1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 109 cpu_t *cpu_active; /* list of active CPUs */ 110 static cpuset_t cpu_available; /* set of available CPUs */ 111 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 112 113 /* 114 * max_ncpus keeps the max cpus the system can have. Initially 115 * it's NCPU, but since most archs scan the devtree for cpus 116 * fairly early on during boot, the real max can be known before 117 * ncpus is set (useful for early NCPU based allocations). 118 */ 119 int max_ncpus = NCPU; 120 /* 121 * platforms that set max_ncpus to maxiumum number of cpus that can be 122 * dynamically added will set boot_max_ncpus to the number of cpus found 123 * at device tree scan time during boot. 124 */ 125 int boot_max_ncpus = -1; 126 int boot_ncpus = -1; 127 /* 128 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 129 * used to size arrays that are indexed by CPU id. 130 */ 131 processorid_t max_cpuid = NCPU - 1; 132 133 int ncpus = 1; 134 int ncpus_online = 1; 135 136 /* 137 * CPU that we're trying to offline. Protected by cpu_lock. 138 */ 139 cpu_t *cpu_inmotion; 140 141 /* 142 * Can be raised to suppress further weakbinding, which are instead 143 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 144 * while individual thread weakbinding synchronisation is done under thread 145 * lock. 146 */ 147 int weakbindingbarrier; 148 149 /* 150 * Variables used in pause_cpus(). 151 */ 152 static volatile char safe_list[NCPU]; 153 154 static struct _cpu_pause_info { 155 int cp_spl; /* spl saved in pause_cpus() */ 156 volatile int cp_go; /* Go signal sent after all ready */ 157 int cp_count; /* # of CPUs to pause */ 158 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 159 kthread_id_t cp_paused; 160 } cpu_pause_info; 161 162 static kmutex_t pause_free_mutex; 163 static kcondvar_t pause_free_cv; 164 165 void *(*cpu_pause_func)(void *) = NULL; 166 167 168 static struct cpu_sys_stats_ks_data { 169 kstat_named_t cpu_ticks_idle; 170 kstat_named_t cpu_ticks_user; 171 kstat_named_t cpu_ticks_kernel; 172 kstat_named_t cpu_ticks_wait; 173 kstat_named_t cpu_nsec_idle; 174 kstat_named_t cpu_nsec_user; 175 kstat_named_t cpu_nsec_kernel; 176 kstat_named_t cpu_nsec_intr; 177 kstat_named_t cpu_load_intr; 178 kstat_named_t wait_ticks_io; 179 kstat_named_t bread; 180 kstat_named_t bwrite; 181 kstat_named_t lread; 182 kstat_named_t lwrite; 183 kstat_named_t phread; 184 kstat_named_t phwrite; 185 kstat_named_t pswitch; 186 kstat_named_t trap; 187 kstat_named_t intr; 188 kstat_named_t syscall; 189 kstat_named_t sysread; 190 kstat_named_t syswrite; 191 kstat_named_t sysfork; 192 kstat_named_t sysvfork; 193 kstat_named_t sysexec; 194 kstat_named_t readch; 195 kstat_named_t writech; 196 kstat_named_t rcvint; 197 kstat_named_t xmtint; 198 kstat_named_t mdmint; 199 kstat_named_t rawch; 200 kstat_named_t canch; 201 kstat_named_t outch; 202 kstat_named_t msg; 203 kstat_named_t sema; 204 kstat_named_t namei; 205 kstat_named_t ufsiget; 206 kstat_named_t ufsdirblk; 207 kstat_named_t ufsipage; 208 kstat_named_t ufsinopage; 209 kstat_named_t procovf; 210 kstat_named_t intrthread; 211 kstat_named_t intrblk; 212 kstat_named_t intrunpin; 213 kstat_named_t idlethread; 214 kstat_named_t inv_swtch; 215 kstat_named_t nthreads; 216 kstat_named_t cpumigrate; 217 kstat_named_t xcalls; 218 kstat_named_t mutex_adenters; 219 kstat_named_t rw_rdfails; 220 kstat_named_t rw_wrfails; 221 kstat_named_t modload; 222 kstat_named_t modunload; 223 kstat_named_t bawrite; 224 kstat_named_t iowait; 225 } cpu_sys_stats_ks_data_template = { 226 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 227 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 228 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 229 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 230 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 231 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 232 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 233 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 234 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 235 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 236 { "bread", KSTAT_DATA_UINT64 }, 237 { "bwrite", KSTAT_DATA_UINT64 }, 238 { "lread", KSTAT_DATA_UINT64 }, 239 { "lwrite", KSTAT_DATA_UINT64 }, 240 { "phread", KSTAT_DATA_UINT64 }, 241 { "phwrite", KSTAT_DATA_UINT64 }, 242 { "pswitch", KSTAT_DATA_UINT64 }, 243 { "trap", KSTAT_DATA_UINT64 }, 244 { "intr", KSTAT_DATA_UINT64 }, 245 { "syscall", KSTAT_DATA_UINT64 }, 246 { "sysread", KSTAT_DATA_UINT64 }, 247 { "syswrite", KSTAT_DATA_UINT64 }, 248 { "sysfork", KSTAT_DATA_UINT64 }, 249 { "sysvfork", KSTAT_DATA_UINT64 }, 250 { "sysexec", KSTAT_DATA_UINT64 }, 251 { "readch", KSTAT_DATA_UINT64 }, 252 { "writech", KSTAT_DATA_UINT64 }, 253 { "rcvint", KSTAT_DATA_UINT64 }, 254 { "xmtint", KSTAT_DATA_UINT64 }, 255 { "mdmint", KSTAT_DATA_UINT64 }, 256 { "rawch", KSTAT_DATA_UINT64 }, 257 { "canch", KSTAT_DATA_UINT64 }, 258 { "outch", KSTAT_DATA_UINT64 }, 259 { "msg", KSTAT_DATA_UINT64 }, 260 { "sema", KSTAT_DATA_UINT64 }, 261 { "namei", KSTAT_DATA_UINT64 }, 262 { "ufsiget", KSTAT_DATA_UINT64 }, 263 { "ufsdirblk", KSTAT_DATA_UINT64 }, 264 { "ufsipage", KSTAT_DATA_UINT64 }, 265 { "ufsinopage", KSTAT_DATA_UINT64 }, 266 { "procovf", KSTAT_DATA_UINT64 }, 267 { "intrthread", KSTAT_DATA_UINT64 }, 268 { "intrblk", KSTAT_DATA_UINT64 }, 269 { "intrunpin", KSTAT_DATA_UINT64 }, 270 { "idlethread", KSTAT_DATA_UINT64 }, 271 { "inv_swtch", KSTAT_DATA_UINT64 }, 272 { "nthreads", KSTAT_DATA_UINT64 }, 273 { "cpumigrate", KSTAT_DATA_UINT64 }, 274 { "xcalls", KSTAT_DATA_UINT64 }, 275 { "mutex_adenters", KSTAT_DATA_UINT64 }, 276 { "rw_rdfails", KSTAT_DATA_UINT64 }, 277 { "rw_wrfails", KSTAT_DATA_UINT64 }, 278 { "modload", KSTAT_DATA_UINT64 }, 279 { "modunload", KSTAT_DATA_UINT64 }, 280 { "bawrite", KSTAT_DATA_UINT64 }, 281 { "iowait", KSTAT_DATA_UINT64 }, 282 }; 283 284 static struct cpu_vm_stats_ks_data { 285 kstat_named_t pgrec; 286 kstat_named_t pgfrec; 287 kstat_named_t pgin; 288 kstat_named_t pgpgin; 289 kstat_named_t pgout; 290 kstat_named_t pgpgout; 291 kstat_named_t swapin; 292 kstat_named_t pgswapin; 293 kstat_named_t swapout; 294 kstat_named_t pgswapout; 295 kstat_named_t zfod; 296 kstat_named_t dfree; 297 kstat_named_t scan; 298 kstat_named_t rev; 299 kstat_named_t hat_fault; 300 kstat_named_t as_fault; 301 kstat_named_t maj_fault; 302 kstat_named_t cow_fault; 303 kstat_named_t prot_fault; 304 kstat_named_t softlock; 305 kstat_named_t kernel_asflt; 306 kstat_named_t pgrrun; 307 kstat_named_t execpgin; 308 kstat_named_t execpgout; 309 kstat_named_t execfree; 310 kstat_named_t anonpgin; 311 kstat_named_t anonpgout; 312 kstat_named_t anonfree; 313 kstat_named_t fspgin; 314 kstat_named_t fspgout; 315 kstat_named_t fsfree; 316 } cpu_vm_stats_ks_data_template = { 317 { "pgrec", KSTAT_DATA_UINT64 }, 318 { "pgfrec", KSTAT_DATA_UINT64 }, 319 { "pgin", KSTAT_DATA_UINT64 }, 320 { "pgpgin", KSTAT_DATA_UINT64 }, 321 { "pgout", KSTAT_DATA_UINT64 }, 322 { "pgpgout", KSTAT_DATA_UINT64 }, 323 { "swapin", KSTAT_DATA_UINT64 }, 324 { "pgswapin", KSTAT_DATA_UINT64 }, 325 { "swapout", KSTAT_DATA_UINT64 }, 326 { "pgswapout", KSTAT_DATA_UINT64 }, 327 { "zfod", KSTAT_DATA_UINT64 }, 328 { "dfree", KSTAT_DATA_UINT64 }, 329 { "scan", KSTAT_DATA_UINT64 }, 330 { "rev", KSTAT_DATA_UINT64 }, 331 { "hat_fault", KSTAT_DATA_UINT64 }, 332 { "as_fault", KSTAT_DATA_UINT64 }, 333 { "maj_fault", KSTAT_DATA_UINT64 }, 334 { "cow_fault", KSTAT_DATA_UINT64 }, 335 { "prot_fault", KSTAT_DATA_UINT64 }, 336 { "softlock", KSTAT_DATA_UINT64 }, 337 { "kernel_asflt", KSTAT_DATA_UINT64 }, 338 { "pgrrun", KSTAT_DATA_UINT64 }, 339 { "execpgin", KSTAT_DATA_UINT64 }, 340 { "execpgout", KSTAT_DATA_UINT64 }, 341 { "execfree", KSTAT_DATA_UINT64 }, 342 { "anonpgin", KSTAT_DATA_UINT64 }, 343 { "anonpgout", KSTAT_DATA_UINT64 }, 344 { "anonfree", KSTAT_DATA_UINT64 }, 345 { "fspgin", KSTAT_DATA_UINT64 }, 346 { "fspgout", KSTAT_DATA_UINT64 }, 347 { "fsfree", KSTAT_DATA_UINT64 }, 348 }; 349 350 /* 351 * Force the specified thread to migrate to the appropriate processor. 352 * Called with thread lock held, returns with it dropped. 353 */ 354 static void 355 force_thread_migrate(kthread_id_t tp) 356 { 357 ASSERT(THREAD_LOCK_HELD(tp)); 358 if (tp == curthread) { 359 THREAD_TRANSITION(tp); 360 CL_SETRUN(tp); 361 thread_unlock_nopreempt(tp); 362 swtch(); 363 } else { 364 if (tp->t_state == TS_ONPROC) { 365 cpu_surrender(tp); 366 } else if (tp->t_state == TS_RUN) { 367 (void) dispdeq(tp); 368 setbackdq(tp); 369 } 370 thread_unlock(tp); 371 } 372 } 373 374 /* 375 * Set affinity for a specified CPU. 376 * A reference count is incremented and the affinity is held until the 377 * reference count is decremented to zero by thread_affinity_clear(). 378 * This is so regions of code requiring affinity can be nested. 379 * Caller needs to ensure that cpu_id remains valid, which can be 380 * done by holding cpu_lock across this call, unless the caller 381 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 382 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 383 */ 384 void 385 thread_affinity_set(kthread_id_t t, int cpu_id) 386 { 387 cpu_t *cp; 388 int c; 389 390 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 391 392 if ((c = cpu_id) == CPU_CURRENT) { 393 mutex_enter(&cpu_lock); 394 cpu_id = CPU->cpu_id; 395 } 396 /* 397 * We should be asserting that cpu_lock is held here, but 398 * the NCA code doesn't acquire it. The following assert 399 * should be uncommented when the NCA code is fixed. 400 * 401 * ASSERT(MUTEX_HELD(&cpu_lock)); 402 */ 403 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 404 cp = cpu[cpu_id]; 405 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 406 /* 407 * If there is already a hard affinity requested, and this affinity 408 * conflicts with that, panic. 409 */ 410 thread_lock(t); 411 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 412 panic("affinity_set: setting %p but already bound to %p", 413 (void *)cp, (void *)t->t_bound_cpu); 414 } 415 t->t_affinitycnt++; 416 t->t_bound_cpu = cp; 417 418 /* 419 * Make sure we're running on the right CPU. 420 */ 421 if (cp != t->t_cpu || t != curthread) { 422 force_thread_migrate(t); /* drops thread lock */ 423 } else { 424 thread_unlock(t); 425 } 426 427 if (c == CPU_CURRENT) 428 mutex_exit(&cpu_lock); 429 } 430 431 /* 432 * Wrapper for backward compatibility. 433 */ 434 void 435 affinity_set(int cpu_id) 436 { 437 thread_affinity_set(curthread, cpu_id); 438 } 439 440 /* 441 * Decrement the affinity reservation count and if it becomes zero, 442 * clear the CPU affinity for the current thread, or set it to the user's 443 * software binding request. 444 */ 445 void 446 thread_affinity_clear(kthread_id_t t) 447 { 448 register processorid_t binding; 449 450 thread_lock(t); 451 if (--t->t_affinitycnt == 0) { 452 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 453 /* 454 * Adjust disp_max_unbound_pri if necessary. 455 */ 456 disp_adjust_unbound_pri(t); 457 t->t_bound_cpu = NULL; 458 if (t->t_cpu->cpu_part != t->t_cpupart) { 459 force_thread_migrate(t); 460 return; 461 } 462 } else { 463 t->t_bound_cpu = cpu[binding]; 464 /* 465 * Make sure the thread is running on the bound CPU. 466 */ 467 if (t->t_cpu != t->t_bound_cpu) { 468 force_thread_migrate(t); 469 return; /* already dropped lock */ 470 } 471 } 472 } 473 thread_unlock(t); 474 } 475 476 /* 477 * Wrapper for backward compatibility. 478 */ 479 void 480 affinity_clear(void) 481 { 482 thread_affinity_clear(curthread); 483 } 484 485 /* 486 * Weak cpu affinity. Bind to the "current" cpu for short periods 487 * of time during which the thread must not block (but may be preempted). 