us 639 * to the strongbound cpu (which will not be prevented by 640 * preemption being disabled since we're about to enable 641 * preemption). We have granted the weakbinding to the current 642 * cpu, so again we are in the position that is is is possible 643 * that our weak and strong bindings differ. Again this 644 * is catered for by dispatcher code which will favour our 645 * weak binding. 646 */ 647 kpreempt_enable(); 648 } else { 649 /* 650 * Move to another cpu before granting the request by 651 * forcing this thread through preemption code. When we 652 * get to set{front,back}dq called from CL_PREEMPT() 653 * cpu_choose() will be used to select a cpu to queue 654 * us on - that will see cpu_inmotion and take 655 * steps to avoid returning us to this cpu. 656 */ 657 cp->cpu_kprunrun = 1; 658 thread_unlock(curthread); 659 kpreempt_enable(); /* will call preempt() */ 660 goto again; 661 } 662 } 663 664 void 665 thread_allowmigrate(void) 666 { 667 kthread_id_t t = curthread; 668 669 ASSERT(t->t_weakbound_cpu == CPU || 670 (t->t_nomigrate < 0 && t->t_preempt > 0) || 671 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 672 getpil() >= DISP_LEVEL); 673 674 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 675 getpil() >= DISP_LEVEL) 676 return; 677 678 if (t->t_nomigrate < 0) { 679 /* 680 * This thread was granted "weak binding" in the 681 * stronger form of kernel preemption disabling. 682 * Undo a level of nesting for both t_nomigrate 683 * and t_preempt. 684 */ 685 ++t->t_nomigrate; 686 kpreempt_enable(); 687 } else if (--t->t_nomigrate == 0) { 688 /* 689 * Time to drop the weak binding. We need to cater 690 * for the case where we're weakbound to a different 691 * cpu than that to which we're strongbound (a very 692 * temporary arrangement that must only persist until 693 * weak binding drops). We don't acquire thread_lock 694 * here so even as this code executes t_bound_cpu 695 * may be changing. So we disable preemption and 696 * a) in the case that t_bound_cpu changes while we 697 * have preemption disabled kprunrun will be set 698 * asynchronously, and b) if before disabling 699 * preemption we were already on a different cpu to 700 * our t_bound_cpu then we set kprunrun ourselves 701 * to force a trip through the dispatcher when 702 * preemption is enabled. 703 */ 704 kpreempt_disable(); 705 if (t->t_bound_cpu && 706 t->t_weakbound_cpu != t->t_bound_cpu) 707 CPU->cpu_kprunrun = 1; 708 t->t_weakbound_cpu = NULL; 709 membar_producer(); 710 kpreempt_enable(); 711 } 712 } 713 714 /* 715 * weakbinding_stop can be used to temporarily cause weakbindings made 716 * with thread_nomigrate to be satisfied through the stronger action of 717 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 718 */ 719 720 void 721 weakbinding_stop(void) 722 { 723 ASSERT(MUTEX_HELD(&cpu_lock)); 724 weakbindingbarrier = 1; 725 membar_producer(); /* make visible before subsequent thread_lock */ 726 } 727 728 void 729 weakbinding_start(void) 730 { 731 ASSERT(MUTEX_HELD(&cpu_lock)); 732 weakbindingbarrier = 0; 733 } 734 735 void 736 null_xcall(void) 737 { 738 } 739 740 /* 741 * This routine is called to place the CPUs in a safe place so that 742 * one of them can be taken off line or placed on line. What we are 743 * trying to do here is prevent a thread from traversing the list 744 * of active CPUs while we are changing it or from getting placed on 745 * the run queue of a CPU that has just gone off line. We do this by 746 * creating a thread with the highest possible prio for each CPU and 747 * having it call this routine. The advantage of this method is that 748 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 749 * This makes disp faster at the expense of making p_online() slower 750 * which is a good trade off. 751 */ 752 static void 753 cpu_pause(int index) 754 { 755 int s; 756 struct _cpu_pause_info *cpi = &cpu_pause_info; 757 volatile char *safe = &safe_list[index]; 758 long lindex = index; 759 760 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 761 762 while (*safe != PAUSE_DIE) { 763 *safe = PAUSE_READY; 764 membar_enter(); /* make sure stores are flushed */ 765 sema_v(&cpi->cp_sem); /* signal requesting thread */ 766 767 /* 768 * Wait here until all pause threads are running. That 769 * indicates that it's safe to do the spl. Until 770 * cpu_pause_info.cp_go is set, we don't want to spl 771 * because that might block clock interrupts needed 772 * to preempt threads on other CPUs. 773 */ 774 while (cpi->cp_go == 0) 775 ; 776 /* 777 * Even though we are at the highest disp prio, we need 778 * to block out all interrupts below LOCK_LEVEL so that 779 * an intr doesn't come in, wake up a thread, and call 780 * setbackdq/setfrontdq. 781 */ 782 s = splhigh(); 783 /* 784 * if cpu_pause_func() has been set then call it using 785 * index as the argument, currently only used by 786 * cpr_suspend_cpus(). This function is used as the 787 * code to execute on the "paused" cpu's when a machine 788 * comes out of a sleep state and CPU's were powered off. 789 * (could also be used for hotplugging CPU's). 790 */ 791 if (cpu_pause_func != NULL) 792 (*cpu_pause_func)((void *)lindex); 793 794 mach_cpu_pause(safe); 795 796 splx(s); 797 /* 798 * Waiting is at an end. Switch out of cpu_pause 799 * loop and resume useful work. 800 */ 801 swtch(); 802 } 803 804 mutex_enter(&pause_free_mutex); 805 *safe = PAUSE_DEAD; 806 cv_broadcast(&pause_free_cv); 807 mutex_exit(&pause_free_mutex); 808 } 809 810 /* 811 * Allow the cpus to start running again. 812 */ 813 void 814 start_cpus() 815 { 816 int i; 817 818 ASSERT(MUTEX_HELD(&cpu_lock)); 819 ASSERT(cpu_pause_info.cp_paused); 820 cpu_pause_info.cp_paused = NULL; 821 for (i = 0; i < NCPU; i++) 822 safe_list[i] = PAUSE_IDLE; 823 membar_enter(); /* make sure stores are flushed */ 824 affinity_clear(); 825 splx(cpu_pause_info.cp_spl); 826 kpreempt_enable(); 827 } 828 829 /* 830 * Allocate a pause thread for a CPU. 831 */ 832 static void 833 cpu_pause_alloc(cpu_t *cp) 834 { 835 kthread_id_t t; 836 long cpun = cp->cpu_id; 837 838 /* 839 * Note, v.v_nglobpris will not change value as long as I hold 840 * cpu_lock. 841 */ 842 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 843 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 844 thread_lock(t); 845 t->t_bound_cpu = cp; 846 t->t_disp_queue = cp->cpu_disp; 847 t->t_affinitycnt = 1; 848 t->t_preempt = 1; 849 thread_unlock(t); 850 cp->cpu_pause_thread = t; 851 /* 852 * Registering a thread in the callback table is usually done 853 * in the initialization code of the thread. In this 854 * case, we do it right after thread creation because the 855 * thread itself may never run, and we need to register the 856 * fact that it is safe for cpr suspend. 857 */ 858 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 859 } 860 861 /* 862 * Free a pause thread for a CPU. 863 */ 864 static void 865 cpu_pause_free(cpu_t *cp) 866 { 867 kthread_id_t t; 868 int cpun = cp->cpu_id; 869 870 ASSERT(MUTEX_HELD(&cpu_lock)); 871 /* 872 * We have to get the thread and tell him to die. 873 */ 874 if ((t = cp->cpu_pause_thread) == NULL) { 875 ASSERT(safe_list[cpun] == PAUSE_IDLE); 876 return; 877 } 878 thread_lock(t); 879 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 880 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 881 t->t_pri = v.v_nglobpris - 1; 882 ASSERT(safe_list[cpun] == PAUSE_IDLE); 883 safe_list[cpun] = PAUSE_DIE; 884 THREAD_TRANSITION(t); 885 setbackdq(t); 886 thread_unlock_nopreempt(t); 887 888 /* 889 * If we don't wait for the thread to actually die, it may try to 890 * run on the wrong cpu as part of an actual call to pause_cpus(). 891 */ 892 mutex_enter(&pause_free_mutex); 893 while (safe_list[cpun] != PAUSE_DEAD) { 894 cv_wait(&pause_free_cv, &pause_free_mutex); 895 } 896 mutex_exit(&pause_free_mutex); 897 safe_list[cpun] = PAUSE_IDLE; 898 899 cp->cpu_pause_thread = NULL; 900 } 901 902 /* 903 * Initialize basic structures for pausing CPUs. 904 */ 905 void 906 cpu_pause_init() 907 { 908 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 909 /* 910 * Create initial CPU pause thread. 911 */ 912 cpu_pause_alloc(CPU); 913 } 914 915 /* 916 * Start the threads used to pause another CPU. 917 */ 918 static int 919 cpu_pause_start(processorid_t cpu_id) 920 { 921 int i; 922 int cpu_count = 0; 923 924 for (i = 0; i < NCPU; i++) { 925 cpu_t *cp; 926 kthread_id_t t; 927 928 cp = cpu[i]; 929 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 930 safe_list[i] = PAUSE_WAIT; 931 continue; 932 } 933 934 /* 935 * Skip CPU if it is quiesced or not yet started. 936 */ 937 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 938 safe_list[i] = PAUSE_WAIT; 939 continue; 940 } 941 942 /* 943 * Start this CPU's pause thread. 944 */ 945 t = cp->cpu_pause_thread; 946 thread_lock(t); 947 /* 948 * Reset the priority, since nglobpris may have 949 * changed since the thread was created, if someone 950 * has loaded the RT (or some other) scheduling 951 * class. 952 */ 953 t->t_pri = v.v_nglobpris - 1; 954 THREAD_TRANSITION(t); 955 setbackdq(t); 956 thread_unlock_nopreempt(t); 957 ++cpu_count; 958 } 959 return (cpu_count); 960 } 961 962 963 /* 964 * Pause all of the CPUs except the one we are on by creating a high 965 * priority thread bound to those CPUs. 966 * 967 * Note that one must be extremely careful regarding code 968 * executed while CPUs are paused. Since a CPU may be paused 969 * while a thread scheduling on that CPU is holding an adaptive 970 * lock, code executed with CPUs paused must not acquire adaptive 971 * (or low-level spin) locks. Also, such code must not block, 972 * since the thread that is supposed to initiate the wakeup may 973 * never run. 974 * 975 * With a few exceptions, the restrictions on code executed with CPUs 976 * paused match those for code executed at high-level interrupt 977 * context. 