488 * Use this instead of kpreempt_disable() when it is only "no migration" 489 * rather than "no preemption" semantics that are required - disabling 490 * preemption holds higher priority threads off of cpu and if the 491 * operation that is protected is more than momentary this is not good 492 * for realtime etc. 493 * 494 * Weakly bound threads will not prevent a cpu from being offlined - 495 * we'll only run them on the cpu to which they are weakly bound but 496 * (because they do not block) we'll always be able to move them on to 497 * another cpu at offline time if we give them just a short moment to 498 * run during which they will unbind. To give a cpu a chance of offlining, 499 * however, we require a barrier to weak bindings that may be raised for a 500 * given cpu (offline/move code may set this and then wait a short time for 501 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 502 * 503 * There are few restrictions on the calling context of thread_nomigrate. 504 * The caller must not hold the thread lock. Calls may be nested. 505 * 506 * After weakbinding a thread must not perform actions that may block. 507 * In particular it must not call thread_affinity_set; calling that when 508 * already weakbound is nonsensical anyway. 509 * 510 * If curthread is prevented from migrating for other reasons 511 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 512 * then the weak binding will succeed even if this cpu is the target of an 513 * offline/move request. 514 */ 515 void 516 thread_nomigrate(void) 517 { 518 cpu_t *cp; 519 kthread_id_t t = curthread; 520 521 again: 522 kpreempt_disable(); 523 cp = CPU; 524 525 /* 526 * A highlevel interrupt must not modify t_nomigrate or 527 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 528 * interrupt thread cannot migrate and we can avoid the 529 * thread_lock call below by short-circuiting here. In either 530 * case we can just return since no migration is possible and 531 * the condition will persist (ie, when we test for these again 532 * in thread_allowmigrate they can't have changed). Migration 533 * is also impossible if we're at or above DISP_LEVEL pil. 534 */ 535 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 536 getpil() >= DISP_LEVEL) { 537 kpreempt_enable(); 538 return; 539 } 540 541 /* 542 * We must be consistent with existing weak bindings. Since we 543 * may be interrupted between the increment of t_nomigrate and 544 * the store to t_weakbound_cpu below we cannot assume that 545 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 546 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 547 * always the case. 548 */ 549 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 550 if (!panicstr) 551 panic("thread_nomigrate: binding to %p but already " 552 "bound to %p", (void *)cp, 553 (void *)t->t_weakbound_cpu); 554 } 555 556 /* 557 * At this point we have preemption disabled and we don't yet hold 558 * the thread lock. So it's possible that somebody else could 559 * set t_bind_cpu here and not be able to force us across to the 560 * new cpu (since we have preemption disabled). 561 */ 562 thread_lock(curthread); 563 564 /* 565 * If further weak bindings are being (temporarily) suppressed then 566 * we'll settle for disabling kernel preemption (which assures 567 * no migration provided the thread does not block which it is 568 * not allowed to if using thread_nomigrate). We must remember 569 * this disposition so we can take appropriate action in 570 * thread_allowmigrate. If this is a nested call and the 571 * thread is already weakbound then fall through as normal. 572 * We remember the decision to settle for kpreempt_disable through 573 * negative nesting counting in t_nomigrate. Once a thread has had one 574 * weakbinding request satisfied in this way any further (nested) 575 * requests will continue to be satisfied in the same way, 576 * even if weak bindings have recommenced. 577 */ 578 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 579 --t->t_nomigrate; 580 thread_unlock(curthread); 581 return; /* with kpreempt_disable still active */ 582 } 583 584 /* 585 * We hold thread_lock so t_bind_cpu cannot change. We could, 586 * however, be running on a different cpu to which we are t_bound_cpu 587 * to (as explained above). If we grant the weak binding request 588 * in that case then the dispatcher must favour our weak binding 589 * over our strong (in which case, just as when preemption is 590 * disabled, we can continue to run on a cpu other than the one to 591 * which we are strongbound; the difference in this case is that 592 * this thread can be preempted and so can appear on the dispatch 593 * queues of a cpu other than the one it is strongbound to). 594 * 595 * If the cpu we are running on does not appear to be a current 596 * offline target (we check cpu_inmotion to determine this - since 597 * we don't hold cpu_lock we may not see a recent store to that, 598 * so it's possible that we at times can grant a weak binding to a 599 * cpu that is an offline target, but that one request will not 600 * prevent the offline from succeeding) then we will always grant 601 * the weak binding request. This includes the case above where 602 * we grant a weakbinding not commensurate with our strong binding. 603 * 604 * If our cpu does appear to be an offline target then we're inclined 605 * not to grant the weakbinding request just yet - we'd prefer to 606 * migrate to another cpu and grant the request there. The 607 * exceptions are those cases where going through preemption code 608 * will not result in us changing cpu: 609 * 610 * . interrupts have already bypassed this case (see above) 611 * . we are already weakbound to this cpu (dispatcher code will 612 * always return us to the weakbound cpu) 613 * . preemption was disabled even before we disabled it above 614 * . we are strongbound to this cpu (if we're strongbound to 615 * another and not yet running there the trip through the 616 * dispatcher will move us to the strongbound cpu and we 617 * will grant the weak binding there) 618 */ 619 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 620 t->t_bound_cpu == cp) { 621 /* 622 * Don't be tempted to store to t_weakbound_cpu only on 623 * the first nested bind request - if we're interrupted 624 * after the increment of t_nomigrate and before the 625 * store to t_weakbound_cpu and the interrupt calls 626 * thread_nomigrate then the assertion in thread_allowmigrate 627 * would fail. 628 */ 629 t->t_nomigrate++; 630 t->t_weakbound_cpu = cp; 631 membar_producer(); 632 thread_unlock(curthread); 633 /* 634 * Now that we have dropped the thread_lock another thread 635 * can set our t_weakbound_cpu, and will try to migrate us 636 * to the strongbound cpu (which will not be prevented by 637 * preemption being disabled since we're about to enable 638 * preemption). We have granted the weakbinding to the current 639 * cpu, so again we are in the position that is is is possible 640 * that our weak and strong bindings differ. Again this 641 * is catered for by dispatcher code which will favour our 642 * weak binding. 643 */ 644 kpreempt_enable(); 645 } else { 646 /* 647 * Move to another cpu before granting the request by 648 * forcing this thread through preemption code. When we 649 * get to set{front,back}dq called from CL_PREEMPT() 650 * cpu_choose() will be used to select a cpu to queue 651 * us on - that will see cpu_inmotion and take 652 * steps to avoid returning us to this cpu. 653 */ 654 cp->cpu_kprunrun = 1; 655 thread_unlock(curthread); 656 kpreempt_enable(); /* will call preempt() */ 657 goto again; 658 } 659 } 660 661 void 662 thread_allowmigrate(void) 663 { 664 kthread_id_t t = curthread; 665 666 ASSERT(t->t_weakbound_cpu == CPU || 667 (t->t_nomigrate < 0 && t->t_preempt > 0) || 668 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 669 getpil() >= DISP_LEVEL); 670 671 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 672 getpil() >= DISP_LEVEL) 673 return; 674 675 if (t->t_nomigrate < 0) { 676 /* 677 * This thread was granted "weak binding" in the 678 * stronger form of kernel preemption disabling. 679 * Undo a level of nesting for both t_nomigrate 680 * and t_preempt. 681 */ 682 ++t->t_nomigrate; 683 kpreempt_enable(); 684 } else if (--t->t_nomigrate == 0) { 685 /* 686 * Time to drop the weak binding. We need to cater 687 * for the case where we're weakbound to a different 688 * cpu than that to which we're strongbound (a very 689 * temporary arrangement that must only persist until 690 * weak binding drops). We don't acquire thread_lock 691 * here so even as this code executes t_bound_cpu 692 * may be changing. So we disable preemption and 693 * a) in the case that t_bound_cpu changes while we 694 * have preemption disabled kprunrun will be set 695 * asynchronously, and b) if before disabling 696 * preemption we were already on a different cpu to 697 * our t_bound_cpu then we set kprunrun ourselves 698 * to force a trip through the dispatcher when 699 * preemption is enabled. 700 */ 701 kpreempt_disable(); 702 if (t->t_bound_cpu && 703 t->t_weakbound_cpu != t->t_bound_cpu) 704 CPU->cpu_kprunrun = 1; 705 t->t_weakbound_cpu = NULL; 706 membar_producer(); 707 kpreempt_enable(); 708 } 709 } 710 711 /* 712 * weakbinding_stop can be used to temporarily cause weakbindings made 713 * with thread_nomigrate to be satisfied through the stronger action of 714 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 715 */ 716 717 void 718 weakbinding_stop(void) 719 { 720 ASSERT(MUTEX_HELD(&cpu_lock)); 721 weakbindingbarrier = 1; 722 membar_producer(); /* make visible before subsequent thread_lock */ 723 } 724 725 void 726 weakbinding_start(void) 727 { 728 ASSERT(MUTEX_HELD(&cpu_lock)); 729 weakbindingbarrier = 0; 730 } 731 732 void 733 null_xcall(void) 734 { 735 } 736 737 /* 738 * This routine is called to place the CPUs in a safe place so that 739 * one of them can be taken off line or placed on line. What we are 740 * trying to do here is prevent a thread from traversing the list 741 * of active CPUs while we are changing it or from getting placed on 742 * the run queue of a CPU that has just gone off line. We do this by 743 * creating a thread with the highest possible prio for each CPU and 744 * having it call this routine. The advantage of this method is that 745 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 746 * This makes disp faster at the expense of making p_online() slower 747 * which is a good trade off. 748 */ 749 static void 750 cpu_pause(int index) 751 { 752 int s; 753 struct _cpu_pause_info *cpi = &cpu_pause_info; 754 volatile char *safe = &safe_list[index]; 755 long lindex = index; 756 757 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 758 759 while (*safe != PAUSE_DIE) { 760 *safe = PAUSE_READY; 761 membar_enter(); /* make sure stores are flushed */ 762 sema_v(&cpi->cp_sem); /* signal requesting thread */ 763 764 /* 765 * Wait here until all pause threads are running. That 766 * indicates that it's safe to do the spl. Until 767 * cpu_pause_info.cp_go is set, we don't want to spl 768 * because that might block clock interrupts needed 769 * to preempt threads on other CPUs. 770 */ 771 while (cpi->cp_go == 0) 772 ; 773 /* 774 * Even though we are at the highest disp prio, we need 775 * to block out all interrupts below LOCK_LEVEL so that 776 * an intr doesn't come in, wake up a thread, and call 777 * setbackdq/setfrontdq. 778 */ 779 s = splhigh(); 780 /* 781 * if cpu_pause_func() has been set then call it using 782 * index as the argument, currently only used by 783 * cpr_suspend_cpus(). This function is used as the 784 * code to execute on the "paused" cpu's when a machine 785 * comes out of a sleep state and CPU's were powered off. 786 * (could also be used for hotplugging CPU's). 787 */ 788 if (cpu_pause_func != NULL) 789 (*cpu_pause_func)((void *)lindex); 790 791 mach_cpu_pause(safe); 792 793 splx(s); 794 /* 795 * Waiting is at an end. Switch out of cpu_pause 796 * loop and resume useful work. 797 */ 798 swtch(); 799 } 800 801 mutex_enter(&pause_free_mutex); 802 *safe = PAUSE_DEAD; 803 cv_broadcast(&pause_free_cv); 804 mutex_exit(&pause_free_mutex); 805 } 806 807 /* 808 * Allow the cpus to start running again. 