978 */ 979 void 980 pause_cpus(cpu_t *off_cp) 981 { 982 processorid_t cpu_id; 983 int i; 984 struct _cpu_pause_info *cpi = &cpu_pause_info; 985 986 ASSERT(MUTEX_HELD(&cpu_lock)); 987 ASSERT(cpi->cp_paused == NULL); 988 cpi->cp_count = 0; 989 cpi->cp_go = 0; 990 for (i = 0; i < NCPU; i++) 991 safe_list[i] = PAUSE_IDLE; 992 kpreempt_disable(); 993 994 /* 995 * If running on the cpu that is going offline, get off it. 996 * This is so that it won't be necessary to rechoose a CPU 997 * when done. 998 */ 999 if (CPU == off_cp) 1000 cpu_id = off_cp->cpu_next_part->cpu_id; 1001 else 1002 cpu_id = CPU->cpu_id; 1003 affinity_set(cpu_id); 1004 1005 /* 1006 * Start the pause threads and record how many were started 1007 */ 1008 cpi->cp_count = cpu_pause_start(cpu_id); 1009 1010 /* 1011 * Now wait for all CPUs to be running the pause thread. 1012 */ 1013 while (cpi->cp_count > 0) { 1014 /* 1015 * Spin reading the count without grabbing the disp 1016 * lock to make sure we don't prevent the pause 1017 * threads from getting the lock. 1018 */ 1019 while (sema_held(&cpi->cp_sem)) 1020 ; 1021 if (sema_tryp(&cpi->cp_sem)) 1022 --cpi->cp_count; 1023 } 1024 cpi->cp_go = 1; /* all have reached cpu_pause */ 1025 1026 /* 1027 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1028 * to PAUSE_WAIT.) 1029 */ 1030 for (i = 0; i < NCPU; i++) { 1031 while (safe_list[i] != PAUSE_WAIT) 1032 ; 1033 } 1034 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1035 cpi->cp_paused = curthread; 1036 } 1037 1038 /* 1039 * Check whether the current thread has CPUs paused 1040 */ 1041 int 1042 cpus_paused(void) 1043 { 1044 if (cpu_pause_info.cp_paused != NULL) { 1045 ASSERT(cpu_pause_info.cp_paused == curthread); 1046 return (1); 1047 } 1048 return (0); 1049 } 1050 1051 static cpu_t * 1052 cpu_get_all(processorid_t cpun) 1053 { 1054 ASSERT(MUTEX_HELD(&cpu_lock)); 1055 1056 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1057 return (NULL); 1058 return (cpu[cpun]); 1059 } 1060 1061 /* 1062 * Check whether cpun is a valid processor id and whether it should be 1063 * visible from the current zone. If it is, return a pointer to the 1064 * associated CPU structure. 1065 */ 1066 cpu_t * 1067 cpu_get(processorid_t cpun) 1068 { 1069 cpu_t *c; 1070 1071 ASSERT(MUTEX_HELD(&cpu_lock)); 1072 c = cpu_get_all(cpun); 1073 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1074 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1075 return (NULL); 1076 return (c); 1077 } 1078 1079 /* 1080 * The following functions should be used to check CPU states in the kernel. 1081 * They should be invoked with cpu_lock held. Kernel subsystems interested 1082 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1083 * states. Those are for user-land (and system call) use only. 1084 */ 1085 1086 /* 1087 * Determine whether the CPU is online and handling interrupts. 1088 */ 1089 int 1090 cpu_is_online(cpu_t *cpu) 1091 { 1092 ASSERT(MUTEX_HELD(&cpu_lock)); 1093 return (cpu_flagged_online(cpu->cpu_flags)); 1094 } 1095 1096 /* 1097 * Determine whether the CPU is offline (this includes spare and faulted). 1098 */ 1099 int 1100 cpu_is_offline(cpu_t *cpu) 1101 { 1102 ASSERT(MUTEX_HELD(&cpu_lock)); 1103 return (cpu_flagged_offline(cpu->cpu_flags)); 1104 } 1105 1106 /* 1107 * Determine whether the CPU is powered off. 1108 */ 1109 int 1110 cpu_is_poweredoff(cpu_t *cpu) 1111 { 1112 ASSERT(MUTEX_HELD(&cpu_lock)); 1113 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1114 } 1115 1116 /* 1117 * Determine whether the CPU is handling interrupts. 1118 */ 1119 int 1120 cpu_is_nointr(cpu_t *cpu) 1121 { 1122 ASSERT(MUTEX_HELD(&cpu_lock)); 1123 return (cpu_flagged_nointr(cpu->cpu_flags)); 1124 } 1125 1126 /* 1127 * Determine whether the CPU is active (scheduling threads). 1128 */ 1129 int 1130 cpu_is_active(cpu_t *cpu) 1131 { 1132 ASSERT(MUTEX_HELD(&cpu_lock)); 1133 return (cpu_flagged_active(cpu->cpu_flags)); 1134 } 1135 1136 /* 1137 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1138 */ 1139 int 1140 cpu_flagged_online(cpu_flag_t cpu_flags) 1141 { 1142 return (cpu_flagged_active(cpu_flags) && 1143 (cpu_flags & CPU_ENABLE)); 1144 } 1145 1146 int 1147 cpu_flagged_offline(cpu_flag_t cpu_flags) 1148 { 1149 return (((cpu_flags & CPU_POWEROFF) == 0) && 1150 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1151 } 1152 1153 int 1154 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1155 { 1156 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1157 } 1158 1159 int 1160 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1161 { 1162 return (cpu_flagged_active(cpu_flags) && 1163 (cpu_flags & CPU_ENABLE) == 0); 1164 } 1165 1166 int 1167 cpu_flagged_active(cpu_flag_t cpu_flags) 1168 { 1169 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1170 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1171 } 1172 1173 /* 1174 * Bring the indicated CPU online. 1175 */ 1176 int 1177 cpu_online(cpu_t *cp) 1178 { 1179 int error = 0; 1180 1181 /* 1182 * Handle on-line request. 1183 * This code must put the new CPU on the active list before 1184 * starting it because it will not be paused, and will start 1185 * using the active list immediately. The real start occurs 1186 * when the CPU_QUIESCED flag is turned off. 1187 */ 1188 1189 ASSERT(MUTEX_HELD(&cpu_lock)); 1190 1191 /* 1192 * Put all the cpus into a known safe place. 1193 * No mutexes can be entered while CPUs are paused. 1194 */ 1195 error = mp_cpu_start(cp); /* arch-dep hook */ 1196 if (error == 0) { 1197 pg_cpupart_in(cp, cp->cpu_part); 1198 pause_cpus(NULL); 1199 cpu_add_active_internal(cp); 1200 if (cp->cpu_flags & CPU_FAULTED) { 1201 cp->cpu_flags &= ~CPU_FAULTED; 1202 mp_cpu_faulted_exit(cp); 1203 } 1204 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1205 CPU_SPARE); 1206 start_cpus(); 1207 cpu_stats_kstat_create(cp); 1208 cpu_create_intrstat(cp); 1209 lgrp_kstat_create(cp); 1210 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1211 cpu_intr_enable(cp); /* arch-dep hook */ 1212 cpu_set_state(cp); 1213 cyclic_online(cp); 1214 /* 1215 * This has to be called only after cyclic_online(). This 1216 * function uses cyclics. 1217 */ 1218 callout_cpu_online(cp); 1219 poke_cpu(cp->cpu_id); 1220 } 1221 1222 return (error); 1223 } 1224 1225 /* 1226 * Take the indicated CPU offline. 1227 */ 1228 int 1229 cpu_offline(cpu_t *cp, int flags) 1230 { 1231 cpupart_t *pp; 1232 int error = 0; 1233 cpu_t *ncp; 1234 int intr_enable; 1235 int cyclic_off = 0; 1236 int callout_off = 0; 1237 int loop_count; 1238 int no_quiesce = 0; 1239 int (*bound_func)(struct cpu *, int); 1240 kthread_t *t; 1241 lpl_t *cpu_lpl; 1242 proc_t *p; 1243 int lgrp_diff_lpl; 1244 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1245 1246 ASSERT(MUTEX_HELD(&cpu_lock)); 1247 1248 /* 1249 * If we're going from faulted or spare to offline, just 1250 * clear these flags and update CPU state. 1251 */ 1252 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1253 if (cp->cpu_flags & CPU_FAULTED) { 1254 cp->cpu_flags &= ~CPU_FAULTED; 1255 mp_cpu_faulted_exit(cp); 1256 } 1257 cp->cpu_flags &= ~CPU_SPARE; 1258 cpu_set_state(cp); 1259 return (0); 1260 } 1261 1262 /* 1263 * Handle off-line request. 1264 */ 1265 pp = cp->cpu_part; 1266 /* 1267 * Don't offline last online CPU in partition 1268 */ 1269 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1270 return (EBUSY); 1271 /* 1272 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1273 * if we were asked to. 1274 */ 1275 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1276 if (error != 0) 1277 return (error); 1278 /* 1279 * We shouldn't be bound to this CPU ourselves. 1280 */ 1281 if (curthread->t_bound_cpu == cp) 1282 return (EBUSY); 1283 1284 /* 1285 * Tell interested parties that this CPU is going offline. 1286 */ 1287 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1288 1289 /* 1290 * Tell the PG subsystem that the CPU is leaving the partition 1291 */ 1292 pg_cpupart_out(cp, pp); 1293 1294 /* 1295 * Take the CPU out of interrupt participation so we won't find 1296 * bound kernel threads. If the architecture cannot completely 1297 * shut off interrupts on the CPU, don't quiesce it, but don't 1298 * run anything but interrupt thread... this is indicated by 1299 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1300 * off. 1301 */ 1302 intr_enable = cp->cpu_flags & CPU_ENABLE; 1303 if (intr_enable) 1304 no_quiesce = cpu_intr_disable(cp); 1305 1306 /* 1307 * Record that we are aiming to offline this cpu. This acts as 1308 * a barrier to further weak binding requests in thread_nomigrate 1309 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1310 * lean away from this cpu. Further strong bindings are already 1311 * avoided since we hold cpu_lock. Since threads that are set 1312 * runnable around now and others coming off the target cpu are 1313 * directed away from the target, existing strong and weak bindings 1314 * (especially the latter) to the target cpu stand maximum chance of 1315 * being able to unbind during the short delay loop below (if other 1316 * unbound threads compete they may not see cpu in time to unbind 1317 * even if they would do so immediately. 1318 */ 1319 cpu_inmotion = cp; 1320 membar_enter(); 1321 1322 /* 1323 * Check for kernel threads (strong or weak) bound to that CPU. 1324 * Strongly bound threads may not unbind, and we'll have to return 1325 * EBUSY. Weakly bound threads should always disappear - we've 1326 * stopped more weak binding with cpu_inmotion and existing 1327 * bindings will drain imminently (they may not block). Nonetheless 1328 * we will wait for a fixed period for all bound threads to disappear. 1329 * Inactive interrupt threads are OK (they'll be in TS_FREE 1330 * state). If test finds some bound threads, wait a few ticks 1331 * to give short-lived threads (such as interrupts) chance to 1332 * complete. Note that if no_quiesce is set, i.e. this cpu 1333 * is required to service interrupts, then we take the route 1334 * that permits interrupt threads to be active (or bypassed). 1335 */ 1336 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1337 1338 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1339 if (loop_count >= 5) { 1340 error = EBUSY; /* some threads still bound */ 1341 break; 1342 } 1343 1344 /* 1345 * If some threads were assigned, give them 1346 * a chance to complete or move. 1347 * 1348 * This assumes that the clock_thread is not bound 1349 * to any CPU, because the clock_thread is needed to 1350 * do the delay(hz/100). 1351 * 1352 * Note: we still hold the cpu_lock while waiting for 1353 * the next clock tick. This is OK since it isn't 1354 * needed for anything else except processor_bind(2), 1355 * and system initialization. If we drop the lock, 1356 * we would risk another p_online disabling the last 1357 * processor. 1358 */ 1359 delay(hz/100); 1360 } 1361 1362 if (error == 0 && callout_off == 0) { 1363 callout_cpu_offline(cp); 1364 callout_off = 1; 1365 } 1366 1367 if (error == 0 && cyclic_off == 0) { 1368 if (!cyclic_offline(cp)) { 1369 /* 1370 * We must have bound cyclics... 1371 */ 1372 error = EBUSY; 1373 goto out; 1374 } 1375 cyclic_off = 1; 1376 } 1377 1378 /* 1379 * Call mp_cpu_stop() to perform any special operations 1380 * needed for this machine architecture to offline a CPU. 1381 */ 1382 if (error == 0) 1383 error = mp_cpu_stop(cp); /* arch-dep hook */ 1384 1385 /* 1386 * If that all worked, take the CPU offline and decrement 1387 * ncpus_online. 1388 */ 1389 if (error == 0) { 1390 /* 1391 * Put all the cpus into a known safe place. 1392 * No mutexes can be entered while CPUs are paused. 1393 */ 1394 pause_cpus(cp); 1395 /* 1396 * Repeat the operation, if necessary, to make sure that 1397 * all outstanding low-level interrupts run to completion 1398 * before we set the CPU_QUIESCED flag. It's also possible 1399 * that a thread has weak bound to the cpu despite our raising 1400 * cpu_inmotion above since it may have loaded that 1401 * value before the barrier became visible (this would have 1402 * to be the thread that was on the target cpu at the time 1403 * we raised the barrier). 1404 */ 1405 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1406 (*bound_func)(cp, 1)) { 1407 start_cpus(); 1408 (void) mp_cpu_start(cp); 1409 goto again; 1410 } 1411 ncp = cp->cpu_next_part; 1412 cpu_lpl = cp->cpu_lpl; 1413 ASSERT(cpu_lpl != NULL); 1414 1415 /* 1416 * Remove the CPU from the list of active CPUs. 1417 */ 1418 cpu_remove_active(cp); 1419 1420 /* 1421 * Walk the active process list and look for threads 1422 * whose home lgroup needs to be updated, or 1423 * the last CPU they run on is the one being offlined now. 1424 */ 1425 1426 ASSERT(curthread->t_cpu != cp); 1427 for (p = practive; p != NULL; p = p->p_next) { 1428 1429 t = p->p_tlist; 1430 1431 if (t == NULL) 1432 continue; 1433 1434 lgrp_diff_lpl = 0; 1435 1436 do { 1437 ASSERT(t->t_lpl != NULL); 1438 /* 1439 * Taking last CPU in lpl offline 1440 * Rehome thread if it is in this lpl 1441 * Otherwise, update the count of how many 1442 * threads are in this CPU's lgroup but have 1443 * a different lpl. 1444 */ 1445 1446 if (cpu_lpl->lpl_ncpu == 0) { 1447 if (t->t_lpl == cpu_lpl) 1448 lgrp_move_thread(t, 1449 lgrp_choose(t, 1450 t->t_cpupart), 0); 1451 else if (t->t_lpl->lpl_lgrpid == 1452 cpu_lpl->lpl_lgrpid) 1453 lgrp_diff_lpl++; 1454 } 1455 ASSERT(t->t_lpl->lpl_ncpu > 0); 1456 1457 /* 1458 * Update CPU last ran on if it was this CPU 1459 */ 1460 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1461 t->t_cpu = disp_lowpri_cpu(ncp, 1462 t->t_lpl, t->t_pri, NULL); 1463 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1464 t->t_weakbound_cpu == cp); 1465 1466 t = t->t_forw; 1467 } while (t != p->p_tlist); 1468 1469 /* 1470 * Didn't find any threads in the same lgroup as this 1471 * CPU with a different lpl, so remove the lgroup from 1472 * the process lgroup bitmask. 1473 */ 1474 1475 if (lgrp_diff_lpl == 0) 1476 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1477 } 1478 1479 /* 1480 * Walk thread list looking for threads that need to be 1481 * rehomed, since there are some threads that are not in 1482 * their process's p_tlist. 1483 */ 1484 1485 t = curthread; 1486 do { 1487 ASSERT(t != NULL && t->t_lpl != NULL); 1488 1489 /* 1490 * Rehome threads with same lpl as this CPU when this 1491 * is the last CPU in the lpl. 1492 */ 1493 1494 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1495 lgrp_move_thread(t, 1496 lgrp_choose(t, t->t_cpupart), 1); 1497 1498 ASSERT(t->t_lpl->lpl_ncpu > 0); 1499 1500 /* 1501 * Update CPU last ran on if it was this CPU 1502 */ 1503 1504 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1505 t->t_cpu = disp_lowpri_cpu(ncp, 1506 t->t_lpl, t->t_pri, NULL); 1507 } 1508 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1509 t->t_weakbound_cpu == cp); 1510 t = t->t_next; 1511 1512 } while (t != curthread); 1513 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1514 cp->cpu_flags |= CPU_OFFLINE; 1515 disp_cpu_inactive(cp); 1516 if (!no_quiesce) 1517 cp->cpu_flags |= CPU_QUIESCED; 1518 ncpus_online--; 1519 cpu_set_state(cp); 1520 cpu_inmotion = NULL; 1521 start_cpus(); 1522 cpu_stats_kstat_destroy(cp); 1523 cpu_delete_intrstat(cp); 1524 lgrp_kstat_destroy(cp); 1525 } 1526 1527 out: 1528 cpu_inmotion = NULL; 1529 1530 /* 1531 * If we failed, re-enable interrupts. 1532 * Do this even if cpu_intr_disable returned an error, because 1533 * it may have partially disabled interrupts. 1534 */ 1535 if (error && intr_enable) 1536 cpu_intr_enable(cp); 1537 1538 /* 1539 * If we failed, but managed to offline the cyclic subsystem on this 1540 * CPU, bring it back online. 1541 */ 1542 if (error && cyclic_off) 1543 cyclic_online(cp); 1544 1545 /* 1546 * If we failed, but managed to offline callouts on this CPU, 1547 * bring it back online. 1548 */ 1549 if (error && callout_off) 1550 callout_cpu_online(cp); 1551 1552 /* 1553 * If we failed, tell the PG subsystem that the CPU is back 1554 */ 1555 pg_cpupart_in(cp, pp); 1556 1557 /* 1558 * If we failed, we need to notify everyone that this CPU is back on. 1559 */ 1560 if (error != 0) 1561 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1562 1563 return (error); 1564 } 1565 1566 /* 1567 * Mark the indicated CPU as faulted, taking it offline. 1568 */ 1569 int 1570 cpu_faulted(cpu_t *cp, int flags) 1571 { 1572 int error = 0; 1573 1574 ASSERT(MUTEX_HELD(&cpu_lock)); 1575 ASSERT(!cpu_is_poweredoff(cp)); 1576 1577 if (cpu_is_offline(cp)) { 1578 cp->cpu_flags &= ~CPU_SPARE; 1579 cp->cpu_flags |= CPU_FAULTED; 1580 mp_cpu_faulted_enter(cp); 1581 cpu_set_state(cp); 1582 return (0); 1583 } 1584 1585 if ((error = cpu_offline(cp, flags)) == 0) { 1586 cp->cpu_flags |= CPU_FAULTED; 1587 mp_cpu_faulted_enter(cp); 1588 cpu_set_state(cp); 1589 } 1590 1591 return (error); 1592 } 1593 1594 /* 1595 * Mark the indicated CPU as a spare, taking it offline. 1596 */ 1597 int 1598 cpu_spare(cpu_t *cp, int flags) 1599 { 1600 int error = 0; 1601 1602 ASSERT(MUTEX_HELD(&cpu_lock)); 1603 ASSERT(!cpu_is_poweredoff(cp)); 1604 1605 if (cpu_is_offline(cp)) { 1606 if (cp->cpu_flags & CPU_FAULTED) { 1607 cp->cpu_flags &= ~CPU_FAULTED; 1608 mp_cpu_faulted_exit(cp); 1609 } 1610 cp->cpu_flags |= CPU_SPARE; 1611 cpu_set_state(cp); 1612 return (0); 1613 } 1614 1615 if ((error = cpu_offline(cp, flags)) == 0) { 1616 cp->cpu_flags |= CPU_SPARE; 1617 cpu_set_state(cp); 1618 } 1619 1620 return (error); 1621 } 1622 1623 /* 1624 * Take the indicated CPU from poweroff to offline. 1625 */ 1626 int 1627 cpu_poweron(cpu_t *cp) 1628 { 1629 int error = ENOTSUP; 1630 1631 ASSERT(MUTEX_HELD(&cpu_lock)); 1632 ASSERT(cpu_is_poweredoff(cp)); 1633 1634 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1635 if (error == 0) 1636 cpu_set_state(cp); 1637 1638 return (error); 1639 } 1640 1641 /* 1642 * Take the indicated CPU from any inactive state to powered off. 1643 */ 1644 int 1645 cpu_poweroff(cpu_t *cp) 1646 { 1647 int error = ENOTSUP; 1648 1649 ASSERT(MUTEX_HELD(&cpu_lock)); 1650 ASSERT(cpu_is_offline(cp)); 1651 1652 if (!(cp->cpu_flags & CPU_QUIESCED)) 1653 return (EBUSY); /* not completely idle */ 1654 1655 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1656 if (error == 0) 1657 cpu_set_state(cp); 1658 1659 return (error); 1660 } 1661 1662 /* 1663 * Initialize the Sequential CPU id lookup table 1664 */ 1665 void 1666 cpu_seq_tbl_init() 1667 { 1668 cpu_t **tbl; 1669 1670 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1671 tbl[0] = CPU; 1672 1673 cpu_seq = tbl; 1674 } 1675 1676 /* 1677 * Initialize the CPU lists for the first CPU. 1678 */ 1679 void 1680 cpu_list_init(cpu_t *cp) 1681 { 1682 cp->cpu_next = cp; 1683 cp->cpu_prev = cp; 1684 cpu_list = cp; 1685 clock_cpu_list = cp; 1686 1687 cp->cpu_next_onln = cp; 1688 cp->cpu_prev_onln = cp; 1689 cpu_active = cp; 1690 1691 cp->cpu_seqid = 0; 1692 CPUSET_ADD(cpu_seqid_inuse, 0); 1693 1694 /* 1695 * Bootstrap cpu_seq using cpu_list 1696 * The cpu_seq[] table will be dynamically allocated 1697 * when kmem later becomes available (but before going MP) 1698 */ 1699 cpu_seq = &cpu_list; 1700 1701 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1702 cp_default.cp_cpulist = cp; 1703 cp_default.cp_ncpus = 1; 1704 cp->cpu_next_part = cp; 1705 cp->cpu_prev_part = cp; 1706 cp->cpu_part = &cp_default; 1707 1708 CPUSET_ADD(cpu_available, cp->cpu_id); 1709 } 1710 1711 /* 1712 * Insert a CPU into the list of available CPUs. 1713 */ 1714 void 1715 cpu_add_unit(cpu_t *cp) 1716 { 1717 int seqid; 1718 1719 ASSERT(MUTEX_HELD(&cpu_lock)); 1720 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1721 1722 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1723 1724 /* 1725 * Note: most users of the cpu_list will grab the 1726 * cpu_lock to insure that it isn't modified. However, 1727 * certain users can't or won't do that. To allow this 1728 * we pause the other cpus. Users who walk the list 1729 * without cpu_lock, must disable kernel preemption 1730 * to insure that the list isn't modified underneath 1731 * them. Also, any cached pointers to cpu structures 1732 * must be revalidated by checking to see if the 1733 * cpu_next pointer points to itself. This check must 1734 * be done with the cpu_lock held or kernel preemption 1735 * disabled. This check relies upon the fact that 1736 * old cpu structures are not free'ed or cleared after 1737 * then are removed from the cpu_list. 1738 * 1739 * Note that the clock code walks the cpu list dereferencing 1740 * the cpu_part pointer, so we need to initialize it before 1741 * adding the cpu to the list. 1742 */ 1743 cp->cpu_part = &cp_default; 1744 (void) pause_cpus(NULL); 1745 cp->cpu_next = cpu_list; 1746 cp->cpu_prev = cpu_list->cpu_prev; 1747 cpu_list->cpu_prev->cpu_next = cp; 1748 cpu_list->cpu_prev = cp; 1749 start_cpus(); 1750 1751 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1752 continue; 1753 CPUSET_ADD(cpu_seqid_inuse, seqid); 1754 cp->cpu_seqid = seqid; 1755 ASSERT(ncpus < max_ncpus); 1756 ncpus++; 1757 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1758 cpu[cp->cpu_id] = cp; 1759 CPUSET_ADD(cpu_available, cp->cpu_id); 1760 cpu_seq[cp->cpu_seqid] = cp; 1761 1762 /* 1763 * allocate a pause thread for this CPU. 1764 */ 1765 cpu_pause_alloc(cp); 1766 1767 /* 1768 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1769 * link them into a list of just that CPU. 1770 * This is so that disp_lowpri_cpu will work for thread_create in 1771 * pause_cpus() when called from the startup thread in a new CPU. 1772 */ 1773 cp->cpu_next_onln = cp; 1774 cp->cpu_prev_onln = cp; 1775 cpu_info_kstat_create(cp); 1776 cp->cpu_next_part = cp; 1777 cp->cpu_prev_part = cp; 1778 1779 init_cpu_mstate(cp, CMS_SYSTEM); 1780 1781 pool_pset_mod = gethrtime(); 1782 } 1783 1784 /* 1785 * Do the opposite of cpu_add_unit(). 