809 */ 810 void 811 start_cpus() 812 { 813 int i; 814 815 ASSERT(MUTEX_HELD(&cpu_lock)); 816 ASSERT(cpu_pause_info.cp_paused); 817 cpu_pause_info.cp_paused = NULL; 818 for (i = 0; i < NCPU; i++) 819 safe_list[i] = PAUSE_IDLE; 820 membar_enter(); /* make sure stores are flushed */ 821 affinity_clear(); 822 splx(cpu_pause_info.cp_spl); 823 kpreempt_enable(); 824 } 825 826 /* 827 * Allocate a pause thread for a CPU. 828 */ 829 static void 830 cpu_pause_alloc(cpu_t *cp) 831 { 832 kthread_id_t t; 833 long cpun = cp->cpu_id; 834 835 /* 836 * Note, v.v_nglobpris will not change value as long as I hold 837 * cpu_lock. 838 */ 839 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 840 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 841 thread_lock(t); 842 t->t_bound_cpu = cp; 843 t->t_disp_queue = cp->cpu_disp; 844 t->t_affinitycnt = 1; 845 t->t_preempt = 1; 846 thread_unlock(t); 847 cp->cpu_pause_thread = t; 848 /* 849 * Registering a thread in the callback table is usually done 850 * in the initialization code of the thread. In this 851 * case, we do it right after thread creation because the 852 * thread itself may never run, and we need to register the 853 * fact that it is safe for cpr suspend. 854 */ 855 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 856 } 857 858 /* 859 * Free a pause thread for a CPU. 860 */ 861 static void 862 cpu_pause_free(cpu_t *cp) 863 { 864 kthread_id_t t; 865 int cpun = cp->cpu_id; 866 867 ASSERT(MUTEX_HELD(&cpu_lock)); 868 /* 869 * We have to get the thread and tell him to die. 870 */ 871 if ((t = cp->cpu_pause_thread) == NULL) { 872 ASSERT(safe_list[cpun] == PAUSE_IDLE); 873 return; 874 } 875 thread_lock(t); 876 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 877 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 878 t->t_pri = v.v_nglobpris - 1; 879 ASSERT(safe_list[cpun] == PAUSE_IDLE); 880 safe_list[cpun] = PAUSE_DIE; 881 THREAD_TRANSITION(t); 882 setbackdq(t); 883 thread_unlock_nopreempt(t); 884 885 /* 886 * If we don't wait for the thread to actually die, it may try to 887 * run on the wrong cpu as part of an actual call to pause_cpus(). 888 */ 889 mutex_enter(&pause_free_mutex); 890 while (safe_list[cpun] != PAUSE_DEAD) { 891 cv_wait(&pause_free_cv, &pause_free_mutex); 892 } 893 mutex_exit(&pause_free_mutex); 894 safe_list[cpun] = PAUSE_IDLE; 895 896 cp->cpu_pause_thread = NULL; 897 } 898 899 /* 900 * Initialize basic structures for pausing CPUs. 901 */ 902 void 903 cpu_pause_init() 904 { 905 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 906 /* 907 * Create initial CPU pause thread. 908 */ 909 cpu_pause_alloc(CPU); 910 } 911 912 /* 913 * Start the threads used to pause another CPU. 914 */ 915 static int 916 cpu_pause_start(processorid_t cpu_id) 917 { 918 int i; 919 int cpu_count = 0; 920 921 for (i = 0; i < NCPU; i++) { 922 cpu_t *cp; 923 kthread_id_t t; 924 925 cp = cpu[i]; 926 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 927 safe_list[i] = PAUSE_WAIT; 928 continue; 929 } 930 931 /* 932 * Skip CPU if it is quiesced or not yet started. 933 */ 934 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 935 safe_list[i] = PAUSE_WAIT; 936 continue; 937 } 938 939 /* 940 * Start this CPU's pause thread. 941 */ 942 t = cp->cpu_pause_thread; 943 thread_lock(t); 944 /* 945 * Reset the priority, since nglobpris may have 946 * changed since the thread was created, if someone 947 * has loaded the RT (or some other) scheduling 948 * class. 949 */ 950 t->t_pri = v.v_nglobpris - 1; 951 THREAD_TRANSITION(t); 952 setbackdq(t); 953 thread_unlock_nopreempt(t); 954 ++cpu_count; 955 } 956 return (cpu_count); 957 } 958 959 960 /* 961 * Pause all of the CPUs except the one we are on by creating a high 962 * priority thread bound to those CPUs. 963 * 964 * Note that one must be extremely careful regarding code 965 * executed while CPUs are paused. Since a CPU may be paused 966 * while a thread scheduling on that CPU is holding an adaptive 967 * lock, code executed with CPUs paused must not acquire adaptive 968 * (or low-level spin) locks. Also, such code must not block, 969 * since the thread that is supposed to initiate the wakeup may 970 * never run. 971 * 972 * With a few exceptions, the restrictions on code executed with CPUs 973 * paused match those for code executed at high-level interrupt 974 * context. 975 */ 976 void 977 pause_cpus(cpu_t *off_cp) 978 { 979 processorid_t cpu_id; 980 int i; 981 struct _cpu_pause_info *cpi = &cpu_pause_info; 982 983 ASSERT(MUTEX_HELD(&cpu_lock)); 984 ASSERT(cpi->cp_paused == NULL); 985 cpi->cp_count = 0; 986 cpi->cp_go = 0; 987 for (i = 0; i < NCPU; i++) 988 safe_list[i] = PAUSE_IDLE; 989 kpreempt_disable(); 990 991 /* 992 * If running on the cpu that is going offline, get off it. 993 * This is so that it won't be necessary to rechoose a CPU 994 * when done. 995 */ 996 if (CPU == off_cp) 997 cpu_id = off_cp->cpu_next_part->cpu_id; 998 else 999 cpu_id = CPU->cpu_id; 1000 affinity_set(cpu_id); 1001 1002 /* 1003 * Start the pause threads and record how many were started 1004 */ 1005 cpi->cp_count = cpu_pause_start(cpu_id); 1006 1007 /* 1008 * Now wait for all CPUs to be running the pause thread. 1009 */ 1010 while (cpi->cp_count > 0) { 1011 /* 1012 * Spin reading the count without grabbing the disp 1013 * lock to make sure we don't prevent the pause 1014 * threads from getting the lock. 1015 */ 1016 while (sema_held(&cpi->cp_sem)) 1017 ; 1018 if (sema_tryp(&cpi->cp_sem)) 1019 --cpi->cp_count; 1020 } 1021 cpi->cp_go = 1; /* all have reached cpu_pause */ 1022 1023 /* 1024 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1025 * to PAUSE_WAIT.) 1026 */ 1027 for (i = 0; i < NCPU; i++) { 1028 while (safe_list[i] != PAUSE_WAIT) 1029 ; 1030 } 1031 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1032 cpi->cp_paused = curthread; 1033 } 1034 1035 /* 1036 * Check whether the current thread has CPUs paused 1037 */ 1038 int 1039 cpus_paused(void) 1040 { 1041 if (cpu_pause_info.cp_paused != NULL) { 1042 ASSERT(cpu_pause_info.cp_paused == curthread); 1043 return (1); 1044 } 1045 return (0); 1046 } 1047 1048 static cpu_t * 1049 cpu_get_all(processorid_t cpun) 1050 { 1051 ASSERT(MUTEX_HELD(&cpu_lock)); 1052 1053 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1054 return (NULL); 1055 return (cpu[cpun]); 1056 } 1057 1058 /* 1059 * Check whether cpun is a valid processor id and whether it should be 1060 * visible from the current zone. If it is, return a pointer to the 1061 * associated CPU structure. 1062 */ 1063 cpu_t * 1064 cpu_get(processorid_t cpun) 1065 { 1066 cpu_t *c; 1067 1068 ASSERT(MUTEX_HELD(&cpu_lock)); 1069 c = cpu_get_all(cpun); 1070 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1071 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1072 return (NULL); 1073 return (c); 1074 } 1075 1076 /* 1077 * The following functions should be used to check CPU states in the kernel. 1078 * They should be invoked with cpu_lock held. Kernel subsystems interested 1079 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1080 * states. Those are for user-land (and system call) use only. 1081 */ 1082 1083 /* 1084 * Determine whether the CPU is online and handling interrupts. 1085 */ 1086 int 1087 cpu_is_online(cpu_t *cpu) 1088 { 1089 ASSERT(MUTEX_HELD(&cpu_lock)); 1090 return (cpu_flagged_online(cpu->cpu_flags)); 1091 } 1092 1093 /* 1094 * Determine whether the CPU is offline (this includes spare and faulted). 1095 */ 1096 int 1097 cpu_is_offline(cpu_t *cpu) 1098 { 1099 ASSERT(MUTEX_HELD(&cpu_lock)); 1100 return (cpu_flagged_offline(cpu->cpu_flags)); 1101 } 1102 1103 /* 1104 * Determine whether the CPU is powered off. 1105 */ 1106 int 1107 cpu_is_poweredoff(cpu_t *cpu) 1108 { 1109 ASSERT(MUTEX_HELD(&cpu_lock)); 1110 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1111 } 1112 1113 /* 1114 * Determine whether the CPU is handling interrupts. 1115 */ 1116 int 1117 cpu_is_nointr(cpu_t *cpu) 1118 { 1119 ASSERT(MUTEX_HELD(&cpu_lock)); 1120 return (cpu_flagged_nointr(cpu->cpu_flags)); 1121 } 1122 1123 /* 1124 * Determine whether the CPU is active (scheduling threads). 1125 */ 1126 int 1127 cpu_is_active(cpu_t *cpu) 1128 { 1129 ASSERT(MUTEX_HELD(&cpu_lock)); 1130 return (cpu_flagged_active(cpu->cpu_flags)); 1131 } 1132 1133 /* 1134 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1135 */ 1136 int 1137 cpu_flagged_online(cpu_flag_t cpu_flags) 1138 { 1139 return (cpu_flagged_active(cpu_flags) && 1140 (cpu_flags & CPU_ENABLE)); 1141 } 1142 1143 int 1144 cpu_flagged_offline(cpu_flag_t cpu_flags) 1145 { 1146 return (((cpu_flags & CPU_POWEROFF) == 0) && 1147 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1148 } 1149 1150 int 1151 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1152 { 1153 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1154 } 1155 1156 int 1157 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1158 { 1159 return (cpu_flagged_active(cpu_flags) && 1160 (cpu_flags & CPU_ENABLE) == 0); 1161 } 1162 1163 int 1164 cpu_flagged_active(cpu_flag_t cpu_flags) 1165 { 1166 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1167 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1168 } 1169 1170 /* 1171 * Bring the indicated CPU online. 1172 */ 1173 int 1174 cpu_online(cpu_t *cp) 1175 { 1176 int error = 0; 1177 1178 /* 1179 * Handle on-line request. 1180 * This code must put the new CPU on the active list before 1181 * starting it because it will not be paused, and will start 1182 * using the active list immediately. The real start occurs 1183 * when the CPU_QUIESCED flag is turned off. 1184 */ 1185 1186 ASSERT(MUTEX_HELD(&cpu_lock)); 1187 1188 /* 1189 * Put all the cpus into a known safe place. 1190 * No mutexes can be entered while CPUs are paused. 1191 */ 1192 error = mp_cpu_start(cp); /* arch-dep hook */ 1193 if (error == 0) { 1194 pg_cpupart_in(cp, cp->cpu_part); 1195 pause_cpus(NULL); 1196 cpu_add_active_internal(cp); 1197 if (cp->cpu_flags & CPU_FAULTED) { 1198 cp->cpu_flags &= ~CPU_FAULTED; 1199 mp_cpu_faulted_exit(cp); 1200 } 1201 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1202 CPU_SPARE); 1203 start_cpus(); 1204 cpu_stats_kstat_create(cp); 1205 cpu_create_intrstat(cp); 1206 lgrp_kstat_create(cp); 1207 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1208 cpu_intr_enable(cp); /* arch-dep hook */ 1209 cpu_set_state(cp); 1210 cyclic_online(cp); 1211 poke_cpu(cp->cpu_id); 1212 } 1213 1214 return (error); 1215 } 1216 1217 /* 1218 * Take the indicated CPU offline. 1219 */ 1220 int 1221 cpu_offline(cpu_t *cp, int flags) 1222 { 1223 cpupart_t *pp; 1224 int error = 0; 1225 cpu_t *ncp; 1226 int intr_enable; 1227 int cyclic_off = 0; 1228 int loop_count; 1229 int no_quiesce = 0; 1230 int (*bound_func)(struct cpu *, int); 1231 kthread_t *t; 1232 lpl_t *cpu_lpl; 1233 proc_t *p; 1234 int lgrp_diff_lpl; 1235 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1236 1237 ASSERT(MUTEX_HELD(&cpu_lock)); 1238 1239 /* 1240 * If we're going from faulted or spare to offline, just 1241 * clear these flags and update CPU state. 1242 */ 1243 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1244 if (cp->cpu_flags & CPU_FAULTED) { 1245 cp->cpu_flags &= ~CPU_FAULTED; 1246 mp_cpu_faulted_exit(cp); 1247 } 1248 cp->cpu_flags &= ~CPU_SPARE; 1249 cpu_set_state(cp); 1250 return (0); 1251 } 1252 1253 /* 1254 * Handle off-line request. 1255 */ 1256 pp = cp->cpu_part; 1257 /* 1258 * Don't offline last online CPU in partition 1259 */ 1260 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1261 return (EBUSY); 1262 /* 1263 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1264 * if we were asked to. 1265 */ 1266 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1267 if (error != 0) 1268 return (error); 1269 /* 1270 * We shouldn't be bound to this CPU ourselves. 1271 */ 1272 if (curthread->t_bound_cpu == cp) 1273 return (EBUSY); 1274 1275 /* 1276 * Tell interested parties that this CPU is going offline. 1277 */ 1278 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1279 1280 /* 1281 * Tell the PG subsystem that the CPU is leaving the partition 1282 */ 1283 pg_cpupart_out(cp, pp); 1284 1285 /* 1286 * Take the CPU out of interrupt participation so we won't find 1287 * bound kernel threads. If the architecture cannot completely 1288 * shut off interrupts on the CPU, don't quiesce it, but don't 1289 * run anything but interrupt thread... this is indicated by 1290 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1291 * off. 1292 */ 1293 intr_enable = cp->cpu_flags & CPU_ENABLE; 1294 if (intr_enable) 1295 no_quiesce = cpu_intr_disable(cp); 1296 1297 /* 1298 * Record that we are aiming to offline this cpu. This acts as 1299 * a barrier to further weak binding requests in thread_nomigrate 1300 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1301 * lean away from this cpu. Further strong bindings are already 1302 * avoided since we hold cpu_lock. Since threads that are set 1303 * runnable around now and others coming off the target cpu are 1304 * directed away from the target, existing strong and weak bindings 1305 * (especially the latter) to the target cpu stand maximum chance of 1306 * being able to unbind during the short delay loop below (if other 1307 * unbound threads compete they may not see cpu in time to unbind 1308 * even if they would do so immediately. 1309 */ 1310 cpu_inmotion = cp; 1311 membar_enter(); 1312 1313 /* 1314 * Check for kernel threads (strong or weak) bound to that CPU. 1315 * Strongly bound threads may not unbind, and we'll have to return 1316 * EBUSY. Weakly bound threads should always disappear - we've 1317 * stopped more weak binding with cpu_inmotion and existing 1318 * bindings will drain imminently (they may not block). Nonetheless 1319 * we will wait for a fixed period for all bound threads to disappear. 1320 * Inactive interrupt threads are OK (they'll be in TS_FREE 1321 * state). If test finds some bound threads, wait a few ticks 1322 * to give short-lived threads (such as interrupts) chance to 1323 * complete. Note that if no_quiesce is set, i.e. this cpu 1324 * is required to service interrupts, then we take the route 1325 * that permits interrupt threads to be active (or bypassed). 1326 */ 1327 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1328 1329 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1330 if (loop_count >= 5) { 1331 error = EBUSY; /* some threads still bound */ 1332 break; 1333 } 1334 1335 /* 1336 * If some threads were assigned, give them 1337 * a chance to complete or move. 1338 * 1339 * This assumes that the clock_thread is not bound 1340 * to any CPU, because the clock_thread is needed to 1341 * do the delay(hz/100). 1342 * 1343 * Note: we still hold the cpu_lock while waiting for 1344 * the next clock tick. This is OK since it isn't 1345 * needed for anything else except processor_bind(2), 1346 * and system initialization. If we drop the lock, 1347 * we would risk another p_online disabling the last 1348 * processor. 1349 */ 1350 delay(hz/100); 1351 } 1352 1353 if (error == 0 && cyclic_off == 0) { 1354 if (!cyclic_offline(cp)) { 1355 /* 1356 * We must have bound cyclics... 1357 */ 1358 error = EBUSY; 1359 goto out; 1360 } 1361 cyclic_off = 1; 1362 } 1363 1364 /* 1365 * Call mp_cpu_stop() to perform any special operations 1366 * needed for this machine architecture to offline a CPU. 1367 */ 1368 if (error == 0) 1369 error = mp_cpu_stop(cp); /* arch-dep hook */ 1370 1371 /* 1372 * If that all worked, take the CPU offline and decrement 1373 * ncpus_online. 1374 */ 1375 if (error == 0) { 1376 /* 1377 * Put all the cpus into a known safe place. 1378 * No mutexes can be entered while CPUs are paused. 1379 */ 1380 pause_cpus(cp); 1381 /* 1382 * Repeat the operation, if necessary, to make sure that 1383 * all outstanding low-level interrupts run to completion 1384 * before we set the CPU_QUIESCED flag. It's also possible 1385 * that a thread has weak bound to the cpu despite our raising 1386 * cpu_inmotion above since it may have loaded that 1387 * value before the barrier became visible (this would have 1388 * to be the thread that was on the target cpu at the time 1389 * we raised the barrier). 1390 */ 1391 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1392 (*bound_func)(cp, 1)) { 1393 start_cpus(); 1394 (void) mp_cpu_start(cp); 1395 goto again; 1396 } 1397 ncp = cp->cpu_next_part; 1398 cpu_lpl = cp->cpu_lpl; 1399 ASSERT(cpu_lpl != NULL); 1400 1401 /* 1402 * Remove the CPU from the list of active CPUs. 1403 */ 1404 cpu_remove_active(cp); 1405 1406 /* 1407 * Walk the active process list and look for threads 1408 * whose home lgroup needs to be updated, or 1409 * the last CPU they run on is the one being offlined now. 1410 */ 1411 1412 ASSERT(curthread->t_cpu != cp); 1413 for (p = practive; p != NULL; p = p->p_next) { 1414 1415 t = p->p_tlist; 1416 1417 if (t == NULL) 1418 continue; 1419 1420 lgrp_diff_lpl = 0; 1421 1422 do { 1423 ASSERT(t->t_lpl != NULL); 1424 /* 1425 * Taking last CPU in lpl offline 1426 * Rehome thread if it is in this lpl 1427 * Otherwise, update the count of how many 1428 * threads are in this CPU's lgroup but have 1429 * a different lpl. 1430 */ 1431 1432 if (cpu_lpl->lpl_ncpu == 0) { 1433 if (t->t_lpl == cpu_lpl) 1434 lgrp_move_thread(t, 1435 lgrp_choose(t, 1436 t->t_cpupart), 0); 1437 else if (t->t_lpl->lpl_lgrpid == 1438 cpu_lpl->lpl_lgrpid) 1439 lgrp_diff_lpl++; 1440 } 1441 ASSERT(t->t_lpl->lpl_ncpu > 0); 1442 1443 /* 1444 * Update CPU last ran on if it was this CPU 1445 */ 1446 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1447 t->t_cpu = disp_lowpri_cpu(ncp, 1448 t->t_lpl, t->t_pri, NULL); 1449 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1450 t->t_weakbound_cpu == cp); 1451 1452 t = t->t_forw; 1453 } while (t != p->p_tlist); 1454 1455 /* 1456 * Didn't find any threads in the same lgroup as this 1457 * CPU with a different lpl, so remove the lgroup from 1458 * the process lgroup bitmask. 1459 */ 1460 1461 if (lgrp_diff_lpl == 0) 1462 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1463 } 1464 1465 /* 1466 * Walk thread list looking for threads that need to be 1467 * rehomed, since there are some threads that are not in 1468 * their process's p_tlist. 1469 */ 1470 1471 t = curthread; 1472 do { 1473 ASSERT(t != NULL && t->t_lpl != NULL); 1474 1475 /* 1476 * Rehome threads with same lpl as this CPU when this 1477 * is the last CPU in the lpl. 1478 */ 1479 1480 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1481 lgrp_move_thread(t, 1482 lgrp_choose(t, t->t_cpupart), 1); 1483 1484 ASSERT(t->t_lpl->lpl_ncpu > 0); 1485 1486 /* 1487 * Update CPU last ran on if it was this CPU 1488 */ 1489 1490 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1491 t->t_cpu = disp_lowpri_cpu(ncp, 1492 t->t_lpl, t->t_pri, NULL); 1493 } 1494 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1495 t->t_weakbound_cpu == cp); 1496 t = t->t_next; 1497 1498 } while (t != curthread); 1499 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1500 cp->cpu_flags |= CPU_OFFLINE; 1501 disp_cpu_inactive(cp); 1502 if (!no_quiesce) 1503 cp->cpu_flags |= CPU_QUIESCED; 1504 ncpus_online--; 1505 cpu_set_state(cp); 1506 cpu_inmotion = NULL; 1507 start_cpus(); 1508 cpu_stats_kstat_destroy(cp); 1509 cpu_delete_intrstat(cp); 1510 lgrp_kstat_destroy(cp); 1511 } 1512 1513 out: 1514 cpu_inmotion = NULL; 1515 1516 /* 1517 * If we failed, re-enable interrupts. 1518 * Do this even if cpu_intr_disable returned an error, because 1519 * it may have partially disabled interrupts. 1520 */ 1521 if (error && intr_enable) 1522 cpu_intr_enable(cp); 1523 1524 /* 1525 * If we failed, but managed to offline the cyclic subsystem on this 1526 * CPU, bring it back online. 1527 */ 1528 if (error && cyclic_off) 1529 cyclic_online(cp); 1530 1531 /* 1532 * If we failed, tell the PG subsystem that the CPU is back 1533 */ 1534 pg_cpupart_in(cp, pp); 1535 1536 /* 1537 * If we failed, we need to notify everyone that this CPU is back on. 1538 */ 1539 if (error != 0) 1540 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1541 1542 return (error); 1543 } 1544 1545 /* 1546 * Mark the indicated CPU as faulted, taking it offline. 1547 */ 1548 int 1549 cpu_faulted(cpu_t *cp, int flags) 1550 { 1551 int error = 0; 1552 1553 ASSERT(MUTEX_HELD(&cpu_lock)); 1554 ASSERT(!cpu_is_poweredoff(cp)); 1555 1556 if (cpu_is_offline(cp)) { 1557 cp->cpu_flags &= ~CPU_SPARE; 1558 cp->cpu_flags |= CPU_FAULTED; 1559 mp_cpu_faulted_enter(cp); 1560 cpu_set_state(cp); 1561 return (0); 1562 } 1563 1564 if ((error = cpu_offline(cp, flags)) == 0) { 1565 cp->cpu_flags |= CPU_FAULTED; 1566 mp_cpu_faulted_enter(cp); 1567 cpu_set_state(cp); 1568 } 1569 1570 return (error); 1571 } 1572 1573 /* 1574 * Mark the indicated CPU as a spare, taking it offline. 1575 */ 1576 int 1577 cpu_spare(cpu_t *cp, int flags) 1578 { 1579 int error = 0; 1580 1581 ASSERT(MUTEX_HELD(&cpu_lock)); 1582 ASSERT(!cpu_is_poweredoff(cp)); 1583 1584 if (cpu_is_offline(cp)) { 1585 if (cp->cpu_flags & CPU_FAULTED) { 1586 cp->cpu_flags &= ~CPU_FAULTED; 1587 mp_cpu_faulted_exit(cp); 1588 } 1589 cp->cpu_flags |= CPU_SPARE; 1590 cpu_set_state(cp); 1591 return (0); 1592 } 1593 1594 if ((error = cpu_offline(cp, flags)) == 0) { 1595 cp->cpu_flags |= CPU_SPARE; 1596 cpu_set_state(cp); 1597 } 1598 1599 return (error); 1600 } 1601 1602 /* 1603 * Take the indicated CPU from poweroff to offline. 1604 */ 1605 int 1606 cpu_poweron(cpu_t *cp) 1607 { 1608 int error = ENOTSUP; 1609 1610 ASSERT(MUTEX_HELD(&cpu_lock)); 1611 ASSERT(cpu_is_poweredoff(cp)); 1612 1613 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1614 if (error == 0) 1615 cpu_set_state(cp); 1616 1617 return (error); 1618 } 1619 1620 /* 1621 * Take the indicated CPU from any inactive state to powered off. 1622 */ 1623 int 1624 cpu_poweroff(cpu_t *cp) 1625 { 1626 int error = ENOTSUP; 1627 1628 ASSERT(MUTEX_HELD(&cpu_lock)); 1629 ASSERT(cpu_is_offline(cp)); 1630 1631 if (!(cp->cpu_flags & CPU_QUIESCED)) 1632 return (EBUSY); /* not completely idle */ 1633 1634 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1635 if (error == 0) 1636 cpu_set_state(cp); 1637 1638 return (error); 1639 } 1640 1641 /* 1642 * Initialize the CPU lists for the first CPU. 1643 */ 1644 void 1645 cpu_list_init(cpu_t *cp) 1646 { 1647 cp->cpu_next = cp; 1648 cp->cpu_prev = cp; 1649 cpu_list = cp; 1650 clock_cpu_list = cp; 1651 1652 cp->cpu_next_onln = cp; 1653 cp->cpu_prev_onln = cp; 1654 cpu_active = cp; 1655 1656 cp->cpu_seqid = 0; 1657 CPUSET_ADD(cpu_seqid_inuse, 0); 1658 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1659 cp_default.cp_mach = &cp_default_mach; 1660 cp_default.cp_cpulist = cp; 1661 cp_default.cp_ncpus = 1; 1662 cp->cpu_next_part = cp; 1663 cp->cpu_prev_part = cp; 1664 cp->cpu_part = &cp_default; 1665 1666 CPUSET_ADD(cpu_available, cp->cpu_id); 1667 } 1668 1669 /* 1670 * Insert a CPU into the list of available CPUs. 1671 */ 1672 void 1673 cpu_add_unit(cpu_t *cp) 1674 { 1675 int seqid; 1676 1677 ASSERT(MUTEX_HELD(&cpu_lock)); 1678 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1679 1680 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1681 1682 /* 1683 * Note: most users of the cpu_list will grab the 1684 * cpu_lock to insure that it isn't modified. However, 1685 * certain users can't or won't do that. To allow this 1686 * we pause the other cpus. Users who walk the list 1687 * without cpu_lock, must disable kernel preemption 1688 * to insure that the list isn't modified underneath 1689 * them. Also, any cached pointers to cpu structures 1690 * must be revalidated by checking to see if the 1691 * cpu_next pointer points to itself. This check must 1692 * be done with the cpu_lock held or kernel preemption 1693 * disabled. This check relies upon the fact that 1694 * old cpu structures are not free'ed or cleared after 1695 * then are removed from the cpu_list. 1696 * 1697 * Note that the clock code walks the cpu list dereferencing 1698 * the cpu_part pointer, so we need to initialize it before 1699 * adding the cpu to the list. 1700 */ 1701 cp->cpu_part = &cp_default; 1702 (void) pause_cpus(NULL); 1703 cp->cpu_next = cpu_list; 1704 cp->cpu_prev = cpu_list->cpu_prev; 1705 cpu_list->cpu_prev->cpu_next = cp; 1706 cpu_list->cpu_prev = cp; 1707 start_cpus(); 1708 1709 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1710 continue; 1711 CPUSET_ADD(cpu_seqid_inuse, seqid); 1712 cp->cpu_seqid = seqid; 1713 ASSERT(ncpus < max_ncpus); 1714 ncpus++; 1715 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1716 cpu[cp->cpu_id] = cp; 1717 CPUSET_ADD(cpu_available, cp->cpu_id); 1718 1719 /* 1720 * allocate a pause thread for this CPU. 1721 */ 1722 cpu_pause_alloc(cp); 1723 1724 /* 1725 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1726 * link them into a list of just that CPU. 1727 * This is so that disp_lowpri_cpu will work for thread_create in 1728 * pause_cpus() when called from the startup thread in a new CPU. 1729 */ 1730 cp->cpu_next_onln = cp; 1731 cp->cpu_prev_onln = cp; 1732 cpu_info_kstat_create(cp); 1733 cp->cpu_next_part = cp; 1734 cp->cpu_prev_part = cp; 1735 1736 init_cpu_mstate(cp, CMS_SYSTEM); 1737 1738 pool_pset_mod = gethrtime(); 1739 } 1740 1741 /* 1742 * Do the opposite of cpu_add_unit(). 