1786 */ 1787 void 1788 cpu_del_unit(int cpuid) 1789 { 1790 struct cpu *cp, *cpnext; 1791 1792 ASSERT(MUTEX_HELD(&cpu_lock)); 1793 cp = cpu[cpuid]; 1794 ASSERT(cp != NULL); 1795 1796 ASSERT(cp->cpu_next_onln == cp); 1797 ASSERT(cp->cpu_prev_onln == cp); 1798 ASSERT(cp->cpu_next_part == cp); 1799 ASSERT(cp->cpu_prev_part == cp); 1800 1801 /* 1802 * Tear down the CPU's physical ID cache, and update any 1803 * processor groups 1804 */ 1805 pg_cpu_fini(cp); 1806 pghw_physid_destroy(cp); 1807 1808 /* 1809 * Destroy kstat stuff. 1810 */ 1811 cpu_info_kstat_destroy(cp); 1812 term_cpu_mstate(cp); 1813 /* 1814 * Free up pause thread. 1815 */ 1816 cpu_pause_free(cp); 1817 CPUSET_DEL(cpu_available, cp->cpu_id); 1818 cpu[cp->cpu_id] = NULL; 1819 cpu_seq[cp->cpu_seqid] = NULL; 1820 1821 /* 1822 * The clock thread and mutex_vector_enter cannot hold the 1823 * cpu_lock while traversing the cpu list, therefore we pause 1824 * all other threads by pausing the other cpus. These, and any 1825 * other routines holding cpu pointers while possibly sleeping 1826 * must be sure to call kpreempt_disable before processing the 1827 * list and be sure to check that the cpu has not been deleted 1828 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1829 * to keep the deleted cpu structure around. 1830 * 1831 * Note that this MUST be done AFTER cpu_available 1832 * has been updated so that we don't waste time 1833 * trying to pause the cpu we're trying to delete. 1834 */ 1835 (void) pause_cpus(NULL); 1836 1837 cpnext = cp->cpu_next; 1838 cp->cpu_prev->cpu_next = cp->cpu_next; 1839 cp->cpu_next->cpu_prev = cp->cpu_prev; 1840 if (cp == cpu_list) 1841 cpu_list = cpnext; 1842 1843 /* 1844 * Signals that the cpu has been deleted (see above). 1845 */ 1846 cp->cpu_next = NULL; 1847 cp->cpu_prev = NULL; 1848 1849 start_cpus(); 1850 1851 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1852 ncpus--; 1853 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1854 1855 pool_pset_mod = gethrtime(); 1856 } 1857 1858 /* 1859 * Add a CPU to the list of active CPUs. 1860 * This routine must not get any locks, because other CPUs are paused. 1861 */ 1862 static void 1863 cpu_add_active_internal(cpu_t *cp) 1864 { 1865 cpupart_t *pp = cp->cpu_part; 1866 1867 ASSERT(MUTEX_HELD(&cpu_lock)); 1868 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1869 1870 ncpus_online++; 1871 cpu_set_state(cp); 1872 cp->cpu_next_onln = cpu_active; 1873 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1874 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1875 cpu_active->cpu_prev_onln = cp; 1876 1877 if (pp->cp_cpulist) { 1878 cp->cpu_next_part = pp->cp_cpulist; 1879 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1880 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1881 pp->cp_cpulist->cpu_prev_part = cp; 1882 } else { 1883 ASSERT(pp->cp_ncpus == 0); 1884 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1885 } 1886 pp->cp_ncpus++; 1887 if (pp->cp_ncpus == 1) { 1888 cp_numparts_nonempty++; 1889 ASSERT(cp_numparts_nonempty != 0); 1890 } 1891 1892 pg_cpu_active(cp); 1893 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1894 1895 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1896 } 1897 1898 /* 1899 * Add a CPU to the list of active CPUs. 1900 * This is called from machine-dependent layers when a new CPU is started. 1901 */ 1902 void 1903 cpu_add_active(cpu_t *cp) 1904 { 1905 pg_cpupart_in(cp, cp->cpu_part); 1906 1907 pause_cpus(NULL); 1908 cpu_add_active_internal(cp); 1909 start_cpus(); 1910 1911 cpu_stats_kstat_create(cp); 1912 cpu_create_intrstat(cp); 1913 lgrp_kstat_create(cp); 1914 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1915 } 1916 1917 1918 /* 1919 * Remove a CPU from the list of active CPUs. 1920 * This routine must not get any locks, because other CPUs are paused. 1921 */ 1922 /* ARGSUSED */ 1923 static void 1924 cpu_remove_active(cpu_t *cp) 1925 { 1926 cpupart_t *pp = cp->cpu_part; 1927 1928 ASSERT(MUTEX_HELD(&cpu_lock)); 1929 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1930 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1931 1932 pg_cpu_inactive(cp); 1933 1934 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1935 1936 if (cp == clock_cpu_list) 1937 clock_cpu_list = cp->cpu_next_onln; 1938 1939 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1940 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1941 if (cpu_active == cp) { 1942 cpu_active = cp->cpu_next_onln; 1943 } 1944 cp->cpu_next_onln = cp; 1945 cp->cpu_prev_onln = cp; 1946 1947 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1948 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1949 if (pp->cp_cpulist == cp) { 1950 pp->cp_cpulist = cp->cpu_next_part; 1951 ASSERT(pp->cp_cpulist != cp); 1952 } 1953 cp->cpu_next_part = cp; 1954 cp->cpu_prev_part = cp; 1955 pp->cp_ncpus--; 1956 if (pp->cp_ncpus == 0) { 1957 cp_numparts_nonempty--; 1958 ASSERT(cp_numparts_nonempty != 0); 1959 } 1960 } 1961 1962 /* 1963 * Routine used to setup a newly inserted CPU in preparation for starting 1964 * it running code. 1965 */ 1966 int 1967 cpu_configure(int cpuid) 1968 { 1969 int retval = 0; 1970 1971 ASSERT(MUTEX_HELD(&cpu_lock)); 1972 1973 /* 1974 * Some structures are statically allocated based upon 1975 * the maximum number of cpus the system supports. Do not 1976 * try to add anything beyond this limit. 1977 */ 1978 if (cpuid < 0 || cpuid >= NCPU) { 1979 return (EINVAL); 1980 } 1981 1982 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1983 return (EALREADY); 1984 } 1985 1986 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1987 return (retval); 1988 } 1989 1990 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1991 cpu_set_state(cpu[cpuid]); 1992 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1993 if (retval != 0) 1994 (void) mp_cpu_unconfigure(cpuid); 1995 1996 return (retval); 1997 } 1998 1999 /* 2000 * Routine used to cleanup a CPU that has been powered off. This will 2001 * destroy all per-cpu information related to this cpu. 2002 */ 2003 int 2004 cpu_unconfigure(int cpuid) 2005 { 2006 int error; 2007 2008 ASSERT(MUTEX_HELD(&cpu_lock)); 2009 2010 if (cpu[cpuid] == NULL) { 2011 return (ENODEV); 2012 } 2013 2014 if (cpu[cpuid]->cpu_flags == 0) { 2015 return (EALREADY); 2016 } 2017 2018 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2019 return (EBUSY); 2020 } 2021 2022 if (cpu[cpuid]->cpu_props != NULL) { 2023 (void) nvlist_free(cpu[cpuid]->cpu_props); 2024 cpu[cpuid]->cpu_props = NULL; 2025 } 2026 2027 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2028 2029 if (error != 0) 2030 return (error); 2031 2032 return (mp_cpu_unconfigure(cpuid)); 2033 } 2034 2035 /* 2036 * Routines for registering and de-registering cpu_setup callback functions. 2037 * 2038 * Caller's context 2039 * These routines must not be called from a driver's attach(9E) or 2040 * detach(9E) entry point. 2041 * 2042 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2043 */ 2044 2045 /* 2046 * Ideally, these would be dynamically allocated and put into a linked 2047 * list; however that is not feasible because the registration routine 2048 * has to be available before the kmem allocator is working (in fact, 2049 * it is called by the kmem allocator init code). In any case, there 2050 * are quite a few extra entries for future users. 2051 */ 2052 #define NCPU_SETUPS 20 2053 2054 struct cpu_setup { 2055 cpu_setup_func_t *func; 2056 void *arg; 2057 } cpu_setups[NCPU_SETUPS]; 2058 2059 void 2060 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2061 { 2062 int i; 2063 2064 ASSERT(MUTEX_HELD(&cpu_lock)); 2065 2066 for (i = 0; i < NCPU_SETUPS; i++) 2067 if (cpu_setups[i].func == NULL) 2068 break; 2069 if (i >= NCPU_SETUPS) 2070 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2071 2072 cpu_setups[i].func = func; 2073 cpu_setups[i].arg = arg; 2074 } 2075 2076 void 2077 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2078 { 2079 int i; 2080 2081 ASSERT(MUTEX_HELD(&cpu_lock)); 2082 2083 for (i = 0; i < NCPU_SETUPS; i++) 2084 if ((cpu_setups[i].func == func) && 2085 (cpu_setups[i].arg == arg)) 2086 break; 2087 if (i >= NCPU_SETUPS) 2088 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2089 "deregister"); 2090 2091 cpu_setups[i].func = NULL; 2092 cpu_setups[i].arg = 0; 2093 } 2094 2095 /* 2096 * Call any state change hooks for this CPU, ignore any errors. 2097 */ 2098 void 2099 cpu_state_change_notify(int id, cpu_setup_t what) 2100 { 2101 int i; 2102 2103 ASSERT(MUTEX_HELD(&cpu_lock)); 2104 2105 for (i = 0; i < NCPU_SETUPS; i++) { 2106 if (cpu_setups[i].func != NULL) { 2107 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2108 } 2109 } 2110 } 2111 2112 /* 2113 * Call any state change hooks for this CPU, undo it if error found. 