1743 */ 1744 void 1745 cpu_del_unit(int cpuid) 1746 { 1747 struct cpu *cp, *cpnext; 1748 1749 ASSERT(MUTEX_HELD(&cpu_lock)); 1750 cp = cpu[cpuid]; 1751 ASSERT(cp != NULL); 1752 1753 ASSERT(cp->cpu_next_onln == cp); 1754 ASSERT(cp->cpu_prev_onln == cp); 1755 ASSERT(cp->cpu_next_part == cp); 1756 ASSERT(cp->cpu_prev_part == cp); 1757 1758 /* 1759 * Tear down the CPU's physical ID cache, and update any 1760 * processor groups 1761 */ 1762 pg_cpu_fini(cp); 1763 pghw_physid_destroy(cp); 1764 1765 /* 1766 * Destroy kstat stuff. 1767 */ 1768 cpu_info_kstat_destroy(cp); 1769 term_cpu_mstate(cp); 1770 /* 1771 * Free up pause thread. 1772 */ 1773 cpu_pause_free(cp); 1774 CPUSET_DEL(cpu_available, cp->cpu_id); 1775 cpu[cp->cpu_id] = NULL; 1776 /* 1777 * The clock thread and mutex_vector_enter cannot hold the 1778 * cpu_lock while traversing the cpu list, therefore we pause 1779 * all other threads by pausing the other cpus. These, and any 1780 * other routines holding cpu pointers while possibly sleeping 1781 * must be sure to call kpreempt_disable before processing the 1782 * list and be sure to check that the cpu has not been deleted 1783 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1784 * to keep the deleted cpu structure around. 1785 * 1786 * Note that this MUST be done AFTER cpu_available 1787 * has been updated so that we don't waste time 1788 * trying to pause the cpu we're trying to delete. 1789 */ 1790 (void) pause_cpus(NULL); 1791 1792 cpnext = cp->cpu_next; 1793 cp->cpu_prev->cpu_next = cp->cpu_next; 1794 cp->cpu_next->cpu_prev = cp->cpu_prev; 1795 if (cp == cpu_list) 1796 cpu_list = cpnext; 1797 1798 /* 1799 * Signals that the cpu has been deleted (see above). 1800 */ 1801 cp->cpu_next = NULL; 1802 cp->cpu_prev = NULL; 1803 1804 start_cpus(); 1805 1806 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1807 ncpus--; 1808 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1809 1810 pool_pset_mod = gethrtime(); 1811 } 1812 1813 /* 1814 * Add a CPU to the list of active CPUs. 1815 * This routine must not get any locks, because other CPUs are paused. 1816 */ 1817 static void 1818 cpu_add_active_internal(cpu_t *cp) 1819 { 1820 cpupart_t *pp = cp->cpu_part; 1821 1822 ASSERT(MUTEX_HELD(&cpu_lock)); 1823 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1824 1825 ncpus_online++; 1826 cpu_set_state(cp); 1827 cp->cpu_next_onln = cpu_active; 1828 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1829 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1830 cpu_active->cpu_prev_onln = cp; 1831 1832 if (pp->cp_cpulist) { 1833 cp->cpu_next_part = pp->cp_cpulist; 1834 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1835 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1836 pp->cp_cpulist->cpu_prev_part = cp; 1837 } else { 1838 ASSERT(pp->cp_ncpus == 0); 1839 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1840 } 1841 pp->cp_ncpus++; 1842 if (pp->cp_ncpus == 1) { 1843 cp_numparts_nonempty++; 1844 ASSERT(cp_numparts_nonempty != 0); 1845 } 1846 1847 pg_cpu_active(cp); 1848 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1849 1850 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1851 } 1852 1853 /* 1854 * Add a CPU to the list of active CPUs. 1855 * This is called from machine-dependent layers when a new CPU is started. 1856 */ 1857 void 1858 cpu_add_active(cpu_t *cp) 1859 { 1860 pg_cpupart_in(cp, cp->cpu_part); 1861 1862 pause_cpus(NULL); 1863 cpu_add_active_internal(cp); 1864 start_cpus(); 1865 1866 cpu_stats_kstat_create(cp); 1867 cpu_create_intrstat(cp); 1868 lgrp_kstat_create(cp); 1869 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1870 } 1871 1872 1873 /* 1874 * Remove a CPU from the list of active CPUs. 1875 * This routine must not get any locks, because other CPUs are paused. 1876 */ 1877 /* ARGSUSED */ 1878 static void 1879 cpu_remove_active(cpu_t *cp) 1880 { 1881 cpupart_t *pp = cp->cpu_part; 1882 1883 ASSERT(MUTEX_HELD(&cpu_lock)); 1884 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1885 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1886 1887 pg_cpu_inactive(cp); 1888 1889 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1890 1891 if (cp == clock_cpu_list) 1892 clock_cpu_list = cp->cpu_next_onln; 1893 1894 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1895 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1896 if (cpu_active == cp) { 1897 cpu_active = cp->cpu_next_onln; 1898 } 1899 cp->cpu_next_onln = cp; 1900 cp->cpu_prev_onln = cp; 1901 1902 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1903 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1904 if (pp->cp_cpulist == cp) { 1905 pp->cp_cpulist = cp->cpu_next_part; 1906 ASSERT(pp->cp_cpulist != cp); 1907 } 1908 cp->cpu_next_part = cp; 1909 cp->cpu_prev_part = cp; 1910 pp->cp_ncpus--; 1911 if (pp->cp_ncpus == 0) { 1912 cp_numparts_nonempty--; 1913 ASSERT(cp_numparts_nonempty != 0); 1914 } 1915 } 1916 1917 /* 1918 * Routine used to setup a newly inserted CPU in preparation for starting 1919 * it running code. 1920 */ 1921 int 1922 cpu_configure(int cpuid) 1923 { 1924 int retval = 0; 1925 1926 ASSERT(MUTEX_HELD(&cpu_lock)); 1927 1928 /* 1929 * Some structures are statically allocated based upon 1930 * the maximum number of cpus the system supports. Do not 1931 * try to add anything beyond this limit. 1932 */ 1933 if (cpuid < 0 || cpuid >= NCPU) { 1934 return (EINVAL); 1935 } 1936 1937 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1938 return (EALREADY); 1939 } 1940 1941 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1942 return (retval); 1943 } 1944 1945 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1946 cpu_set_state(cpu[cpuid]); 1947 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1948 if (retval != 0) 1949 (void) mp_cpu_unconfigure(cpuid); 1950 1951 return (retval); 1952 } 1953 1954 /* 1955 * Routine used to cleanup a CPU that has been powered off. This will 1956 * destroy all per-cpu information related to this cpu. 1957 */ 1958 int 1959 cpu_unconfigure(int cpuid) 1960 { 1961 int error; 1962 1963 ASSERT(MUTEX_HELD(&cpu_lock)); 1964 1965 if (cpu[cpuid] == NULL) { 1966 return (ENODEV); 1967 } 1968 1969 if (cpu[cpuid]->cpu_flags == 0) { 1970 return (EALREADY); 1971 } 1972 1973 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1974 return (EBUSY); 1975 } 1976 1977 if (cpu[cpuid]->cpu_props != NULL) { 1978 (void) nvlist_free(cpu[cpuid]->cpu_props); 1979 cpu[cpuid]->cpu_props = NULL; 1980 } 1981 1982 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1983 1984 if (error != 0) 1985 return (error); 1986 1987 return (mp_cpu_unconfigure(cpuid)); 1988 } 1989 1990 /* 1991 * Routines for registering and de-registering cpu_setup callback functions. 1992 * 1993 * Caller's context 1994 * These routines must not be called from a driver's attach(9E) or 1995 * detach(9E) entry point. 1996 * 1997 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1998 */ 1999 2000 /* 2001 * Ideally, these would be dynamically allocated and put into a linked 2002 * list; however that is not feasible because the registration routine 2003 * has to be available before the kmem allocator is working (in fact, 2004 * it is called by the kmem allocator init code). In any case, there 2005 * are quite a few extra entries for future users. 2006 */ 2007 #define NCPU_SETUPS 20 2008 2009 struct cpu_setup { 2010 cpu_setup_func_t *func; 2011 void *arg; 2012 } cpu_setups[NCPU_SETUPS]; 2013 2014 void 2015 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2016 { 2017 int i; 2018 2019 ASSERT(MUTEX_HELD(&cpu_lock)); 2020 2021 for (i = 0; i < NCPU_SETUPS; i++) 2022 if (cpu_setups[i].func == NULL) 2023 break; 2024 if (i >= NCPU_SETUPS) 2025 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2026 2027 cpu_setups[i].func = func; 2028 cpu_setups[i].arg = arg; 2029 } 2030 2031 void 2032 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2033 { 2034 int i; 2035 2036 ASSERT(MUTEX_HELD(&cpu_lock)); 2037 2038 for (i = 0; i < NCPU_SETUPS; i++) 2039 if ((cpu_setups[i].func == func) && 2040 (cpu_setups[i].arg == arg)) 2041 break; 2042 if (i >= NCPU_SETUPS) 2043 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2044 "deregister"); 2045 2046 cpu_setups[i].func = NULL; 2047 cpu_setups[i].arg = 0; 2048 } 2049 2050 /* 2051 * Call any state change hooks for this CPU, ignore any errors. 2052 */ 2053 void 2054 cpu_state_change_notify(int id, cpu_setup_t what) 2055 { 2056 int i; 2057 2058 ASSERT(MUTEX_HELD(&cpu_lock)); 2059 2060 for (i = 0; i < NCPU_SETUPS; i++) { 2061 if (cpu_setups[i].func != NULL) { 2062 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2063 } 2064 } 2065 } 2066 2067 /* 2068 * Call any state change hooks for this CPU, undo it if error found. 2069 */ 2070 static int 2071 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2072 { 2073 int i; 2074 int retval = 0; 2075 2076 ASSERT(MUTEX_HELD(&cpu_lock)); 2077 2078 for (i = 0; i < NCPU_SETUPS; i++) { 2079 if (cpu_setups[i].func != NULL) { 2080 retval = cpu_setups[i].func(what, id, 2081 cpu_setups[i].arg); 2082 if (retval) { 2083 for (i--; i >= 0; i--) { 2084 if (cpu_setups[i].func != NULL) 2085 cpu_setups[i].func(undo, 2086 id, cpu_setups[i].arg); 2087 } 2088 break; 2089 } 2090 } 2091 } 2092 return (retval); 2093 } 2094 2095 /* 2096 * Export information about this CPU via the kstat mechanism. 2097 */ 2098 static struct { 2099 kstat_named_t ci_state; 2100 kstat_named_t ci_state_begin; 2101 kstat_named_t ci_cpu_type; 2102 kstat_named_t ci_fpu_type; 2103 kstat_named_t ci_clock_MHz; 2104 kstat_named_t ci_chip_id; 2105 kstat_named_t ci_implementation; 2106 kstat_named_t ci_brandstr; 2107 kstat_named_t ci_core_id; 2108 kstat_named_t ci_curr_clock_Hz; 2109 kstat_named_t ci_supp_freq_Hz; 2110 #if defined(__sparcv9) 2111 kstat_named_t ci_device_ID; 2112 kstat_named_t ci_cpu_fru; 2113 #endif 2114 #if defined(__x86) 2115 kstat_named_t ci_vendorstr; 2116 kstat_named_t ci_family; 2117 kstat_named_t ci_model; 2118 kstat_named_t ci_step; 2119 kstat_named_t ci_clogid; 2120 kstat_named_t ci_pkg_core_id; 2121 kstat_named_t ci_ncpuperchip; 2122 kstat_named_t ci_ncoreperchip; 2123 #endif 2124 } cpu_info_template = { 2125 { "state", KSTAT_DATA_CHAR }, 2126 { "state_begin", KSTAT_DATA_LONG }, 2127 { "cpu_type", KSTAT_DATA_CHAR }, 2128 { "fpu_type", KSTAT_DATA_CHAR }, 2129 { "clock_MHz", KSTAT_DATA_LONG }, 2130 { "chip_id", KSTAT_DATA_LONG }, 2131 { "implementation", KSTAT_DATA_STRING }, 2132 { "brand", KSTAT_DATA_STRING }, 2133 { "core_id", KSTAT_DATA_LONG }, 2134 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2135 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2136 #if defined(__sparcv9) 2137 { "device_ID", KSTAT_DATA_UINT64 }, 2138 { "cpu_fru", KSTAT_DATA_STRING }, 2139 #endif 2140 #if defined(__x86) 2141 { "vendor_id", KSTAT_DATA_STRING }, 2142 { "family", KSTAT_DATA_INT32 }, 2143 { "model", KSTAT_DATA_INT32 }, 2144 { "stepping", KSTAT_DATA_INT32 }, 2145 { "clog_id", KSTAT_DATA_INT32 }, 2146 { "pkg_core_id", KSTAT_DATA_LONG }, 2147 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2148 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2149 #endif 2150 }; 2151 2152 static kmutex_t cpu_info_template_lock; 2153 2154 static int 2155 cpu_info_kstat_update(kstat_t *ksp, int rw) 2156 { 2157 cpu_t *cp = ksp->ks_private; 2158 const char *pi_state; 2159 2160 if (rw == KSTAT_WRITE) 2161 return (EACCES); 2162 2163 switch (cp->cpu_type_info.pi_state) { 2164 case P_ONLINE: 2165 pi_state = PS_ONLINE; 2166 break; 2167 case P_POWEROFF: 2168 pi_state = PS_POWEROFF; 2169 break; 2170 case P_NOINTR: 2171 pi_state = PS_NOINTR; 2172 break; 2173 case P_FAULTED: 2174 pi_state = PS_FAULTED; 2175 break; 2176 case P_SPARE: 2177 pi_state = PS_SPARE; 2178 break; 2179 case P_OFFLINE: 2180 pi_state = PS_OFFLINE; 2181 