2114 */ 2115 static int 2116 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2117 { 2118 int i; 2119 int retval = 0; 2120 2121 ASSERT(MUTEX_HELD(&cpu_lock)); 2122 2123 for (i = 0; i < NCPU_SETUPS; i++) { 2124 if (cpu_setups[i].func != NULL) { 2125 retval = cpu_setups[i].func(what, id, 2126 cpu_setups[i].arg); 2127 if (retval) { 2128 for (i--; i >= 0; i--) { 2129 if (cpu_setups[i].func != NULL) 2130 cpu_setups[i].func(undo, 2131 id, cpu_setups[i].arg); 2132 } 2133 break; 2134 } 2135 } 2136 } 2137 return (retval); 2138 } 2139 2140 /* 2141 * Export information about this CPU via the kstat mechanism. 2142 */ 2143 static struct { 2144 kstat_named_t ci_state; 2145 kstat_named_t ci_state_begin; 2146 kstat_named_t ci_cpu_type; 2147 kstat_named_t ci_fpu_type; 2148 kstat_named_t ci_clock_MHz; 2149 kstat_named_t ci_chip_id; 2150 kstat_named_t ci_implementation; 2151 kstat_named_t ci_brandstr; 2152 kstat_named_t ci_core_id; 2153 kstat_named_t ci_curr_clock_Hz; 2154 kstat_named_t ci_supp_freq_Hz; 2155 #if defined(__sparcv9) 2156 kstat_named_t ci_device_ID; 2157 kstat_named_t ci_cpu_fru; 2158 #endif 2159 #if defined(__x86) 2160 kstat_named_t ci_vendorstr; 2161 kstat_named_t ci_family; 2162 kstat_named_t ci_model; 2163 kstat_named_t ci_step; 2164 kstat_named_t ci_clogid; 2165 kstat_named_t ci_pkg_core_id; 2166 kstat_named_t ci_ncpuperchip; 2167 kstat_named_t ci_ncoreperchip; 2168 kstat_named_t ci_max_cstates; 2169 kstat_named_t ci_curr_cstate; 2170 kstat_named_t ci_sktstr; 2171 #endif 2172 } cpu_info_template = { 2173 { "state", KSTAT_DATA_CHAR }, 2174 { "state_begin", KSTAT_DATA_LONG }, 2175 { "cpu_type", KSTAT_DATA_CHAR }, 2176 { "fpu_type", KSTAT_DATA_CHAR }, 2177 { "clock_MHz", KSTAT_DATA_LONG }, 2178 { "chip_id", KSTAT_DATA_LONG }, 2179 { "implementation", KSTAT_DATA_STRING }, 2180 { "brand", KSTAT_DATA_STRING }, 2181 { "core_id", KSTAT_DATA_LONG }, 2182 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2183 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2184 #if defined(__sparcv9) 2185 { "device_ID", KSTAT_DATA_UINT64 }, 2186 { "cpu_fru", KSTAT_DATA_STRING }, 2187 #endif 2188 #if defined(__x86) 2189 { "vendor_id", KSTAT_DATA_STRING }, 2190 { "family", KSTAT_DATA_INT32 }, 2191 { "model", KSTAT_DATA_INT32 }, 2192 { "stepping", KSTAT_DATA_INT32 }, 2193 { "clog_id", KSTAT_DATA_INT32 }, 2194 { "pkg_core_id", KSTAT_DATA_LONG }, 2195 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2196 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2197 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2198 { "current_cstate", KSTAT_DATA_INT32 }, 2199 { "socket_type", KSTAT_DATA_STRING }, 2200 #endif 2201 }; 2202 2203 static kmutex_t cpu_info_template_lock; 2204 2205 static int 2206 cpu_info_kstat_update(kstat_t *ksp, int rw) 2207 { 2208 cpu_t *cp = ksp->ks_private; 2209 const char *pi_state; 2210 2211 if (rw == KSTAT_WRITE) 2212 return (EACCES); 2213 2214 switch (cp->cpu_type_info.pi_state) { 2215 case P_ONLINE: 2216 pi_state = PS_ONLINE; 2217 break; 2218 case P_POWEROFF: 2219 pi_state = PS_POWEROFF; 2220 break; 2221 case P_NOINTR: 2222 pi_state = PS_NOINTR; 2223 break; 2224 case P_FAULTED: 2225 pi_state = PS_FAULTED; 2226 break; 2227 case P_SPARE: 2228 pi_state = PS_SPARE; 2229 break; 2230 case P_OFFLINE: 2231 pi_state = PS_OFFLINE; 2232 break; 2233 default: 2234 pi_state = "unknown"; 2235 } 2236 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2237 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2238 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2239 cp->cpu_type_info.pi_processor_type, 15); 2240 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2241 cp->cpu_type_info.pi_fputypes, 15); 2242 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2243 cpu_info_template.ci_chip_id.value.l = 2244 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2245 kstat_named_setstr(&cpu_info_template.ci_implementation, 2246 cp->cpu_idstr); 2247 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2248 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2249 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2250 cp->cpu_curr_clock; 2251 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2252 cp->cpu_supp_freqs); 2253 #if defined(__sparcv9) 2254 cpu_info_template.ci_device_ID.value.ui64 = 2255 cpunodes[cp->cpu_id].device_id; 2256 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2257 #endif 2258 #if defined(__x86) 2259 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2260 cpuid_getvendorstr(cp)); 2261 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2262 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2263 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2264 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2265 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2266 cpu_info_template.ci_ncoreperchip.value.l = 2267 cpuid_get_ncore_per_chip(cp); 2268 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2269 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2270 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2271 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2272 cpuid_getsocketstr(cp)); 2273 #endif 2274 2275 return (0); 2276 } 2277 2278 static void 2279 cpu_info_kstat_create(cpu_t *cp) 2280 { 2281 zoneid_t zoneid; 2282 2283 ASSERT(MUTEX_HELD(&cpu_lock)); 2284 2285 if (pool_pset_enabled()) 2286 zoneid = GLOBAL_ZONEID; 2287 else 2288 zoneid = ALL_ZONES; 2289 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2290 NULL, "misc", KSTAT_TYPE_NAMED, 2291 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2292 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2293 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2294 #if defined(__sparcv9) 2295 cp->cpu_info_kstat->ks_data_size += 2296 strlen(cpu_fru_fmri(cp)) + 1; 2297 #endif 2298 #if defined(__x86) 2299 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2300 #endif 2301 if (cp->cpu_supp_freqs != NULL) 2302 cp->cpu_info_kstat->ks_data_size += 2303 strlen(cp->cpu_supp_freqs) + 1; 2304 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2305 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2306 cp->cpu_info_kstat->ks_private = cp; 2307 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2308 kstat_install(cp->cpu_info_kstat); 2309 } 2310 } 2311 2312 static void 2313 cpu_info_kstat_destroy(cpu_t *cp) 2314 { 2315 ASSERT(MUTEX_HELD(&cpu_lock)); 2316 2317 kstat_delete(cp->cpu_info_kstat); 2318 cp->cpu_info_kstat = NULL; 2319 } 2320 2321 /* 2322 * Create and install kstats for the boot CPU. 2323 */ 2324 void 2325 cpu_kstat_init(cpu_t *cp) 2326 { 2327 mutex_enter(&cpu_lock); 2328 cpu_info_kstat_create(cp); 2329 cpu_stats_kstat_create(cp); 2330 cpu_create_intrstat(cp); 2331 cpu_set_state(cp); 2332 mutex_exit(&cpu_lock); 2333 } 2334 2335 /* 2336 * Make visible to the zone that subset of the cpu information that would be 2337 * initialized when a cpu is configured (but still offline). 2338 */ 2339 void 2340 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2341 { 2342 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2343 2344 ASSERT(MUTEX_HELD(&cpu_lock)); 2345 ASSERT(pool_pset_enabled()); 2346 ASSERT(cp != NULL); 2347 2348 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2349 zone->zone_ncpus++; 2350 ASSERT(zone->zone_ncpus <= ncpus); 2351 } 2352 if (cp->cpu_info_kstat != NULL) 2353 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2354 } 2355 2356 /* 2357 * Make visible to the zone that subset of the cpu information that would be 2358 * initialized when a previously configured cpu is onlined. 2359 */ 2360 void 2361 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2362 { 2363 kstat_t *ksp; 2364 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2365 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2366 processorid_t cpun; 2367 2368 ASSERT(MUTEX_HELD(&cpu_lock)); 2369 ASSERT(pool_pset_enabled()); 2370 ASSERT(cp != NULL); 2371 ASSERT(cpu_is_active(cp)); 2372 2373 cpun = cp->cpu_id; 2374 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2375 zone->zone_ncpus_online++; 2376 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2377 } 2378 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2379 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2380 != NULL) { 2381 kstat_zone_add(ksp, zoneid); 2382 kstat_rele(ksp); 2383 } 2384 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2385 kstat_zone_add(ksp, zoneid); 2386 kstat_rele(ksp); 2387 } 2388 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2389 kstat_zone_add(ksp, zoneid); 2390 kstat_rele(ksp); 2391 } 2392 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2393 NULL) { 2394 kstat_zone_add(ksp, zoneid); 2395 kstat_rele(ksp); 2396 } 2397 } 2398 2399 /* 2400 * Update relevant kstats such that cpu is now visible to processes 2401 * executing in specified zone. 2402 */ 2403 void 2404 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2405 { 2406 cpu_visibility_configure(cp, zone); 2407 if (cpu_is_active(cp)) 2408 cpu_visibility_online(cp, zone); 2409 } 2410 2411 /* 2412 * Make invisible to the zone that subset of the cpu information that would be 2413 * torn down when a previously offlined cpu is unconfigured. 2414 */ 2415 void 2416 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2417 { 2418 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2419 2420 ASSERT(MUTEX_HELD(&cpu_lock)); 2421 ASSERT(pool_pset_enabled()); 2422 ASSERT(cp != NULL); 2423 2424 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2425 ASSERT(zone->zone_ncpus != 0); 2426 zone->zone_ncpus--; 2427 } 2428 if (cp->cpu_info_kstat) 2429 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2430 } 2431 2432 /* 2433 * Make invisible to the zone that subset of the cpu information that would be 2434 * torn down when a cpu is offlined (but still configured). 