break; 2182 default: 2183 pi_state = "unknown"; 2184 } 2185 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2186 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2187 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2188 cp->cpu_type_info.pi_processor_type, 15); 2189 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2190 cp->cpu_type_info.pi_fputypes, 15); 2191 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2192 cpu_info_template.ci_chip_id.value.l = 2193 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2194 kstat_named_setstr(&cpu_info_template.ci_implementation, 2195 cp->cpu_idstr); 2196 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2197 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2198 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2199 cp->cpu_curr_clock; 2200 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2201 cp->cpu_supp_freqs); 2202 #if defined(__sparcv9) 2203 cpu_info_template.ci_device_ID.value.ui64 = 2204 cpunodes[cp->cpu_id].device_id; 2205 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2206 #endif 2207 #if defined(__x86) 2208 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2209 cpuid_getvendorstr(cp)); 2210 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2211 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2212 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2213 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2214 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2215 cpu_info_template.ci_ncoreperchip.value.l = 2216 cpuid_get_ncore_per_chip(cp); 2217 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2218 #endif 2219 2220 return (0); 2221 } 2222 2223 static void 2224 cpu_info_kstat_create(cpu_t *cp) 2225 { 2226 zoneid_t zoneid; 2227 2228 ASSERT(MUTEX_HELD(&cpu_lock)); 2229 2230 if (pool_pset_enabled()) 2231 zoneid = GLOBAL_ZONEID; 2232 else 2233 zoneid = ALL_ZONES; 2234 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2235 NULL, "misc", KSTAT_TYPE_NAMED, 2236 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2237 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2238 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2239 #if defined(__sparcv9) 2240 cp->cpu_info_kstat->ks_data_size += 2241 strlen(cpu_fru_fmri(cp)) + 1; 2242 #endif 2243 #if defined(__x86) 2244 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2245 #endif 2246 if (cp->cpu_supp_freqs != NULL) 2247 cp->cpu_info_kstat->ks_data_size += 2248 strlen(cp->cpu_supp_freqs) + 1; 2249 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2250 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2251 cp->cpu_info_kstat->ks_private = cp; 2252 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2253 kstat_install(cp->cpu_info_kstat); 2254 } 2255 } 2256 2257 static void 2258 cpu_info_kstat_destroy(cpu_t *cp) 2259 { 2260 ASSERT(MUTEX_HELD(&cpu_lock)); 2261 2262 kstat_delete(cp->cpu_info_kstat); 2263 cp->cpu_info_kstat = NULL; 2264 } 2265 2266 /* 2267 * Create and install kstats for the boot CPU. 2268 */ 2269 void 2270 cpu_kstat_init(cpu_t *cp) 2271 { 2272 mutex_enter(&cpu_lock); 2273 cpu_info_kstat_create(cp); 2274 cpu_stats_kstat_create(cp); 2275 cpu_create_intrstat(cp); 2276 cpu_set_state(cp); 2277 mutex_exit(&cpu_lock); 2278 } 2279 2280 /* 2281 * Make visible to the zone that subset of the cpu information that would be 2282 * initialized when a cpu is configured (but still offline). 2283 */ 2284 void 2285 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2286 { 2287 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2288 2289 ASSERT(MUTEX_HELD(&cpu_lock)); 2290 ASSERT(pool_pset_enabled()); 2291 ASSERT(cp != NULL); 2292 2293 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2294 zone->zone_ncpus++; 2295 ASSERT(zone->zone_ncpus <= ncpus); 2296 } 2297 if (cp->cpu_info_kstat != NULL) 2298 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2299 } 2300 2301 /* 2302 * Make visible to the zone that subset of the cpu information that would be 2303 * initialized when a previously configured cpu is onlined. 2304 */ 2305 void 2306 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2307 { 2308 kstat_t *ksp; 2309 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2310 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2311 processorid_t cpun; 2312 2313 ASSERT(MUTEX_HELD(&cpu_lock)); 2314 ASSERT(pool_pset_enabled()); 2315 ASSERT(cp != NULL); 2316 ASSERT(cpu_is_active(cp)); 2317 2318 cpun = cp->cpu_id; 2319 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2320 zone->zone_ncpus_online++; 2321 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2322 } 2323 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2324 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2325 != NULL) { 2326 kstat_zone_add(ksp, zoneid); 2327 kstat_rele(ksp); 2328 } 2329 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2330 kstat_zone_add(ksp, zoneid); 2331 kstat_rele(ksp); 2332 } 2333 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2334 kstat_zone_add(ksp, zoneid); 2335 kstat_rele(ksp); 2336 } 2337 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2338 NULL) { 2339 kstat_zone_add(ksp, zoneid); 2340 kstat_rele(ksp); 2341 } 2342 } 2343 2344 /* 2345 * Update relevant kstats such that cpu is now visible to processes 2346 * executing in specified zone. 2347 */ 2348 void 2349 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2350 { 2351 cpu_visibility_configure(cp, zone); 2352 if (cpu_is_active(cp)) 2353 cpu_visibility_online(cp, zone); 2354 } 2355 2356 /* 2357 * Make invisible to the zone that subset of the cpu information that would be 2358 * torn down when a previously offlined cpu is unconfigured. 2359 */ 2360 void 2361 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2362 { 2363 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2364 2365 ASSERT(MUTEX_HELD(&cpu_lock)); 2366 ASSERT(pool_pset_enabled()); 2367 ASSERT(cp != NULL); 2368 2369 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2370 ASSERT(zone->zone_ncpus != 0); 2371 zone->zone_ncpus--; 2372 } 2373 if (cp->cpu_info_kstat) 2374 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2375 } 2376 2377 /* 2378 * Make invisible to the zone that subset of the cpu information that would be 2379 * torn down when a cpu is offlined (but still configured). 2380 */ 2381 void 2382 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2383 { 2384 kstat_t *ksp; 2385 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2386 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2387 processorid_t cpun; 2388 2389 ASSERT(MUTEX_HELD(&cpu_lock)); 2390 ASSERT(pool_pset_enabled()); 2391 ASSERT(cp != NULL); 2392 ASSERT(cpu_is_active(cp)); 2393 2394 cpun = cp->cpu_id; 2395 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2396 ASSERT(zone->zone_ncpus_online != 0); 2397 zone->zone_ncpus_online--; 2398 } 2399 2400 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2401 NULL) { 2402 kstat_zone_remove(ksp, zoneid); 2403 kstat_rele(ksp); 2404 } 2405 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2406 kstat_zone_remove(ksp, zoneid); 2407 kstat_rele(ksp); 2408 } 2409 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2410 kstat_zone_remove(ksp, zoneid); 2411 kstat_rele(ksp); 2412 } 2413 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2414 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2415 != NULL) { 2416 kstat_zone_remove(ksp, zoneid); 2417 kstat_rele(ksp); 2418 } 2419 } 2420 2421 /* 2422 * Update relevant kstats such that cpu is no longer visible to processes 2423 * executing in specified zone. 2424 */ 2425 void 2426 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2427 { 2428 if (cpu_is_active(cp)) 2429 cpu_visibility_offline(cp, zone); 2430 cpu_visibility_unconfigure(cp, zone); 2431 } 2432 2433 /* 2434 * Bind a thread to a CPU as requested. 2435 */ 2436 int 2437 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2438 int *error) 2439 { 2440 processorid_t binding; 2441 cpu_t *cp = NULL; 2442 2443 ASSERT(MUTEX_HELD(&cpu_lock)); 2444 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2445 2446 thread_lock(tp); 2447 2448 /* 2449 * Record old binding, but change the obind, which was initialized 2450 * to PBIND_NONE, only if this thread has a binding. This avoids 2451 * reporting PBIND_NONE for a process when some LWPs are bound. 2452 */ 2453 binding = tp->t_bind_cpu; 2454 2455 switch (bind) { 2456 case PBIND_QUERY: 2457 /* Just return the old binding */ 2458 *obind = binding; 2459 thread_unlock(tp); 2460 return (0); 2461 2462 case PBIND_QUERY_TYPE: 2463 /* Return the binding type */ 2464 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2465 thread_unlock(tp); 2466 return (0); 2467 2468 case PBIND_SOFT: 2469 /* 2470 * Set soft binding for this thread and return the actual 2471 * binding 2472 */ 2473 TB_CPU_SOFT_SET(tp); 2474 *obind = binding; 2475 thread_unlock(tp); 2476 return (0); 2477 2478 case PBIND_HARD: 2479 /* 2480 * Set hard binding for this thread and return the actual 2481 * binding 2482 */ 2483 TB_CPU_HARD_SET(tp); 2484 *obind = binding; 2485 thread_unlock(tp); 2486 return (0); 2487 2488 case PBIND_NONE: 2489 break; 2490 2491 default: 2492 /* record old binding */ 2493 *obind = binding; 2494 break; 2495 } 2496 2497 /* 2498 * If this thread/LWP cannot be bound because of permission 2499 * problems, just note that and return success so that the 2500 * other threads/LWPs will be bound. This is the way 2501 * processor_bind() is defined to work. 2502 * 2503 * Binding will get EPERM if the thread is of system class 2504 * or hasprocperm() fails. 2505 */ 2506 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2507 *error = EPERM; 2508 thread_unlock(tp); 2509 return (0); 2510 } 2511 2512 binding = bind; 2513 if (binding != PBIND_NONE) { 2514 cp = cpu_get((processorid_t)binding); 2515 /* 2516 * Make sure binding is valid and is in right partition. 2517 */ 2518 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2519 *error = EINVAL; 2520 thread_unlock(tp); 2521 return (0); 2522 } 2523 } 2524 tp->t_bind_cpu = binding; /* set new binding */ 2525 2526 /* 2527 * If there is no system-set reason for affinity, set 2528 * the t_bound_cpu field to reflect the binding. 2529 */ 2530 if (tp->t_affinitycnt == 0) { 2531 if (binding == PBIND_NONE) { 2532 /* 2533 * We may need to adjust disp_max_unbound_pri 2534 * since we're becoming unbound. 2535 */ 2536 disp_adjust_unbound_pri(tp); 2537 2538 tp->t_bound_cpu = NULL; /* set new binding */ 2539 2540 /* 2541 * Move thread to lgroup with strongest affinity 2542 * after unbinding 2543 */ 2544 if (tp->t_lgrp_affinity) 2545 lgrp_move_thread(tp, 2546 lgrp_choose(tp, tp->t_cpupart), 1); 2547 2548 if (tp->t_state == TS_ONPROC && 2549 tp->t_cpu->cpu_part != tp->t_cpupart) 2550 cpu_surrender(tp); 2551 } else { 2552 lpl_t *lpl; 2553 2554 tp->t_bound_cpu = cp; 2555 ASSERT(cp->cpu_lpl != NULL); 2556 2557 /* 2558 * Set home to lgroup with most affinity containing CPU 2559 * that thread is being bound or minimum bounding 2560 * lgroup if no affinities set 2561 */ 2562 if (tp->t_lgrp_affinity) 2563 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2564 LGRP_NONE, B_FALSE); 2565 else 2566 lpl = cp->cpu_lpl; 2567 2568 if (tp->t_lpl != lpl) { 2569 /* can't grab cpu_lock */ 2570 lgrp_move_thread(tp, lpl, 1); 2571 } 2572 2573 /* 2574 * Make the thread switch to the bound CPU. 2575 * If the thread is runnable, we need to 2576 * requeue it even if t_cpu is already set 2577 * to the right CPU, since it may be on a 2578 * kpreempt queue and need to move to a local 2579 * queue. We could check t_disp_queue to 2580 * avoid unnecessary overhead if it's already 2581 * on the right queue, but since this isn't 2582 * a performance-critical operation it doesn't 2583 * seem worth the extra code and complexity. 2584 * 2585 * If the thread is weakbound to the cpu then it will 2586 * resist the new binding request until the weak 2587 * binding drops. The cpu_surrender or requeueing 2588 * below could be skipped in such cases (since it 2589 * will have no effect), but that would require 2590 * thread_allowmigrate to acquire thread_lock so 2591 * we'll take the very occasional hit here instead. 