2435 */ 2436 void 2437 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2438 { 2439 kstat_t *ksp; 2440 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2441 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2442 processorid_t cpun; 2443 2444 ASSERT(MUTEX_HELD(&cpu_lock)); 2445 ASSERT(pool_pset_enabled()); 2446 ASSERT(cp != NULL); 2447 ASSERT(cpu_is_active(cp)); 2448 2449 cpun = cp->cpu_id; 2450 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2451 ASSERT(zone->zone_ncpus_online != 0); 2452 zone->zone_ncpus_online--; 2453 } 2454 2455 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2456 NULL) { 2457 kstat_zone_remove(ksp, zoneid); 2458 kstat_rele(ksp); 2459 } 2460 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2461 kstat_zone_remove(ksp, zoneid); 2462 kstat_rele(ksp); 2463 } 2464 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2465 kstat_zone_remove(ksp, zoneid); 2466 kstat_rele(ksp); 2467 } 2468 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2469 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2470 != NULL) { 2471 kstat_zone_remove(ksp, zoneid); 2472 kstat_rele(ksp); 2473 } 2474 } 2475 2476 /* 2477 * Update relevant kstats such that cpu is no longer visible to processes 2478 * executing in specified zone. 2479 */ 2480 void 2481 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2482 { 2483 if (cpu_is_active(cp)) 2484 cpu_visibility_offline(cp, zone); 2485 cpu_visibility_unconfigure(cp, zone); 2486 } 2487 2488 /* 2489 * Bind a thread to a CPU as requested. 2490 */ 2491 int 2492 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2493 int *error) 2494 { 2495 processorid_t binding; 2496 cpu_t *cp = NULL; 2497 2498 ASSERT(MUTEX_HELD(&cpu_lock)); 2499 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2500 2501 thread_lock(tp); 2502 2503 /* 2504 * Record old binding, but change the obind, which was initialized 2505 * to PBIND_NONE, only if this thread has a binding. This avoids 2506 * reporting PBIND_NONE for a process when some LWPs are bound. 2507 */ 2508 binding = tp->t_bind_cpu; 2509 if (binding != PBIND_NONE) 2510 *obind = binding; /* record old binding */ 2511 2512 switch (bind) { 2513 case PBIND_QUERY: 2514 /* Just return the old binding */ 2515 thread_unlock(tp); 2516 return (0); 2517 2518 case PBIND_QUERY_TYPE: 2519 /* Return the binding type */ 2520 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2521 thread_unlock(tp); 2522 return (0); 2523 2524 case PBIND_SOFT: 2525 /* 2526 * Set soft binding for this thread and return the actual 2527 * binding 2528 */ 2529 TB_CPU_SOFT_SET(tp); 2530 thread_unlock(tp); 2531 return (0); 2532 2533 case PBIND_HARD: 2534 /* 2535 * Set hard binding for this thread and return the actual 2536 * binding 2537 */ 2538 TB_CPU_HARD_SET(tp); 2539 thread_unlock(tp); 2540 return (0); 2541 2542 default: 2543 break; 2544 } 2545 2546 /* 2547 * If this thread/LWP cannot be bound because of permission 2548 * problems, just note that and return success so that the 2549 * other threads/LWPs will be bound. This is the way 2550 * processor_bind() is defined to work. 2551 * 2552 * Binding will get EPERM if the thread is of system class 2553 * or hasprocperm() fails. 2554 */ 2555 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2556 *error = EPERM; 2557 thread_unlock(tp); 2558 return (0); 2559 } 2560 2561 binding = bind; 2562 if (binding != PBIND_NONE) { 2563 cp = cpu_get((processorid_t)binding); 2564 /* 2565 * Make sure binding is valid and is in right partition. 2566 */ 2567 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2568 *error = EINVAL; 2569 thread_unlock(tp); 2570 return (0); 2571 } 2572 } 2573 tp->t_bind_cpu = binding; /* set new binding */ 2574 2575 /* 2576 * If there is no system-set reason for affinity, set 2577 * the t_bound_cpu field to reflect the binding. 2578 */ 2579 if (tp->t_affinitycnt == 0) { 2580 if (binding == PBIND_NONE) { 2581 /* 2582 * We may need to adjust disp_max_unbound_pri 2583 * since we're becoming unbound. 2584 */ 2585 disp_adjust_unbound_pri(tp); 2586 2587 tp->t_bound_cpu = NULL; /* set new binding */ 2588 2589 /* 2590 * Move thread to lgroup with strongest affinity 2591 * after unbinding 2592 */ 2593 if (tp->t_lgrp_affinity) 2594 lgrp_move_thread(tp, 2595 lgrp_choose(tp, tp->t_cpupart), 1); 2596 2597 if (tp->t_state == TS_ONPROC && 2598 tp->t_cpu->cpu_part != tp->t_cpupart) 2599 cpu_surrender(tp); 2600 } else { 2601 lpl_t *lpl; 2602 2603 tp->t_bound_cpu = cp; 2604 ASSERT(cp->cpu_lpl != NULL); 2605 2606 /* 2607 * Set home to lgroup with most affinity containing CPU 2608 * that thread is being bound or minimum bounding 2609 * lgroup if no affinities set 2610 */ 2611 if (tp->t_lgrp_affinity) 2612 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2613 LGRP_NONE, B_FALSE); 2614 else 2615 lpl = cp->cpu_lpl; 2616 2617 if (tp->t_lpl != lpl) { 2618 /* can't grab cpu_lock */ 2619 lgrp_move_thread(tp, lpl, 1); 2620 } 2621 2622 /* 2623 * Make the thread switch to the bound CPU. 2624 * If the thread is runnable, we need to 2625 * requeue it even if t_cpu is already set 2626 * to the right CPU, since it may be on a 2627 * kpreempt queue and need to move to a local 2628 * queue. We could check t_disp_queue to 2629 * avoid unnecessary overhead if it's already 2630 * on the right queue, but since this isn't 2631 * a performance-critical operation it doesn't 2632 * seem worth the extra code and complexity. 2633 * 2634 * If the thread is weakbound to the cpu then it will 2635 * resist the new binding request until the weak 2636 * binding drops. The cpu_surrender or requeueing 2637 * below could be skipped in such cases (since it 2638 * will have no effect), but that would require 2639 * thread_allowmigrate to acquire thread_lock so 2640 * we'll take the very occasional hit here instead. 2641 */ 2642 if (tp->t_state == TS_ONPROC) { 2643 cpu_surrender(tp); 2644 } else if (tp->t_state == TS_RUN) { 2645 cpu_t *ocp = tp->t_cpu; 2646 2647 (void) dispdeq(tp); 2648 setbackdq(tp); 2649 /* 2650 * Either on the bound CPU's disp queue now, 2651 * or swapped out or on the swap queue. 2652 */ 2653 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2654 tp->t_weakbound_cpu == ocp || 2655 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2656 != TS_LOAD); 2657 } 2658 } 2659 } 2660 2661 /* 2662 * Our binding has changed; set TP_CHANGEBIND. 2663 */ 2664 tp->t_proc_flag |= TP_CHANGEBIND; 2665 aston(tp); 2666 2667 thread_unlock(tp); 2668 2669 return (0); 2670 } 2671 2672 #if CPUSET_WORDS > 1 2673 2674 /* 2675 * Functions for implementing cpuset operations when a cpuset is more 2676 * than one word. On platforms where a cpuset is a single word these 2677 * are implemented as macros in cpuvar.h. 2678 */ 2679 2680 void 2681 cpuset_all(cpuset_t *s) 2682 { 2683 int i; 2684 2685 for (i = 0; i < CPUSET_WORDS; i++) 2686 s->cpub[i] = ~0UL; 2687 } 2688 2689 void 2690 cpuset_all_but(cpuset_t *s, uint_t cpu) 2691 { 2692 cpuset_all(s); 2693 CPUSET_DEL(*s, cpu); 2694 } 2695 2696 void 2697 cpuset_only(cpuset_t *s, uint_t cpu) 2698 { 2699 CPUSET_ZERO(*s); 2700 CPUSET_ADD(*s, cpu); 2701 } 2702 2703 int 2704 cpuset_isnull(cpuset_t *s) 2705 { 2706 int i; 2707 2708 for (i = 0; i < CPUSET_WORDS; i++) 2709 if (s->cpub[i] != 0) 2710 return (0); 2711 return (1); 2712 } 2713 2714 int 2715 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2716 { 2717 int i; 2718 2719 for (i = 0; i < CPUSET_WORDS; i++) 2720 if (s1->cpub[i] != s2->cpub[i]) 2721 return (0); 2722 return (1); 2723 } 2724 2725 uint_t 2726 cpuset_find(cpuset_t *s) 2727 { 2728 2729 uint_t i; 2730 uint_t cpu = (uint_t)-1; 2731 2732 /* 2733 * Find a cpu in the cpuset 2734 */ 2735 for (i = 0; i < CPUSET_WORDS; i++) { 2736 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2737 if (cpu != (uint_t)-1) { 2738 cpu += i * BT_NBIPUL; 2739 break; 2740 } 2741 } 2742 return (cpu); 2743 } 2744 2745 void 2746 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2747 { 2748 int i, j; 2749 uint_t bit; 2750 2751 /* 2752 * First, find the smallest cpu id in the set. 2753 */ 2754 for (i = 0; i < CPUSET_WORDS; i++) { 2755 if (s->cpub[i] != 0) { 2756 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2757 ASSERT(bit != (uint_t)-1); 2758 *smallestid = bit + (i * BT_NBIPUL); 2759 2760 /* 2761 * Now find the largest cpu id in 2762 * the set and return immediately. 2763 * Done in an inner loop to avoid 2764 * having to break out of the first 2765 * loop. 2766 */ 2767 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2768 if (s->cpub[j] != 0) { 2769 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2770 ASSERT(bit != (uint_t)-1); 2771 *largestid = bit + (j * BT_NBIPUL); 2772 ASSERT(*largestid >= *smallestid); 2773 return; 2774 } 2775 } 2776 2777 /* 2778 * If this code is reached, a 2779 * smallestid was found, but not a 2780 * largestid. The cpuset must have 2781 * been changed during the course 2782 * of this function call. 2783 */ 2784 ASSERT(0); 2785 } 2786 } 2787 *smallestid = *largestid = CPUSET_NOTINSET; 2788 } 2789 2790 #endif /* CPUSET_WORDS */ 2791 2792 /* 2793 * Unbind threads bound to specified CPU. 2794 * 2795 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2796 * CPU. Otherwise unbind all soft-bound user threads. 2797 */ 2798 int 2799 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2800 { 2801 processorid_t obind; 2802 kthread_t *tp; 2803 int ret = 0; 2804 proc_t *pp; 2805 int err, berr = 0; 2806 2807 ASSERT(MUTEX_HELD(&cpu_lock)); 2808 2809 mutex_enter(&pidlock); 2810 for (pp = practive; pp != NULL; pp = pp->p_next) { 2811 mutex_enter(&pp->p_lock); 2812 tp = pp->p_tlist; 2813 /* 2814 * Skip zombies, kernel processes, and processes in 2815 * other zones, if called from a non-global zone. 2816 */ 2817 if (tp == NULL || (pp->p_flag & SSYS) || 2818 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2819 mutex_exit(&pp->p_lock); 2820 continue; 2821 } 2822 do { 2823 if (tp->t_bind_cpu != cpu) 2824 continue; 2825 /* 2826 * Skip threads with hard binding when 2827 * `unbind_all_threads' is not specified. 2828 */ 2829 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2830 continue; 2831 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2832 if (ret == 0) 2833 ret = err; 2834 } while ((tp = tp->t_forw) != pp->p_tlist); 2835 mutex_exit(&pp->p_lock); 2836 } 2837 mutex_exit(&pidlock); 2838 if (ret == 0) 2839 ret = berr; 2840 return (ret); 2841 } 2842 2843 2844 /* 2845 * Destroy all remaining bound threads on a cpu. 2846 */ 2847 void 2848 cpu_destroy_bound_threads(cpu_t *cp) 2849 { 2850 extern id_t syscid; 2851 register kthread_id_t t, tlist, tnext; 2852 2853 /* 2854 * Destroy all remaining bound threads on the cpu. This 2855 * should include both the interrupt threads and the idle thread. 