2592 */ 2593 if (tp->t_state == TS_ONPROC) { 2594 cpu_surrender(tp); 2595 } else if (tp->t_state == TS_RUN) { 2596 cpu_t *ocp = tp->t_cpu; 2597 2598 (void) dispdeq(tp); 2599 setbackdq(tp); 2600 /* 2601 * Either on the bound CPU's disp queue now, 2602 * or swapped out or on the swap queue. 2603 */ 2604 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2605 tp->t_weakbound_cpu == ocp || 2606 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2607 != TS_LOAD); 2608 } 2609 } 2610 } 2611 2612 /* 2613 * Our binding has changed; set TP_CHANGEBIND. 2614 */ 2615 tp->t_proc_flag |= TP_CHANGEBIND; 2616 aston(tp); 2617 2618 thread_unlock(tp); 2619 2620 return (0); 2621 } 2622 2623 #if CPUSET_WORDS > 1 2624 2625 /* 2626 * Functions for implementing cpuset operations when a cpuset is more 2627 * than one word. On platforms where a cpuset is a single word these 2628 * are implemented as macros in cpuvar.h. 2629 */ 2630 2631 void 2632 cpuset_all(cpuset_t *s) 2633 { 2634 int i; 2635 2636 for (i = 0; i < CPUSET_WORDS; i++) 2637 s->cpub[i] = ~0UL; 2638 } 2639 2640 void 2641 cpuset_all_but(cpuset_t *s, uint_t cpu) 2642 { 2643 cpuset_all(s); 2644 CPUSET_DEL(*s, cpu); 2645 } 2646 2647 void 2648 cpuset_only(cpuset_t *s, uint_t cpu) 2649 { 2650 CPUSET_ZERO(*s); 2651 CPUSET_ADD(*s, cpu); 2652 } 2653 2654 int 2655 cpuset_isnull(cpuset_t *s) 2656 { 2657 int i; 2658 2659 for (i = 0; i < CPUSET_WORDS; i++) 2660 if (s->cpub[i] != 0) 2661 return (0); 2662 return (1); 2663 } 2664 2665 int 2666 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2667 { 2668 int i; 2669 2670 for (i = 0; i < CPUSET_WORDS; i++) 2671 if (s1->cpub[i] != s2->cpub[i]) 2672 return (0); 2673 return (1); 2674 } 2675 2676 uint_t 2677 cpuset_find(cpuset_t *s) 2678 { 2679 2680 uint_t i; 2681 uint_t cpu = (uint_t)-1; 2682 2683 /* 2684 * Find a cpu in the cpuset 2685 */ 2686 for (i = 0; i < CPUSET_WORDS; i++) { 2687 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2688 if (cpu != (uint_t)-1) { 2689 cpu += i * BT_NBIPUL; 2690 break; 2691 } 2692 } 2693 return (cpu); 2694 } 2695 2696 void 2697 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2698 { 2699 int i, j; 2700 uint_t bit; 2701 2702 /* 2703 * First, find the smallest cpu id in the set. 2704 */ 2705 for (i = 0; i < CPUSET_WORDS; i++) { 2706 if (s->cpub[i] != 0) { 2707 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2708 ASSERT(bit != (uint_t)-1); 2709 *smallestid = bit + (i * BT_NBIPUL); 2710 2711 /* 2712 * Now find the largest cpu id in 2713 * the set and return immediately. 2714 * Done in an inner loop to avoid 2715 * having to break out of the first 2716 * loop. 2717 */ 2718 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2719 if (s->cpub[j] != 0) { 2720 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2721 ASSERT(bit != (uint_t)-1); 2722 *largestid = bit + (j * BT_NBIPUL); 2723 ASSERT(*largestid >= *smallestid); 2724 return; 2725 } 2726 } 2727 2728 /* 2729 * If this code is reached, a 2730 * smallestid was found, but not a 2731 * largestid. The cpuset must have 2732 * been changed during the course 2733 * of this function call. 2734 */ 2735 ASSERT(0); 2736 } 2737 } 2738 *smallestid = *largestid = CPUSET_NOTINSET; 2739 } 2740 2741 #endif /* CPUSET_WORDS */ 2742 2743 /* 2744 * Unbind threads bound to specified CPU. 2745 * 2746 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2747 * CPU. Otherwise unbind all soft-bound user threads. 2748 */ 2749 int 2750 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2751 { 2752 processorid_t obind; 2753 kthread_t *tp; 2754 int ret = 0; 2755 proc_t *pp; 2756 int err, berr = 0; 2757 2758 ASSERT(MUTEX_HELD(&cpu_lock)); 2759 2760 mutex_enter(&pidlock); 2761 for (pp = practive; pp != NULL; pp = pp->p_next) { 2762 mutex_enter(&pp->p_lock); 2763 tp = pp->p_tlist; 2764 /* 2765 * Skip zombies, kernel processes, and processes in 2766 * other zones, if called from a non-global zone. 2767 */ 2768 if (tp == NULL || (pp->p_flag & SSYS) || 2769 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2770 mutex_exit(&pp->p_lock); 2771 continue; 2772 } 2773 do { 2774 if (tp->t_bind_cpu != cpu) 2775 continue; 2776 /* 2777 * Skip threads with hard binding when 2778 * `unbind_all_threads' is not specified. 2779 */ 2780 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2781 continue; 2782 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2783 if (ret == 0) 2784 ret = err; 2785 } while ((tp = tp->t_forw) != pp->p_tlist); 2786 mutex_exit(&pp->p_lock); 2787 } 2788 mutex_exit(&pidlock); 2789 if (ret == 0) 2790 ret = berr; 2791 return (ret); 2792 } 2793 2794 2795 /* 2796 * Destroy all remaining bound threads on a cpu. 2797 */ 2798 void 2799 cpu_destroy_bound_threads(cpu_t *cp) 2800 { 2801 extern id_t syscid; 2802 register kthread_id_t t, tlist, tnext; 2803 2804 /* 2805 * Destroy all remaining bound threads on the cpu. This 2806 * should include both the interrupt threads and the idle thread. 2807 * This requires some care, since we need to traverse the 2808 * thread list with the pidlock mutex locked, but thread_free 2809 * also locks the pidlock mutex. So, we collect the threads 2810 * we're going to reap in a list headed by "tlist", then we 2811 * unlock the pidlock mutex and traverse the tlist list, 2812 * doing thread_free's on the thread's. Simple, n'est pas? 2813 * Also, this depends on thread_free not mucking with the 2814 * t_next and t_prev links of the thread. 2815 */ 2816 2817 if ((t = curthread) != NULL) { 2818 2819 tlist = NULL; 2820 mutex_enter(&pidlock); 2821 do { 2822 tnext = t->t_next; 2823 if (t->t_bound_cpu == cp) { 2824 2825 /* 2826 * We've found a bound thread, carefully unlink 2827 * it out of the thread list, and add it to 2828 * our "tlist". We "know" we don't have to 2829 * worry about unlinking curthread (the thread 2830 * that is executing this code). 2831 */ 2832 t->t_next->t_prev = t->t_prev; 2833 t->t_prev->t_next = t->t_next; 2834 t->t_next = tlist; 2835 tlist = t; 2836 ASSERT(t->t_cid == syscid); 2837 /* wake up anyone blocked in thread_join */ 2838 cv_broadcast(&t->t_joincv); 2839 /* 2840 * t_lwp set by interrupt threads and not 2841 * cleared. 2842 */ 2843 t->t_lwp = NULL; 2844 /* 2845 * Pause and idle threads always have 2846 * t_state set to TS_ONPROC. 2847 */ 2848 t->t_state = TS_FREE; 2849 t->t_prev = NULL; /* Just in case */ 2850 } 2851 2852 } while ((t = tnext) != curthread); 2853 2854 mutex_exit(&pidlock); 2855 2856 mutex_sync(); 2857 for (t = tlist; t != NULL; t = tnext) { 2858 tnext = t->t_next; 2859 thread_free(t); 2860 } 2861 } 2862 } 2863 2864 /* 2865 * Update the cpu_supp_freqs of this cpu. This information is returned 2866 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2867 * maintain the kstat data size. 2868 */ 2869 void 2870 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2871 { 2872 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2873 const char *lfreqs = clkstr; 2874 boolean_t kstat_exists = B_FALSE; 2875 kstat_t *ksp; 2876 size_t len; 2877 2878 /* 2879 * A NULL pointer means we only support one speed. 2880 */ 2881 if (freqs == NULL) 2882 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2883 cp->cpu_curr_clock); 2884 else 2885 lfreqs = freqs; 2886 2887 /* 2888 * Make sure the frequency doesn't change while a snapshot is 2889 * going on. Of course, we only need to worry about this if 2890 * the kstat exists. 2891 */ 2892 if ((ksp = cp->cpu_info_kstat) != NULL) { 2893 mutex_enter(ksp->ks_lock); 2894 kstat_exists = B_TRUE; 2895 } 2896 2897 /* 2898 * Free any previously allocated string and if the kstat 2899 * already exists, then update its data size. 2900 */ 2901 if (cp->cpu_supp_freqs != NULL) { 2902 len = strlen(cp->cpu_supp_freqs) + 1; 2903 kmem_free(cp->cpu_supp_freqs, len); 2904 if (kstat_exists) 2905 ksp->ks_data_size -= len; 2906 } 2907 2908 /* 2909 * Allocate the new string and set the pointer. 2910 */ 2911 len = strlen(lfreqs) + 1; 2912 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2913 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2914 2915 /* 2916 * If the kstat already exists then update the data size and 2917 * free the lock. 2918 */ 2919 if (kstat_exists) { 2920 ksp->ks_data_size += len; 2921 mutex_exit(ksp->ks_lock); 2922 } 2923 } 2924 2925 /* 2926 * processor_info(2) and p_online(2) status support functions 2927 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2928 * for use in communicating processor state information to userland. Kernel 2929 * subsystems should only be using the cpu_flags value directly. Subsystems 2930 * modifying cpu_flags should record the state change via a call to the 2931 * cpu_set_state(). 2932 */ 2933 2934 /* 2935 * Update the pi_state of this CPU. This function provides the CPU status for 2936 * the information returned by processor_info(2). 2937 */ 2938 void 2939 cpu_set_state(cpu_t *cpu) 2940 { 2941 ASSERT(MUTEX_HELD(&cpu_lock)); 2942 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2943 cpu->cpu_state_begin = gethrestime_sec(); 2944 pool_cpu_mod = gethrtime(); 2945 } 2946 2947 /* 2948 * Return offline/online/other status for the indicated CPU. Use only for 2949 * communication with user applications; cpu_flags provides the in-kernel 2950 * interface. 2951 */ 2952 int 2953 cpu_get_state(cpu_t *cpu) 2954 { 2955 ASSERT(MUTEX_HELD(&cpu_lock)); 2956 if (cpu->cpu_flags & CPU_POWEROFF) 2957 return (P_POWEROFF); 2958 else if (cpu->cpu_flags & CPU_FAULTED) 2959 return (P_FAULTED); 2960 else if (cpu->cpu_flags & CPU_SPARE) 2961 return (P_SPARE); 2962 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2963 return (P_OFFLINE); 2964 else if (cpu->cpu_flags & CPU_ENABLE) 2965 return (P_ONLINE); 2966 else 2967 return (P_NOINTR); 2968 } 2969 2970 /* 2971 * Return processor_info(2) state as a string. 2972 */ 2973 const char * 2974 cpu_get_state_str(cpu_t *cpu) 2975 { 2976 const char *string; 2977 2978 switch (cpu_get_state(cpu)) { 2979 case P_ONLINE: 2980 string = PS_ONLINE; 2981 break; 2982 case P_POWEROFF: 2983 string = PS_POWEROFF; 2984 break; 2985 case P_NOINTR: 2986 string = PS_NOINTR; 2987 break; 2988 case P_SPARE: 2989 string = PS_SPARE; 2990 break; 2991 case P_FAULTED: 2992 string = PS_FAULTED; 2993 break; 2994 case P_OFFLINE: 2995 string = PS_OFFLINE; 2996 break; 2997 default: 2998 string = "unknown"; 2999 break; 3000 } 3001 return (string); 3002 } 3003 3004 /* 3005 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3006 * kstats, respectively. This is done when a CPU is initialized or placed 3007 * online via p_online(2). 3008 */ 3009 static void 3010 cpu_stats_kstat_create(cpu_t *cp) 3011 { 3012 int instance = cp->cpu_id; 3013 char *module = "cpu"; 3014 char *class = "misc"; 3015 kstat_t *ksp; 3016 zoneid_t zoneid; 3017 3018 ASSERT(MUTEX_HELD(&cpu_lock)); 3019 3020 if (pool_pset_enabled()) 3021 zoneid = GLOBAL_ZONEID; 3022 else 3023 zoneid = ALL_ZONES; 3024 /* 3025 * Create named kstats 3026 */ 3027 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3028 ksp = kstat_create_zone(module, instance, (name), class, \ 3029 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3030 zoneid); \ 3031 if (ksp != NULL) { \ 3032 ksp->ks_private = cp; \ 3033 ksp->ks_update = (update_func); \ 3034 kstat_install(ksp); \ 3035 } else \ 3036 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3037 module, instance, (name)); 3038 3039 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3040 cpu_sys_stats_ks_update); 3041 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3042 cpu_vm_stats_ks_update); 3043 3044 /* 3045 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3046 */ 3047 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3048 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3049 if (ksp != NULL) { 3050 ksp->ks_update = cpu_stat_ks_update; 3051 ksp->ks_private = cp; 3052 kstat_install(ksp); 3053 } 3054 } 3055 3056 static void 3057 cpu_stats_kstat_destroy(cpu_t *cp) 3058 { 3059 char ks_name[KSTAT_STRLEN]; 3060 3061 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3062 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3063 3064 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3065 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3066 } 3067 3068 static int 3069 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3070 { 3071 cpu_t *cp = (cpu_t *)ksp->ks_private; 3072 struct cpu_sys_stats_ks_data *csskd; 3073 cpu_sys_stats_t *css; 3074 hrtime_t msnsecs[NCMSTATES]; 3075 int i; 3076 3077 if (rw == KSTAT_WRITE) 3078 return (EACCES); 3079 3080 csskd = ksp->ks_data; 3081 css = &cp->cpu_stats.sys; 3082 3083 /* 3084 * Read CPU mstate, but compare with the last values we 3085 * received to make sure that the returned kstats never 3086 * decrease. 3087 */ 3088 3089 get_cpu_mstate(cp, msnsecs); 3090 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3091 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3092 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3093 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3094 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3095 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3096 3097 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3098 sizeof (cpu_sys_stats_ks_data_template)); 3099 3100 csskd->cpu_ticks_wait.value.ui64 = 0; 3101 csskd->wait_ticks_io.value.ui64 = 0; 3102 3103 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3104 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3105 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3106 csskd->cpu_ticks_idle.value.ui64 = 3107 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3108 csskd->cpu_ticks_user.value.ui64 = 3109 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3110 csskd->cpu_ticks_kernel.value.ui64 = 3111 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3112 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3113 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3114 csskd->bread.value.ui64 = css->bread; 3115 csskd->bwrite.value.ui64 = css->bwrite; 3116 csskd->lread.value.ui64 = css->lread; 3117 csskd->lwrite.value.ui64 = css->lwrite; 3118 csskd->phread.value.ui64 = css->phread; 3119 csskd->phwrite.value.ui64 = css->phwrite; 3120 csskd->pswitch.value.ui64 = css->pswitch; 3121 csskd->trap.value.ui64 = css->trap; 3122 csskd->intr.value.ui64 = 0; 3123 for (i = 0; i < PIL_MAX; i++) 3124 csskd->intr.value.ui64 += css->intr[i]; 3125 csskd->syscall.value.ui64 = css->syscall; 3126 csskd->sysread.value.ui64 = css->sysread; 3127 csskd->syswrite.value.ui64 = css->syswrite; 3128 csskd->sysfork.value.ui64 = css->sysfork; 3129 csskd->sysvfork.value.ui64 = css->sysvfork; 3130 csskd->sysexec.value.ui64 = css->sysexec; 3131 csskd->readch.value.ui64 = css->readch; 3132 csskd->writech.value.ui64 = css->writech; 3133 csskd->rcvint.value.ui64 = css->rcvint; 3134 csskd->xmtint.value.ui64 = css->xmtint; 3135 csskd->mdmint.value.ui64 = css->mdmint; 3136 csskd->rawch.value.ui64 = css->rawch; 3137 csskd->canch.value.ui64 = css->canch; 3138 csskd->outch.value.ui64 = css->outch; 3139 csskd->msg.value.ui64 = css->msg; 3140 csskd->sema.value.ui64 = css->sema; 3141 csskd->namei.value.ui64 = css->namei; 3142 csskd->ufsiget.value.ui64 = css->ufsiget; 3143 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3144 csskd->ufsipage.value.ui64 = css->ufsipage; 3145 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3146 csskd->procovf.value.ui64 = css->procovf; 3147 csskd->intrthread.value.ui64 = 0; 3148 for (i = 0; i < LOCK_LEVEL - 1; i++) 3149 csskd->intrthread.value.ui64 += css->intr[i]; 3150 csskd->intrblk.value.ui64 = css->intrblk; 3151 csskd->intrunpin.value.ui64 = css->intrunpin; 3152 csskd->idlethread.value.ui64 = css->idlethread; 3153 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3154 csskd->nthreads.value.ui64 = css->nthreads; 3155 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3156 csskd->xcalls.value.ui64 = css->xcalls; 3157 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3158 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3159 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3160 csskd->modload.value.ui64 = css->modload; 3161 csskd->modunload.value.ui64 = css->modunload; 3162 csskd->bawrite.value.ui64 = css->bawrite; 3163 csskd->iowait.value.ui64 = css->iowait; 3164 3165 return (0); 3166 } 3167 3168 static int 3169 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3170 { 3171 cpu_t *cp = (cpu_t *)ksp->ks_private; 3172 struct cpu_vm_stats_ks_data *cvskd; 3173 cpu_vm_stats_t *cvs; 3174 3175 if (rw == KSTAT_WRITE) 3176 return (EACCES); 3177 3178 cvs = &cp->cpu_stats.vm; 3179 cvskd = ksp->ks_data; 3180 3181 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3182 sizeof (cpu_vm_stats_ks_data_template)); 3183 cvskd->pgrec.value.ui64 = cvs->pgrec; 3184 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3185 cvskd->pgin.value.ui64 = cvs->pgin; 3186 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3187 cvskd->pgout.value.ui64 = cvs->pgout; 3188 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3189 cvskd->swapin.value.ui64 = cvs->swapin; 3190 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3191 cvskd->swapout.value.ui64 = cvs->swapout; 3192 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3193 cvskd->zfod.value.ui64 = cvs->zfod; 3194 cvskd->dfree.value.ui64 = cvs->dfree; 3195 cvskd->scan.value.ui64 = cvs->scan; 3196 cvskd->rev.value.ui64 = cvs->rev; 3197 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3198 cvskd->as_fault.value.ui64 = cvs->as_fault; 3199 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3200 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3201 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3202 cvskd->softlock.value.ui64 = cvs->softlock; 3203 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3204 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3205 cvskd->execpgin.value.ui64 = cvs->execpgin; 3206 cvskd->execpgout.value.ui64 = cvs->execpgout; 3207 cvskd->execfree.value.ui64 = cvs->execfree; 3208 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3209 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3210 cvskd->anonfree.value.ui64 = cvs->anonfree; 3211 cvskd->fspgin.value.ui64 = cvs->fspgin; 3212 cvskd->fspgout.value.ui64 = cvs->fspgout; 3213 cvskd->fsfree.value.ui64 = cvs->fsfree; 3214 3215 return (0); 3216 } 3217 3218 static int 3219 cpu_stat_ks_update(kstat_t *ksp, int rw) 3220 { 3221 cpu_stat_t *cso; 3222 cpu_t *cp; 3223 int i; 3224 hrtime_t msnsecs[NCMSTATES]; 3225 3226 cso = (cpu_stat_t *)ksp->ks_data; 3227 cp = (cpu_t *)ksp->ks_private; 3228 3229 if (rw == KSTAT_WRITE) 3230 return (EACCES); 3231 3232 /* 3233 * Read CPU mstate, but compare with the last values we 3234 * received to make sure that the returned kstats never 3235 * decrease. 3236 */ 3237 3238 get_cpu_mstate(cp, msnsecs); 3239 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3240 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3241 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3242 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3243 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3244 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3245 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3246 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3247 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3248 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3249 cso->cpu_sysinfo.wait[W_IO] = 0; 3250 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3251 cso->cpu_sysinfo.wait[W_PIO] = 0; 3252 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3253 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3254 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3255 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3256 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3257 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3258 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3259 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3260 cso->cpu_sysinfo.intr = 0; 3261 for (i = 0; i < PIL_MAX; i++) 3262 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3263 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3264 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3265 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3266 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3267 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3268 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3269 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3270 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3271 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3272 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3273 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3274 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3275 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3276 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3277 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3278 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3279 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3280 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3281 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3282 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3283 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3284 cso->cpu_sysinfo.inodeovf = 0; 3285 cso->cpu_sysinfo.fileovf = 0; 3286 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3287 cso->cpu_sysinfo.intrthread = 0; 3288 for (i = 0; i < LOCK_LEVEL - 1; i++) 3289 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3290 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3291 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3292 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3293 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3294 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3295 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3296 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3297 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3298 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3299 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3300 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3301 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3302 cso->cpu_sysinfo.rw_enters = 0; 3303 cso->cpu_sysinfo.win_uo_cnt = 0; 3304 cso->cpu_sysinfo.win_uu_cnt = 0; 3305 cso->cpu_sysinfo.win_so_cnt = 0; 3306 cso->cpu_sysinfo.win_su_cnt = 0; 3307 cso->cpu_sysinfo.win_suo_cnt = 0; 3308 3309 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3310 cso->cpu_syswait.swap = 0; 3311 cso->cpu_syswait.physio = 0; 3312 3313 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3314 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3315 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3316 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3317 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3318 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3319 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3320 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3321 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3322 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3323 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3324 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3325 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3326 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3327 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3328 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3329 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3330 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3331 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3332 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3333 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3334 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3335 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3336 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3337 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3338 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3339 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3340 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3341 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3342 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3343 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3344 3345 return (0); 3346 } 3347