2856 * This requires some care, since we need to traverse the 2857 * thread list with the pidlock mutex locked, but thread_free 2858 * also locks the pidlock mutex. So, we collect the threads 2859 * we're going to reap in a list headed by "tlist", then we 2860 * unlock the pidlock mutex and traverse the tlist list, 2861 * doing thread_free's on the thread's. Simple, n'est pas? 2862 * Also, this depends on thread_free not mucking with the 2863 * t_next and t_prev links of the thread. 2864 */ 2865 2866 if ((t = curthread) != NULL) { 2867 2868 tlist = NULL; 2869 mutex_enter(&pidlock); 2870 do { 2871 tnext = t->t_next; 2872 if (t->t_bound_cpu == cp) { 2873 2874 /* 2875 * We've found a bound thread, carefully unlink 2876 * it out of the thread list, and add it to 2877 * our "tlist". We "know" we don't have to 2878 * worry about unlinking curthread (the thread 2879 * that is executing this code). 2880 */ 2881 t->t_next->t_prev = t->t_prev; 2882 t->t_prev->t_next = t->t_next; 2883 t->t_next = tlist; 2884 tlist = t; 2885 ASSERT(t->t_cid == syscid); 2886 /* wake up anyone blocked in thread_join */ 2887 cv_broadcast(&t->t_joincv); 2888 /* 2889 * t_lwp set by interrupt threads and not 2890 * cleared. 2891 */ 2892 t->t_lwp = NULL; 2893 /* 2894 * Pause and idle threads always have 2895 * t_state set to TS_ONPROC. 2896 */ 2897 t->t_state = TS_FREE; 2898 t->t_prev = NULL; /* Just in case */ 2899 } 2900 2901 } while ((t = tnext) != curthread); 2902 2903 mutex_exit(&pidlock); 2904 2905 mutex_sync(); 2906 for (t = tlist; t != NULL; t = tnext) { 2907 tnext = t->t_next; 2908 thread_free(t); 2909 } 2910 } 2911 } 2912 2913 /* 2914 * Update the cpu_supp_freqs of this cpu. This information is returned 2915 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2916 * maintain the kstat data size. 2917 */ 2918 void 2919 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2920 { 2921 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2922 const char *lfreqs = clkstr; 2923 boolean_t kstat_exists = B_FALSE; 2924 kstat_t *ksp; 2925 size_t len; 2926 2927 /* 2928 * A NULL pointer means we only support one speed. 2929 */ 2930 if (freqs == NULL) 2931 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2932 cp->cpu_curr_clock); 2933 else 2934 lfreqs = freqs; 2935 2936 /* 2937 * Make sure the frequency doesn't change while a snapshot is 2938 * going on. Of course, we only need to worry about this if 2939 * the kstat exists. 2940 */ 2941 if ((ksp = cp->cpu_info_kstat) != NULL) { 2942 mutex_enter(ksp->ks_lock); 2943 kstat_exists = B_TRUE; 2944 } 2945 2946 /* 2947 * Free any previously allocated string and if the kstat 2948 * already exists, then update its data size. 2949 */ 2950 if (cp->cpu_supp_freqs != NULL) { 2951 len = strlen(cp->cpu_supp_freqs) + 1; 2952 kmem_free(cp->cpu_supp_freqs, len); 2953 if (kstat_exists) 2954 ksp->ks_data_size -= len; 2955 } 2956 2957 /* 2958 * Allocate the new string and set the pointer. 2959 */ 2960 len = strlen(lfreqs) + 1; 2961 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2962 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2963 2964 /* 2965 * If the kstat already exists then update the data size and 2966 * free the lock. 2967 */ 2968 if (kstat_exists) { 2969 ksp->ks_data_size += len; 2970 mutex_exit(ksp->ks_lock); 2971 } 2972 } 2973 2974 /* 2975 * Indicate the current CPU's clock freqency (in Hz). 2976 * The calling context must be such that CPU references are safe. 2977 */ 2978 void 2979 cpu_set_curr_clock(uint64_t new_clk) 2980 { 2981 uint64_t old_clk; 2982 2983 old_clk = CPU->cpu_curr_clock; 2984 CPU->cpu_curr_clock = new_clk; 2985 2986 /* 2987 * The cpu-change-speed DTrace probe exports the frequency in Hz 2988 */ 2989 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 2990 uint64_t, old_clk, uint64_t, new_clk); 2991 } 2992 2993 /* 2994 * processor_info(2) and p_online(2) status support functions 2995 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2996 * for use in communicating processor state information to userland. Kernel 2997 * subsystems should only be using the cpu_flags value directly. Subsystems 2998 * modifying cpu_flags should record the state change via a call to the 2999 * cpu_set_state(). 3000 */ 3001 3002 /* 3003 * Update the pi_state of this CPU. This function provides the CPU status for 3004 * the information returned by processor_info(2). 3005 */ 3006 void 3007 cpu_set_state(cpu_t *cpu) 3008 { 3009 ASSERT(MUTEX_HELD(&cpu_lock)); 3010 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3011 cpu->cpu_state_begin = gethrestime_sec(); 3012 pool_cpu_mod = gethrtime(); 3013 } 3014 3015 /* 3016 * Return offline/online/other status for the indicated CPU. Use only for 3017 * communication with user applications; cpu_flags provides the in-kernel 3018 * interface. 3019 */ 3020 int 3021 cpu_get_state(cpu_t *cpu) 3022 { 3023 ASSERT(MUTEX_HELD(&cpu_lock)); 3024 if (cpu->cpu_flags & CPU_POWEROFF) 3025 return (P_POWEROFF); 3026 else if (cpu->cpu_flags & CPU_FAULTED) 3027 return (P_FAULTED); 3028 else if (cpu->cpu_flags & CPU_SPARE) 3029 return (P_SPARE); 3030 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3031 return (P_OFFLINE); 3032 else if (cpu->cpu_flags & CPU_ENABLE) 3033 return (P_ONLINE); 3034 else 3035 return (P_NOINTR); 3036 } 3037 3038 /* 3039 * Return processor_info(2) state as a string. 3040 */ 3041 const char * 3042 cpu_get_state_str(cpu_t *cpu) 3043 { 3044 const char *string; 3045 3046 switch (cpu_get_state(cpu)) { 3047 case P_ONLINE: 3048 string = PS_ONLINE; 3049 break; 3050 case P_POWEROFF: 3051 string = PS_POWEROFF; 3052 break; 3053 case P_NOINTR: 3054 string = PS_NOINTR; 3055 break; 3056 case P_SPARE: 3057 string = PS_SPARE; 3058 break; 3059 case P_FAULTED: 3060 string = PS_FAULTED; 3061 break; 3062 case P_OFFLINE: 3063 string = PS_OFFLINE; 3064 break; 3065 default: 3066 string = "unknown"; 3067 break; 3068 } 3069 return (string); 3070 } 3071 3072 /* 3073 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3074 * kstats, respectively. This is done when a CPU is initialized or placed 3075 * online via p_online(2). 3076 */ 3077 static void 3078 cpu_stats_kstat_create(cpu_t *cp) 3079 { 3080 int instance = cp->cpu_id; 3081 char *module = "cpu"; 3082 char *class = "misc"; 3083 kstat_t *ksp; 3084 zoneid_t zoneid; 3085 3086 ASSERT(MUTEX_HELD(&cpu_lock)); 3087 3088 if (pool_pset_enabled()) 3089 zoneid = GLOBAL_ZONEID; 3090 else 3091 zoneid = ALL_ZONES; 3092 /* 3093 * Create named kstats 3094 */ 3095 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3096 ksp = kstat_create_zone(module, instance, (name), class, \ 3097 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3098 zoneid); \ 3099 if (ksp != NULL) { \ 3100 ksp->ks_private = cp; \ 3101 ksp->ks_update = (update_func); \ 3102 kstat_install(ksp); \ 3103 } else \ 3104 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3105 module, instance, (name)); 3106 3107 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3108 cpu_sys_stats_ks_update); 3109 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3110 cpu_vm_stats_ks_update); 3111 3112 /* 3113 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3114 */ 3115 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3116 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3117 if (ksp != NULL) { 3118 ksp->ks_update = cpu_stat_ks_update; 3119 ksp->ks_private = cp; 3120 kstat_install(ksp); 3121 } 3122 } 3123 3124 static void 3125 cpu_stats_kstat_destroy(cpu_t *cp) 3126 { 3127 char ks_name[KSTAT_STRLEN]; 3128 3129 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3130 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3131 3132 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3133 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3134 } 3135 3136 static int 3137 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3138 { 3139 cpu_t *cp = (cpu_t *)ksp->ks_private; 3140 struct cpu_sys_stats_ks_data *csskd; 3141 cpu_sys_stats_t *css; 3142 hrtime_t msnsecs[NCMSTATES]; 3143 int i; 3144 3145 if (rw == KSTAT_WRITE) 3146 return (EACCES); 3147 3148 csskd = ksp->ks_data; 3149 css = &cp->cpu_stats.sys; 3150 3151 /* 3152 * Read CPU mstate, but compare with the last values we 3153 * received to make sure that the returned kstats never 3154 * decrease. 3155 */ 3156 3157 get_cpu_mstate(cp, msnsecs); 3158 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3159 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3160 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3161 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3162 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3163 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3164 3165 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3166 sizeof (cpu_sys_stats_ks_data_template)); 3167 3168 csskd->cpu_ticks_wait.value.ui64 = 0; 3169 csskd->wait_ticks_io.value.ui64 = 0; 3170 3171 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3172 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3173 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3174 csskd->cpu_ticks_idle.value.ui64 = 3175 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3176 csskd->cpu_ticks_user.value.ui64 = 3177 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3178 csskd->cpu_ticks_kernel.value.ui64 = 3179 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3180 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3181 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3182 csskd->bread.value.ui64 = css->bread; 3183 csskd->bwrite.value.ui64 = css->bwrite; 3184 csskd->lread.value.ui64 = css->lread; 3185 csskd->lwrite.value.ui64 = css->lwrite; 3186 csskd->phread.value.ui64 = css->phread; 3187 csskd->phwrite.value.ui64 = css->phwrite; 3188 csskd->pswitch.value.ui64 = css->pswitch; 3189 csskd->trap.value.ui64 = css->trap; 3190 csskd->intr.value.ui64 = 0; 3191 for (i = 0; i < PIL_MAX; i++) 3192 csskd->intr.value.ui64 += css->intr[i]; 3193 csskd->syscall.value.ui64 = css->syscall; 3194 csskd->sysread.value.ui64 = css->sysread; 3195 csskd->syswrite.value.ui64 = css->syswrite; 3196 csskd->sysfork.value.ui64 = css->sysfork; 3197 csskd->sysvfork.value.ui64 = css->sysvfork; 3198 csskd->sysexec.value.ui64 = css->sysexec; 3199 csskd->readch.value.ui64 = css->readch; 3200 csskd->writech.value.ui64 = css->writech; 3201 csskd->rcvint.value.ui64 = css->rcvint; 3202 csskd->xmtint.value.ui64 = css->xmtint; 3203 csskd->mdmint.value.ui64 = css->mdmint; 3204 csskd->rawch.value.ui64 = css->rawch; 3205 csskd->canch.value.ui64 = css->canch; 3206 csskd->outch.value.ui64 = css->outch; 3207 csskd->msg.value.ui64 = css->msg; 3208 csskd->sema.value.ui64 = css->sema; 3209 csskd->namei.value.ui64 = css->namei; 3210 csskd->ufsiget.value.ui64 = css->ufsiget; 3211 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3212 csskd->ufsipage.value.ui64 = css->ufsipage; 3213 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3214 csskd->procovf.value.ui64 = css->procovf; 3215 csskd->intrthread.value.ui64 = 0; 3216 for (i = 0; i < LOCK_LEVEL - 1; i++) 3217 csskd->intrthread.value.ui64 += css->intr[i]; 3218 csskd->intrblk.value.ui64 = css->intrblk; 3219 csskd->intrunpin.value.ui64 = css->intrunpin; 3220 csskd->idlethread.value.ui64 = css->idlethread; 3221 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3222 csskd->nthreads.value.ui64 = css->nthreads; 3223 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3224 csskd->xcalls.value.ui64 = css->xcalls; 3225 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3226 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3227 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3228 csskd->modload.value.ui64 = css->modload; 3229 csskd->modunload.value.ui64 = css->modunload; 3230 csskd->bawrite.value.ui64 = css->bawrite; 3231 csskd->iowait.value.ui64 = css->iowait; 3232 3233 return (0); 3234 } 3235 3236 static int 3237 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3238 { 3239 cpu_t *cp = (cpu_t *)ksp->ks_private; 3240 struct cpu_vm_stats_ks_data *cvskd; 3241 cpu_vm_stats_t *cvs; 3242 3243 if (rw == KSTAT_WRITE) 3244 return (EACCES); 3245 3246 cvs = &cp->cpu_stats.vm; 3247 cvskd = ksp->ks_data; 3248 3249 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3250 sizeof (cpu_vm_stats_ks_data_template)); 3251 cvskd->pgrec.value.ui64 = cvs->pgrec; 3252 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3253 cvskd->pgin.value.ui64 = cvs->pgin; 3254 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3255 cvskd->pgout.value.ui64 = cvs->pgout; 3256 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3257 cvskd->swapin.value.ui64 = cvs->swapin; 3258 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3259 cvskd->swapout.value.ui64 = cvs->swapout; 3260 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3261 cvskd->zfod.value.ui64 = cvs->zfod; 3262 cvskd->dfree.value.ui64 = cvs->dfree; 3263 cvskd->scan.value.ui64 = cvs->scan; 3264 cvskd->rev.value.ui64 = cvs->rev; 3265 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3266 cvskd->as_fault.value.ui64 = cvs->as_fault; 3267 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3268 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3269 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3270 cvskd->softlock.value.ui64 = cvs->softlock; 3271 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3272 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3273 cvskd->execpgin.value.ui64 = cvs->execpgin; 3274 cvskd->execpgout.value.ui64 = cvs->execpgout; 3275 cvskd->execfree.value.ui64 = cvs->execfree; 3276 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3277 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3278 cvskd->anonfree.value.ui64 = cvs->anonfree; 3279 cvskd->fspgin.value.ui64 = cvs->fspgin; 3280 cvskd->fspgout.value.ui64 = cvs->fspgout; 3281 cvskd->fsfree.value.ui64 = cvs->fsfree; 3282 3283 return (0); 3284 } 3285 3286 static int 3287 cpu_stat_ks_update(kstat_t *ksp, int rw) 3288 { 3289 cpu_stat_t *cso; 3290 cpu_t *cp; 3291 int i; 3292 hrtime_t msnsecs[NCMSTATES]; 3293 3294 cso = (cpu_stat_t *)ksp->ks_data; 3295 cp = (cpu_t *)ksp->ks_private; 3296 3297 if (rw == KSTAT_WRITE) 3298 return (EACCES); 3299 3300 /* 3301 * Read CPU mstate, but compare with the last values we 3302 * received to make sure that the returned kstats never 3303 * decrease. 3304 */ 3305 3306 get_cpu_mstate(cp, msnsecs); 3307 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3308 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3309 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3310 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3311 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3312 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3313 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3314 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3315 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3316 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3317 cso->cpu_sysinfo.wait[W_IO] = 0; 3318 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3319 cso->cpu_sysinfo.wait[W_PIO] = 0; 3320 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3321 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3322 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3323 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3324 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3325 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3326 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3327 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3328 cso->cpu_sysinfo.intr = 0; 3329 for (i = 0; i < PIL_MAX; i++) 3330 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3331 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3332 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3333 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3334 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3335 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3336 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3337 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3338 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3339 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3340 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3341 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3342 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3343 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3344 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3345 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3346 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3347 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3348 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3349 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3350 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3351 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3352 cso->cpu_sysinfo.inodeovf = 0; 3353 cso->cpu_sysinfo.fileovf = 0; 3354 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3355 cso->cpu_sysinfo.intrthread = 0; 3356 for (i = 0; i < LOCK_LEVEL - 1; i++) 3357 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3358 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3359 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3360 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3361 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3362 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3363 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3364 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3365 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3366 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3367 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3368 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3369 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3370 cso->cpu_sysinfo.rw_enters = 0; 3371 cso->cpu_sysinfo.win_uo_cnt = 0; 3372 cso->cpu_sysinfo.win_uu_cnt = 0; 3373 cso->cpu_sysinfo.win_so_cnt = 0; 3374 cso->cpu_sysinfo.win_su_cnt = 0; 3375 cso->cpu_sysinfo.win_suo_cnt = 0; 3376 3377 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3378 cso->cpu_syswait.swap = 0; 3379 cso->cpu_syswait.physio = 0; 3380 3381 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3382 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3383 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3384 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3385 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3386 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3387 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3388 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3389 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3390 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3391 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3392 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3393 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3394 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3395 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3396 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3397 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3398 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3399 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3400 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3401 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3402 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3403 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3404 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3405 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3406 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3407 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3408 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3409 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3410 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3411 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3412 3413 return (0); 3414 } 3415